
Systems/C++
C++ Library 2.30

Copyright c© 2024, Dignus, LLC

Systems/C++
C++ Library
Version 2.30

i

Copyright c© 2024 Dignus LLC, 8378 Six Forks Road Suite 203, Raleigh NC, 27615.
World rights reserved. No part of this publication may be stored in a retrieval
system, transmitted, or reproduced in any way, including but not limited to pho-
tocopy, photograph, magnetic or other record, without the prior agreement and
written permission of the publisher.

This product includes software developed by the University of California, Berkeley
and its contributors. Portions Copyright c© 1990, 1993 The Regents of the University
of California. All rights reserved.

This product contains software developed by the LLVM project, which contains the
following copyright notice:

Copyright c© 2009-2014 by Saleem Abdulrasool, Dan Albert, Dimitry Andric,
Holger Arnold, Ruben Van Boxem, David Chisnall, Marshall Clow, Jonathan
B Coe, Eric Fiselier, Bill Fisher, Matthew Dempsky, Google Inc., Howard
Hinnant, Hyeon-bin Jeong, Argyrios Kyrtzidis, Bruce Mitchener, Jr., Michel
Morin, Andrew Morrow, Arvid Picciani, Bjorn Reese, Nico Rieck, Jon Roelofs,
Jonathan Sauer, Craig Silverstein, Richard Smith, Joerg Sonnenberger, Stephan
Tolksdorf, Michael van der Westhuizen, Larisse Voufo, Klaas de Vries, Zhang
Xiongpang, Xing Xue, Zhihao Yuan, and Jeffrey Yasskin.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

Copyright c© 1996-1999
Silicon Graphics Computer Systems, Inc.

Permission to use, copy, modify, distribute and sell this software and its documentation
for any purpose is hereby granted without fee, provided that the above copyright notice
appears in all copies and that both that copyright notice and this permission notice appear in
supporting documentation. Silicon Graphics makes no representations about the suitability
of this software for any purpose. It is provided ”as is” without express or implied warranty.

ii

Copyright c© 1994
Hewlett-Packard Company

Permission to use, copy, modify, distribute and sell this software and its documentation
for any purpose is hereby granted without fee, provided that the above copyright notice
appears in all copies and that both that copyright notice and this permission notice appear
in supporting documentation. Hewlett-Packard Company makes no representations about
the suitability of this software for any purpose. It is provided ”as is” without express or
implied warranty.

IBM, S/390, z/Architecture, zSeries, OS/390, zOS, MVS, VM, CMS, HLASM, and
High Level Assembler are registered trademarks of International Business Machines
Corporation.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States and other countries.

Dignus, Systems/C, Systems/C++ and Systems/ASM are registered trademarks of
Dignus, LLC.

iii

iv

Contents

1 Introduction 1

2 Linking with the Systems/C++ library for OS/390 and z/OS 3

3 Linking with Systems/C++ z/Architecture library for z/OS 5

4 Linking with the Systems/C++ library for Linux and z/Linux 7

5 Introduction to the STL 9

6 How to use the STL documentation 15

7 Containers 21
7.1 Concepts . 21

7.1.1 General concepts . 21
Container . 21
Forward Container . 26
Reversible Container . 28
Random Access Container . 31

7.1.2 Sequences . 32
Sequence . 32
Front Insertion Sequence . 38
Back Insertion Sequence . 40

7.1.3 Associative Containers . 42
Associative Container . 42
Simple Associative Container 46
Pair Associative Container 48
Sorted Associative Container 49
Unique Associative Container 53
Multiple Associative Container 55
Unique Sorted Associative Container 57
Multiple Sorted Associative Container 60

7.2 Container classes . 63
7.2.1 Sequences . 63

vector . 63
deque . 68

Systems/C++ C++ Library v

list . 73
bit vector . 80

7.2.2 Associative Containers . 85
set . 85
map . 91
multiset . 97
Character Traits . 102
char traits . 107
basic string . 110

7.2.3 Container adaptors . 129
stack . 129
queue . 133
priority queue . 137

7.2.4 bitset . 142

8 Iterators 149
8.1 Introduction . 149
8.2 Concepts . 152

8.2.1 Trivial Iterator . 152
8.2.2 Input Iterator . 154
8.2.3 Output Iterator . 156
8.2.4 Forward Iterator . 159
8.2.5 Bidirectional Iterator . 161
8.2.6 Random Access Iterator . 163

8.3 Iterator Tags . 167
8.3.1 Introduction . 167
8.3.2 iterator traits . 172
8.3.3 Iterator tag classes . 175

input iterator tag . 175
output iterator tag . 176
forward iterator tag . 177
bidirectional iterator tag . 178
random access iterator tag 180

8.4 Iterator functions . 181
8.4.1 distance . 181
8.4.2 advance . 183

8.5 Iterator classes . 184
8.5.1 istream iterator . 184
8.5.2 ostream iterator . 187
8.5.3 front insert iterator . 188
8.5.4 back insert iterator . 191
8.5.5 insert iterator . 194
8.5.6 reverse iterator . 197
8.5.7 raw storage iterator . 202

vi

9 Algorithms 205
9.1 Non-mutating algorithms . 205

9.1.1 for each . 205
9.1.2 find . 207
9.1.3 find if . 208
9.1.4 adjacent find . 209
9.1.5 find first of . 211
9.1.6 count . 213
9.1.7 count if . 215
9.1.8 mismatch . 218
9.1.9 equal . 220
9.1.10 search . 222
9.1.11 search n . 224
9.1.12 find end . 227

9.2 Mutating algorithms . 230
9.2.1 copy . 230
9.2.2 copy n . 232
9.2.3 copy backward . 234
9.2.4 Swap . 235

swap . 235
iter swap . 236
swap ranges . 238

9.2.5 transform . 239
9.2.6 Replace . 242

replace . 242
replace if . 244
replace copy . 245
replace copy if . 247

9.2.7 fill . 248
9.2.8 fill n . 250
9.2.9 generate . 251
9.2.10 generate n . 252
9.2.11 Remove . 254

remove . 254
remove if . 256
remove copy . 257
remove copy if . 259

9.2.12 unique . 261
9.2.13 unique copy . 264
9.2.14 reverse . 266
9.2.15 reverse copy . 267
9.2.16 rotate . 269
9.2.17 rotate copy . 270
9.2.18 random shuffle . 272
9.2.19 partition . 273

vii

9.2.20 stable partition . 275
9.3 Sorting . 276

9.3.1 Sort . 276
sort . 276
stable sort . 278
partial sort . 281
partial sort copy . 283
is sorted . 285

9.3.2 nth element . 287
9.3.3 Binary search . 289

lower bound . 289
upper bound . 292
equal range . 295
binary search . 298

9.3.4 merge . 301
9.3.5 inplace merge . 305
9.3.6 Set operations on sorted ranges 307

includes . 307
set union . 311
set intersection . 315
set difference . 319
set symmetric difference . 323

9.3.7 Heap operations . 327
push heap . 327
pop heap . 329
make heap . 332
sort heap . 334
is heap . 336

9.3.8 Minimum and maximum . 338
min . 338
max . 339
min element . 341
max element . 342

9.3.9 lexicographical compare . 344
9.3.10 next permutation . 347
9.3.11 prev permutation . 349

9.4 Generalized numeric algorithms . 351
9.4.1 iota . 351
9.4.2 accumulate . 353
9.4.3 inner product . 355
9.4.4 partial sum . 357
9.4.5 adjacent difference . 359

viii

10 Function Objects 363
10.1 Introduction . 363
10.2 Concepts . 367

10.2.1 Generator . 367
10.2.2 Unary Function . 369
10.2.3 Binary Function . 370
10.2.4 Adaptable Generator . 372
10.2.5 Adaptable Unary Function 373
10.2.6 Adaptable Binary Function 374
10.2.7 Predicates . 376

Predicate . 376
Binary Predicate . 377
Adaptable Predicate . 379
Adaptable Binary Predicate 380
StrictWeakOrdering . 381

10.2.8 Random Number Generator 383
10.3 Predefined function objects . 385

10.3.1 Arithmetic operations . 385
plus . 385
minus . 386
multiplies . 388
divides . 390
modulus . 392
negate . 394

10.3.2 Comparisons . 396
equal to . 396
not equal to . 398
less . 399
greater . 401
less equal . 403
greater equal . 404

10.3.3 Logical operations . 406
logical and . 406
logical or . 408
logical not . 410

10.4 Function object adaptors . 412
10.4.1 binder1st . 412
10.4.2 binder2nd . 414
10.4.3 ptr fun . 417
10.4.4 pointer to unary function . 418
10.4.5 pointer to binary function . 420
10.4.6 unary negate . 423
10.4.7 binary negate . 425
10.4.8 Member function adaptors . 427

mem fun . 427

ix

mem fun ref . 430
mem fun1 . 433
mem fun1 ref . 436

11 Utilities 439
11.1 Concepts . 439

11.1.1 Assignable . 439
11.1.2 Default Constructible . 441
11.1.3 Equality Comparable . 442
11.1.4 LessThan Comparable . 443

11.2 Functions . 445
11.2.1 Relational Operators . 445

11.3 Classes . 446
11.3.1 pair . 446

12 Memory Allocation 451
12.1 Classes . 451

12.1.1 Allocators . 451
12.1.2 raw storage iterator . 453

12.2 Functions . 456
12.2.1 uninitialized copy . 456
12.2.2 uninitialized copy n . 458
12.2.3 uninitialized fill . 459
12.2.4 uninitialized fill n . 461
12.2.5 get temporary buffer . 463
12.2.6 return temporary buffer . 464

x

Chapter 1

Introduction

The Systems/C++ C++ library provides the classes and functionality associated
with the C++ language. It consists of two library files. One, LIBCXX on OS/390
or libcxx mvs.a on Unix or Windows, provides basic language-level functional-
ity, such as helper functions for exceptions and the default operator new func-
tion. This library is a central part of the C++ language and should always be
linked into any program built with Systems/C++. The other, LIBSTDCX on OS/390
or libstdcxx mvs.a on Unix or Windows, provides the complete ANSI C++11
(ISO/IEC 14882:2011) standard library, including iostreams and the Standard Tem-
plate Library. This document focuses on the Standard Template Library.

Systems/C++ C++ Library 1

2 Systems/C++ C++ Library

Chapter 2

Linking with the Systems/C++
library for OS/390 and z/OS

To produce Systems/C++ programs for OS/390 and z/OS, the PLINK utility must
be used to prepare the objects for linking with the IBM BINDER or older IEWL
linker. PLINK prepares the program, gathering the objects together, and processing
C++ language features, such as static C++ constructors/destructors.

The Systems/C Utility manual has more detailed information regarding the PLINK
utility. Also, the Systems/C++ Compiler manual has more information regarding
linking and running C++ programs.

For example, to pre-link the Systems/C++ object named PROG found in the mypds
PDS on OS/390 or z/OS:

//PLINK EXEC PGM=PLINK
//STDERR DD SYSOUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCXX,DISP=SHR
// DD DSN=DIGNUS.LIBSTDCX,DISP=SHR
// DD DSN=DIGNUS.LIBCR,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
//SYSMOD DD DSN=myoutput.obj,DISP=NEW

Note that the LIBCXX and LIBSTDCX PDSs were specified in the SYSLIB DD definition,
as appropriate to your installation.

On UNIX and Windows workstations, to link the Systems/C++ program prog.obj,
the PLINK command would be:

plink prog.obj C:\sysc\lib\libstdcxx_mvs.a C:\sysc\lib\libcxx_mvs.a
"-SC:\sysc\lib\objs_rent\&M"

Systems/C++ C++ Library 3

This PLINK command specifies the two C++ DAR archives for MVS, followed by the
Systems/C re-entrant library.

4 Systems/C++ C++ Library

Chapter 3

Linking with Systems/C++
z/Architecture library for z/OS

Systems/C++ also provides the Systems/C++ z/Architecture library, for z/OS
z/Architecture programs.

Programs compiled with the –march=zarch option should be linked with the
z/Architecture Systems/C and Systems/C++ libraries.

The Systems/C++ library provides all of the z/Architecture features of the Sys-
tems/C library, including full access to the entire 64-bit addressing range for data,
z/Architecture Direct-CALL (DCALL) support, and using z/Architecture code in
an AMODE other than 64-bit.

For more details about these features, consult the Systems/C C Library manual.

Linking with the Systems/C++ z/Architecture library is analogous to linking with
the OS/390 and z/OS library, simply replacing the non-z/Architecture libraries with
their z/Architecture versions.

The Systems/C C Library manual provides the details of how to locate the
z/Architecture C library on the various supported hosts.

The z/Architecture variants Systems/C++ library can be found in the
libcxx mvsz.a and libstdcxx mvsz.a DAR archive libraries on cross-platform
hosts. On OS/390 and z/OS the z/Architecture library is located in the LIBCXXZ
and LIBSTCXZ PDSs.

The following JCL sample executes the Systems/C pre-linker (PLINK) on OS/390
or z/OS, linking with the z/Architecture C++ library, and then the z/Architecture
C library:

Systems/C++ C++ Library 5

//PLINK EXEC PGM=PLINK
//STDERR DD SYSOUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCXXZ,DISP=SHR
// DD DSN=DIGNUS.LIBSTCXZ,DISP=SHR
// DD DSN=DIGNUS.LIBCRZ,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
//SYSMOD DD DSN=myoutput.obj,DISP=NEW

On a cross-platform host, Windows in this example, the analagous PLINK com-
mand would be:

plink -omyoutput.obj prog.obj C:\sysc\lib\libstdcxx_mvsz.a
C:\sysc\lib\libcxx_mvsz.a "-SC:\sysc\lib\objs_rent_z\&M"

This PLINK command specifies the two C++ DAR archives for the Systems/C++
z/Architecture library, followed by the directory for the Systems/C z/Architecture
library.

6 Systems/C++ C++ Library

Chapter 4

Linking with the Systems/C++
library for Linux and z/Linux

Since version 1.95 of Systems/C++, DCXX is compatible with g++ when build-
ing for Linux and z/Linux, and will work with the distribution-provided GNU
libstdc++. As a result, the Systems/C++ library no longer supports Linux and
z/Linux.

For more information about linking on Linux/390 and z/Linux, see the cc and ld
command manual pages on these systems.

Systems/C++ C++ Library 7

8 Systems/C++ C++ Library

Chapter 5

Introduction to the STL

The Standard Template Library, or STL, is a C++ library of container classes, algo-
rithms, and iterators; it provides many of the basic algorithms and data structures
of computer science. The STL is a generic library, meaning that its components
are heavily parameterized: almost every component in the STL is a template. You
should make sure that you understand how templates work in C++ before you use
the STL.

Containers and algorithms

Like many class libraries, the STL includes container classes: classes whose purpose
is to contain other objects. The STL includes the classes vector, list, deque, set,
multiset, and map. . Each of these classes is a template, and can be instantiated
to contain any type of object. You can, for example, use a vector<int> in much
the same way as you would use an ordinary C array, except that vector eliminates
the chore of managing dynamic memory allocation by hand.

vector<int> v(3); // Declare a vector of 3 elements.
v[0] = 7;
v[1] = v[0] + 3;
v[2] = v[0] + v[1]; // v[0] == 7, v[1] == 10, v[2] == 17

The STL also includes a large collection of algorithms that manipulate the data
stored in containers. You can reverse the order of elements in a vector, for example,
by using the reverse algorithm.

reverse(v.begin(), v.end()); // v[0] == 17, v[1] == 10, v[2] == 7

Systems/C++ C++ Library 9

There are two important points to notice about this call to reverse. First, it is
a global function, not a member function. Second, it takes two arguments rather
than one: it operates on a range of elements, rather than on a container. In this
particular case the range happens to be the entire container v.

The reason for both of these facts is the same: reverse, like other STL algorithms,
is decoupled from the STL container classes. This means that reverse can be used
not only to reverse elements in vectors, but also to reverse elements in lists, and
even elements in C arrays. The following program is also valid.

double A[6] = { 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 };
reverse(A, A + 6);
for (int i = 0; i < 6; ++i)

cout << "A[" << i << "] = " << A[i];

This example uses a range, just like the example of reversing a vector: the first
argument to reverse is a pointer to the beginning of the range, and the second
argument points one element past the end of the range. This range is denoted
[A, A + 6); the asymmetrical notation is a reminder that the two endpoints are
different, that the first is the beginning of the range and the second is one past the
end of the range.

Iterators

In the example of reversing a C array, the arguments to reverse are clearly of type
double*. What are the arguments to reverse if you are reversing a vector, though,
or a list? That is, what exactly does reverse declare its arguments to be, and
what exactly do v.begin() and v.end() return?

The answer is that the arguments to reverse are iterators, which are a gener-
alization of pointers. Pointers themselves are iterators, which is why it is possi-
ble to reverse the elements of a C array. Similarly, vector declares the nested
types iterator and const iterator. In the example above, the type returned
by v.begin() and v.end() is vector<int>::iterator. There are also some it-
erators, such as istream iterator and ostream iterator, that aren’t associated
with containers at all.

Iterators are the mechanism that makes it possible to decouple algorithms from
containers: algorithms are templates, and are parameterized by the type of iterator,
so they are not restricted to a single type of container. Consider, for example, how
to write an algorithm that performs linear search through a range. This is the STL’s
find algorithm.

10 Systems/C++ C++ Library

template <class InputIterator, class T>
InputIterator find(InputIterator first, InputIterator last,

const T& value) {
while (first != last && *first != value) ++first;
return first;

}

Find takes three arguments: two iterators that define a range, and a value to search
for in that range. It examines each iterator in the range [first, last), proceeding
from the beginning to the end, and stops either when it finds an iterator that points
to value or when it reaches the end of the range.

First and last are declared to be of type InputIterator, and InputIterator is
a template parameter. That is, there isn’t actually any type called InputIterator:
when you call find, the compiler substitutes the actual type of the arguments for
the formal type parameters InputIterator and T. If the first two arguments to
find are of type int* and the third is of type int, then it is as if you had called
the following function.

int* find(int* first, int* last, const int& value) {
while (first != last && *first != value) ++first;
return first;

}

Concepts and Modeling

One very important question to ask about any template function, not just about
STL algorithms, is what the set of types is that may correctly be substituted for
the formal template parameters. Clearly, for example, int* or double* may be
substituted for find’s formal template parameter InputIterator. Equally clearly,
int or double may not: find uses the expression *first, and the dereference
operator makes no sense for an object of type int or of type double. The basic
answer, then, is that find implicitly defines a set of requirements on types, and that
it may be instantiated with any type that satisfies those requirements. Whatever
type is substituted for InputIterator must provide certain operations: it must be
possible to compare two objects of that type for equality, it must be possible to
increment an object of that type, it must be possible to dereference an object of
that type to obtain the object that it points to, and so on.

Find isn’t the only STL algorithm that has such a set of requirements; the arguments
to for each and count, and other algorithms, must satisfy the same requirements.
These requirements are sufficiently important that we give them a name: we call
such a set of type requirements a concept, and we call this particular concept Input
Iterator. We say that a type conforms to a concept, or that it is a model of a
concept, if it satisfies all of those requirements. We say that int* is a model of

Systems/C++ C++ Library 11

Input Iterator because int* provides all of the operations that are specified by
the Input Iterator requirements.

Concepts are not a part of the C++ language; there is no way to declare a concept in
a program, or to declare that a particular type is a model of a concept. Nevertheless,
concepts are an extremely important part of the STL. Using concepts makes it
possible to write programs that cleanly separate interface from implementation: the
author of find only has to consider the interface specified by the concept Input
Iterator, rather than the implementation of every possible type that conforms to
that concept. Similarly, if you want to use find, you need only to ensure that the
arguments you pass to it are models of Input Iterator. This is the reason why find
and reverse can be used with lists, vectors, C arrays, and many other types:
programming in terms of concepts, rather than in terms of specific types, makes it
possible to reuse software components and to combine components together.

Refinement

Input Iterator is, in fact, a rather weak concept: that is, it imposes very few
requirements. An Input Iterator must support a subset of pointer arithmetic
(it must be possible to increment an Input Iterator using prefix and postfix
operator++), but need not support all operations of pointer arithmetic. This is
sufficient for find, but some other algorithms require that their arguments satisfy
additional requirements. Reverse, for example, must be able to decrement its argu-
ments as well as increment them; it uses the expression --last. In terms of concepts,
we say that reverse’s arguments must be models of Bidirectional Iterator rather
than Input Iterator.

The Bidirectional Iterator concept is very similar to the Input Iterator con-
cept: it simply imposes some additional requirements. The types that are models
of Bidirectional Iterator are a subset of the types that are models ofInput It-
erator: every type that is a model of Bidirectional Iterator is also a model of
Input Iterator. Int*, for example, is both a model of Bidirectional Iterator
and a model of Input Iterator, but istream iterator, is only a model of In-
put Iterator: it does not conform to the more stringent Bidirectional Iterator
requirements.

We describe the relationship between Input Iterator and Bidirectional Iterator
by saying that Bidirectional Iterator is a refinement of Input Iterator. Refine-
ment of concepts is very much like inheritance of C++ classes; the main reason we
use a different word, instead of just calling it ”inheritance”, is to emphasize that
refinement applies to concepts rather than to actual types.

There are actually three more iterator concepts in addition to the two that we have
already discussed: the five iterator concepts are Output Iterator, Input Iterator,
Forward Iterator, Bidirectional Iterator, and Random Access Iterator;
Forward Iterator is a refinement of Input Iterator, Bidirectional Iterator is
a refinement of Forward Iterator, and Random Access Iterator is a refinement
of Bidirectional Iterator. (Output Iterator is related to the other four concepts,

12 Systems/C++ C++ Library

but it is not part of the hierarchy of refinement: it is not a refinement of any of the
other iterator concepts, and none of the other iterator concepts are refinements of
it.) The Iterator Overview has more information about iterators in general.

Container classes, like iterators, are organized into a hierarchy of concepts. All
containers are models of the concept Container; more refined concepts, such as
Sequence and Associative Container, describe specific types of containers.

Other parts of the STL

If you understand algorithms, iterators, and containers, then you understand almost
everything there is to know about the STL. The STL does, however, include several
other types of components.

First, the STL includes several utilities: very basic concepts and functions that are
used in many different parts of the library. The conceptAssignable, for example,
describes types that have assignment operators and copy constructors; almost all
STL classes are models of Assignable, and almost all STL algorithms require their
arguments to be models of Assignable.

Second, the STL includes some low-level mechanisms for allocating and deallocating
memory. Allocators are very specialized, and you can safely ignore them for almost
all purposes.

Finally, the STL includes a large collection of function objects, also known as func-
tors. Just as iterators are a generalization of pointers, function objects are a gen-
eralization of functions: a function object is anything that you can call using the
ordinary function call syntax. There are several different concepts relating to func-
tion objects, including Unary Function (a function object that takes a single
argument, i.e. one that is called as f(x)) and Binary Function (a function object
that takes two arguments, i.e. one that is called as f(x, y)). Function objects are
an important part of generic programming because they allow abstraction not only
over the types of objects, but also over the operations that are being performed.

Systems/C++ C++ Library 13

14 Systems/C++ C++ Library

Chapter 6

How to use the STL
documentation

This documentation assumes a general familiarity with C++, especially with C++
templates. Additionally, you should read Introduction to the Standard Template
Library before proceeding to the pages that describe individual components: the
introductory page defines several terms that are used throughout the documentation.

Classification of STL components

The STL components are divided into six broad categories on the basis of function-
ality: Containers, Iterators, Algorithms, Function Objects, Utilities, and Allocators;
these categories are defined in the Introduction, and the Table of Contents is orga-
nized according to them.

The STL documentation contains two indices. One of them, the Main Index, lists all
components in alphabetical order. The other, the Divided Index, contains a separate
alphabetical listing for each category. The Divided Index includes one category that
is not present in the Table of Contents: Adaptors. An adaptor is a class or a function
that transforms one interface into a different one. The reason that adaptors don’t
appear in the Table of Contents is that no component is merely an adaptor, but
always an adaptor and something else; stack, for example, is a container and an
adaptor. Accordingly, stack appears in two different places in the Divided Index.
There are several other components that appear in the Divided Index in more than
one place.

The STL documentation classifies components in two ways.

1. Categories are a classification by functionality. The categories are:

Systems/C++ C++ Library 15

• Container

• Iterator

• Algorithm

• Function Object

• Utility

• Adaptor

• Allocator.

2. Component types are a structural classification: one based on what kind of
C++ entity (if any) a component is. The component types are:

• Type (i.e. a struct or class)

• Function

• Concept (as defined in the

Introduction).

These two classification schemes are independent, and each of them applies to every
STL component; vector, for example, is a type whose category is Containers, and
Forward Iterator is a concept whose category is Iterators.

Both of these classification schemes appear at the top of every page that documents
an STL component. The upper left corner identifies the the component’s category
as Containers,Iterators, Algorithms, Function Objects, Utilities, Adaptors, or Allo-
cators, and the upper right corner identifies the component as a type, a function, or
a concept.

Using the STL documentation

The STL is a generic library: almost every class and function is a template. Accord-
ingly, one of the most important purposes of the STL documentation is to provide
a clear description of which types may be used to instantiate those templates. As
described in the Introduction, a concept is a generic set of requirements that a type
must satisfy: a type is said to be a model of a concept if it satisfies all of that
concept’s requirements.

Concepts are used very heavily in the STL documentation, both because they di-
rectly express type requirements, and because they are a tool for organizing types
conceptually. (For example, the fact that ostream iterator and insert iterator
are both models of Output Iterator is an important statement about what those
two classes have in common.) Concepts are used for the documentation of both
types and functions.

16 Systems/C++ C++ Library

The format of a concept page

A page that documents a concept has the following sections.

• Summary: A description of the concept’s purpose.

• Refinement of: A list of other concepts that this concept refines, with links
to those concepts.

• Associated types: A concept is a set of requirements on some type. Fre-
quently, however, some of those requirements involve some other type. For
example, one of theUnary Function requirements is that a Unary Func-
tion must have an argument type; if F is a type that models Unary Function
and f is an object of type F, then, in the expression f(x), x must be of F’s
argument type. If a concept does have any such associated types, then they
are defined in this section.

• Notation: The next three sections, definitions, valid expressions, and
expression semantics, present expressions involving types that model the
concept being defined. This section defines the meaning of the variables and
identifiers used in those expressions.

• Definitions: Some concepts, such as LessThan Comparable, use special-
ized terminology. If a concept requires any such terminology, it is defined in
this section.

• Valid Expressions: A type that models a concept is required to support
certain operations. In most cases, it doesn’t make sense to describe this in
terms of specific functions or member functions: it doesn’t make any differ-
ence, for example, whether a type that models Input Iterator uses a global
function or a member function to provide operator++. This section lists the
expressions that a type modeling this concept must support. It includes any
special requirements (if any) on the types of the expression’s operands, and
the expression’s return type (if any).

• Expression Semantics: The previous section, valid expressions, lists
which expressions involving a type must be supported; it doesn’t, however,
define the meaning of those expressions. This section does: it lists the se-
mantics, preconditions, and postconditions for the expressions defined in the
previous section.

• Complexity Guarantees: In some cases, the run-time complexity of certain
operations is an important part of a concept’s requirements. For example, one
of the most significant distinctions between a Bidirectional Iterator and a
Random Access Iterator is that, for random access iterators, expressions
like p + n take constant time. Any such requirements on run-time complexity
are listed in this section.

• Invariants: Many concepts require that some property is always true for ob-
jects of a type that models the concept being defined. For example, LessThan

Systems/C++ C++ Library 17

Comparable imposes the requirement of transitivity: if x < y and y < z,
then x < z. Some such properties are ”axioms” (that is, they are indepen-
dent of any other requirements) and some are ”theorems” (that is, they follow
either from requirements in the expression semantics section or from other
requirements in the invariants section).

• Models: A list of examples of types that are models of this concept. Note
that this list is not intended to be complete: in most cases a complete list
would be impossible, because there are an infinite number of types that could
model the concept.

• Notes: Footnotes (if any) that are referred to by other parts of the page.

• See Also: Links to other related pages.

The format of a type page

A page that documents a type has the following sections.

• Description. A summary of the type’s properties.

• Example of use: A code fragment involving the type.

• Definition: A link to the source code where the type is defined.

• Template parameters: Almost all STL structs and classes are templates.
This section lists the name of each template parameter, its purpose, and its
default value (if any).

• Model of: A list of the concepts that this type is a model of, and links to
those concepts. Note that a type may be a model of more than one concept:
vector, for example, is a model of both Random Access Container and
Back Insertion Sequence. If a type is a model of two different concepts,
that simply means that it satisfies the requirements of both.

• Type requirements: The template parameters of a class template usually
must satisfy a set of requirements. Many of these can simply be expressed
by listing which concept a template parameter must conform to, but some
type requirements are slightly more complicated, and involve a relationship
between two different template parameters.

• Public base classes: If this class inherits from any other classes, they are
listed in this section.

• Members: A list of this type’s nested types, member functions, member
variables, and associated non-member functions. In most cases these members
are simply listed, rather than defined: since the type is a model of some
concept, detailed definitions aren’t usually necessary. For example, vector is
a model of Container, so the description of the member function begin() in
the Container page applies to vector, and there is no need to repeat it in the

18 Systems/C++ C++ Library

vector page. Instead, the Members section provides a very brief description
of each member and a link to whatever page defines that member more fully.

• New Members: A type might have some members that are not part of the
requirements of any of the concepts that it models. For example, vector has a
member function called capacity(), which is not part of the Random Ac-
cess Container or Back Insertion Sequence requirements. These mem-
bers are defined in the New members section.

• Notes: Footnotes (if any) that are referred to by other parts of the page.

• See Also: Links to other related pages.

The format of a function page

A page that documents a function has the following sections.

• Prototype: the function’s declaration.

• Description: A summary of what the function does.

• Definition: A link to the source code where the function is defined.

• Requirements on types: Most functions in the STL are function templates.
This section lists the requirements that must be satisfied by the function’s tem-
plate parameters. Sometimes the requirements can simply be expressed by list-
ing which concept a template parameter must conform to, but sometimes they
are more complicated and involve a relationship between two different template
parameters. In the case of find, for example, the requirements are that the
parameter InputIterator is a model of Input Iterator, that the parameter
EqualityComparable is a model of Equality Comparable, and that com-
parison for equality is possible between objects of type EqualityComparable
and objects of InputIterator’s value types.

• Preconditions: Functions usually aren’t guaranteed to yield a well-defined
result for any possible input, but only for valid input; it is an error to call a
function with invalid input. This section describes the conditions for validity.

• Complexity: Guarantees on the function’s run-time complexity. For exam-
ple, find’s run-time complexity is linear in the length of the input range.

• Example of use: A code fragment that illustrates how to use the function.

• Notes: Footnotes (if any) that are referred to by other parts of the page.

• See Also: Links to other related pages.

Systems/C++ C++ Library 19

20 Systems/C++ C++ Library

Chapter 7

Containers

7.1 Concepts

7.1.1 General concepts

Container

Description

A Container is an object that stores other objects (its elements), and that has
methods for accessing its elements. In particular, every type that is a model of
Container has an associated iterator type that can be used to iterate through the
Container’s elements. There is no guarantee that the elements of a Container are
stored in any definite order; the order might, in fact, be different upon each iteration
through the Container. Nor is there a guarantee that more than one iterator into
a Container may be active at any one time. (Specific types of Containers, such as
Forward Container, do provide such guarantees.) A Container ”owns” its elements:
the lifetime of an element stored in a container cannot exceed that of the Container
itself.

Refinement of

Assignable

Associated types

Systems/C++ C++ Library 21

Value type X::value type The type of the object stored in a
container. The value type must be
Assignable, but need not be DefaultCon-
structible.

Iterator type X::iterator The type of iterator used to iterate
through a container’s elements. The it-
erator’s value type is expected to be
the container’s value type. A conversion
from the iterator type to the const iter-
ator type must exist. The iterator type
must be an input iterator.

Const iterator type X::const iterator A type of iterator that may be used to
examine, but not to modify, a container’s
elements.

Reference type X::reference A type that behaves as a reference to the
container’s value type.

Const reference type X::const reference A type that behaves as a const reference
to the container’s value type.

Pointer type X::pointer A type that behaves as a pointer to the
container’s value type.

Distance type X::difference type A signed integral type used to repre-
sent the distance between two of the con-
tainer’s iterators. This type must be the
same as the iterator’s distance type.

Size type X::size type An unsigned integral type that can rep-
resent any nonnegative value of the con-
tainer’s distance type.

Notation

X A type that is a model of Container
a, b Object of type X
T The value type of X

Definitions

The size of a container is the number of elements it contains. The size is a nonneg-
ative number. The area of a container is the total number of bytes that it occupies.
More specifically, it is the sum of the elements’ areas plus whatever overhead is
associated with the container itself. If a container’s value type T is a simple type
(as opposed to a container type), then the container’s area is bounded above by a
constant times the container’s size times sizeof(T). That is, if a is a container with
a simple value type, then a’s area is O(a.size()). A variable sized container is one
that provides methods for inserting and/or removing elements; its size may vary
during a container’s lifetime. A fixed size container is one where the size is constant
throughout the container’s lifetime. In some fixed-size container types, the size is
determined at compile time.

22 Systems/C++ C++ Library

Valid expressions

In addition to the expressions defined in Assignable, EqualityComparable, and
LessThanComparable, the following expressions must be valid.

Name Expression Type reqs Return type

Beginning of range a.begin() iterator if a is mutable,
const iterator otherwise

End of range a.end() iterator if a is mutable,
const iterator otherwise

Size a.size() size type
Maximum size a.max size() size type

Empty container a.empty() Convertible to bool
Swap a.swap(b) void

Expression semantics

Semantics of an expression is defined only where it differs from, or is not defined in,
Assignable, Equality Comparable, or LessThan Comparable

Systems/C++ C++ Library 23

Name Expression Pre-

condi-
tion

Semantics Postcondition

Copy con-
structor

X(a) X().size() ==
a.size(). X() con-
tains a copy of each
of a’s elements.

Copy con-
structor

X b(a); b.size() ==
a.size(). b con-
tains a copy of each
of a’s elements.

Assignment
operator

b = a b.size() ==
a.size(). b con-
tains a copy of each
of a’s elements.

Destructor a.~X() Each of a’s ele-
ments is destroyed,
and memory allo-
cated for them (if
any) is deallocated.

Beginning of
range

a.begin() Returns an iterator
pointing to the first
element in the con-
tainer.

a.begin() is either
dereferenceable or
past-the-end. It is
past-the-end if and
only if a.size()
== 0.

End of range a.end() Returns an iterator
pointing one past
the last element in
the container.

a.end() is past-
the-end.

Size a.size() Returns the size of
the container, that
is, its number of el-
ements.

a.size() >= 0
&& a.size() <=
max size()

Maximum
size

a.max size() Returns the largest
size that this con-
tainer can ever
have.

a.max size()
>= 0 &&
a.max size()
>= a.size()

Empty con-
tainer

a.empty() Equivalent to
a.size() == 0.
(But possibly
faster.)

Swap a.swap(b) Equivalent to
swap(a,b)

Complexity guarantees

The copy constructor, the assignment operator, and the destructor are linear in the
container’s size. begin() and end() are amortized constant time. size() is linear
in the container’s size. max size() and empty() are amortized constant time. If
you are testing whether a container is empty, you should always write c.empty()

24 Systems/C++ C++ Library

instead of c.size() == 0. The two expressions are equivalent, but the former may
be much faster. swap() is amortized constant time.

Invariants

Valid range For any container a, [a.begin(), a.end()) is a valid range.
Range size a.size() is equal to the distance from a.begin() to a.end().

Completeness An algorithm that iterates through the range [a.begin(), a.end())
will pass through every element of a.

Models

• vector

Notes

The fact that the lifetime of elements cannot exceed that of of their container may
seem like a severe restriction. In fact, though, it is not. Note that pointers and
iterators are objects; like any other objects, they may be stored in a container. The
container, in that case, ”owns” the pointers themselves, but not the objects that they
point to. This expression must be a typedef, that is, a synonym for a type that
already has some other name. This may either be a typedef for some other type, or
else a unique type that is defined as a nested class within the class X. A container’s
iterator type and const iterator type may be the same: there is no guarantee that
every container must have an associated mutable iterator type. For example, set
defines iterator and const iterator to be the same type. It is required that the
reference type has the same semantics as an ordinary C++ reference, but it need
not actually be an ordinary C++ reference. Some implementations, for example,
might provide additional reference types to support non-standard memory models.
Note, however, that ”smart references” (user-defined reference types that provide
additional functionality) are not a viable option. It is impossible for a user-defined
type to have the same semantics as C++ references, because the C++ language
does not support redefining the member access operator (operator.). As in the
case of references , the pointer type must have the same semantics as C++ pointers
but need not actually be a C++ pointer. ”Smart pointers,” however, unlike ”smart
references”, are possible. This is because it is possible for user-defined types to
define the dereference operator and the pointer member access operator, operator*
and operator->. The iterator type need only be an input iterator, which provides
a very weak set of guarantees; in particular, all algorithms on input iterators must
be ”single pass”. It follows that only a single iterator into a container may be
active at any one time. This restriction is removed in Forward Container. In
the case of a fixed-size container, size() == max size(). For any Assignable
type, swap can be defined in terms of assignment. This requires three assignments,
each of which, for a container type, is linear in the container’s size. In a sense,
then, a.swap(b) is redundant. It exists solely for the sake of efficiency: for many

Systems/C++ C++ Library 25

containers, such as vector and list, it is possible to implement swap such that its run-
time complexity is constant rather than linear. If this is possible for some container
type X, then the template specialization swap(X&, X&) can simply be written in
terms of X::swap(X&). The implication of this is that X::swap(X&) should only
be defined if there exists such a constant-time implementation. Not every container
class X need have such a member function, but if the member function exists at all
then it is guaranteed to be amortized constant time. For many containers, such
as vector and deque, size is O(1). This satisfies the requirement that it be O(N).
Although [a.begin(), a.end()) must be a valid range, and must include every
element in the container, the order in which the elements appear in that range is
unspecified. If you iterate through a container twice, it is not guaranteed that the
order will be the same both times. This restriction is removed in Forward Container.

See also

The Iterator overview, Input Iterator, Sequence

Forward Container

Description

A Forward Container is a Container whose elements are arranged in a definite or-
der: the ordering will not change spontaneously from iteration to iteration. The
requirement of a definite ordering allows the definition of element-by-element equal-
ity (if the container’s element type is Equality Comparable) and of lexicographical
ordering (if the container’s element type is LessThan Comparable). Iterators into a
Forward Container satisfy the forward iterator requirements; consequently, Forward
Containers support multipass algorithms and allow multiple iterators into the same
container to be active at the same time.

Refinement of

Container, EqualityComparable, LessThanComparable

Associated types

No additional types beyond those defined in Container. However, the requirements
for the iterator type are strengthened: the iterator type must be a model of Forward
Iterator.

Notation

X A type that is a model of Forward Container
a, b Object of type X
T The value type of X

26 Systems/C++ C++ Library

Definitions

Valid expressions

In addition to the expressions defined in Container, EqualityComparable, and
LessThanComparable, the following expressions must be valid.

Name Expression Type requirements Return type

Equality a == b T is EqualityComparable Convertible to bool
Inequality a != b T is EqualityComparable Convertible to bool

Less a < b T is LessThanComparable Convertible to bool
Greater a > b T is LessThanComparable Convertible to bool

Less or equal a <= b T is LessThanComparable Convertible to bool
Greater or equal a >= b T is LessThanComparable Convertible to bool

Expression semantics

Semantics of an expression is defined only where it is not defined in Container,
EqualityComparable, or LessThanComparable, or where there is additional infor-
mation.

Name Expression Pre-

condi-
tion

Semantics Postcondition

Equality a == b Returns true if a.size()
== b.size() and if each
element of a compares
equal to the corresponding
element of b. Otherwise
returns false.

Less a < b Equivalent to
lexicographical -
compare(a,b)

Complexity guarantees

The equality and inequality operations are linear in the container’s size.

Invariants

Ordering Two different iterations through a forward container will access its elements
in the same order, providing that there have been no intervening mutative
operations.

Systems/C++ C++ Library 27

Models

• vector

• list

• slist

• deque

• set

• map

• multiset

Notes

See also

The iterator overview, Forward Iterator,

Sequence

Reversible Container

Description

A Reversible Container is a Forward Container whose iterators are Bidirectional
Iterators. It allows backwards iteration through the container.

Refinement of

Forward Container

Associated types

Two new types are introduced. In addition, the iterator type and the const itera-
tor type must satisfy a more stringent requirement than for a Forward Container.
The iterator and reverse iterator types must be Bidirectional Iterators, not merely
Forward Iterators.

28 Systems/C++ C++ Library

Reverse iterator
type

X::reverse iterator A Reverse Iterator adaptor whose
base iterator type is the container’s
iterator type. Incrementing an
object of type reverse iterator
moves backwards through the
container: the Reverse Itera-
tor adaptor maps operator++ to
operator--.

Const reverse iter-
ator type

X::const reverse iterator A Reverse Iterator adaptor whose
base iterator type is the container’s
const iterator type.

Notation

X A type that is a model of Reversible Container
a, b Object of type X

Definitions

Valid expressions

In addition to the expressions defined in Forward Container, the following expres-
sions must be valid.

Name Expression Type reqs Return type

Beginning of range a.rbegin() reverse iterator if a is mu-
table, const reverse iterator
otherwise

End of range a.rend() reverse iterator if a is mu-
table, const reverse iterator
otherwise

Expression semantics

Semantics of an expression is defined only where it is not defined in Forward Con-
tainer, or where there is additional information.

Systems/C++ C++ Library 29

Name Expression Pre-

condi-
tion

Semantics Postcondition

Beginning
of reverse
range

a.rbegin() Equivalent to
X::reverse -
iterator(a.end()).

a.rbegin() is deref-
erenceable or past-
the-end. It is past-
the-end if and only if
a.size() == 0.

End of re-
verse range

a.rend() Equivalent to
X::reverse -
iterator
(a.begin()).

a.end() is past-the-
end.

Complexity guarantees

The run-time complexity of rbegin() and rend() is amortized constant time.

Invariants

Valid range [a.rbegin(), a.rend()) is a valid range.
Equivalence of ranges The distance from a.begin() to a.end() is the same as the

distance from a.rbegin() to a.rend().

Models

• vector

• list

• deque

Notes

A Container’s iterator type and const iterator type may be the same type: a con-
tainer need not provide mutable iterators. It follows from this that the reverse
iterator type and the const reverse iterator type may also be the same.

See also

The Iterator overview, Bidirectional Iterator, Sequence

30 Systems/C++ C++ Library

Random Access Container

Description

A Random Access Container is a Reversible Container whose iterator type is a
Random Access Iterator. It provides amortized constant time access to arbitrary
elements.

Refinement of

Reversible Container

Associated types

No additional types beyond those defined in Reversible Container. However, the
requirements for the iterator type are strengthened: it must be a Random Access
Iterator.

Notation

X A type that is a model of Random Access Container
a, b Object of type X
T The value type of X

Definitions

Valid expressions

In addition to the expressions defined in Reversible Container, the following expres-
sions must be valid.

Name Expression Type requirements Return type

Element access a[n] n is convertible to size type reference if
a is mutable,
const reference
otherwise

Expression semantics

Semantics of an expression is defined only where it is not defined in Reversible
Container, or where there is additional information.

Systems/C++ C++ Library 31

Name Expression Precondition Semantics Post-

condi-
tion

Element
access

a[n] 0 <= n < a.size() Returns the nth ele-
ment from the begin-
ning of the container.

Complexity guarantees

The run-time complexity of element access is amortized constant time.

Invariants

Element access The element returned by a[n] is the same as the one obtained by
incrementing a.begin() n times and then dereferencing the resulting
iterator.

Models

• vector

• deque

Notes

See also

The Iterator overview, Random Access Iterator, Sequence

7.1.2 Sequences

Sequence

Description

A Sequence is a variable-sized Container whose elements are arranged in a strict
linear order. It supports insertion and removal of elements.

Refinement of

Forward Container, Default Constructible

32 Systems/C++ C++ Library

Associated types

None, except for those of Forward Container.

Notation

X A type that is a model of Sequence
a, b Object of type X
T The value type of X
t Object of type T

p, q Object of type X::iterator
n Object of a type convertible to X::size type

Definitions

If a is a Sequence, then p is a valid iterator in a if it is a valid (nonsingular) iterator
that is reachable from a.begin(). If a is a Sequence, then [p, q) is a valid range
in a if p and q are valid iterators in a and if q is reachable from p.

Valid expressions

In addition to the expressions defined in Forward Container, the following expres-
sions must be valid.

Systems/C++ C++ Library 33

Name Expression Type requirements Return type

Fill construc-
tor

X(n, t) X

Fill construc-
tor

X a(n, t);

Default fill
constructor

X(n) T is DefaultCon-
structible.

X

Default fill
constructor

X a(n); T is DefaultCon-
structible.

Range con-
structor

X(i, j) i and j are Input Iter-
ators whose value type
is convertible to T

X

Range con-
structor

X a(i, j); i and j are Input Iter-
ators whose value type
is convertible to T

Front a.front() reference if
a is mutable,
const reference
otherwise.

Insert a.insert(p, t) X::iterator
Fill insert a.insert(p, n, t) a is mutable void
Range insert a.insert(p, i, j) i and j are Input Iter-

ators whose value type
is convertible to T . a is
mutable

void

Erase a.erase(p) a is mutable iterator
Range erase a.erase(p,q) a is mutable iterator
Clear a.clear() a is mutable void
Resize a.resize(n, t) a is mutable void
Resize a.resize(n) a is mutable void

Expression semantics

Semantics of an expression is defined only where it is not defined in Forward Con-
tainer, or where it differs.

34 Systems/C++ C++ Library

Name Expression Precondi-

tion

Semantics Postcondition

Fill con-
structor

X(n, t) n >= 0 Creates a se-
quence with n
copies of t

size() == n.
Every element is
a copy of t.

Fill con-
structor

X a(n, t); n >= 0 Creates a se-
quence with n
copies of t

a.size() == n.
Every element of
a is a copy of t.

Default fill
constructor

X(n) n >= 0 Creates a se-
quence of n
elements initial-
ized to a default
value.

size() == n.
Every element is
a copy of T().

Default fill
constructor

X a(n, t); n >= 0 Creates a se-
quence with n
elements initial-
ized to a default
value.

a.size() == n.
Every element
of a is a copy of
T().

Default con-
structor

X a; or X() Equivalent to
X(0).

size() == 0.

Range con-
structor

X(i, j) [i,j) is a
valid range.

Creates a se-
quence that is a
copy of the range
[i,j)

size() is equal
to the distance
from i to j.
Each element is
a copy of the
corresponding
element in the
range [i,j).

Range con-
structor

X a(i, j); [i,j) is a
valid range.

Creates a se-
quence that is a
copy of the range
[i,j)

a.size() is
equal to the dis-
tance from i to j.
Each element in
a is a copy of the
corresponding
element in the
range [i,j).

Front a.front() !a.empty() Equivalent to
*(a.first())

Insert a.insert(p, t) p is a valid
iterator in a.
a.size() <
a.max size()

A copy of t is in-
serted before p.

a.size() is in-
cremented by 1.
*(a.insert(p,t))
is a copy of t.
The relative
order of ele-
ments already in
the sequence is
unchanged.

Systems/C++ C++ Library 35

Name Expression Precondi-

tion

Semantics Postcondi-

tion
Fill insert a.insert(p, n, t) p is a valid

iterator in a.
n >= 0 &&
a.size()
+ n <=
a.max size().

n copies of t are
inserted before
p.

a.size() is in-
cremented by n.
The relative or-
der of elements
already in the
sequence is un-
changed.

Range
insert

a.insert(p, i, j) [i,j) is a
valid range.
a.size()
plus the dis-
tance from
i to j does
not exceed
a.max size().

Inserts a copy
of the range
[i,j) before p.

a.size() is
incremented by
the distance
from i to j.
The relative
order of ele-
ments already
in the sequence
is unchanged.

Erase a.erase(p) p is a deref-
erenceable
iterator in a.

Destroys the el-
ement pointed
to by p and re-
moves it from a.

a.size() is
decremented
by 1. The
relative order
of the other
elements in the
sequence is un-
changed. The
return value
is an iterator
to the element
immediately
following the
one that was
erased.

Range erase a.erase(p,q) [p,q) is a
valid range
in a.

Destroys the
elements in the
range [p,q)
and removes
them from a.

a.size() is
decremented
by the distance
from i to j.
The relative or-
der of the other
elements in the
sequence is un-
changed. The
return value
is an iterator
to the element
immediately
following the
ones that were
erased.

Clear a.clear() Equivalent to
a.erase
(a.begin(),
a.end())

36 Systems/C++ C++ Library

Name Expression Precondi-

tion

Semantics Postcon-

dition
Resize a.resize(n, t) n <=

a.max size()
Modifies the container
so that it has exactly
n elements, inserting
elements at the end
or erasing elements
from the end if neces-
sary. If any elements
are inserted, they are
copies of t. If n >
a.size(), this expres-
sion is equivalent to
a.insert(a.end(),
n - size(), t).
If n < a.size(),
it is equivalent to
a.erase(a.begin() +
n, a.end()).

a.size()
== n

Resize a.resize(n) n <=
a.max size()

Equivalent to
a.resize(n, T()).

a.size()
== n

Complexity guarantees

The fill constructor, default fill constructor, and range constructor are linear. Front
is amortized constant time. Fill insert, range insert, and range erase are linear. The
complexities of single-element insert and erase are sequence dependent.

Invariants

Models

• vector

• deque

• list

• slist

Notes

At present (early 1998), not all compilers support ”member templates”. If your
compiler supports member templates then i and j may be of any type that con-
forms to the Input Iterator requirements. If your compiler does not yet support
member templates, however, then i and j must be of type const T* or of type
X::const iterator. Note that p equal to a.begin() means to insert something

Systems/C++ C++ Library 37

at the beginning of a (that is, before any elements already in a), and p equal to
a.end() means to append something to the end of a. Warning: there is no
guarantee that a valid iterator on a is still valid after an insertion or an erasure. In
some cases iterators do remain valid, and in other cases they do not. The details
are different for each sequence class. a.insert(p, n, t) is guaranteed to be no
slower then calling a.insert(p, t) n times. In some cases it is significantly faster.
Vector is usually preferable to deque and list. Deque is useful in the case of frequent
insertions at both the beginning and end of the sequence, and list and slist are useful
in the case of frequent insertions in the middle of the sequence. In almost all other
situations, vector is more efficient.

See also

Container, Forward Container, Associative Container, Front Insertion Sequence,
Back Insertion Sequence, vector, deque, list, slist

Front Insertion Sequence

Description

A Front Insertion Sequence is a Sequence where it is possible to insert an element
at the beginning, or to access the first element, in amortized constant time. Front
Insertion Sequences have special member functions as a shorthand for those opera-
tions.

Refinement of

Sequence

Associated types

None, except for those of Sequence.

Notation

X A type that is a model of Front Insertion Sequence
a Object of type X
T The value type of X
t Object of type T

Definitions

38 Systems/C++ C++ Library

Valid expressions

In addition to the expressions defined in Sequence, the following expressions must
be valid.

Name Expression Type requirements Return type

Front a.front() reference if a is
mutable, otherwise
const reference.

Push front a.push front(t) a is mutable. void
Pop front a.pop front() a is mutable. void

Expression semantics

Name Expression Precondition Semantics Postcondi-

tion
Front a.front() !a.empty() Equivalent to

*(a.begin()).
Push front a.push front(t) Equivalent to

a.insert
(a.begin(),
t)

a.size is incre-
mented by 1.
a.front() is a
copy of t.

Pop front a.pop front() !a.empty() Equivalent to
a.erase
(a.begin())

a.size() is
decremented by
1.

Complexity guarantees

Front, push front, and pop front are amortized constant time.

Invariants

Symmetry of push and pop push front() followed by pop front() is a null operation.

Models

• list

• deque

Systems/C++ C++ Library 39

Notes

Front is actually defined in Sequence, since it is always possible to implement it
in amortized constant time. Its definition is repeated here, along with push front
and pop front, in the interest of clarity. This complexity guarantee is the only
reason that front(), push front(), and pop front() are defined: they provide no
additional functionality. Not every sequence must define these operations, but it is
guaranteed that they are efficient if they exist at all.

See also

Container, Sequence, Back Insertion Sequence, deque, list, slist

Back Insertion Sequence

Description

A Back Insertion Sequence is a Sequence where it is possible to append an element
to the end, or to access the last element, in amortized constant time. Back Insertion
Sequences have special member functions as a shorthand for those operations.

Refinement of

Sequence

Associated types

None, except for those of Sequence.

Notation

X A type that is a model of Back Insertion Sequence
a Object of type X
T The value type of X
t Object of type T

Definitions

Valid expressions

In addition to the expressions defined in Sequence, the following expressions must
be valid.

40 Systems/C++ C++ Library

Name Expression Type requirements Return type

Back a.back() reference if a is mutable,
otherwise const reference.

Push back a.push back(t) a is mutable. void
Pop back a.pop back() a is mutable. void

Expression semantics

Name Expression Precondition Semantics Postcondi-

tion
Back a.back() !a.empty() Equivalent to

*(--a.end()).
Push back a.push back(t) Equivalent to

a.insert
(a.end(), t)

a.size is incre-
mented by 1.
a.back() is a
copy of t.

Pop back a.pop back() !a.empty() Equivalent to
a.erase
(--a.end())

a.size() is
decremented by
1.

Complexity guarantees

Back, push back, and pop back are amortized constant time.

Invariants

Symmetry of push and pop push back() followed by pop back() is a null operation.

Models

• vector

• list

• deque

Notes

This complexity guarantee is the only reason that back(), push back(), and
pop back() are defined: they provide no additional functionality. Not every se-
quence must define these operations, but it is guaranteed that they are efficient if
they exist at all.

Systems/C++ C++ Library 41

See also

Container, Sequence, Front Insertion Sequence, vector, deque, list

7.1.3 Associative Containers

Associative Container

Description

An Associative Container is a variable-sized Container that supports efficient re-
trieval of elements (values) based on keys. It supports insertion and removal of
elements, but differs from a Sequence in that it does not provide a mechanism for
inserting an element at a specific position. As with all containers, the elements in
an Associative Container are of type value type. Additionally, each element in an
Associative Container has a key, of type key type. In some Associative Containers,
Simple Associative Containers, the value type and key type are the same: ele-
ments are their own keys. In others, the key is some specific part of the value. Since
elements are stored according to their keys, it is essential that the key associated
with each element is immutable. In Simple Associative Containers this means that
the elements themselves are immutable, while in other types of Associative Contain-
ers, such as Pair Associative Containers, the elements themselves are mutable but
the part of an element that is its key cannot be modified. This means that an Asso-
ciative Container’s value type is not Assignable. The fact that the value type of an
Associative Container is not Assignable has an important consequence: associative
containers cannot have mutable iterators. This is simply because a mutable iterator
(as defined in the Trivial Iterator requirements) must allow assignment. That is,
if i is a mutable iterator and t is an object of i’s value type, then *i = t must
be a valid expression. In Simple Associative Containers, where the elements are
the keys, the elements are completely immutable; the nested types iterator and
const iterator are therefore the same. Other types of associative containers, how-
ever, do have mutable elements, and do provide iterators through which elements
can be modified. Pair Associative Containers, for example, have two different nested
types iterator and const iterator. Even in this case, iterator is not a mutable
iterator: as explained above, it does not provide the expression *i = t. It is, how-
ever, possible to modify an element through such an iterator: if, for example, i is
of type map<int, double>, then (*i).second = 3 is a valid expression. In some
associative containers, Unique Associative Containers, it is guaranteed that no two
elements have the same key. In other associative containers, Multiple Associative
Containers, multiple elements with the same key are permitted.

Refinement of

Forward Container, Default Constructible

42 Systems/C++ C++ Library

Associated types

One new type is introduced, in addition to the types defined in the Forward Con-
tainer requirements.

Key type X::key type The type of the key associated with X::value type. Note
that the key type and value type might be the same.

Notation

X A type that is a model of Associative Container
a Object of type X
t Object of type X::value type
k Object of type X::key type

p, q Object of type X::iterator

Definitions

If a is an associative container, then p is a valid iterator in a if it is a valid iterator
that is reachable from a.begin(). If a is an associative container, then [p, q) is a
valid range in a if [p, q) is a valid range and p is a valid iterator in a.

Valid expressions

In addition to the expressions defined in Forward Container, the following expres-
sions must be valid.

Name Expression Type reqs Return type

Default constructor X()
X a;

Erase key a.erase(k) size type
Erase element a.erase(p) void
Erase range a.erase(p, q) void

Clear a.clear() void
Find a.find(k) iterator if a is mutable,

otherwise const iterator
Count a.count(k) size type

Equal range a.equal range(k) pair<iterator,
iterator> if a is
mutable, otherwise
pair<const iterator,
const iterator>.

Expression semantics

Systems/C++ C++ Library 43

Name Expression Precondition Semantics Postcondi-

tion
Default con-
structor

X()
X a;

Creates an
empty con-
tainer.

The size of the
container is 0.

Erase key a.erase(k) Destroys all
elements whose
key is the same
as k, and re-
moves them
from a. The
return value is
the number of
elements that
were erased, i.e.
the old value of
a.count(k).

a.size() is
decremented by
a.count(k).
a contains no
elements with
key k.

Erase element a.erase(p) p is a derefer-
enceable itera-
tor in a.

Destroys the el-
ement pointed
to by p, and re-
moves it from a.

a.size() is
decremented by
1.

Erase range a.erase(p, q) [p, q) is a
valid range in
a.

Destroys the
elements in the
range [p,q)
and removes
them from a.

a.size() is
decremented
by the distance
from i to j.

Clear a.clear() Equivalent to
a.erase(a.begin(),
a.end())

Find a.find(k) Returns an it-
erator pointing
to an element
whose key is
the same as k,
or a.end() if
no such element
exists.

Either the re-
turn value is
a.end(), or else
the return value
has a key that is
the same as k.

Count a.count(k) Returns the
number of
elements in a
whose keys are
the same as k.

44 Systems/C++ C++ Library

Name Expression Precondi-

tion

Semantics Postcondi-

tion
Equal range a.equal range(k) Returns a pair

P such that
[P.first,
P.second)
is a range
containing all
elements in a
whose keys are
the same as k.
If no elements
have the same
key as k, the
return value
is an empty
range.

The dis-
tance between
P.first and
P.second
is equal to
a.count(k).
If p is a deref-
erenceable
iterator in
a, then ei-
ther p lies
in the range
[P.first,
P.second), or
else *p has a
key that is not
the same as k.

Complexity guarantees

Average complexity for erase key is at most O(log(size()) + count(k)). Average
complexity for erase element is constant time. Average complexity for erase range
is at most O(log(size()) + N), where N is the number of elements in the range.
Average complexity for count is at most O(log(size()) + count(k)). Average
complexity for find is at most logarithmic. Average complexity for equal range is at
most logarithmic.

Invariants

Contiguous storage All elements with the same key are adjacent to each other. That
is, if p and q are iterators that point to elements that have the
same key, and if p precedes q, then every element in the range
[p, q) has the same key as every other element.

Immutability of keys Every element of an Associative Container has an immutable key.
Objects may be inserted and erased, but an element in an Asso-
ciative Container may not be modified in such a way as to change
its key.

Models

• set

• multiset

• map

Systems/C++ C++ Library 45

Notes

The reason there is no such mechanism is that the way in which elements are ar-
ranged in an associative container is typically a class invariant; elements in a Sorted
Associative Container, for example, are always stored in ascending order, and ele-
ments in a Hashed Associative Container are always stored according to the hash
function. It would make no sense to allow the position of an element to be cho-
sen arbitrarily. Keys are not required to be Equality Comparable: associative
containers do not necessarily use operator== to determine whether two keys are
the same. In Sorted Associative Containers, for example, where keys are ordered
by a comparison function, two keys are considered to be the same if neither one
is less than the other. Note the implications of this member function: it means
that if two elements have the same key, there must be no elements with different
keys in between them. The requirement that elements with the same key be stored
contiguously is an associative container invariant.

See also

Simple Associative Container, Pair Associative Container, Unique Associative Con-
tainer, Multiple Associative Container, Sorted Associative Container, Unique Sorted
Associative Container, Multiple Sorted Associative Container, Hashed Associative
Container, Unique Hashed Associative Container, Multiple Hashed Associative Con-
tainer.

Simple Associative Container

Description

A Simple Associative Container is an Associative Container where elements are
their own keys. A key in a Simple Associative Container is not associated with any
additional value.

Refinement of

Associative Container

Associated types

None, except for those described in the Associative Container requirements. Simple
Associative Container, however, introduces two new type restrictions.

Key type X::key type The type of the key associated with X::value type. The
types key type and value type must be the same type.

Iterator X::iterator The type of iterator used to iterate through a Simple Asso-
ciative Container’s elements. The types X::iterator and
X::const iterator must be the same type. That is, a Sim-
ple Associative Container does not provide mutable iterators.

46 Systems/C++ C++ Library

Notation

X A type that is a model of Simple Associative Container
a Object of type X
k Object of type X::key type

p, q Object of type X::iterator

Definitions

Valid expressions

None, except for those defined in the Associative Container requirements.

Expression semantics

Complexity guarantees

Invariants

Immutability of Elements Every element of a Simple Associative Container is im-
mutable. Objects may be inserted and erased, but not mod-
ified.

Models

• set

• multiset

Notes

This is a consequence of the Immutability of Keys invariant of Associative Container.
Keys may never be modified; values in a Simple Associative Container are themselves
keys, so it immediately follows that values in a Simple Associative Container may
not be modified.

See also

Associative Container, Pair Associative Container

Systems/C++ C++ Library 47

Pair Associative Container

Description

A Pair Associative Container is an Associative Container that associates a key with
some other object. The value type of a Pair Associative Container is pair<const
key type, data type>.

Refinement of

Associative Container

Associated types

One new type is introduced, in addition to the types defined in the Associative
Container requirements. Additionally, Pair Associative Container introduces one
new type restriction

Key type X::key type The type of the key associated with X::value type.
Data type X::data type The type of the data associated with X::value type. A

Pair Associative Container can be thought of as a map-
ping from key type to data type.

Value type X::value type The type of object stored in the container. The
value type is required to be pair<const key type,
data type>.

Notation

X A type that is a model of Pair Associative Container
a Object of type X
t Object of type X::value type
d Object of type X::data type
k Object of type X::key type

p, q Object of type X::iterator

Definitions

Valid expressions

None, except for those defined in the Associative Container requirements.

Expression semantics

Complexity guarantees

48 Systems/C++ C++ Library

Invariants

Models

• map

Notes

The value type must be pair<const key type, data type>, rather than
pair<key type, data type>, because of the Associative Container invariant of key
immutability. The data type part of an object in a Pair Associative Container may
be modified, but the key type part may not be. Note the implication of this fact:
a Pair Associative Container cannot provide mutable iterators (as defined in the
Trivial Iterator requirements), because the value type of a mutable iterator must be
Assignable, and pair<const key type, data type> is not Assignable. However, a
Pair Associative Container can provide iterators that are not completely constant:
iterators such that the expression (*i).second = d is valid.

See also

Associative Container, Simple Associative Container

Sorted Associative Container

Description

A Sorted Associative Container is a type of Associative Container. Sorted Associa-
tive Containers use an ordering relation on their keys; two keys are considered to
be equivalent if neither one is less than the other. (If the ordering relation is case-
insensitive string comparison, for example, then the keys ”abcde” and ”aBcDe”
are equivalent.) Sorted Associative Containers guarantee that the complexity for
most operations is never worse than logarithmic , and they also guarantee that their
elements are always sorted in ascending order by key.

Refinement of

Reversible Container, Associative Container

Associated types

Two new types are introduced, in addition to the types defined in the Associative
Container and Reversible Container requirements.

Systems/C++ C++ Library 49

X::key compare The type of a Strict Weak Ordering used to compare keys. Its
argument type must be X::key type.

X::value compare The type of a Strict Weak Ordering used to compare values. Its ar-
gument type must be X::value type, and it compares two objects
of value type by passing the keys associated with those objects to
a function object of type key compare.

Notation

X A type that is a model of Sorted Associative Container
a Object of type X
t Object of type X::value type
k Object of type X::key type

p, q Object of type X::iterator
c Object of type X::key compare

Definitions

Valid expressions

In addition to the expressions defined in Associative Container and Reversible Con-
tainer, the following expressions must be valid.

Name Expression Type reqs Return type

Default con-
structor

X()
X a;

Constructor
with compare

X(c)
X a(c);

Key compari-
son

a.key comp() X::key compare

Value com-
parison

a::value compare() X::value compare

Lower bound a.lower bound(k) iterator if a is mutable, oth-
erwise const iterator.

Upper bound a.upper bound(k) iterator if a is mutable, oth-
erwise const iterator.

Equal range a.equal range(k) pair<iterator, iterator>
if a is mutable, otherwise
pair<const iterator,
const iterator>.

Expression semantics

50 Systems/C++ C++ Library

Name Expression Pre-

condi-
tion

Semantics Postcondition

Default
con-
structor

X()
X a;

Creates an empty
container, using
key compare() as
the comparison
object.

The size of the
container is 0.

Con-
structor
with
compare

X(c)
X a(c);

Creates an empty
container, using c
as the comparison
object.

The size of the
container is 0.
key comp() re-
turns a function
object that is
equivalent to c.

Key
compari-
son

a.key comp() Returns the key
comparison object
used by a.

Value
compari-
son

a::value compare() Returns the value
comparison object
used by a.

If t1 and t2 are
objects of type
value type, and
k1 and k2 are the
keys associated
with them, then
a.value comp()
(t1, t2) is
equivalent to
a.key comp()(k1,
k2).

Lower
bound

a.lower bound(k) Returns an iter-
ator pointing to
the first element
whose key is not
less than k. Re-
turns a.end() if
no such element
exists.

If a contains any
elements that
have the same
key as k, then
the return value
of lower bound
points to the first
such element.

Upper
bound

a.upper bound(k) Returns an it-
erator pointing
to the first ele-
ment whose key
is greater than k.
Returns a.end()
if no such element
exists.

If a contains any
elements that
have the same
key as k, then
the return value
of upper bound
points to one
past the last such
element.

Equal
range

a.equal range(k) Returns a pair
whose first
element is
a.lower bound(k)
and whose sec-
ond element is
a.upper bound(k).

Systems/C++ C++ Library 51

Complexity guarantees

key comp() and value comp() are constant time. Erase element is constant time.
Erase key is O(log(size()) + count(k)). Erase range is O(log(size()) + N),
where N is the length of the range. Find is logarithmic. Count is O(log(size())
+ count(k)). Lower bound, upper bound, and equal range are logarithmic.

Invariants

Definition of value comp If t1 and t2 are objects of type X::value type
and k1 and k2 are the keys associated with those
objects, then a.value comp() returns a function ob-
ject such that a.value comp()(t1, t2) is equivalent to
a.key comp()(k1, k2).

Ascending order The elements in a Sorted Associative Container are always ar-
ranged in ascending order by key. That is, if a is a Sorted As-
sociative Container, then is sorted(a.begin(), a.end(),
a.value comp()) is always true.

Models

• set

• multiset

• map

Notes

This is a much stronger guarantee than the one provided by Associative Container.
The guarantees in Associative Container only apply to average complexity; worst
case complexity is allowed to be greater. Sorted Associative Container, however,
provides an upper limit on worst case complexity. This definition is consistent
with the semantics described in Associative Container. It is a stronger condition,
though: if a contains no elements with the key k, then a.equal range(k) returns
an empty range that indicates the position where those elements would be if they
did exist. The Associative Container requirements, however, merely state that the
return value is an arbitrary empty range.

See also

Associative Container, Hashed Associative Container

52 Systems/C++ C++ Library

Unique Associative Container

Description

A Unique Associative Container is an Associative Container with the property that
each key in the container is unique: no two elements in a Unique Associative Con-
tainer have the same key.

Refinement of

Associative Container

Associated types

None, except for those defined by Associative Container.

Notation

X A type that is a model of Unique Associative Container
a Object of type X
t Object of type X::value type
k Object of type X::key type

p, q Object of type X::iterator

Definitions

Valid expressions

In addition to the expressions defined in Associative Container, the following ex-
pressions must be valid.

Name Expression Type require-

ments

Return type

Range constructor X(i, j)
X a(i, j);

i and j are Input Iter-
ators whose value type
is convertible to T

Insert element a.insert(t) pair<X::iterator,
bool>

Insert range a.insert(i, j) i and j are Input
Iterators whose value
type is convertible to
X::value type.

void

Count a.count(k) size type

Systems/C++ C++ Library 53

Expression semantics

Name Expression Precon-

dition

Semantics Postcondition

Range
con-
structor

X(i, j)
X a(i, j);

[i,j) is a
valid range.

Creates an asso-
ciative container
that contains all of
the elements in the
range [i,j) that
have unique keys.

size() is less than
or equal to the dis-
tance from i to j.

Insert el-
ement

a.insert(t) Inserts t into a if
and only if a does
not already contain
an element whose
key is the same as
the key of t. The
return value is a
pair P. P.first is
an iterator point-
ing to the element
whose key is the
same as the key of
t. P.second is a
bool: it is true if
t was actually in-
serted into a, and
false if t was not
inserted into a, i.e.
if a already con-
tained an element
with the same key
as t.

P.first is a deref-
erenceable iterator.
*(P.first) has the
same key as t. The
size of a is incre-
mented by 1 if and
only if P.second is
true.

Insert
range

a.insert(i, j) [i, j) is a
valid range.

Equivalent to
a.insert(t) for
each object t that
is pointed to by
an iterator in the
range [i, j).
Each element is
inserted into a if
and only if a does
not already contain
an element with
the same key.

The size of a is
incremented by at
most j - i.

Count a.count(k) Returns the num-
ber of elements in a
whose keys are the
same as k.

The return value is
either 0 or 1.

Complexity guarantees

54 Systems/C++ C++ Library

Average complexity for insert element is at most logarithmic. Average complexity
for insert range is at most O(N * log(size() + N)), where N is j - i.

Invariants

Uniqueness No two elements have the same key. Equivalently, this means that for every
object k of type key type, a.count(k) returns either 0 or 1.

Models

• set

• map

Notes

At present (early 1998), not all compilers support ”member templates”. If your
compiler supports member templates then i and j may be of any type that con-
forms to the Input Iterator requirements. If your compiler does not yet support
member templates, however, then i and j must be of type const T* or of type
X::const iterator.

See also

Associative Container, Multiple Associative Container, Unique Sorted Associative
Container, Multiple Sorted Associative Container

Multiple Associative Container

Description

A Multiple Associative Container is an Associative Container in which there may
be more than one element with the same key. That is, it is an Associative Container
that does not have the restrictions of a Unique Associative Container.

Refinement of

Associative Container

Associated types

None, except for those defined by Associative Container

Systems/C++ C++ Library 55

Notation

X A type that is a model of Multiple Associative Container
a Object of type X
t Object of type X::value type
k Object of type X::key type

p, q Object of type X::iterator

Definitions

Valid expressions

In addition to the expressions defined in Associative Container, the following ex-
pressions must be valid.

Name Expression Type requirements Return type

Range constructor X(i, j)
X a(i, j);

i and j are Input Iterators
whose value type is con-
vertible to T

Insert element a.insert(t) X::iterator
Insert range a.insert(i, j) i and j are Input Iterators

whose value type is con-
vertible to X::value type.

void

Expression semantics

Name Expression Precon-

dition

Semantics Postcondition

Range
con-
structor

X(i, j)
X a(i, j);

[i,j) is a
valid range.

Creates an associa-
tive container that
contains all ele-
ments in the range
[i,j).

size() is equal to
the distance from
i to j. Each ele-
ment in [i, j) is
present in the con-
tainer.

Insert el-
ement

a.insert(t) Inserts t into a. The size of a is
incremented by
1. The value of
a.count(t) is
incremented by a.

Insert
range

a.insert(i, j) [i, j) is a
valid range.

Equivalent to
a.insert(t) for
each object t that
is pointed to by
an iterator in the
range [i, j).
Each element is
inserted into a.

The size of a is in-
cremented by j -
i.

56 Systems/C++ C++ Library

Complexity guarantees

Average complexity for insert element is at most logarithmic. Average complexity
for insert range is at most O(N * log(size() + N)), where N is j - i.

Invariants

Models

• multiset

Notes

At present (early 1998), not all compilers support ”member templates”. If your
compiler supports member templates then i and j may be of any type that con-
forms to the Input Iterator requirements. If your compiler does not yet support
member templates, however, then i and j must be of type const T* or of type
X::const iterator.

See also

Associative Container, Unique Associative Container, Unique Sorted Associative
Container, Multiple Sorted Associative Container

Unique Sorted Associative Container

Description

A Unique Sorted Associative Container is a Sorted Associative Container that is
also a Unique Associative Container. That is, it is a Sorted Associative Container
with the property that no two elements in the container have the same key.

Refinement of

Sorted Associative Container, Unique Associative Container

Associated types

None, except for those described in the Sorted Associative Container and Unique
Associative Container requirements.

Systems/C++ C++ Library 57

Notation

X A type that is a model of Unique Sorted Associative Container
a Object of type X
t Object of type X::value type
k Object of type X::key type

p, q Object of type X::iterator
c Object of type X::key compare

Definitions

Valid expressions

In addition to the expressions defined in Sorted Associative Container and Unique
Associative Container, the following expressions must be valid.

Name Expression Type requirements Return type

Range con-
structor

X(i, j)
X a(i, j);

i and j are Input Iterators whose
value type is convertible to T .

Range
construc-
tor with
compare

X(i, j, c)
X a(i, j, c);

i and j are Input Iterators whose
value type is convertible to T . c is
an object of type key compare.

Insert with
hint

a.insert(p, t) iterator

Insert
range

a.insert(i, j) i and j are Input Iterators
whose value type is convertible to
X::value type.

void

Expression semantics

58 Systems/C++ C++ Library

Name Expression Precon-

dition

Semantics Postcondition

Range
con-
structor

X(i, j)
X a(i, j);

[i,j) is a
valid range.

Creates an asso-
ciative container
that contains all of
the elements in the
range [i,j) that
have unique keys.
The comparison
object used by
the container is
key compare().

size() is less than
or equal to the dis-
tance from i to j.

Range
con-
structor
with
compare

X(i, j, c)
X a(i, j, c);

[i,j) is a
valid range.

Creates an asso-
ciative container
that contains all of
the elements in the
range [i,j) that
have unique keys.
The comparison
object used by the
container is c.

size() is less than
or equal to the dis-
tance from i to j.

Insert
with hint

a.insert(p, t) p is a non-
singular it-
erator in a.

Inserts t into a
if and only if a
does not already
contain an element
whose key is equiv-
alent to t’s key.
The argument p is
a hint: it points to
the location where
the search will be-
gin. The return
value is a deref-
erenceable iterator
that points to the
element with a key
that is equivalent
to that of t.

a contains an ele-
ment whose key is
the same as that of
t. The size of a is
incremented by ei-
ther 1 or 0.

Insert
range

a.insert(i, j) [i, j) is a
valid range.

Equivalent to
a.insert(t) for
each object t that
is pointed to by
an iterator in the
range [i, j).
Each element is
inserted into a
if and only if a
does not already
contain an element
with an equivalent
key.

The size of a is
incremented by at
most j - i.

Systems/C++ C++ Library 59

Complexity guarantees

The range constructor, and range constructor with compare, are in general O(N *
log(N)), where N is the size of the range. However, they are linear in N if the range
is already sorted by value comp(). Insert with hint is logarithmic in general, but
it is amortized constant time if t is inserted immediately before p. Insert range is
in general O(N * log(N)), where N is the size of the range. However, it is linear in
N if the range is already sorted by value comp().

Invariants

Strictly ascending order The elements in a Unique Sorted Associative Container
are always arranged in strictly ascending order by key.
That is, if a is a Unique Sorted Associative Container,
then is sorted(a.begin(), a.end(), a.value comp()) is
always true. Furthermore, if i and j are dereferenceable iter-
ators in a such that i precedes j, then a.value comp()(*i,
*j) is always true.

Models

• map

• set

Notes

At present (early 1998), not all compilers support ”member templates”. If your
compiler supports member templates then i and j may be of any type that con-
forms to the Input Iterator requirements. If your compiler does not yet support
member templates, however, then i and j must be of type const T* or of type
X::const iterator. This is a more stringent invariant than that of Sorted As-
sociative Container. In a Sorted Associative Container we merely know that every
element is less than or equal to its successor; in a Unique Sorted Associative Con-
tainer, however, we know that it must be less than its successor.

See also

Associative Container, Sorted Associative Container, Multiple Sorted Associative
Container, Hashed Associative Container

Multiple Sorted Associative Container

Description

60 Systems/C++ C++ Library

A Multiple Sorted Associative Container is a Sorted Associative Container that is
also a Multiple Associative Container. That is, it is a Sorted Associative Container
with the property that any number of elements in the container may have equivalent
keys.

Refinement of

Sorted Associative Container, Multiple Associative Container

Associated types

None, except for those described in the Sorted Associative Container and Multiple
Associative Container requirements.

Notation

X A type that is a model of Multiple Sorted Associative Container
a Object of type X
t Object of type X::value type
k Object of type X::key type

p, q Object of type X::iterator
c Object of type X::key compare

Definitions

Valid expressions

In addition to the expressions defined in Sorted Associative Container and Multiple
Associative Container, the following expressions must be valid.

Name Expression Type requirements Return type

Range con-
structor

X(i, j)
X a(i, j);

i and j are Input Iterators
whose value type is convertible
to T .

X

Range con-
structor with
compare

X(i, j, c)
X a(i, j, c);

i and j are Input Iterators
whose value type is convertible
to T . c is an object of type
key compare.

X

Insert with
hint

a.insert(p, t) iterator

Insert range a.insert(i, j) i and j are Input Iterators
whose value type is convertible
to X::value type.

void

Systems/C++ C++ Library 61

Expression semantics

Name Expression Precon-

dition

Semantics Postcondition

Range con-
structor

X(i, j)
X a(i, j);

[i,j) is a
valid range.

Creates an asso-
ciative container
that contains all
of the elements in
the range [i,j).
The comparison
object used by
the container is
key compare().

size() is equal to
the distance from
i to j.

Range
construc-
tor with
compare

X(i, j, c)
X a(i, j, c);

[i,j) is a
valid range.

Creates an asso-
ciative container
that contains all
of the elements in
the range [i,j).
The comparison
object used by
the container is
c.

size() is equal to
the distance from
i to j.

Insert with
hint

a.insert(p, t) p is a non-
singular it-
erator in a.

Inserts t into a.
The argument p
is a hint: it
points to the lo-
cation where the
search will begin.
The return value
is a dereference-
able iterator that
points to the el-
ement that was
just inserted.

a contains an ele-
ment whose key is
the same as that
of t. The size of a
is incremented by
1.

Insert
range

a.insert(i, j) [i, j) is a
valid range.

Equivalent to
a.insert(t) for
each object t
that is pointed
to by an iterator
in the range [i,
j). Each element
is inserted into a.

The size of a is in-
cremented by j -
i.

Complexity guarantees

The range constructor, and range constructor with compare, are in general O(N *
log(N)), where N is the size of the range. However, they are linear in N if the range
is already sorted by value comp(). Insert with hint is logarithmic in general, but
it is amortized constant time if t is inserted immediately before p. Insert range is
in general O(N * log(N)), where N is the size of the range. However, it is linear in
N if the range is already sorted by value comp().

62 Systems/C++ C++ Library

Invariants

Models

• multiset

Notes

At present (early 1998), not all compilers support ”member templates”. If your
compiler supports member templates then i and j may be of any type that con-
forms to the Input Iterator requirements. If your compiler does not yet support
member templates, however, then i and j must be of type const T* or of type
X::const iterator.

See also

Associative Container, Sorted Associative Container, Unique Sorted Associative
Container Hashed Associative Container

7.2 Container classes

7.2.1 Sequences

vector

Description

A vector is a Sequence that supports random access to elements, constant time
insertion and removal of elements at the end, and linear time insertion and removal
of elements at the beginning or in the middle. The number of elements in a vector
may vary dynamically; memory management is automatic. Vector is the simplest
of the STL container classes, and in many cases the most efficient.

Example

vector<int> V;
V.insert(V.begin(), 3);
assert(V.size() == 1 && V.capacity() >= 1 && V[0] == 3);

Systems/C++ C++ Library 63

Definition

Defined in the standard header vector, and in the nonstandard backward-
compatibility header vector.h.

Template parameters

Parameter Description Default

T The vector’s value type: the type of object that is stored
in the vector.

Alloc The vector’s allocator, used for all internal memory man-
agement.

alloc

Model of

Random Access Container, Back Insertion Sequence.

Type requirements

None, except for those imposed by the requirements of Random Access Container
and Back Insertion Sequence.

Public base classes

None.

Members

64 Systems/C++ C++ Library

Member Where

defined

Description

value type Container The type of object, T, stored in the vector.
pointer Container Pointer to T.
reference Container Reference to T
const reference Container Const reference to T
size type Container An unsigned integral type.
difference type Container A signed integral type.
iterator Container Iterator used to iterate through a vector.
const iterator Container Const iterator used to iterate through a vector.
reverse iterator Reversible

Container
Iterator used to iterate backwards through a vector.

const reverse -
iterator

Reversible
Container

Const iterator used to iterate backwards through a
vector.

iterator
begin()

Container Returns an iterator pointing to the beginning of the
vector.

iterator end() Container Returns an iterator pointing to the end of the
vector.

const iterator
begin() const

Container Returns a const iterator pointing to the beginning
of the vector.

const iterator
end() const

Container Returns a const iterator pointing to the end of the
vector.

reverse iterator
rbegin()

Reversible
Container

Returns a reverse iterator pointing to the begin-
ning of the reversed vector.

reverse iterator
rend()

Reversible
Container

Returns a reverse iterator pointing to the end of
the reversed vector.

const reverse -
iterator
rbegin() const

Reversible
Container

Returns a const reverse iterator pointing to the
beginning of the reversed vector.

const reverse -
iterator rend()
const

Reversible
Container

Returns a const reverse iterator pointing to the
end of the reversed vector.

size type
size() const

Container Returns the size of the vector.

size type
max size()
const

Container Returns the largest possible size of the vector.

size type
capacity()
const

vector See below.

bool empty()
const

Container true if the vector’s size is 0.

reference
operator[]
(size type n)

Random
Access
Container

Returns the n’th element.

const reference
operator[]
(size type n)
const

Random
Access
Container

Returns the n’th element.

vector() Container Creates an empty vector.
vector(size type
n)

Sequence Creates a vector with n elements.

Systems/C++ C++ Library 65

Member Where

defined

Description

vector(size type
n, const T& t)

Sequence Creates a vector with n copies of t.

vector(const
vector&)

Container The copy constructor.

template <class
InputIterator>
vector
(InputIterator,
InputIterator)

Sequence Creates a vector with a copy of a range.

~vector() Container The destructor.
vector&
operator=(const
vector&)

Container The assignment operator

void
reserve(size t)

vector See below.

reference
front()

Sequence Returns the first element.

const reference
front() const

Sequence Returns the first element.

reference
back()

Back In-
sertion
Sequence

Returns the last element.

const reference
back() const

Back In-
sertion
Sequence

Returns the last element.

void
push back(const
T&)

Back In-
sertion
Sequence

Inserts a new element at the end.

void pop back() Back In-
sertion
Sequence

Removes the last element.

void
swap(vector&)

Container Swaps the contents of two vectors.

iterator
insert(iterator
pos, const T&
x)

Sequence Inserts x before pos.

template <class
InputIterator>
void insert
(iterator pos,
InputIterator
f,
InputIterator
l)

Sequence Inserts the range [first, last) before pos.

66 Systems/C++ C++ Library

Member Where

defined

Description

void insert
(iterator pos,
size type n,
const T& x)

Sequence Inserts n copies of x before pos.

iterator
erase(iterator
pos)

Sequence Erases the element at position pos.

iterator
erase(iterator
first, iterator
last)

Sequence Erases the range [first, last)

void clear() Sequence Erases all of the elements.
void resize(n,
t = T())

Sequence Inserts or erases elements at the end such that the
size becomes n.

bool operator==
(const vector&,
const vector&)

Forward
Container

Tests two vectors for equality. This is a global func-
tion, not a member function.

bool operator<
(const vector&,
const vector&)

Forward
Container

Lexicographical comparison. This is a global func-
tion, not a member function.

New members

These members are not defined in the Random Access Container and Back Insertion
Sequence requirements, but are specific to vector.

Member Description

size type capacity() const Number of elements for which memory has been allo-
cated. capacity() is always greater than or equal to
size().

void reserve(size type n) If n is less than or equal to capacity(), this call has
no effect. Otherwise, it is a request for allocation of
additional memory. If the request is successful, then
capacity() is greater than or equal to n; otherwise,
capacity() is unchanged. In either case, size() is
unchanged.

Notes

This member function relies on member template functions, which at present (early
1998) are not supported by all compilers. If your compiler supports member tem-
plates, you can call this function with any type of input iterator. If your compiler
does not yet support member templates, though, then the arguments must be of
type const value type*. Memory will be reallocated automatically if more than

Systems/C++ C++ Library 67

capacity() - size() elements are inserted into the vector. Reallocation does not
change size(), nor does it change the values of any elements of the vector. It does,
however, increase capacity(), and it invalidates any iterators that point into the
vector. When it is necessary to increase capacity(), vector usually increases it
by a factor of two. It is crucial that the amount of growth is proportional to the
current capacity(), rather than a fixed constant: in the former case inserting a
series of elements into a vector is a linear time operation, and in the latter case
it is quadratic. Reserve() causes a reallocation manually. The main reason for
using reserve() is efficiency: if you know the capacity to which your vector must
eventually grow, then it is usually more efficient to allocate that memory all at once
rather than relying on the automatic reallocation scheme. The other reason for us-
ing reserve() is so that you can control the invalidation of iterators. A vector’s
iterators are invalidated when its memory is reallocated. Additionally, inserting or
deleting an element in the middle of a vector invalidates all iterators that point to
elements following the insertion or deletion point. It follows that you can prevent
a vector’s iterators from being invalidated if you use reserve() to preallocate as
much memory as the vector will ever use, and if all insertions and deletions are at
the vector’s end.

See also

deque, list, slist

deque

Description

A deque is very much like a vector: like vector, it is a sequence that supports
random access to elements, constant time insertion and removal of elements at the
end of the sequence, and linear time insertion and removal of elements in the middle.
The main way in which deque differs from vector is that deque also supports
constant time insertion and removal of elements at the beginning of the sequence
. Additionally, deque does not have any member functions analogous to vector’s
capacity() and reserve(), and does not provide any of the guarantees on iterator
validity that are associated with those member functions.

Example

deque<int> Q;
Q.push_back(3);
Q.push_front(1);
Q.insert(Q.begin() + 1, 2);
Q[2] = 0;
copy(Q.begin(), Q.end(), ostream_iterator<int>(cout, " "));
// The values that are printed are 1 2 0

68 Systems/C++ C++ Library

Definition

Defined in the standard header deque, and in the nonstandard backward-
compatibility header deque.h.

Template parameters

Parameter Description Default

T The deque’s value type: the type of object that is stored
in the deque.

Alloc The deque’s allocator, used for all internal memory man-
agement.

alloc

Model of

Random access container, Front insertion sequence, Back insertion sequence.

Type requirements

None, except for those imposed by the requirements of Random access container,
Front insertion sequence, and Back insertion sequence.

Public base classes

None.

Members

Systems/C++ C++ Library 69

Member Where

defined

Description

value type Container The type of object, T, stored in the deque.
pointer Container Pointer to T.
reference Container Reference to T
const reference Container Const reference to T
size type Container An unsigned integral type.
difference type Container A signed integral type.
iterator Container Iterator used to iterate through a deque.
const iterator Container Const iterator used to iterate through a deque.
reverse iterator Reversible

Container
Iterator used to iterate backwards through a deque.

const reverse -
iterator

Reversible
Container

Const iterator used to iterate backwards through a
deque.

iterator
begin()

Container Returns an iterator pointing to the beginning of the
deque.

iterator end() Container Returns an iterator pointing to the end of the
deque.

const iterator
begin() const

Container Returns a const iterator pointing to the beginning
of the deque.

const iterator
end() const

Container Returns a const iterator pointing to the end of the
deque.

reverse iterator
rbegin()

Reversible
Container

Returns a reverse iterator pointing to the begin-
ning of the reversed deque.

reverse iterator
rend()

Reversible
Container

Returns a reverse iterator pointing to the end of
the reversed deque.

const reverse -
iterator
rbegin() const

Reversible
Container

Returns a const reverse iterator pointing to the
beginning of the reversed deque.

const reverse -
iterator rend()
const

Reversible
Container

Returns a const reverse iterator pointing to the
end of the reversed deque.

size type
size() const

Container Returns the size of the deque.

size type
max size()
const

Container Returns the largest possible size of the deque.

bool empty()
const

Container true if the deque’s size is 0.

reference
operator[]
(size type n)

Random
Access
Container

Returns the n’th element.

const reference
operator[]
(size type n)
const

Random
Access
Container

Returns the n’th element.

deque() Container Creates an empty deque.
deque(size type
n)

Sequence Creates a deque with n elements.

deque(size type
n, const T& t)

Sequence Creates a deque with n copies of t.

deque(const
deque&)

Container The copy constructor.

70 Systems/C++ C++ Library

Member Where

defined

Description

template <class
InputIterator>
deque
(InputIterator
f,
InputIterator
l)

Sequence Creates a deque with a copy of a range.

~deque() Container The destructor.
deque&
operator=(const
deque&)

Container The assignment operator

reference
front()

Front In-
sertion
Sequence

Returns the first element.

const reference
front() const

Front In-
sertion
Sequence

Returns the first element.

reference
back()

Back In-
sertion
Sequence

Returns the last element.

const reference
back() const

Back In-
sertion
Sequence

Returns the last element.

void
push front(const
T&)

Front In-
sertion
Sequence

Inserts a new element at the beginning.

void
push back(const
T&)

Back In-
sertion
Sequence

Inserts a new element at the end.

void
pop front()

Front In-
sertion
Sequence

Removes the first element.

void pop back() Back In-
sertion
Sequence

Removes the last element.

void
swap(deque&)

Container Swaps the contents of two deques.

iterator
insert(iterator
pos, const T&
x)

Sequence Inserts x before pos.

Systems/C++ C++ Library 71

Member Where

defined

Description

template <class
InputIterator>
void
insert(iterator
pos,
InputIterator
f,
InputIterator
l)

Sequence Inserts the range [f, l) before pos.

void
insert(iterator
pos, size type
n, const T& x)

Sequence Inserts n copies of x before pos.

iterator
erase(iterator
pos)

Sequence Erases the element at position pos.

iterator
erase(iterator
first, iterator
last)

Sequence Erases the range [first, last)

void clear() Sequence Erases all of the elements.
void resize(n,
t = T())

Sequence Inserts or erases elements at the end such that the
size becomes n.

bool
operator==(const
deque&, const
deque&)

Forward
Container

Tests two deques for equality. This is a global func-
tion, not a member function.

bool
operator<(const
deque&, const
deque&)

Forward
Container

Lexicographical comparison. This is a global func-
tion, not a member function.

New members

All of deque’s members are defined in the Random access container, Front insertion
sequence, and Back insertion sequence requirements. Deque does not introduce any
new members.

Notes

The name deque is pronounced ”deck”, and stands for ”double-ended queue.” Knuth
(section 2.6) reports that the name was coined by E. J. Schweppe. See section 2.2.1 of
Knuth for more information about deques. (D. E. Knuth, The Art of Computer Pro-
gramming. Volume 1: Fundamental Algorithms, second edition. Addison-Wesley,
1973.) Inserting an element at the beginning or end of a deque takes amortized
constant time. Inserting an element in the middle is linear in n, where n is the
smaller of the number of elements from the insertion point to the beginning, and

72 Systems/C++ C++ Library

the number of elements from the insertion point to the end. The semantics of
iterator invalidation for deque is as follows. Insert (including push front and
push back) invalidates all iterators that refer to a deque. Erase in the middle of
a deque invalidates all iterators that refer to the deque. Erase at the beginning
or end of a deque (including pop front and pop back) invalidates an iterator only
if it points to the erased element. This member function relies on member tem-
plate functions, which at present (early 1998) are not supported by all compilers.
If your compiler supports member templates, you can call this function with any
type of input iterator. If your compiler does not yet support member templates,
though, then the arguments must either be of type const value type* or of type
deque::const iterator.

See also

vector, list, slist

list

Description

A list is a doubly linked list. That is, it is a Sequence that supports both forward
and backward traversal, and (amortized) constant time insertion and removal of
elements at the beginning or the end, or in the middle. Lists have the important
property that insertion and splicing do not invalidate iterators to list elements, and
that even removal invalidates only the iterators that point to the elements that are
removed. The ordering of iterators may be changed (that is, list<T>::iterator
might have a different predecessor or successor after a list operation than it did
before), but the iterators themselves will not be invalidated or made to point to
different elements unless that invalidation or mutation is explicit. Note that singly
linked lists, which only support forward traversal, are also sometimes useful. If you
do not need backward traversal, then slist may be more efficient than list.

Definition

Defined in the standard header list, and in the nonstandard backward-compatibility
header list.h.

Example

list<int> L;
L.push_back(0);
L.push_front(1);
L.insert(++L.begin(), 2);
copy(L.begin(), L.end(), ostream_iterator<int>(cout, " "));
// The values that are printed are 1 2 0

Systems/C++ C++ Library 73

Template parameters

Parameter Description Default

T The list’s value type: the type of object that is stored in
the list.

Alloc The list’s allocator, used for all internal memory man-
agement.

alloc

Model of

Reversible Container, Front Insertion Sequence, Back Insertion Sequence.

Type requirements

None, except for those imposed by the requirements of Reversible Container, Front
Insertion Sequence, and Back Insertion Sequence.

Public base classes

None.

Members

74 Systems/C++ C++ Library

Member Where

defined

Description

value type Container The type of object, T, stored in the list.
pointer Container Pointer to T.
reference Container Reference to T
const reference Container Const reference to T
size type Container An unsigned integral type.
difference type Container A signed integral type.
iterator Container Iterator used to iterate through a list.
const iterator Container Const iterator used to iterate through a list.
reverse iterator Reversible

Container
Iterator used to iterate backwards through a list.

const reverse -
iterator

Reversible
Container

Const iterator used to iterate backwards through a
list.

iterator
begin()

Container Returns an iterator pointing to the beginning of the
list.

iterator end() Container Returns an iterator pointing to the end of the list.
const iterator
begin() const

Container Returns a const iterator pointing to the beginning
of the list.

const iterator
end() const

Container Returns a const iterator pointing to the end of the
list.

reverse iterator
rbegin()

Reversible
Container

Returns a reverse iterator pointing to the begin-
ning of the reversed list.

reverse iterator
rend()

Reversible
Container

Returns a reverse iterator pointing to the end of
the reversed list.

const reverse -
iterator
rbegin() const

Reversible
Container

Returns a const reverse iterator pointing to the
beginning of the reversed list.

const reverse -
iterator rend()
const

Reversible
Container

Returns a const reverse iterator pointing to the
end of the reversed list.

size type
size() const

Container Returns the size of the list. Note: you should not
assume that this function is constant time. It is per-
mitted to be O(N), where N is the number of ele-
ments in the list. If you wish to test whether a
list is empty, you should write L.empty() rather
than L.size() == 0.

size type
max size()
const

Container Returns the largest possible size of the list.

bool empty()
const

Container true if the list’s size is 0.

list() Container Creates an empty list.
list(size type
n)

Sequence Creates a list with n elements, each of which is a copy
of T().

list(size type
n, const T& t)

Sequence Creates a list with n copies of t.

list(const
list&)

Container The copy constructor.

Systems/C++ C++ Library 75

Member Where

defined

Description

template <class
InputIterator>
list
(InputIterator
f,
InputIterator
l)

Sequence Creates a list with a copy of a range.

~list() Container The destructor.
list&
operator=(const
list&)

Container The assignment operator

reference
front()

Front In-
sertion
Sequence

Returns the first element.

const reference
front() const

Front In-
sertion
Sequence

Returns the first element.

reference
back()

Sequence Returns the last element.

const reference
back() const

Back In-
sertion
Sequence

Returns the last element.

void
push front(const
T&)

Front In-
sertion
Sequence

Inserts a new element at the beginning.

void
push back(const
T&)

Back In-
sertion
Sequence

Inserts a new element at the end.

void
pop front()

Front In-
sertion
Sequence

Removes the first element.

void pop back() Back In-
sertion
Sequence

Removes the last element.

void
swap(list&)

Container Swaps the contents of two lists.

iterator
insert(iterator
pos, const T&
x)

Sequence Inserts x before pos.

template <class
InputIterator>
void
insert(iterator
pos,
InputIterator
f,
InputIterator
l)

Sequence Inserts the range [f, l) before pos.

76 Systems/C++ C++ Library

Member Where

defined

Description

void
insert(iterator
pos, size type
n, const T& x)

Sequence Inserts n copies of x before pos.

iterator
erase(iterator
pos)

Sequence Erases the element at position pos.

iterator
erase(iterator
first, iterator
last)

Sequence Erases the range [first, last)

void clear() Sequence Erases all of the elements.
void resize(n,
t = T())

Sequence Inserts or erases elements at the end such that the
size becomes n.

void
splice(iterator
pos, list& L)

list See below.

void
splice(iterator
pos, list& L,
iterator i)

list See below.

void
splice(iterator
pos, list& L,
iterator f,
iterator l)

list See below.

void
remove(const
T& value)

list See below.

void unique() list See below.
void
merge(list&
L)

list See below.

void sort() list See below.
bool
operator==(const
list&, const
list&)

Forward
Container

Tests two lists for equality. This is a global function,
not a member function.

bool
operator<(const
list&, const
list&)

Forward
Container

Lexicographical comparison. This is a global func-
tion, not a member function.

New members

These members are not defined in the Reversible Container, Front Insertion Se-
quence, and Back Insertion Sequence requirements, but are specific to list.

Systems/C++ C++ Library 77

Function Description

void
splice(iterator
position, list<T,
Alloc>& x);

position must be a valid iterator in *this, and x must be a list
that is distinct from *this. (That is, it is required that &x !=
this.) All of the elements of x are inserted before position and
removed from x. All iterators remain valid, including iterators
that point to elements of x. This function is constant time.

void
splice(iterator
position, list<T,
Alloc>& x,
iterator i);

position must be a valid iterator in *this, and i must be
a dereferenceable iterator in x. Splice moves the element
pointed to by i from x to *this, inserting it before position.
All iterators remain valid, including iterators that point to el-
ements of x. If position == i or position == ++i, this
function is a null operation. This function is constant time.

void
splice(iterator
position, list<T,
Alloc>& x,
iterator f,
iterator l);

position must be a valid iterator in *this, and [first,
last) must be a valid range in x. position may not be an
iterator in the range [first, last). Splice moves the ele-
ments in [first, last) from x to *this, inserting them be-
fore position. All iterators remain valid, including iterators
that point to elements of x. This function is constant time.

void remove(const
T& val);

Removes all elements that compare equal to val. The rela-
tive order of elements that are not removed is unchanged, and
iterators to elements that are not removed remain valid. This
function is linear time: it performs exactly size() comparisons
for equality.

template<class
Predicate> void
remove if(Predicate
p);

Removes all elements *i such that p(*i) is true. The rela-
tive order of elements that are not removed is unchanged, and
iterators to elements that are not removed remain valid. This
function is linear time: it performs exactly size() applications
of p.

void unique(); Removes all but the first element in every consecutive group
of equal elements. The relative order of elements that are not
removed is unchanged, and iterators to elements that are not
removed remain valid. This function is linear time: it performs
exactly size() - 1 comparisons for equality.

template<class
BinaryPredicate>
void unique
(BinaryPredicate
p);

Removes all but the first element in every consecutive group
of equivalent elements, where two elements *i and *j are con-
sidered equivalent if p(*i, *j) is true. The relative order of
elements that are not removed is unchanged, and iterators to
elements that are not removed remain valid. This function is
linear time: it performs exactly size() - 1 comparisons for
equality.

void merge(list<T,
Alloc>& x);

Both *this and x must be sorted according to operator<, and
they must be distinct. (That is, it is required that &x != this.)
This function removes all of x’s elements and inserts them in
order into *this. The merge is stable; that is, if an element
from *this is equivalent to one from x, then the element from
*this will precede the one from x. All iterators to elements
in *this and x remain valid. This function is linear time: it
performs at most size() + x.size() - 1 comparisons.

78 Systems/C++ C++ Library

Function Description

template<class
BinaryPredicate>
void merge(list<T,
Alloc>& x,
BinaryPredicate
Comp);

Comp must be a comparison function that induces a strict
weak ordering (as defined in the LessThan Comparable require-
ments) on objects of type T, and both *this and x must be
sorted according to that ordering. The lists x and *this must
be distinct. (That is, it is required that &x != this.) This
function removes all of x’s elements and inserts them in or-
der into *this. The merge is stable; that is, if an element from
*this is equivalent to one from x, then the element from *this
will precede the one from x. All iterators to elements in *this
and x remain valid. This function is linear time: it performs at
most size() + x.size() - 1 applications of Comp.

void reverse(); Reverses the order of elements in the list. All iterators remain
valid and continue to point to the same elements. This func-
tion is linear time.

void sort(); Sorts *this according to operator<. The sort is stable, that
is, the relative order of equivalent elements is preserved. All
iterators remain valid and continue to point to the same ele-
ments. The number of comparisons is approximately N log
N, where N is the list’s size.

template<class
BinaryPredicate>
void
sort(BinaryPredicate
comp);

Comp must be a comparison function that induces a strict weak
ordering (as defined in the LessThan Comparable requirements
on objects of type T. This function sorts the list *this accord-
ing to Comp. The sort is stable, that is, the relative order of
equivalent elements is preserved. All iterators remain valid and
continue to point to the same elements. The number of com-
parisons is approximately N log N, where N is the list’s size.

Notes

A comparison with vector is instructive. Suppose that i is a valid
vector<T>::iterator. If an element is inserted or removed in a position that
precedes i, then this operation will either result in i pointing to a different element
than it did before, or else it will invalidate i entirely. (A vector<T>::iterator
will be invalidated, for example, if an insertion requires a reallocation.) However,
suppose that i and j are both iterators into a vector, and there exists some integer
n such that i == j + n. In that case, even if elements are inserted into the vector
and i and j point to different elements, the relation between the two iterators will
still hold. A list is exactly the opposite: iterators will not be invalidated, and will
not be made to point to different elements, but, for list iterators, the predeces-
sor/successor relationship is not invariant. This member function relies on member
template functions, which at present (early 1998) are not supported by all compilers.
If your compiler supports member templates, you can call this function with any
type of input iterator. If your compiler does not yet support member templates,
though, then the arguments must either be of type const value type* or of type
list::const iterator. A similar property holds for all versions of insert() and
erase(). List<T, Alloc>::insert() never invalidates any iterators, and list<T,
Alloc>::erase() only invalidates iterators pointing to the elements that are actu-
ally being erased. This member function relies on member template functions, which

Systems/C++ C++ Library 79

at present (early 1998) are not supported by all compilers. You can only use this
member function if your compiler supports member templates. If L is a list, note
that L.reverse() and reverse(L.begin(), L.end()) are both correct ways of
reversing the list. They differ in that L.reverse() will preserve the value that each
iterator into L points to but will not preserve the iterators’ predecessor/successor re-
lationships, while reverse(L.begin(), L.end()) will not preserve the value that
each iterator points to but will preserve the iterators’ predecessor/successor rela-
tionships. Note also that the algorithm reverse(L.begin(), L.end()) will use
T’s assignment operator, while the member function L.reverse() will not. The
sort algorithm works only for random access iterators. In principle, however, it
would be possible to write a sort algorithm that also accepted bidirectional itera-
tors. Even if there were such a version of sort, it would still be useful for list to
have a sort member function. That is, sort is provided as a member function not
only for the sake of efficiency, but also because of the property that it preserves the
values that list iterators point to.

See also

Bidirectional Iterator, Reversible Container, Sequence, slist vector.

bit vector

Description

A bit vector is essentially a vector<bool>: it is a Sequence that has the same
interface as vector. The main difference is that bit vector is optimized for space
efficiency. A vector always requires at least one byte per element, but a bit vector
only requires one bit per element. Warning: The name bit vector will be removed
in a future release of the STL. The only reason that bit vector is a separate class,
instead of a template specialization of vector<bool>, is that this would require
partial specialization of templates. On compilers that support partial specializa-
tion, bit vector is a specialization of vector<bool>. The name bit vector is a
typedef. This typedef is not defined in the C++ standard, and is retained only
for backward compatibility.

Example

80 Systems/C++ C++ Library

bit_vector V(5);
V[0] = true;
V[1] = false;
V[2] = false;
V[3] = true;
V[4] = false;

for (bit_vector::iterator i = V.begin(); i < V.end(); ++i)
cout << (*i ? ’1’ : ’0’);

cout << endl;

Definition

Defined in the standard header vector, and in the nonstandard backward-
compatibility header bvector.h.

Template parameters

None. Bit vector is not a class template.

Model of

Random access container, Back insertion sequence.

Type requirements

None.

Public base classes

None.

Members

Systems/C++ C++ Library 81

Member Where

defined

Description

value type Container The type of object stored in the bit vector:
bool

reference bit vector A proxy class that acts as a reference to a
single bit. See below for details.

const reference Container Const reference to value type. In
bit vector this is simply defined to be
bool.

size type Container An unsigned integral type.
difference type Container A signed integral type.
iterator Container Iterator used to iterate through a

bit vector.
const iterator Container Const iterator used to iterate through a

bit vector.
reverse iterator Reversible

Container
Iterator used to iterate backwards through
a bit vector.

const reverse iterator Reversible
Container

Const iterator used to iterate backwards
through a bit vector.

iterator begin() Container Returns an iterator pointing to the begin-
ning of the bit vector.

iterator end() Container Returns an iterator pointing to the end of
the bit vector.

const iterator begin()
const

Container Returns a const iterator pointing to the
beginning of the bit vector.

const iterator end()
const

Container Returns a const iterator pointing to the
end of the bit vector.

reverse iterator
rbegin()

Reversible
Container

Returns a reverse iterator pointing to
the beginning of the reversed bit vector.

reverse iterator rend() Reversible
Container

Returns a reverse iterator pointing to
the end of the reversed bit vector.

const reverse iterator
rbegin() const

Reversible
Container

Returns a const reverse iterator point-
ing to the beginning of the reversed
bit vector.

const reverse iterator
rend() const

Reversible
Container

Returns a const reverse iterator point-
ing to the end of the reversed bit vector.

size type size() const Container Returns the number of elements in the
bit vector.

size type max size()
const

Container Returns the largest possible size of the
bit vector.

size type capacity()
const

bit vector See below.

bool empty() const Container true if the bit vector’s size is 0.
reference operator[]
(size type n)

Random
Access
Container

Returns the n’th element.

const reference
operator[] (size type
n) const

Random
Access
Container

Returns the n’th element.

bit vector() Container Creates an empty bit vector.

82 Systems/C++ C++ Library

Member Where

defined

Description

bit vector(size type n) Sequence Creates a bit vector with n elements.
bit vector(size type n,
bool t)

Sequence Creates a bit vector with n copies of t.

bit vector(const
bit vector&)

Container The copy constructor.

template <class
InputIterator>
bit vector
(InputIterator,
InputIterator)

Sequence Creates a bit vector with a copy of a range.

~bit vector() Container The destructor.
bit vector&
operator=(const
bit vector&)

Container The assignment operator

void reserve(size t) bit vector See below.
reference front() Sequence Returns the first element.
const reference front()
const

Sequence Returns the first element.

reference back() Back In-
sertion
Sequence

Returns the last element.

const reference back()
const

Back In-
sertion
Sequence

Returns the last element.

void push back(const T&) Back In-
sertion
Sequence

Inserts a new element at the end.

void pop back() Back In-
sertion
Sequence

Removes the last element.

void swap(bit vector&) Container Swaps the contents of two bit vectors.
void swap
(bit vector::reference
x, bit vector::reference
y)

bit vector See below.

iterator
insert(iterator pos,
bool x)

Sequence Inserts x before pos.

template <class
InputIterator> void
insert(iterator pos,
InputIterator f,
InputIterator l)

Sequence Inserts the range [f, l) before pos.

void insert(iterator
pos, size type n, bool
x)

Sequence Inserts n copies of x before pos.

Systems/C++ C++ Library 83

Member Where

defined

Description

void erase(iterator
pos)

Sequence Erases the element at position pos.

void erase(iterator
first, iterator last)

Sequence Erases the range [first, last)

void clear() Sequence Erases all of the elements.
bool operator==(const
bit vector&, const
bit vector&)

Forward
Container

Tests two bit vectors for equality. This is
a global function, not a member function.

bool operator<(const
bit vector&, const
bit vector&)

Forward
Container

Lexicographical comparison. This is a
global function, not a member function.

New members

These members are not defined in the Random access container and Back insertion
sequence requirements, but are specific to vector.

Member Description

reference A proxy class that acts as a reference to a single bit; the
reason it exists is to allow expressions like V[0] = true.
(A proxy class like this is necessary, because the C++
memory model does not include independent addressing
of objects smaller than one byte.) The public mem-
ber functions of reference are operator bool() const,
reference& operator=(bool), and void flip(). That
is, reference acts like an ordinary reference: you can con-
vert a reference to bool, assign a bool value through a
reference, or flip the bit that a reference refers to.

size type capacity()
const

Number of bits for which memory has been allocated.
capacity() is always greater than or equal to size().

void reserve(size type
n)

If n is less than or equal to capacity(), this call has
no effect. Otherwise, it is a request for the allocation
of additional memory. If the request is successful, then
capacity() is greater than or equal to n; otherwise,
capacity() is unchanged. In either case, size() is un-
changed.

void swap
(bit vector::reference
x,
bit vector::reference
y)

Swaps the bits referred to by x and y. This is a global
function, not a member function. It is necessary because
the ordinary version of swap takes arguments of type T&,
and bit vector::reference is a class, not a built-in C++
reference.

Notes

84 Systems/C++ C++ Library

This member function relies on member template functions, which at present (early
1998) are not supported by all compilers. If your compiler supports member tem-
plates, you can call this function with any type of input iterator. If your compiler
does not yet support member templates, though, then the arguments must either
be of type const bool* or of type bit vector::const iterator. Memory will
be reallocated automatically if more than capacity() - size() bits are inserted
into the bit vector. Reallocation does not change size(), nor does it change the
values of any bits of the bit vector. It does, however, increase capacity(), and it
invalidates any iterators that point into the bit vector. When it is necessary to
increase capacity(), bit vector usually increases it by a factor of two. It is crucial
that the amount of growth is proportional to the current capacity(), rather than
a fixed constant: in the former case inserting a series of bits into a bit vector is a
linear time operation, and in the latter case it is quadratic. reserve() is used to
cause a reallocation manually. The main reason for using reserve() is efficiency:
if you know the capacity to which your bit vector must eventually grow, then it is
probably more efficient to allocate that memory all at once rather than relying on
the automatic reallocation scheme. The other reason for using reserve() is to con-
trol the invalidation of iterators. A bit vector’s iterators are invalidated when
its memory is reallocated. Additionally, inserting or deleting a bit in the middle
of a bit vector invalidates all iterators that point to bits following the insertion or
deletion point. It follows that you can prevent a bit vector’s iterators from being
invalidated if you use reserve() to preallocate as much storage as the bit vector
will ever use, and if all insertions and deletions are at the bit vector’s end.

See also

vector

7.2.2 Associative Containers

set

Description

Set is a Sorted Associative Container that stores objects of type Key. Set is a
Simple Associative Container, meaning that its value type, as well as its key type, is
Key. It is also a Unique Associative Container, meaning that no two elements are the
same. Set and multiset are particularly well suited to the set algorithms includes,
set union, set intersection, set difference, and set symmetric difference.
The reason for this is twofold. First, the set algorithms require their arguments to
be sorted ranges, and, since set and multiset are Sorted Associative Containers,
their elements are always sorted in ascending order. Second, the output range
of these algorithms is always sorted, and inserting a sorted range into a set or
multiset is a fast operation: the Unique Sorted Associative Container and Multiple
Sorted Associative Container requirements guarantee that inserting a range takes
only linear time if the range is already sorted. Set has the important property

Systems/C++ C++ Library 85

that inserting a new element into a set does not invalidate iterators that point
to existing elements. Erasing an element from a set also does not invalidate any
iterators, except, of course, for iterators that actually point to the element that is
being erased.

Example

86 Systems/C++ C++ Library

struct ltstr
{
bool operator()(const char* s1, const char* s2) const
{
return strcmp(s1, s2) < 0;

}
};

int main()
{
const int N = 6;
const char* a[N] = {"isomer", "ephemeral", "prosaic",

"nugatory", "artichoke", "serif"};
const char* b[N] = {"flat", "this", "artichoke",

"frigate", "prosaic", "isomer"};

set<const char*, ltstr> A(a, a + N);
set<const char*, ltstr> B(b, b + N);
set<const char*, ltstr> C;

cout << "Set A: ";
copy(A.begin(), A.end(), ostream_iterator<const char*>(cout, " "));
cout << endl;
cout << "Set B: ";
copy(B.begin(), B.end(), ostream_iterator<const char*>(cout, " "));
cout << endl;

cout << "Union: ";
set_union(A.begin(), A.end(), B.begin(), B.end(),

ostream_iterator<const char*>(cout, " "),
ltstr());

cout << endl;

cout << "Intersection: ";
set_intersection(A.begin(), A.end(), B.begin(), B.end(),

ostream_iterator<const char*>(cout, " "),
ltstr());

cout << endl;

set_difference(A.begin(), A.end(), B.begin(), B.end(),
inserter(C, C.begin()),
ltstr());

cout << "Set C (difference of A and B): ";
copy(C.begin(), C.end(), ostream_iterator<const char*>(cout, " "));
cout << endl;

}

Definition

Defined in the standard header set, and in the nonstandard backward-compatibility
header set.h.

Systems/C++ C++ Library 87

Template parameters

Parameter Description Default

Key The set’s key type and value type. This is also defined as
set::key type and set::value type

Compare The key comparison function, a Strict Weak Ordering
whose argument type is key type; it returns true if its
first argument is less than its second argument, and false
otherwise. This is also defined as set::key compare and
set::value compare.

less<Key>

Alloc The set’s allocator, used for all internal memory manage-
ment.

alloc

Model of

Unique Sorted Associative Container, Simple Associative Container

Type requirements

• Key is Assignable.

• Compare is a Strict Weak Ordering whose argument type is Key.

• Alloc is an Allocator.

Public base classes

None.

Members

88 Systems/C++ C++ Library

Member Where de-

fined

Description

value type Container The type of object, T, stored in the set.
key type Associative

Container
The key type associated with value type.

key compare Sorted Asso-
ciative Con-
tainer

Function object that compares two keys for or-
dering.

value compare Sorted Asso-
ciative Con-
tainer

Function object that compares two values for
ordering.

pointer Container Pointer to T.
reference Container Reference to T
const reference Container Const reference to T
size type Container An unsigned integral type.
difference type Container A signed integral type.
iterator Container Iterator used to iterate through a set.
const iterator Container Const iterator used to iterate through a set.

(Iterator and const iterator are the same
type.)

reverse iterator Reversible
Container

Iterator used to iterate backwards through a
set.

const reverse -
iterator

Reversible
Container

Const iterator used to iterate backwards
through a set. (Reverse iterator and
const reverse iterator are the same type.)

iterator begin()
const

Container Returns an iterator pointing to the beginning
of the set.

iterator end()
const

Container Returns an iterator pointing to the end of the
set.

reverse iterator
rbegin() const

Reversible
Container

Returns a reverse iterator pointing to the
beginning of the reversed set.

reverse iterator
rend() const

Reversible
Container

Returns a reverse iterator pointing to the
end of the reversed set.

size type size()
const

Container Returns the size of the set.

size type
max size() const

Container Returns the largest possible size of the set.

bool empty() const Container true if the set’s size is 0.
key compare
key comp() const

Sorted Asso-
ciative Con-
tainer

Returns the key compare object used by the
set.

value compare
value comp() const

Sorted Asso-
ciative Con-
tainer

Returns the value compare object used by the
set.

set() Container Creates an empty set.
set(const
key compare& comp)

Sorted Asso-
ciative Con-
tainer

Creates an empty set, using comp as the
key compare object.

template <class
InputIterator> set
(InputIterator f,
InputIterator l)

Unique
Sorted As-
sociative
Container

Creates a set with a copy of a range.

Systems/C++ C++ Library 89

Member Where de-

fined

Description

template <class
InputIterator> set
(InputIterator f,
InputIterator l,
const key compare&
comp)

Unique
Sorted As-
sociative
Container

Creates a set with a copy of a range, using comp
as the key compare object.

set(const set&) Container The copy constructor.
set&
operator=(const
set&)

Container The assignment operator

void swap(set&) Container Swaps the contents of two sets.
pair<iterator,
bool> insert(const
value type& x)

Unique As-
sociative
Container

Inserts x into the set.

iterator
insert(iterator
pos, const
value type& x)

Unique
Sorted As-
sociative
Container

Inserts x into the set, using pos as a hint to
where it will be inserted.

template <class
InputIterator> void
insert(InputIterator,
InputIterator)

Unique
Sorted As-
sociative
Container

Inserts a range into the set.

void erase(iterator
pos)

Associative
Container

Erases the element pointed to by pos.

size type
erase(const
key type& k)

Associative
Container

Erases the element whose key is k.

void erase(iterator
first, iterator
last)

Associative
Container

Erases all elements in a range.

void clear() Associative
Container

Erases all of the elements.

iterator find(const
key type& k) const

Associative
Container

Finds an element whose key is k.

size type
count(const
key type& k) const

Unique As-
sociative
Container

Counts the number of elements whose key is k.

iterator
lower bound(const
key type& k) const

Sorted Asso-
ciative Con-
tainer

Finds the first element whose key is not less
than k.

iterator
upper bound(const
key type& k) const

Sorted Asso-
ciative Con-
tainer

Finds the first element whose key greater than
k.

pair<iterator,
iterator>
equal range(const
key type& k) const

Sorted Asso-
ciative Con-
tainer

Finds a range containing all elements whose key
is k.

bool
operator==(const
set&, const set&)

Forward
Container

Tests two sets for equality. This is a global func-
tion, not a member function.

bool
operator<(const
set&, const set&)

Forward
Container

Lexicographical comparison. This is a global
function, not a member function.

90 Systems/C++ C++ Library

New members

All of set’s members are defined in the Unique Sorted Associative Container and
Simple Associative Container requirements. Set does not introduce any new mem-
bers.

Notes

This member function relies on member template functions, which at present (early
1998) are not supported by all compilers. If your compiler supports member tem-
plates, you can call this function with any type of input iterator. If your compiler
does not yet support member templates, though, then the arguments must either
be of type const value type* or of type set::const iterator.

See also

Associative Container, Sorted Associative Container, Simple Associative Container,
Unique Sorted Associative Container, map, multiset

map

Description

Map is a Sorted Associative Container that associates objects of type Key with objects
of type Data. Map is a Pair Associative Container, meaning that its value type is
pair<const Key, Data>. It is also a Unique Associative Container, meaning that
no two elements have the same key. Map has the important property that inserting a
new element into a map does not invalidate iterators that point to existing elements.
Erasing an element from a map also does not invalidate any iterators, except, of
course, for iterators that actually point to the element that is being erased.

Example

Systems/C++ C++ Library 91

struct ltstr
{
bool operator()(const char* s1, const char* s2) const
{
return strcmp(s1, s2) < 0;

}
};

int main()
{
map<const char*, int, ltstr> months;

months["january"] = 31;
months["february"] = 28;
months["march"] = 31;
months["april"] = 30;
months["may"] = 31;
months["june"] = 30;
months["july"] = 31;
months["august"] = 31;
months["september"] = 30;
months["october"] = 31;
months["november"] = 30;
months["december"] = 31;

cout << "june -> " << months["june"] << endl;
map<const char*, int, ltstr>::iterator cur = months.find("june");
map<const char*, int, ltstr>::iterator prev = cur;
map<const char*, int, ltstr>::iterator next = cur;
++next;
--prev;
cout << "Previous (in alphabetical order) is " << (*prev).first

<< endl;
cout << "Next (in alphabetical order) is " << (*next).first << endl;

}

Definition

Defined in the standard header map, and in the nonstandard backward-compatibility
header map.h.

Template parameters

92 Systems/C++ C++ Library

Parameter Description Default

Key The map’s key type. This is also defined as
map::key type.

Data The map’s data type. This is also defined as
map::data type.

Compare The key comparison function, a Strict Weak Ordering
whose argument type is key type; it returns true if its
first argument is less than its second argument, and false
otherwise. This is also defined as map::key compare.

less<Key>

Alloc The map’s allocator, used for all internal memory manage-
ment.

alloc

Model of

Unique Sorted Associative Container, Pair Associative Container

Type requirements

• Data is Assignable.

• Compare is a Strict Weak Ordering whose argument type is Key.

• Alloc is an Allocator.

Public base classes

None.

Members

Systems/C++ C++ Library 93

Member Where

defined

Description

key type Associative
Container

The map’s key type, Key.

data type Pair As-
sociative
Container

The type of object associated with the keys.

value type Pair As-
sociative
Container

The type of object, pair<const key type,
data type>, stored in the map.

key compare Sorted
Associative
Container

Function object that compares two keys for
ordering.

value compare Sorted
Associative
Container

Function object that compares two values
for ordering.

pointer Container Pointer to T.
reference Container Reference to T
const reference Container Const reference to T
size type Container An unsigned integral type.
difference type Container A signed integral type.
iterator Container Iterator used to iterate through a map.
const iterator Container Const iterator used to iterate through a map.
reverse iterator Reversible

Container
Iterator used to iterate backwards through
a map.

const reverse iterator Reversible
Container

Const iterator used to iterate backwards
through a map.

iterator begin() Container Returns an iterator pointing to the begin-
ning of the map.

iterator end() Container Returns an iterator pointing to the end of
the map.

const iterator begin()
const

Container Returns a const iterator pointing to the
beginning of the map.

const iterator end()
const

Container Returns a const iterator pointing to the
end of the map.

reverse iterator
rbegin()

Reversible
Container

Returns a reverse iterator pointing to
the beginning of the reversed map.

reverse iterator rend() Reversible
Container

Returns a reverse iterator pointing to
the end of the reversed map.

const reverse iterator
rbegin() const

Reversible
Container

Returns a const reverse iterator point-
ing to the beginning of the reversed map.

const reverse iterator
rend() const

Reversible
Container

Returns a const reverse iterator point-
ing to the end of the reversed map.

size type size() const Container Returns the size of the map.
size type max size()
const

Container Returns the largest possible size of the map.

bool empty() const Container true if the map’s size is 0.

94 Systems/C++ C++ Library

Member Where

defined

Description

key compare key comp()
const

Sorted
Associative
Container

Returns the key compare object used by the
map.

value compare
value comp() const

Sorted
Associative
Container

Returns the value compare object used by
the map.

map() Container Creates an empty map.
map(const key compare&
comp)

Sorted
Associative
Container

Creates an empty map, using comp as the
key compare object.

template <class
InputIterator>
map(InputIterator f,
InputIterator l)

Unique
Sorted
Associative
Container

Creates a map with a copy of a range.

template <class
InputIterator>
map(InputIterator f,
InputIterator l, const
key compare& comp)

Unique
Sorted
Associative
Container

Creates a map with a copy of a range, using
comp as the key compare object.

map(const map&) Container The copy constructor.
map& operator=(const
map&)

Container The assignment operator

void swap(map&) Container Swaps the contents of two maps.
pair<iterator,
bool> insert(const
value type& x)

Unique
Associative
Container

Inserts x into the map.

iterator
insert(iterator pos,
const value type& x)

Unique
Sorted
Associative
Container

Inserts x into the map, using pos as a hint
to where it will be inserted.

template <class
InputIterator> void
insert(InputIterator,
InputIterator)

Unique
Sorted
Associative
Container

Inserts a range into the map.

void erase(iterator
pos)

Associative
Container

Erases the element pointed to by pos.

size type erase(const
key type& k)

Associative
Container

Erases the element whose key is k.

void erase(iterator
first, iterator last)

Associative
Container

Erases all elements in a range.

void clear() Associative
Container

Erases all of the elements.

iterator find(const
key type& k)

Associative
Container

Finds an element whose key is k.

const iterator
find(const key type&
k) const

Associative
Container

Finds an element whose key is k.

size type count(const
key type& k)

Unique
Associative
Container

Counts the number of elements whose key
is k.

Systems/C++ C++ Library 95

Member Where

defined

Description

iterator
lower bound(const
key type& k)

Sorted
Associative
Container

Finds the first element whose key is not less
than k.

const iterator
lower bound(const
key type& k) const

Sorted
Associative
Container

Finds the first element whose key is not less
than k.

iterator
upper bound(const
key type& k)

Sorted
Associative
Container

Finds the first element whose key greater
than k.

const iterator
upper bound(const
key type& k) const

Sorted
Associative
Container

Finds the first element whose key greater
than k.

pair<iterator,
iterator>
equal range(const
key type& k)

Sorted
Associative
Container

Finds a range containing all elements whose
key is k.

pair<const iterator,
const iterator>
equal range(const
key type& k) const

Sorted
Associative
Container

Finds a range containing all elements whose
key is k.

data type
operator[](const
key type& k)

map See below.

bool operator==(const
map&, const map&)

Forward
Container

Tests two maps for equality. This is a global
function, not a member function.

bool operator<(const
map&, const map&)

Forward
Container

Lexicographical comparison. This is a
global function, not a member function.

New members

These members are not defined in the Unique Sorted Associative Container and Pair
Associative Container requirements, but are unique to map:

Member function Description

data type operator[](const key type& k) Returns a reference to the object that
is associated with a particular key. If
the map does not already contain such
an object, operator[] inserts the de-
fault object data type().

Notes

Map::iterator is not a mutable iterator, because map::value type is not
Assignable. That is, if i is of type map::iterator and p is of type map::value type,
then *i = p is not a valid expression. However, map::iterator isn’t a constant
iterator either, because it can be used to modify the object that it points to.

96 Systems/C++ C++ Library

Using the same notation as above, (*i).second = p is a valid expression. The
same point applies to map::reverse iterator. This member function relies
on member template functions, which at present (early 1998) are not supported
by all compilers. If your compiler supports member templates, you can call this
function with any type of input iterator. If your compiler does not yet support
member templates, though, then the arguments must either be of type const
value type* or of type map::const iterator. Since operator[] might in-
sert a new element into the map, it can’t possibly be a const member function.
Note that the definition of operator[] is extremely simple: m[k] is equivalent to
(*((m.insert(value type(k, data type()))).first)).second. Strictly speak-
ing, this member function is unnecessary: it exists only for convenience.

See also

Associative Container, Sorted Associative Container, Pair Associative Container,
Unique Sorted Associative Container, set multiset

multiset

Description

Multiset is a Sorted Associative Container that stores objects of type Key.
Multiset is a Simple Associative Container, meaning that its value type, as well as
its key type, is Key. It is also a Multiple Associative Container, meaning that two
or more elements may be identical. Set and multiset are particularly well suited
to the set algorithms includes, set union, set intersection, set difference,
and set symmetric difference. The reason for this is twofold. First, the set al-
gorithms require their arguments to be sorted ranges, and, since set and multiset
are Sorted Associative Containers, their elements are always sorted in ascending or-
der. Second, the output range of these algorithms is always sorted, and inserting a
sorted range into a set or multiset is a fast operation: the Unique Sorted Associa-
tive Container and Multiple Sorted Associative Container requirements guarantee
that inserting a range takes only linear time if the range is already sorted. Multiset
has the important property that inserting a new element into a multiset does not
invalidate iterators that point to existing elements. Erasing an element from a
multiset also does not invalidate any iterators, except, of course, for iterators that
actually point to the element that is being erased.

Example

Systems/C++ C++ Library 97

int main()
{
const int N = 10;
int a[N] = {4, 1, 1, 1, 1, 1, 0, 5, 1, 0};
int b[N] = {4, 4, 2, 4, 2, 4, 0, 1, 5, 5};

multiset<int> A(a, a + N);
multiset<int> B(b, b + N);
multiset<int> C;

cout << "Set A: ";
copy(A.begin(), A.end(), ostream_iterator<int>(cout, " "));
cout << endl;
cout << "Set B: ";
copy(B.begin(), B.end(), ostream_iterator<int>(cout, " "));
cout << endl;

cout << "Union: ";
set_union(A.begin(), A.end(), B.begin(), B.end(),

ostream_iterator<int>(cout, " "));
cout << endl;

cout << "Intersection: ";
set_intersection(A.begin(), A.end(), B.begin(), B.end(),

ostream_iterator<int>(cout, " "));
cout << endl;

set_difference(A.begin(), A.end(), B.begin(), B.end(),
inserter(C, C.begin()));

cout << "Set C (difference of A and B): ";
copy(C.begin(), C.end(), ostream_iterator<int>(cout, " "));
cout << endl;

}

Definition

Defined in the standard header set, and in the nonstandard backward-compatibility
header multiset.h.

Template parameters

98 Systems/C++ C++ Library

Parameter Description Default

Key The set’s key type and value type. This is also defined as
multiset::key type and multiset::value type

Compare The key comparison function, a Strict Weak Ordering
whose argument type is key type; it returns true if its
first argument is less than its second argument, and false
otherwise. This is also defined as multiset::key compare
and multiset::value compare.

less<Key>

Alloc The multiset’s allocator, used for all internal memory
management.

alloc

Model of

Multiple Sorted Associative Container, Simple Associative Container

Type requirements

• Key is Assignable.

• Compare is a Strict Weak Ordering whose argument type is Key.

• Alloc is an Allocator.

Public base classes

None.

Members

Systems/C++ C++ Library 99

Member Where

defined

Description

value type Container The type of object, T, stored in the multiset.
key type Associative

Container
The key type associated with value type.

key compare Sorted
Associative
Container

Function object that compares two keys for
ordering.

value compare Sorted
Associative
Container

Function object that compares two values for
ordering.

pointer Container Pointer to T.
reference Container Reference to T
const reference Container Const reference to T
size type Container An unsigned integral type.
difference type Container A signed integral type.
iterator Container Iterator used to iterate through a multiset.
const iterator Container Const iterator used to iterate through a

multiset. (Iterator and const iterator
are the same type.)

reverse iterator Reversible
Container

Iterator used to iterate backwards through a
multiset.

const reverse iterator Reversible
Container

Const iterator used to iterate backwards
through a multiset. (Reverse iterator
and const reverse iterator are the same
type.)

iterator begin()
const

Container Returns an iterator pointing to the begin-
ning of the multiset.

iterator end() const Container Returns an iterator pointing to the end of
the multiset.

reverse iterator
rbegin() const

Reversible
Container

Returns a reverse iterator pointing to the
beginning of the reversed multiset.

reverse iterator
rend() const

Reversible
Container

Returns a reverse iterator pointing to the
end of the reversed multiset.

size type size() const Container Returns the size of the multiset.
size type max size()
const

Container Returns the largest possible size of the
multiset.

bool empty() const Container true if the multiset’s size is 0.
key compare key comp()
const

Sorted
Associative
Container

Returns the key compare object used by the
multiset.

value compare
value comp() const

Sorted
Associative
Container

Returns the value compare object used by
the multiset.

multiset() Container Creates an empty multiset.
multiset(const
key compare& comp)

Sorted
Associative
Container

Creates an empty multiset, using comp as
the key compare object.

template <class
InputIterator>
multiset
(InputIterator f,
InputIterator l)

Multiple
Sorted
Associative
Container

Creates a multiset with a copy of a range.

100 Systems/C++ C++ Library

Member Where

defined

Description

template <class
InputIterator>
multiset
(InputIterator f,
InputIterator l,
const key compare&
comp)

Multiple
Sorted
Associative
Container

Creates a multiset with a copy of a range,
using comp as the key compare object.

multiset(const
multiset&)

Container The copy constructor.

multiset&
operator=(const
multiset&)

Container The assignment operator

void swap(multiset&) Container Swaps the contents of two multisets.
iterator insert(const
value type& x)

Multiple
Associative
Container

Inserts x into the multiset.

iterator
insert(iterator pos,
const value type& x)

Multiple
Sorted
Associative
Container

Inserts x into the multiset, using pos as a
hint to where it will be inserted.

template <class
InputIterator> void
insert(InputIterator,
InputIterator)

Multiple
Sorted
Associative
Container

Inserts a range into the multiset.

void erase(iterator
pos)

Associative
Container

Erases the element pointed to by pos.

size type erase(const
key type& k)

Associative
Container

Erases the element whose key is k.

void erase(iterator
first, iterator last)

Associative
Container

Erases all elements in a range.

void clear() Associative
Container

Erases all of the elements.

iterator find(const
key type& k) const

Associative
Container

Finds an element whose key is k.

size type count(const
key type& k) const

Associative
Container

Counts the number of elements whose key is
k.

iterator
lower bound(const
key type& k) const

Sorted
Associative
Container

Finds the first element whose key is not less
than k.

iterator
upper bound(const
key type& k) const

Sorted
Associative
Container

Finds the first element whose key greater
than k.

pair<iterator,
iterator>
equal range(const
key type& k) const

Sorted
Associative
Container

Finds a range containing all elements whose
key is k.

bool operator==(const
multiset&, const
multiset&)

Forward
Container

Tests two multisets for equality. This is a
global function, not a member function.

bool operator<(const
multiset&, const
multiset&)

Forward
Container

Lexicographical comparison. This is a global
function, not a member function.

Systems/C++ C++ Library 101

New members

All of multiset’s members are defined in the Multiple Sorted Associative Container
and Simple Associative Container requirements. Multiset does not introduce any
new members.

Notes

This member function relies on member template functions, which at present (early
1998) are not supported by all compilers. If your compiler supports member tem-
plates, you can call this function with any type of input iterator. If your compiler
does not yet support member templates, though, then the arguments must either
be of type const value type* or of type multiset::const iterator.

See also

Associative Container, Sorted Associative Container, Simple Associative Container,
Multiple Sorted Associative Container, set, map.

Character Traits

Description

Several library components, including strings, need to perform operations on char-
acters. A Character Traits class is similar to a function object: it encapsulates some
information about a particular character type, and some operations on that type.
Note that every member of a Character Traits class is static. There is never any
need to create a Character Traits object, and, in fact, there is no guarantee that
creating such objects is possible.

Refinement of

Character Traits is not a refinement of any other concept.

Associated types

102 Systems/C++ C++ Library

Value type X::char type The character type described by this Character Traits
type.

Int type X::int type A type that is capable of representing every valid value
of type char type, and, additionally an end-of-file
value. For char, for example, the int type may be
int, and for wchar t it may be wint t.

Position type X::pos type A type that can represent the position of a character
of type char type within a file. This type is usually
streampos.

Offset type X::off type An integer type that can represent the difference be-
tween two pos type values. This type is usually
streamoff.

State type X::state type A type that can represent a state in a multibyte en-
coding scheme. This type, if used at all, is usually
mbstate t.

Notation

X A type that is a model of Character Traits.
c, c1, c2 A value of X’s value type, X::char type.
e, e1, e2 A value of X’s int type, X::int type.

n A value of type size t.
p, p1, p2 A non-null pointer of type const X::char type*.

s A non-null pointer of type X::char type*.

Valid Expressions

Name Expression Type

require-
ments

Return type

Character assignment X::assign(c1, c2) c1 is a
modi-
fiable
lvalue.

void

Character equality X::eq(c1, c2) bool
Character comparison X::lt(c1, c2) bool

Range comparison X::compare(p1, p2, n) int
Length X::length(p) size t
Find X::find(p, n, c) const X::char type*
Move X::move(s, p, n) X::char type*
Copy X::copy(s, p, n) X::char type*

Range assignment X::assign(s, n, c) X::char type*
EOF value X::eof() X::int type
Not EOF X::not eof(e) X::int type

Convert to value type X::to char type(e) X::char type
Convert to int type X::to int type(c) X::int type

Equal int type values X::eq int type(e1, e2) bool

Systems/C++ C++ Library 103

Expression semantics

Name Expression Pre-

condi-
tion

Semantics Post-

condi-
tion

Character
assignment

X::assign(c1, c2) Performs the assign-
ment c1 = c2

X::eq(c1,
c2) is
true.

Character
equality

X::eq(c1, c2) Returns true if and
only if c1 and c2 are
equal.

Character
comparison

X::lt(c1, c2) Returns true if and
only if c1 is less than
c2. Note that for
any two value values
c1 and c2, exactly
one of X::lt(c1,
c2), X::lt(c2, c1),
and X::eq(c1, c2)
should be true.

Range
comparison

X::compare(p1, p2, n) [p1,
p1+n)
and [p2,
p2+n)
are valid
ranges.

Generalization of
strncmp. Returns 0
if every element in
[p1, p1+n) is equal
to the corresponding
element in [p2,
p2+n), a negative
value if there exists
an element in [p1,
p1+n) less than the
corresponding ele-
ment in [p2, p2+n)
and all previous
elements are equal,
and a positive value
if there exists an ele-
ment in [p1, p1+n)
greater than the cor-
responding element
in [p2, p2+n) and
all previous elements
are equal.

Length X::length(p) Generalization of
strlen. Returns the
smallest non-negative
number n such
that X::eq(p+n,
X::char type()) is
true. Behavior is
undefined if no such
n exists.

104 Systems/C++ C++ Library

Name Expression Pre-

condi-
tion

Semantics Postcon-

dition

Find X::find(p, n, c) [p,
p+n) is
a valid
range.

Generalization of
strchr. Returns
the first pointer q in
[p, p+n) such that
X::eq(*q, c) is true.
Returns a null pointer
if no such pointer
exists. (Note that this
method for indicating
a failed search differs
from that is find.)

Move X::move(s, p, n) [p,
p+n)
and [s,
s+n)
are valid
ranges
(possibly
overlap-
ping).

Generalization of
memmove. Copies val-
ues from the range [p,
p+n) to the range [s,
s+n), and returns s.

Copy X::copy(s, p, n) [p,
p+n)
and [s,
s+n)
are valid
ranges
which
do not
overlap.

Generalization of
memcpy. Copies values
from the range [p,
p+n) to the range [s,
s+n), and returns s.

Range as-
signment

X::assign(s, n, c) [s,
s+n) is
a valid
range.

Generalization of
memset. Assigns the
value c to each pointer
in the range [s, s+n),
and returns s.

EOF value X::eof() Returns a value that
can represent EOF.

X::eof()
is distinct
from every
valid value
of type X::
char type.
That is,
there exists
no value
c such
that X::
eq int type
(X::
to int type
(c),
X::eof())
is true.

Systems/C++ C++ Library 105

Name Expres-

sion

Precondition Semantics Postcondition

Not EOF X::
not eof(e)

Returns e if e
represents a valid
char type value,
and some non-
EOF value if e is
X::eof().

Convert
to value
type

X::
to char type
(e)

Converts e to X’s
int type. If e
is a representation
of some char type
value then it re-
turns that value;
if e is X::eof()
then the return
value is unspeci-
fied.

Convert
to int
type

X::
to int type
(c)

Converts c to X’s
int type.

X::to char type
(X::to int type
(c)) is a null
operation.

Equal int
type val-
ues

X::
eq int type
(e1, e2)

Compares two
int type values.
If there exist
values of type
X::char type
such that e1 is X::
to int type(c1))
and e2 is X::
to int type(c2)),
then
X::eq int type
(e1, e2) is
the same as
X::eq(c1,
c2). Other-
wise, eq int type
returns true if e1
and e2 are both
EOF and false if
one of e1 and e2
is EOF and the
other is not.

Complexity guarantees

length, find, move, copy, and the range version of assign are linear in n. All other
operations are constant time.

106 Systems/C++ C++ Library

Models

• char traits<char>

• char traits<wchar t>

Notes

See also

string

char traits

Description

The char traits class is the default Character Traits class used by the library; it
is the only predefined Character Traits class.

Example

The char traits class is of no use by itself. It is used as a template parameter of
other classes, such as the basic string template.

Definition

Defined in the standard header string.

Template parameters

Parameter Description Default

charT char traits’s value type, i.e.
char traits<>::char type.

Model of

Character Traits

Type requirements

charT is either char or wchar t. (All of char traits’s member functions are de-
fined for arbitrary types, but some of char traits’s members must be explicitly
specialized if char traits is to be useful for other types than char and wchar t.

Systems/C++ C++ Library 107

Public base classes

None.

Members

All of char traits’s members are static. There is never any reason to create an
object of type char traits.

Member Where

defined

Description

char type Character
Traits

char traits’s value type: charT.

int type Character
Traits

char traits’s int type.

pos type Character
Traits

char traits’s position type.

off type Character
Traits

char traits’s offset type

state type Character
Traits

char traits’s state type.

static void
assign(char type&
c1, const char type&
c2)

Character
Traits

Assigns c2 to c1.

static bool eq(const
char type& c1, const
char type& c2)

Character
Traits

Character equality.

static bool lt(const
char type& c1, const
char type& c2)

Character
Traits

Returns true if c1 is less than c2.

108 Systems/C++ C++ Library

Member Where

defined

Description

static int
compare(const
char type* p1, const
char type* p2, size t
n)

Character
Traits

Three-way lexicographical comparison, much
like strncmp.

static size t
length(const char*
p)

Length Returns length of a null-terminated array of
characters.

static const
char type* find(const
char type* p, size t
n, const char type&
c)

Character
Traits

Finds c in [p, p+n), returning 0 if not found.

static char type*
move(char type* s,
const char type* p,
size t n)

Character
Traits

Copies characters from [p, p+n) to the (pos-
sibly overlapping) range [s, s+n).

static char type*
copy(char type* s,
const char type* p,
size t n)

Character
Traits

Copies characters from [p, p+n) to the (non-
overlapping) range [s, s+n).

static char type*
assign(char type* s,
size t n, char type
c)

Character
Traits

Assigns the value c to every element in the
range [s, s+n).

static int type eof() Character
Traits

Returns the value used as an EOF indicator.

static int type
not eof(const
int type& c)

Character
Traits

Returns a value that is not equal to eof().
Returns c unless c is equal to eof().

static char type
to char type(const
int type& c)

Character
Traits

Returns the char type value corresponding to
c, if such a value exists.

static int type
to int type(const
char type& c)

Character
Traits

Returns a int type representation of c.

static bool
eq int type(cosnt
int type& c1, const
int type& c1)

Character
Traits

Tests whether two int type values are equal.
If the values can also be represented as
char type, then eq and eq int type must be
consistent with each other.

New members

None. All of char traits’s members are defined in the Character Traits require-
ments.

Notes

Systems/C++ C++ Library 109

See also

Character Traits, string

basic string

Description

The basic string class represents a Sequence of characters. It contains all the usual
operations of a Sequence, and, additionally, it contains standard string operations
such as search and concatenation. The basic string class is parameterized by char-
acter type, and by that type’s Character Traits. Most of the time, however, there is
no need to use the basic string template directly. The types string and wstring
are typedefs for, respectively, basic string<char> and basic string<wchar t>.
Some of basic string’s member functions use an unusual method of specifying po-
sitions and ranges. In addition to the conventional method using iterators, many
of basic string’s member functions use a single value pos of type size type to
represent a position (in which case the position is begin() + pos, and many of
basic string’s member functions use two values, pos and n, to represent a range.
In that case pos is the beginning of the range and n is its size. That is, the range
is [begin() + pos, begin() + pos + n).

Example

int main() {
string s(10u, ’ ’); // Create a string of ten blanks.

const char* A = "this is a test";
s += A;
cout << "s = " << (s + ’\n’);
cout << "As a null-terminated sequence: " << s.c_str() << endl;
cout << "The sixteenth character is " << s[15] << endl;

reverse(s.begin(), s.end());
s.push_back(’\n’);
cout << s;

}

Definition

Defined in the standard header string.

Template parameters

110 Systems/C++ C++ Library

Parameter Description Default

charT The string’s value type: the type of character it
contains.

traits The Character Traits type, which encapsulates
basic character operations.

char traits<charT>

Alloc The string’s allocator, used for internal memory
management.

alloc

Model of

Random Access Container, Sequence.

Type requirements

In addition to the type requirements imposed by Random Access Container and
Sequence:

• charT is a POD (”plain ol’ data”) type.

• traits is a Character Traits type whose value type is charT

Public base classes

None.

Members

Systems/C++ C++ Library 111

Member Where de-

fined

Description

value type Container The type of object, CharT, stored in the
string.

pointer Container Pointer to CharT.
reference Container Reference to CharT
const reference Container Const reference to CharT
size type Container An unsigned integral type.
difference type Container A signed integral type.
static const size type
npos

basic string The largest possible value of type
size type. That is, size type(-1).

iterator Container Iterator used to iterate through a string.
A basic string supplies
Random Access Iterators.

const iterator Container Const iterator used to iterate through a
string.

reverse iterator Reversible
Container

Iterator used to iterate backwards through
a string.

const reverse iterator Reversible
Container

Const iterator used to iterate backwards
through a string.

iterator begin() Container Returns an iterator pointing to the be-
ginning of the string.

iterator end() Container Returns an iterator pointing to the end
of the string.

const iterator begin()
const

Container Returns a const iterator pointing to the
beginning of the string.

const iterator end()
const

Container Returns a const iterator pointing to the
end of the string.

reverse iterator
rbegin()

Reversible
Container

Returns a reverse iterator pointing to
the beginning of the reversed string.

reverse iterator rend() Reversible
Container

Returns a reverse iterator pointing to
the end of the reversed string.

const reverse iterator
rbegin() const

Reversible
Container

Returns a const reverse iterator
pointing to the beginning of the reversed
string.

const reverse iterator
rend() const

Reversible
Container

Returns a const reverse iterator
pointing to the end of the reversed string.

size type size() const Container Returns the size of the string.
size type length()
const

basic string Synonym for size().

size type max size()
const

Container Returns the largest possible size of the
string.

size type capacity()
const

basic string See below.

bool empty() const Container true if the string’s size is 0.

112 Systems/C++ C++ Library

Member Where de-

fined

Description

reference operator[]
(size type n)

Random
Access Con-
tainer

Returns the n’th character.

const reference operator[]
(size type n) const

Random
Access Con-
tainer

Returns the n’th character.

const charT* c str() const basic string Returns a pointer to a null-
terminated array of characters rep-
resenting the string’s contents.

const charT* data() const basic string Returns a pointer to an ar-
ray of characters (not necessarily
null-terminated) representing the
string’s contents.

basic string() Container Creates an empty string.
basic string(const
basic string& s, size type
pos = 0, size type n = npos)

Container,
basic string

Generalization of the copy con-
structor.

basic string(const charT*) basic string Construct a string from a null-
terminated character array.

basic string(const charT* s,
size type n)

basic string Construct a string from a character
array and a length.

basic string(size type n,
charT c)

Sequence Create a string with n copies of c.

template <class
InputIterator>
basic string(InputIterator
first, InputIterator last)

Sequence Create a string from a range.

~basic string() Container The destructor.
basic string&
operator=(const
basic string&)

Container The assignment operator

basic string&
operator=(const charT* s)

basic string Assign a null-terminated character
array to a string.

basic string&
operator=(charT c)

basic string Assign a single character to a
string.

void reserve(size t) basic string See below.
void swap(basic string&) Container Swaps the contents of two strings.
iterator insert(iterator
pos, const T& x)

Sequence Inserts x before pos.

template <class
InputIterator> void
insert(iterator pos,
InputIterator f,
InputIterator l)

Sequence Inserts the range [first, last)
before pos.

void insert(iterator pos,
size type n, const T& x)

Sequence Inserts n copies of x before pos.

basic string&
insert(size type pos, const
basic string& s)

basic string Inserts s before pos.

Systems/C++ C++ Library 113

Member Where de-

fined

Description

basic string&
insert(size type pos, const
basic string& s, size type
pos1, size type n)

basic string Inserts a substring of s before pos.

basic string&
insert(size type pos, const
charT* s)

basic string Inserts s before pos.

basic string&
insert(size type pos, const
charT* s, size type n)

basic string Inserts the first n characters of s
before pos.

basic string&
insert(size type pos,
size type n, charT c)

basic string Inserts n copies of c before pos.

basic string& append(const
basic string& s)

basic string Append s to *this.

basic string& append(const
basic string& s, size type
pos, size type n)

basic string Append a substring of s to *this.

basic string& append(const
charT* s)

basic string Append s to *this.

basic string& append(const
charT* s, size type n)

basic string Append the first n characters of s
to *this.

basic string&
append(size type n, charT
c)

basic string Append n copies of c to *this.

template <class
InputIterator> basic string&
append(InputIterator first,
InputIterator last)

basic string Append a range to *this.

void push back(charT c) basic string Append a single character to
*this.

basic string&
operator+=(const
basic string& s)

basic string Equivalent to append(s).

basic string&
operator+=(const charT* s)

basic string Equivalent to append(s)

basic string&
operator+=(charT c)

basic string Equivalent to push back(c)

iterator erase(iterator p) Sequence Erases the character at position p
iterator erase(iterator
first, iterator last)

Sequence Erases the range [first, last)

basic string& erase(size type
pos = 0, size type n = npos)

basic string Erases a range.

void clear() Sequence Erases the entire container.
void resize(size type n,
charT c = charT())

Sequence Appends characters, or erases char-
acters from the end, as necessary to
make the string’s length exactly n
characters.

basic string& assign(const
basic string&)

basic string Synonym for operator=

114 Systems/C++ C++ Library

Member Where de-

fined

Description

basic string& assign(const
basic string& s, size type
pos, size type n)

basic string Assigns a substring of s to *this

basic string& assign(const
charT* s, size type n)

basic string Assigns the first n characters of s
to *this.

basic string& assign(const
charT* s)

basic string Assigns a null-terminated array of
characters to *this.

basic string&
assign(size type n, charT
c)

Sequence Erases the existing characters and
replaces them by n copies of c.

template <class
InputIterator> basic string&
assign(InputIterator first,
InputIterator last)

Sequence Erases the existing characters and
replaces them by [first, last)

basic string&
replace(size type pos,
size type n, const
basic string& s)

basic string Replaces a substring of *this with
the string s.

basic string&
replace(size type pos,
size type n, const
basic string& s, size type
pos1, size type n1)

basic string Replaces a substring of *this with
a substring of s.

basic string&
replace(size type pos,
size type n, const charT*
s, size type n1)

basic string Replaces a substring of *this with
the first n1 characters of s.

basic string&
replace(size type pos,
size type n, const charT*
s)

basic string Replaces a substring of *this with
a null-terminated character array.

basic string&
replace(size type pos,
size type n, size type n1,
charT c)

basic string Replaces a substring of *this with
n1 copies of c.

basic string&
replace(iterator first,
iterator last, const
basic string& s)

basic string Replaces a substring of *this with
the string s.

basic string&
replace(iterator first,
iterator last, const charT*
s, size type n)

basic string Replaces a substring of *this with
the first n characters of s.

basic string&
replace(iterator first,
iterator last, const charT*
s)

basic string Replaces a substring of *this with
a null-terminated character array.

basic string&
replace(iterator first,
iterator last, size type n,
charT c)

basic string Replaces a substring of *this with
n copies of c.

Systems/C++ C++ Library 115

Member Where de-

fined

Description

template <class
InputIterator> basic string&
replace(iterator first,
iterator last, InputIterator
f, InputIterator l)

basic string Replaces a substring of *this with
the range [f, l)

size type copy(charT* buf,
size type n, size type pos =
0) const

basic string Copies a substring of *this to a
buffer.

size type find(const
basic string& s, size type
pos = 0) const

basic string Searches for s as a substring of
*this, beginning at character pos
of *this.

size type find(const charT*
s, size type pos, size type
n) const

basic string Searches for the first n characters of
s as a substring of *this, beginning
at character pos of *this.

size type find(const charT*
s, size type pos = 0) const

basic string Searches for a null-terminated char-
acter array as a substring of
*this, beginning at character pos
of *this.

size type find(charT c,
size type pos = 0) const

basic string Searches for the character c, begin-
ning at character position pos.

size type rfind(const
basic string& s, size type
pos = npos) const

basic string Searches backward for s as a sub-
string of *this, beginning at char-
acter position min(pos, size())

size type rfind(const charT*
s, size type pos, size type
n) const

basic string Searches backward for the first n
characters of s as a substring of
*this, beginning at character po-
sition min(pos, size())

size type rfind(const charT*
s, size type pos = npos)
const

basic string Searches backward for a null-
terminated character array as a
substring of *this, beginning at
character min(pos, size())

size type rfind(charT c,
size type pos = npos) const

basic string Searches backward for the charac-
ter c, beginning at character posi-
tion min(pos, size().

size type find first of(const
basic string& s, size type
pos = 0) const

basic string Searches within *this, beginning
at pos, for the first character that
is equal to any character within s.

size type find first of(const
charT* s, size type pos,
size type n) const

basic string Searches within *this, beginning
at pos, for the first character that
is equal to any character within the
first n characters of s.

size type find first of(const
charT* s, size type pos = 0)
const

basic string Searches within *this, beginning
at pos, for the first character that
is equal to any character within s.

size type find first of(charT
c, size type pos = 0) const

basic string Searches within *this, beginning
at pos, for the first character that
is equal to c.

size type
find first not of(const
basic string& s, size type
pos = 0) const

basic string Searches within *this, beginning
at pos, for the first character that
is not equal to any character within
s.

116 Systems/C++ C++ Library

Member Where de-

fined

Description

size type
find first not of(const
charT* s, size type pos,
size type n) const

basic string Searches within *this, beginning
at pos, for the first character that
is not equal to any character within
the first n characters of s.

size type
find first not of(const
charT* s, size type pos =
0) const

basic string Searches within *this, beginning
at pos, for the first character that
is not equal to any character within
s.

size type
find first not of(charT c,
size type pos = 0) const

basic string Searches within *this, beginning
at pos, for the first character that
is not equal to c.

size type find last of(const
basic string& s, size type
pos = npos) const

basic string Searches backward within *this,
beginning at min(pos, size()),
for the first character that is equal
to any character within s.

size type find last of(const
charT* s, size type pos,
size type n) const

basic string Searches backward within *this,
beginning at min(pos, size()),
for the first character that is equal
to any character within the first n
characters of s.

size type find last of(const
charT* s, size type pos =
npos) const

basic string Searches backward *this, begin-
ning at min(pos, size()), for the
first character that is equal to any
character within s.

size type find last of(charT
c, size type pos = npos)
const

basic string Searches backward *this, begin-
ning at min(pos, size()), for the
first character that is equal to c.

size type
find last not of(const
basic string& s, size type
pos = npos) const

basic string Searches backward within *this,
beginning at min(pos, size()),
for the first character that is not
equal to any character within s.

size type
find last not of(const charT*
s, size type pos, size type
n) const

basic string Searches backward within *this,
beginning at min(pos, size()),
for the first character that is not
equal to any character within the
first n characters of s.

size type
find last not of(const charT*
s, size type pos = npos)
const

basic string Searches backward *this, begin-
ning at min(pos, size()), for the
first character that is not equal to
any character within s.

size type
find last not of(charT c,
size type pos = npos) const

basic string Searches backward *this, begin-
ning at min(pos, size()), for the
first character that is not equal to
c.

basic string substr(size type
pos = 0, size type n = npos)
const

basic string Returns a substring of *this.

int compare(const
basic string& s) const

basic string Three-way lexicographical compar-
ison of s and *this.

int compare(size type
pos, size type n, const
basic string& s) const

basic string Three-way lexicographical compar-
ison of s and a substring of *this.

Systems/C++ C++ Library 117

Member Where de-

fined

Description

int compare(size type pos,
size type n, const basic string&
s, size type pos1, size type n1)
const

basic string Three-way lexicographical
comparison of a substring of
s and a substring of *this.

int compare(const charT* s) const basic string Three-way lexicographical
comparison of s and *this.

int compare(size type pos,
size type n, const charT* s,
size type len = npos) const

basic string Three-way lexicograph-
ical comparison of
the first min(len,
traits::length(s) char-
acters of s and a substring
of *this.

template <class charT,
class traits, class Alloc>
basic string<charT, traits,
Alloc> operator+(const
basic string<charT,
traits, Alloc>& s1, const
basic string<charT, traits,
Alloc>& s2)

basic string String concatenation. A
global function, not a mem-
ber function.

template <class charT,
class traits, class Alloc>
basic string<charT, traits,
Alloc> operator+(const charT* s1,
const basic string<charT, traits,
Alloc>& s2)

basic string String concatenation. A
global function, not a mem-
ber function.

template <class charT,
class traits, class Alloc>
basic string<charT, traits,
Alloc> operator+(const
basic string<charT, traits,
Alloc>& s1, const charT* s2)

basic string String concatenation. A
global function, not a mem-
ber function.

template <class charT,
class traits, class Alloc>
basic string<charT, traits,
Alloc> operator+(charT c, const
basic string<charT, traits,
Alloc>& s2)

basic string String concatenation. A
global function, not a mem-
ber function.

template <class charT,
class traits, class Alloc>
basic string<charT, traits,
Alloc> operator+(const
basic string<charT, traits,
Alloc>& s1, charT c)

basic string String concatenation. A
global function, not a mem-
ber function.

template <class charT,
class traits, class Alloc>
bool operator==(const
basic string<charT,
traits, Alloc>& s1, const
basic string<charT, traits,
Alloc>& s2)

Container String equality. A global
function, not a member
function.

118 Systems/C++ C++ Library

Member Where de-

fined

Description

template <class charT, class
traits, class Alloc> bool
operator==(const charT* s1,
const basic string<charT, traits,
Alloc>& s2)

basic string String equality. A global
function, not a member
function.

template <class charT,
class traits, class Alloc>
bool operator==(const
basic string<charT, traits,
Alloc>& s1, const charT* s2)

basic string String equality. A global
function, not a member
function.

template <class charT,
class traits, class Alloc>
bool operator!=(const
basic string<charT,
traits, Alloc>& s1, const
basic string<charT, traits,
Alloc>& s2)

Container String inequality. A global
function, not a member
function.

template <class charT, class
traits, class Alloc> bool
operator!=(const charT* s1,
const basic string<charT, traits,
Alloc>& s2)

basic string String inequality. A global
function, not a member
function.

template <class charT,
class traits, class Alloc>
bool operator!=(const
basic string<charT, traits,
Alloc>& s1, const charT* s2)

basic string String inequality. A global
function, not a member
function.

template <class charT,
class traits, class Alloc>
bool operator<(const
basic string<charT,
traits, Alloc>& s1, const
basic string<charT, traits,
Alloc>& s2)

Container String comparison. A global
function, not a member
function.

template <class charT, class
traits, class Alloc> bool
operator<(const charT* s1, const
basic string<charT, traits,
Alloc>& s2)

basic string String comparison. A global
function, not a member
function.

template <class charT,
class traits, class Alloc>
bool operator<(const
basic string<charT, traits,
Alloc>& s1, const charT* s2)

basic string String comparison. A global
function, not a member
function.

template <class charT, class
traits, class Alloc> void
swap(basic string<charT, traits,
Alloc>& s1, basic string<charT,
traits, Alloc>& s2)

Container Swaps the contents of two
strings.

Systems/C++ C++ Library 119

Member Where de-

fined

Description

template <class charT,
class traits, class Alloc>
basic istream<charT, traits>
operator>>(basic istream<charT,
traits>& is, basic string<charT,
traits, Alloc>& s)

basic string Reads s from the input
stream is

template <class charT,
class traits, class Alloc>
basic ostream<charT, traits>
operator<<(basic istream<charT,
traits>& os, const
basic string<charT, traits,
Alloc>& s)

basic string Writes s to the output
stream os

template <class charT,
class traits, class Alloc>
basic istream<charT, traits>
getline(basic istream<charT,
traits>& is, basic string<charT,
traits, Alloc>& s, charT delim)

basic string Reads a string from the
input stream is, stopping
when it reaches delim

template <class charT,
class traits, class Alloc>
basic istream<charT, traits>
getline(basic istream<charT,
traits>& is, basic string<charT,
traits, Alloc>& s)

basic string Reads a single line from the
input stream is

New members

These members are not defined in the Random Access Container and Sequence:
requirements, but are specific to basic string.

120 Systems/C++ C++ Library

Member Description

static const size type
npos

The largest possible value of type size type. That is,
size type(-1).

size type length()
const

Equivalent to size().

size type capacity()
const

Number of elements for which memory has been allocated.
That is, the size to which the string can grow before mem-
ory must be reallocated. capacity() is always greater
than or equal to size().

const charT* c str()
const

Returns a pointer to a null-terminated array of characters
representing the string’s contents. For any string s it is
guaranteed that the first s.size() characters in the array
pointed to by s.c str() are equal to the character in s,
and that s.c str()[s.size()] is a null character. Note,
however, that it not necessarily the first null character.
Characters within a string are permitted to be null.

const charT* data()
const

Returns a pointer to an array of characters, not neces-
sarily null-terminated, representing the string’s contents.
data() is permitted, but not required, to be identical to
c str(). The first size() characters of that array are
guaranteed to be identical to the characters in *this. The
return value of data() is never a null pointer, even if
size() is zero.

basic string(const
basic string& s,
size type pos = 0,
size type n = npos)

Constructs a string from a substring of s. The sub-
string begins at character position pos and terminates at
character position pos + n or at the end of s, whichever
comes first. This constructor throws out of range if pos
> s.size(). Note that when pos and n have their default
values, this is just a copy constructor.

basic string(const
charT* s)

Equivalent to basic string(s, s +
traits::length(s)).

basic string(const
charT* s, size type n)

Equivalent to basic string(s, s + n).

basic string&
operator=(const charT*
s)

Equivalent to operator=(basic string(s)).

basic string&
operator=(charT c)

Assigns to *this a string whose size is 1 and whose con-
tents is the single character c.

void reserve(size t n) Requests that the string’s capacity be changed; the post-
condition for this member function is that, after it is called,
capacity() >= n. You may request that a string decrease
its capacity by calling reserve() with an argument less
than the current capacity. (If you call reserve() with an
argument less than the string’s size, however, the capac-
ity will only be reduced to size(). A string’s size can
never be greater than its capacity.) reserve() throws
length error if n > max size().

basic string&
insert(size type pos,
const basic string& s)

If pos > size(), throws out of range. Other-
wise, equivalent to insert(begin() + pos, s.begin(),
s.end()).

Systems/C++ C++ Library 121

Member Description

basic string&
insert(size type pos, const
basic string& s, size type
pos1, size type n)

If pos > size() or pos1 > s.size(), throws
out of range. Otherwise, equivalent to
insert(begin() + pos, s.begin() + pos1,
s.begin() + pos1 + min(n, s.size() -
pos1)).

basic string&
insert(size type pos, const
charT* s)

If pos > size(), throws out of range. Other-
wise, equivalent to insert(begin() + pos, s, s
+ traits::length(s))

basic string&
insert(size type pos, const
charT* s, size type n)

If pos > size(), throws out of range. Other-
wise, equivalent to insert(begin() + pos, s, s
+ n).

basic string&
insert(size type pos,
size type n, charT c)

If pos > size(), throws out of range. Otherwise,
equivalent to insert(begin() + pos, n, c).

basic string& append(const
basic string& s)

Equivalent to insert(end(), s.begin(),
s.end()).

basic string& append(const
basic string& s, size type
pos, size type n)

If pos > s.size(), throws out of range. Oth-
erwise, equivalent to insert(end(), s.begin()
+ pos, s.begin() + pos + min(n, s.size() -
pos)).

basic string& append(const
charT* s)

Equivalent to insert(end(), s, s +
traits::length(s)).

basic string& append(const
charT* s, size type n)

Equivalent to insert(end(), s, s + n).

basic string&
append(size type n, charT
c)

Equivalent to insert(end(), n, c).

template <class
InputIterator> basic string&
append(InputIterator first,
InputIterator last)

Equivalent to insert(end(), first, last).

void push back(charT c) Equivalent to insert(end(), c)
basic string&
operator+=(const
basic string& s)

Equivalent to append(s).

basic string&
operator+=(const charT* s)

Equivalent to append(s)

basic string&
operator+=(charT c)

Equivalent to push back(c)

basic string& erase(size type
pos = 0, size type n = npos)

If pos > size(), throws out of range. Otherwise,
equivalent to erase(begin() + pos, begin() +
pos + min(n, size() - pos)).

basic string& assign(const
basic string& s)

Synonym for operator=

basic string& assign(const
basic string& s, size type
pos, size type n)

Equivalent to (but probably faster than) clear()
followed by insert(0, s, pos, n).

basic string& assign(const
charT* s, size type n)

Equivalent to (but probably faster than) clear()
followed by insert(0, s, n).

122 Systems/C++ C++ Library

Member Description

basic string& assign(const
charT* s)

Equivalent to (but probably faster than) clear()
followed by insert(0, s).

basic string&
replace(size type pos,
size type n, const
basic string& s)

Equivalent to erase(pos, n) followed by
insert(pos, s).

basic string&
replace(size type pos,
size type n, const
basic string& s, size type
pos1, size type n1)

Equivalent to erase(pos, n) followed by
insert(pos, s, pos1, n1).

basic string&
replace(size type pos,
size type n, const charT*
s, size type n1)

Equivalent to erase(pos, n) followed by
insert(pos, s, n1).

basic string&
replace(size type pos,
size type n, const charT*
s)

Equivalent to erase(pos, n) followed by
insert(pos, s).

basic string&
replace(size type pos,
size type n, size type n1,
charT c)

Equivalent to erase(pos, n) followed by
insert(pos, n1, c).

basic string&
replace(iterator first,
iterator last, const
basic string& s)

Equivalent to insert(erase(first, last),
s.begin(), s.end()).

basic string&
replace(iterator first,
iterator last, const charT*
s, size type n)

Equivalent to insert(erase(first, last), s,
s + n).

basic string&
replace(iterator first,
iterator last, const charT*
s)

Equivalent to insert(erase(first, last), s,
s + traits::length(s)).

basic string&
replace(iterator first,
iterator last, size type n,
charT c)

Equivalent to insert(erase(first, last), n,
c).

template <class
InputIterator> basic string&
replace(iterator first,
iterator last, InputIterator
f, InputIterator l)

Equivalent to insert(erase(first, last), f,
l).

size type copy(charT* buf,
size type n, size type pos =
0) const

Copies at most n characters from *this to a charac-
ter array. Throws out of range if pos > size().
Otherwise, equivalent to copy(begin() + pos,
begin() + pos + min(n, size()), buf). Note
that this member function does nothing other than
copy characters from *this to buf; in particular, it
does not terminate buf with a null character.

Systems/C++ C++ Library 123

Member Description

size type find(const
basic string& s, size type
pos = 0) const

Searches for s as a substring of *this, begin-
ning at character position pos. It is almost the
same as search, except that search tests ele-
ments for equality using operator== or a user-
provided function object, while this member func-
tion uses traits::eq. Returns the lowest char-
acter position N such that pos <= N and pos +
s.size() <= size() and such that, for every i less
than s.size(), (*this)[N + i] compares equal
to s[i]. Returns npos if no such position N ex-
ists. Note that it is legal to call this member func-
tion with arguments such that s.size() > size()
- pos, but such a search will always fail.

size type find(const charT*
s, size type pos, size type
n) const

Searches for the first n characters of s as a substring
of *this, beginning at character pos of *this. This
is equivalent to find(basic string(s, n), pos).

size type find(const charT*
s, size type pos = 0) const

Searches for a null-terminated character array
as a substring of *this, beginning at char-
acter pos of *this. This is equivalent to
find(basic string(s), pos).

size type find(charT c,
size type pos = 0) const

Searches for the character c, beginning at character
position pos. That is, returns the first character
position N greater than or equal to pos, and less
than size(), such that (*this)[N] compares equal
to c. Returns npos if no such character position N
exists.

size type rfind(const
basic string& s, size type
pos = npos) const

Searches backward for s as a substring of *this.
It is almost the same as find end, except
that find end tests elements for equality using
operator== or a user-provided function object,
while this member function uses traits::eq. This
member function returns the largest character po-
sition N such that N <= pos and N + s.size()
<= size(), and such that, for every i less than
s.size(), (*this)[N + i] compares equal to
s[i]. Returns npos if no such position N exists.
Note that it is legal to call this member function
with arguments such that s.size() > size(), but
such a search will always fail.

size type rfind(const charT*
s, size type pos, size type
n) const

Searches backward for the first n characters of
s as a substring of *this. Equivalent to
rfind(basic string(s, n), pos).

size type rfind(const charT*
s, size type pos = npos)
const

Searches backward for a null-terminated charac-
ter array as a substring of *this. Equivalent to
rfind(basic string(s), pos).

size type rfind(charT c,
size type pos = npos) const

Searches backward for the character c. That
is, returns the largest character position N such
that N <= pos and N < size(), and such that
(*this)[N] compares equal to c. Returns npos
if no such character position exists.

124 Systems/C++ C++ Library

Member Description

size type find first of(const
basic string& s, size type
pos = 0) const

Searches within *this, beginning at pos, for the
first character that is equal to any character within
s. This is similar to the standard algorithm
find first of, but differs because find first of
compares characters using operator== or a user-
provided function object, while this member func-
tion uses traits::eq. Returns the smallest charac-
ter position N such that pos <= N < size(), and
such that (*this)[N] compares equal to some char-
acter within s. Returns npos if no such character
position exists.

size type find first of(const
charT* s, size type pos,
size type n) const

Searches within *this, beginning at pos, for the
first character that is equal to any character within
the range [s, s+n). That is, returns the smallest
character position N such that pos <= N < size(),
and such that (*this)[N] compares equal to some
character in [s, s+n). Returns npos if no such
character position exists.

size type find first of(const
charT* s, size type pos = 0)
const

Equivalent to find first of(s, pos,
traits::length(s)).

size type find first of(charT
c, size type pos = 0) const

Equivalent to find(c, pos).

size type
find first not of(const
basic string& s, size type
pos = 0) const

Searches within *this, beginning at pos, for the
first character that is not equal to any character
within s. Returns the smallest character position
N such that pos <= N < size(), and such that
(*this)[N] does not compare equal to any char-
acter within s. Returns npos if no such character
position exists.

size type
find first not of(const
charT* s, size type pos,
size type n) const

Searches within *this, beginning at pos, for the
first character that is not equal to any character
within the range [s, s+n). That is, returns the
smallest character position N such that pos <= N <
size(), and such that (*this)[N] does not com-
pare equal to any character in [s, s+n). Returns
npos if no such character position exists.

size type
find first not of(const
charT* s, size type pos =
0) const

Equivalent to find first not of(s, pos,
traits::length(s)).

size type
find first not of(charT c,
size type pos = 0) const

Returns the smallest character position N such that
pos <= N < size(), and such that (*this)[N]
does not compare equal to c. Returns npos if no
such character position exists.

size type find last of(const
basic string& s, size type
pos = npos) const

Searches backward within *this for the first char-
acter that is equal to any character within s.
That is, returns the largest character position N
such that N <= pos and N < size(), and such
that (*this)[N] compares equal to some charac-
ter within s. Returns npos if no such character
position exists.

Systems/C++ C++ Library 125

Member Description

size type find last of(const
charT* s, size type pos,
size type n) const

Searches backward within *this for the first char-
acter that is equal to any character within the range
[s, s+n). That is, returns the largest character po-
sition N such that N <= pos and N < size(), and
such that (*this)[N] compares equal to some char-
acter within [s, s+n). Returns npos if no such
character position exists.

size type find last of(const
charT* s, size type pos =
npos) const

Equivalent to find last of(s, pos,
traits::length(s)).

size type find last of(charT
c, size type pos = npos)
const

Equivalent to rfind(c, pos).

size type
find last not of(const
basic string& s, size type
pos = npos) const

Searches backward within *this for the first char-
acter that is not equal to any character within s.
That is, returns the largest character position N
such that N <= pos and N < size(), and such that
(*this)[N] does not compare equal to any charac-
ter within s. Returns npos if no such character
position exists.

size type
find last not of(const charT*
s, size type pos, size type
n) const

Searches backward within *this for the first char-
acter that is not equal to any character within [s,
s+n). That is, returns the largest character posi-
tion N such that N <= pos and N < size(), and
such that (*this)[N] does not compare equal to
any character within [s, s+n). Returns npos if no
such character position exists.

size type
find last not of(const charT*
s, size type pos = npos)
const

Equivalent to find last of(s, pos,
traits::length(s)).

size type
find last not of(charT c,
size type pos = npos) const

Searches backward *this for the first character that
is not equal to c. That is, returns the largest charac-
ter position N such that N <= pos and N < size(),
and such that (*this)[N] does not compare equal
to c.

basic string substr(size type
pos = 0, size type n = npos)
const

Equivalent to basic string(*this, pos, n).

int compare(const
basic string& s) const

Three-way lexicographical comparison
of s and *this, much like strcmp.
If traits::compare(data, s.data(),
min(size(), s.size())) is nonzero, then it
returns that nonzero value. Otherwise returns a
negative number if size() < s.size(), a positive
number if size() > s.size(), and zero if the two
are equal.

int compare(size type
pos, size type n, const
basic string& s) const

Three-way lexicographical comparison of s
and a substring of *this. Equivalent to
basic string(*this, pos, n).compare(s).

126 Systems/C++ C++ Library

Member Description

int compare(size type
pos, size type n, const
basic string& s, size type
pos1, size type n1) const

Three-way lexicographical comparison of a
substring of s and a substring of *this.
Equivalent to basic string(*this, pos,
n).compare(basic string(s, pos1, n1)).

int compare(const charT* s)
const

Three-way lexicographical comparison of s and
*this. Equivalent to compare(basic string(s)).

int compare(size type pos,
size type n, const charT* s,
size type len = npos) const

Three-way lexicographical comparison of the
first min(len, traits::length(s) char-
acters of s and a substring of *this.
Equivalent to basic string(*this, pos,
n).compare(basic string(s, min(len,
traits::length(s)))).

template <class charT,
class traits, class Alloc>
basic string<charT, traits,
Alloc> operator+(const
basic string<charT,
traits, Alloc>& s1, const
basic string<charT, traits,
Alloc>& s2)

String concatenation. Equivalent to creating a tem-
porary copy of s, appending s2, and then returning
the temporary copy.

template <class charT,
class traits, class Alloc>
basic string<charT, traits,
Alloc> operator+(const
charT* s1, const
basic string<charT, traits,
Alloc>& s2)

String concatenation. Equivalent to creating a tem-
porary basic string object from s1, appending
s2, and then returning the temporary object.

template <class charT,
class traits, class Alloc>
basic string<charT, traits,
Alloc> operator+(const
basic string<charT, traits,
Alloc>& s1, const charT* s2)

String concatenation. Equivalent to creating a tem-
porary copy of s, appending s2, and then returning
the temporary copy.

template <class charT,
class traits, class Alloc>
basic string<charT, traits,
Alloc> operator+(charT c,
const basic string<charT,
traits, Alloc>& s2)

String concatenation. Equivalent to creat-
ing a temporary object with the constructor
basic string(1, c), appending s2, and then re-
turning the temporary object.

template <class charT,
class traits, class Alloc>
basic string<charT, traits,
Alloc> operator+(const
basic string<charT, traits,
Alloc>& s1, charT c)

String concatenation. Equivalent to creating a tem-
porary object, appending c with push back, and
then returning the temporary object.

template <class charT, class
traits, class Alloc> bool
operator==(const charT* s1,
const basic string<charT,
traits, Alloc>& s2)

String equality. Equivalent to
basic string(s1).compare(s2) == 0.

Systems/C++ C++ Library 127

Member Description

template <class charT,
class traits, class Alloc>
bool operator==(const
basic string<charT, traits,
Alloc>& s1, const charT* s2)

String equality. Equivalent to
basic string(s1).compare(s2) == 0.

template <class charT, class
traits, class Alloc> bool
operator!=(const charT* s1,
const basic string<charT,
traits, Alloc>& s2)

String inequality. Equivalent to
basic string(s1).compare(s2) == 0.

template <class charT,
class traits, class Alloc>
bool operator!=(const
basic string<charT, traits,
Alloc>& s1, const charT* s2)

String inequality. Equivalent to !(s1 == s2).

template <class charT, class
traits, class Alloc> bool
operator<(const charT* s1,
const basic string<charT,
traits, Alloc>& s2)

String comparison. Equivalent to !(s1 == s2).

template <class charT,
class traits, class Alloc>
bool operator<(const
basic string<charT, traits,
Alloc>& s1, const charT* s2)

String comparison. Equivalent to !(s1 == s2).

template <class charT,
class traits, class Alloc>
basic istream<charT, traits>
operator>>(basic istream
<charT, traits>& is,
basic string<charT, traits,
Alloc>& s)

Reads s from the input stream is. Specifically,
it skips whitespace, and then replaces the con-
tents of s with characters read from the input
stream. It continues reading characters until it
encounters a whitespace character (in which case
that character is not extracted), or until end-of-
file, or, if is.width() is nonzero, until it has read
is.width() characters. This member function re-
sets is.width() to zero.

template <class charT,
class traits, class Alloc>
basic ostream<charT, traits>
operator>>(basic istream
<charT, traits>& is, const
basic string<charT, traits,
Alloc>& s)

Writes s to the output stream is. It writes
max(s.size(), is.width()) characters, padding
as necessary. This member function resets
is.width() to zero.

template <class charT,
class traits, class Alloc>
basic istream<charT, traits>
getline(basic istream<charT,
traits>& is,
basic string<charT, traits,
Alloc>& s, charT delim)

Replaces the contents of s with characters read from
the input stream. It continues reading characters
until it encounters the character delim (in which
case that character is extracted but not stored in
s), or until end of file. Note that getline, un-
like operator>>, does not skip whitespace. As the
name suggests, it is most commonly used to read
an entire line of text precisely as the line appears
in an input file.

128 Systems/C++ C++ Library

Member Description

template <class charT,
class traits, class Alloc>
basic istream<charT, traits>
getline(basic istream<charT,
traits>& is,
basic string<charT, traits,
Alloc>& s)

Equivalent to getline(is, s, is.widen(’\n’)).

Notes

See also

vector, Character Traits

7.2.3 Container adaptors

stack

Description

A stack is an adaptor that provides a restricted subset of Container functionality:
it provides insertion, removal, and inspection of the element at the top of the stack.
Stack is a ”last in first out” (LIFO) data structure: the element at the top of a
stack is the one that was most recently added. Stack does not allow iteration
through its elements. Stack is a container adaptor, meaning that it is implemented
on top of some underlying container type. By default that underlying type is deque,
but a different type may be selected explicitly.

Example

Systems/C++ C++ Library 129

int main() {
stack<int> S;
S.push(8);
S.push(7);
S.push(4);
assert(S.size() == 3);

assert(S.top() == 4);
S.pop();

assert(S.top() == 7);
S.pop();

assert(S.top() == 8);
S.pop();

assert(S.empty());
}

Definition

Defined in the standard header stack, and in the nonstandard backward-
compatibility header stack.h.

Template parameters

Parameter Description Default

T The type of object stored in the stack.
Sequence The type of the underlying container used to implement

the stack.
deque<T>

Model of

Assignable, Default Constructible

Type requirements

• T is a model of Assignable.

• Sequence is a model of Back Insertion Sequence.

• Sequence::value type is the same type as T.

• If operator== is used, then T is a model of

Equality Comparable

• If operator< is used, then T is a model of LessThan Comparable.

130 Systems/C++ C++ Library

Public base classes

None.

Members

Member Where

defined

Description

value type stack See below.
size type stack See below.
stack() Default

Con-
structible

The default constructor. Creates an
empty stack.

stack(const stack&) Assignable The copy constructor.
stack& operator=(const
stack&)

Assignable The assignment operator.

bool empty() const stack See below.
size type size() const stack See below.
value type& top() stack See below.
const value type& top()
const

stack See below.

void push(const value type&) stack See below.
void pop() stack See below.
bool operator==(const
stack&, const stack&)

stack See below.

bool operator<(const stack&,
const stack&)

stack See below.

New members

These members are not defined in the Assignable and Default Constructible require-
ments, but are specific to stack.

Systems/C++ C++ Library 131

Member Description

value type The type of object stored in the stack. This is the same
as T and Sequence::value type.

size type An unsigned integral type. This is the same as
Sequence::size type.

bool empty() const Returns true if the stack contains no elements, and false
otherwise. S.empty() is equivalent to S.size() == 0.

size type size() const Returns the number of elements contained in the stack.
value type& top() Returns a mutable reference to the element at the top of

the stack. Precondition: empty() is false.
const value type& top()
const

Returns a const reference to the element at the top of the
stack. Precondition: empty() is false.

void push(const
value type& x)

Inserts x at the top of the stack. Postconditions: size()
will be incremented by 1, and top() will be equal to x.

void pop() Removes the element at the top of the stack. Precon-
dition: empty() is false. Postcondition: size() will be
decremented by 1.

bool operator==(const
stack&, const stack&)

Compares two stacks for equality. Two stacks are equal if
they contain the same number of elements and if they are
equal element-by-element. This is a global function, not a
member function.

bool operator<(const
stack&, const stack&)

Lexicographical ordering of two stacks. This is a global
function, not a member function.

Notes

Stacks are a standard data structure, and are discussed in all algorithm books. See,
for example, section 2.2.1 of Knuth. (D. E. Knuth, The Art of Computer Program-
ming. Volume 1: Fundamental Algorithms, second edition. Addison-Wesley, 1973.)
This restriction is the only reason for stack to exist at all. Note that any Front
Insertion Sequence or Back Insertion Sequence can be used as a stack; in the case of
vector, for example, the stack operations are the member functions back, push back,
and pop back. The only reason to use the container adaptor stack instead is to
make it clear that you are performing only stack operations, and no other opera-
tions. One might wonder why pop() returns void, instead of value type. That
is, why must one use top() and pop() to examine and remove the top element,
instead of combining the two in a single member function? In fact, there is a good
reason for this design. If pop() returned the top element, it would have to return by
value rather than by reference: return by reference would create a dangling pointer.
Return by value, however, is inefficient: it involves at least one redundant copy
constructor call. Since it is impossible for pop() to return a value in such a way as
to be both efficient and correct, it is more sensible for it to return no value at all
and to require clients to use top() to inspect the value at the top of the stack.

See also

queue, priority queue, Container, Sequence

132 Systems/C++ C++ Library

queue

Description

A queue is an adaptor that provides a restricted subset of Container functionality A
queue is a ”first in first out” (FIFO) data structure. That is, elements are added to
the back of the queue and may be removed from the front; Q.front() is the element
that was added to the queue least recently. Queue does not allow iteration through
its elements. Queue is a container adaptor, meaning that it is implemented on top
of some underlying container type. By default that underlying type is deque, but a
different type may be selected explicitly.

Example

int main() {
queue<int> Q;
Q.push(8);
Q.push(7);
Q.push(6);
Q.push(2);

assert(Q.size() == 4);
assert(Q.back() == 2);

assert(Q.front() == 8);
Q.pop();

assert(Q.front() == 7);
Q.pop();

assert(Q.front() == 6);
Q.pop();

assert(Q.front() == 2);
Q.pop();

assert(Q.empty());
}

Definition

Defined in the standard header queue, and in the nonstandard backward-
compatibility header stack.h.

Template parameters

Systems/C++ C++ Library 133

Parameter Description Default

T The type of object stored in the queue.
Sequence The type of the underlying container used to implement

the queue.
deque<T>

Model of

Assignable, Default Constructible

Type requirements

• T is a model of Assignable.

• Sequence is a model of Front Insertion Sequence.

• Sequence is a model of Back Insertion Sequence.

• Sequence::value type is the same type as T.

• If operator== is used, then T is a model of

Equality Comparable

• If operator< is used, then T is a model of LessThan Comparable.

Public base classes

None.

Members

134 Systems/C++ C++ Library

Member Where de-

fined

Description

value type queue See below.
size type queue See below.
queue() Default Con-

structible
The default constructor. Creates
an empty queue.

queue(const queue&) Assignable The copy constructor.
queue& operator=(const
queue&)

Assignable The assignment operator.

bool empty() const queue See below.
size type size() const queue See below.
value type& front() queue See below.
const value type& front()
const

queue See below.

value type& back() queue See below.
const value type& back()
const

queue See below.

void push(const value type&) queue See below.
void pop() queue See below.
bool operator==(const
queue&, const queue&)

queue See below.

bool operator<(const queue&,
const queue&)

queue See below.

New members

These members are not defined in the Assignable and Default Constructible require-
ments, but are specific to queue.

Systems/C++ C++ Library 135

Member Description

value type The type of object stored in the queue. This is the same
as T and Sequence::value type.

size type An unsigned integral type. This is the same as
Sequence::size type.

bool empty() const Returns true if the queue contains no elements, and false
otherwise. Q.empty() is equivalent to Q.size() == 0.

size type size() const Returns the number of elements contained in the queue.
value type& front() Returns a mutable reference to the element at the front

of the queue, that is, the element least recently inserted.
Precondition: empty() is false.

const value type&
front() const

Returns a const reference to the element at the front of the
queue, that is, the element least recently inserted. Precon-
dition: empty() is false.

value type& back() Returns a mutable reference to the element at the back
of the queue, that is, the element most recently inserted.
Precondition: empty() is false.

const value type&
back() const

Returns a const reference to the element at the back of the
queue, that is, the element most recently inserted. Precon-
dition: empty() is false.

void push(const
value type& x)

Inserts x at the back of the queue. Postconditions: size()
will be incremented by 1, and back() will be equal to x.

void pop() Removes the element at the front of the queue. Precon-
dition: empty() is false. Postcondition: size() will be
decremented by 1.

bool operator==(const
queue&, const queue&)

Compares two queues for equality. Two queues are equal
if they contain the same number of elements and if they
are equal element-by-element. This is a global function,
not a member function.

bool operator<(const
queue&, const queue&)

Lexicographical ordering of two queues. This is a global
function, not a member function.

Notes

Queues are a standard data structure, and are discussed in all algorithm books.
See, for example, section 2.2.1 of Knuth. (D. E. Knuth, The Art of Computer Pro-
gramming. Volume 1: Fundamental Algorithms, second edition. Addison-Wesley,
1973.) This restriction is the only reason for queue to exist at all. Any container
that is both a front insertion sequence and a back insertion sequence can be used
as a queue; deque, for example, has member functions front, back, push front,
push back, pop front, and pop back The only reason to use the container adaptor
queue instead of the container deque is to make it clear that you are performing
only queue operations, and no other operations. One might wonder why pop()
returns void, instead of value type. That is, why must one use front() and pop()
to examine and remove the element at the front of the queue, instead of combining
the two in a single member function? In fact, there is a good reason for this design.
If pop() returned the front element, it would have to return by value rather than
by reference: return by reference would create a dangling pointer. Return by value,
however, is inefficient: it involves at least one redundant copy constructor call. Since

136 Systems/C++ C++ Library

it is impossible for pop() to return a value in such a way as to be both efficient and
correct, it is more sensible for it to return no value at all and to require clients to
use front() to inspect the value at the front of the queue.

See also

stack, priority queue, deque, Container, Sequence

priority queue

Description

A priority queue is an adaptor that provides a restricted subset of Container
functionality: it provides insertion of elements, and inspection and removal of
the top element. It is guaranteed that the top element is the largest element in
the priority queue, where the function object Compare is used for comparisons.
Priority queue does not allow iteration through its elements. Priority queue
is a container adaptor, meaning that it is implemented on top of some underlying
container type. By default that underlying type is vector, but a different type may
be selected explicitly.

Example

Systems/C++ C++ Library 137

int main() {
priority_queue<int> Q;
Q.push(1);
Q.push(4);
Q.push(2);
Q.push(8);
Q.push(5);
Q.push(7);

assert(Q.size() == 6);

assert(Q.top() == 8);
Q.pop();

assert(Q.top() == 7);
Q.pop();

assert(Q.top() == 5);
Q.pop();

assert(Q.top() == 4);
Q.pop();

assert(Q.top() == 2);
Q.pop();

assert(Q.top() == 1);
Q.pop();

assert(Q.empty());
}

Definition

Defined in the standard header queue, and in the nonstandard backward-
compatibility header stack.h.

Template parameters

Parameter Description Default

T The type of object stored in the priority queue.
Sequence The type of the underlying container used to implement

the priority queue.
vector<T>

Compare The comparison function used to determine whether one
element is smaller than another element. If Compare(x,y)
is true, then x is smaller than y. The element returned
by Q.top() is the largest element in the priority queue.
That is, it has the property that, for every other element
x in the priority queue, Compare(Q.top(), x) is false.

less<T>

138 Systems/C++ C++ Library

Model of

Assignable, Default Constructible

Type requirements

• T is a model of Assignable.

• Sequence is a model of Sequence.

• Sequence is a model of Random Access Container

• Sequence::value type is the same type as T.

• Compare is a model of Binary Predicate

• Compare induces a strict weak ordering, as defined in the

LessThan Comparable requirements, on its argument type.

• T is convertible to Compare’s argument type.

Public base classes

None.

Members

Systems/C++ C++ Library 139

Member Where defined Description

value type priority queue See below.
size type priority queue See below.
priority queue() Default Con-

structible
The default constructor. Creates
an empty priority queue, us-
ing Compare() as the comparison
function.

priority queue(const
priority queue&)

Assignable The copy constructor.

priority queue(const
Compare&)

priority queue See below.

priority queue(const
value type*, const
value type*)

priority queue See below.

priority queue(const
value type*, const
value type*, const
Compare&)

priority queue See below.

priority queue
operator=(const
priority queue&)

Assignable The assignment operator.

bool empty() const priority queue See below.
size type size() const priority queue See below.
const value type& top()
const

priority queue See below.

void push(const
value type&)

priority queue See below.

void pop() priority queue See below.

New members

These members are not defined in the Assignable and Default Constructible require-
ments, but are specific to priority queue.

140 Systems/C++ C++ Library

Member Description

value type The type of object stored in the priority queue. This is
the same as T and Sequence::value type.

size type An unsigned integral type. This is the same as
Sequence::size type.

priority queue(const
Compare& comp)

The constructor. Creates an empty priority queue, us-
ing comp as the comparison function. The default con-
structor uses Compare() as the comparison function.

priority queue(const
value type* first,
const value type* last)

The constructor. Creates a priority queue initialized to
contain the elements in the range [first, last), and us-
ing Compare() as the comparison function.

priority queue(const
value type* first,
const value type* last,
const Compare& comp)

The constructor. Creates a priority queue initialized to
contain the elements in the range [first, last), and us-
ing comp as the comparison function.

bool empty() const Returns true if the priority queue contains no ele-
ments, and false otherwise. S.empty() is equivalent to
S.size() == 0.

size type size() const Returns the number of elements contained in the
priority queue.

const value type& top()
const

Returns a const reference to the element at the top of the
priority queue. The element at the top is guaranteed to be
the largest element in the priority queue, as determined by
the comparison function Compare. That is, for every other
element x in the priority queue, Compare(Q.top(), x)
is false. Precondition: empty() is false.

void push(const
value type& x)

Inserts x into the priority queue. Postcondition: size()
will be incremented by 1.

void pop() Removes the element at the top of the priority queue, that
is, the largest element in the priority queue. Precondi-
tion: empty() is false. Postcondition: size() will be
decremented by 1.

Notes

Priority queues are discussed in all algorithm books; see, for example, section 5.2.3
of Knuth. (D. E. Knuth, The Art of Computer Programming. Volume 3: Sorting
and Searching. Addison-Wesley, 1975.) This restriction is the only reason for
priority queue to exist at all. If iteration through elements is important, you can
either use a vector that is maintained in sorted order, or a set, or a vector that is
maintained as a heap using make heap, push heap, and pop heap. Priority queue
is, in fact, implemented as a random access container that is maintained as a heap.
The only reason to use the container adaptor priority queue, instead of performing
the heap operations manually, is to make it clear that you are never performing any
operations that might violate the heap invariant. One might wonder why pop()
returns void, instead of value type. That is, why must one use top() and pop()
to examine and remove the element at the top of the priority queue, instead of
combining the two in a single member function? In fact, there is a good reason
for this design. If pop() returned the top element, it would have to return by
value rather than by reference: return by reference would create a dangling pointer.

Systems/C++ C++ Library 141

Return by value, however, is inefficient: it involves at least one redundant copy
constructor call. Since it is impossible for pop() to return a value in such a way as
to be both efficient and correct, it is more sensible for it to return no value at all and
to require clients to use top() to inspect the value at the top of the priority queue.

See also

stack, queue, set, make heap, push heap, pop heap, is heap, sort, is sorted, Con-
tainer, Sorted Associative Container, Sequence

7.2.4 bitset

Description

Bitset is very similar to vector¡bool¿ (also known as bit vector): it contains a
collection of bits, and provides constant-time access to each bit. There are two
main differences between bitset and vector<bool>. First, the size of a bitset
cannot be changed: bitset’s template parameter N, which specifies the number of
bits in the bitset, must be an integer constant. Second, bitset is not a Sequence;
in fact, it is not an STL Container at all. It does not have iterators, for example, or
begin() and end() member functions. Instead, bitset’s interface resembles that
of unsigned integers. It defines bitwise arithmetic operators such as &=, |=, and =̂.
In general, bit 0 is the least significant bit and bit N-1 is the most significant bit.

Example

int main() {
const bitset<12> mask(2730ul);
cout << "mask = " << mask << endl;

bitset<12> x;

cout << "Enter a 12-bit bitset in binary: " << flush;
if (cin >> x) {
cout << "x = " << x << endl;
cout << "As ulong: " << x.to_ulong() << endl;
cout << "And with mask: " << (x & mask) << endl;
cout << "Or with mask: " << (x | mask) << endl;

}
}

Definition

Defined in the standard header bitset.

142 Systems/C++ C++ Library

Template parameters

Parameter Description Default

N A nonzero constant of type size t: the number of bits
that the bitset contains.

Model of

Assignable, Default Constructible, Equality Comparable

Type requirements

N is a constant integer expression of a type convertible to size t, and N is a positive
number.

Public base classes

None.

Members

Systems/C++ C++ Library 143

Member Where

defined

Description

reference bitset A proxy class that acts as a ref-
erence to a single bit.

bitset() Default
Con-
structible

The default constructor. All bits
are initially zero.

bitset(unsigned long val) bitset Conversion from unsigned long.
bitset(const bitset&) Assignable Copy constructor.
bitset& operator=(const bitset&) Assignable Assignment operator.
template<class Char, class
Traits, class Alloc>
explicit bitset(const
basic string<Char,Traits,Alloc>&
s, size t pos = 0,
size t n = basic string
<Char,Traits,Alloc>::npos)

bitset Conversion from string.

bitset& operator&=(const
bitset&)

bitset Bitwise and.

bitset& operator|=(const
bitset&)

bitset Bitwise inclusive or.

bitset& operator=̂(const bitset&) bitset Bitwise exclusive or.
bitset& operator<<=(size t) bitset Left shift.
bitset& operator>>=(size t) bitset Right shift.
bitset operator<<(size t n)
const

bitset Returns a copy of *this shifted
left by n bits.

bitset operator>>(size t n)
const

bitset Returns a copy of *this shifted
right by n bits.

bitset& set() bitset Sets every bit.
bitset& flip() bitset Flips the value of every bit.
bitset operator~() const bitset Returns a copy of *this with all

of its bits flipped.
bitset& reset() bitset Clears every bit.
bitset& set(size t n, int val =
1)

bitset Sets bit n if val is nonzero, and
clears bit n if val is zero.

bitset& reset(size t n) bitset Clears bit n.
bitset flip(size t n) bitset Flips bit n.
size t size() const bitset Returns N.
size t count() const bitset Returns the number of bits that

are set.
bool any() const bitset Returns true if any bits are set.
bool none() const bitset Returns true if no bits are set.
bool test(size t n) const bitset Returns true if bit n is set.
reference operator[](size t n) bitset Returns a reference to bit n.
bool operator[](size t n) const bitset Returns true if bit n is set.
unsigned long to ulong() const bitset Returns an unsigned long cor-

responding to the bits in *this.

144 Systems/C++ C++ Library

Member Where

defined

Description

template<class Char,
class Traits, class Alloc>
basic string<Char,Traits,Alloc>
to string() const

bitset Returns a string representation of
*this.

bool operator==(const bitset&)
const

Equality
Compara-
ble

The equality operator.

bool operator!=(const bitset&)
const

Equality
Compara-
ble

The inequality operator.

bitset operator&(const
bitset&, const bitset&)

bitset Bitwise and of two bitsets. This
is a global function, not a member
function.

bitset operator|(const
bitset&, const bitset&)

bitset Bitwise or of two bitsets. This is
a global function, not a member
function.

bitset operator(̂const bitset&,
const bitset&)

bitset Bitwise exclusive or of two bitsets.
This is a global function, not a
member function.

template <class Char,
class Traits, size t N>
basic istream<Char,Traits>
operator>>
(basic istream<Char,Traits>&,
bitset<N>&)

bitset Extract a bitset from an input
stream.

template <class Char,
class Traits, size t N>
basic ostream<Char,Traits>
operator>>
(basic ostream<Char,Traits>&,
const bitset<N>&)

bitset Output a bitset to an output
stream.

New members

These members are not defined in the Assignable, Default Constructible, or Equality
Comparable requirements, but are specific to bitset.

Systems/C++ C++ Library 145

Member Description

reference A proxy class that acts as a reference to a single bit. It
contains an assignment operator, a conversion to bool,
an operator~, and a member function flip. It exists
only as a helper class for bitset’s operator[]. That is,
it supports the expressions x = b[i], b[i] = x, b[i] =
b[j], x = ~b[i], and b[i].flip(). (Where b is a bitset
and x is a bool.)

bitset(unsigned long
val)

Conversion from unsigned long. Constructs a bitset,
initializing the first min(N, sizeof(unsigned long) *
CHAR BIT) bits to the corresponding bits in val and all
other bits, if any, to zero.

template<class Char,
class Traits, class
Alloc> explicit
bitset(const
basic string
<Char,Traits,Alloc>&
s, size t pos = 0,
size t n = basic string
<Char,Traits,Alloc>::
npos)

Conversion from string. Constructs a bitset, initializing
the first M bits to the corresponding characters in s, where
M is defined as min(N, min(s.size() - pos, n)). Note
that the highest character position in s, not the lowest,
corresponds to the least significant bit. That is, charac-
ter position pos + M - 1 - i corresponds to bit i. So,
for example, bitset(string("1101")) is the same as
bitset(13ul). This function throws out of range if pos
> s.size(), and invalid argument if any of the charac-
ters used to initialize the bits are anything other than 0 or
1.

bitset&
operator&=(const
bitset&)

Bitwise and.

bitset&
operator|=(const
bitset&)

Bitwise inclusive or.

bitset&
operator=̂(const
bitset&)

Bitwise exclusive or.

bitset&
operator<<=(size t
n)

Left shift, where bit 0 is considered the least significant
bit. Bit i takes on the previous value of bit i - n, or zero
if no such bit exists.

bitset&
operator>>=(size t
n)

Right shift, where bit 0 is considered the least significant
bit. Bit i takes on the previous value of bit i + n, or zero
if no such bit exists.

bitset
operator<<(size t n)
const

Returns a copy of *this shifted left by n bits. Note that
the expression b << n is equivalent to constructing a tem-
porary copy of b and then using operator<<=.

bitset
operator>>(size t n)
const

Returns a copy of *this shifted right by n bits. Note
that the expression b >> n is equivalent to constructing a
temporary copy of b and then using operator>>=.

bitset& set() Sets every bit.
bitset& flip() Flips the value of every bit.
bitset operator~()
const

Returns a copy of *this with all of its bits flipped.

bitset& reset() Clears every bit.
bitset& set(size t n,
int val = 1)

Sets bit n if val is nonzero, and clears bit n if val is zero.
Throws out of range if n >= N.

bitset& reset(size t n) Clears bit n. Throws out of range if n >= N.

146 Systems/C++ C++ Library

Member Description

bitset flip(size t n) Flips bit n. Throws out of range if n >= N.
size t size() const Returns N.
size t count() const Returns the number of bits that are set.
bool any() const Returns true if any bits are set.
bool none() const Returns true if no bits are set.
bool test(size t n)
const

Returns true if bit n is set. Throws out of range if n >=
N.

reference
operator[](size t n)

Returns a reference to bit n. Note that reference is a
proxy class with an assignment operator and a conversion
to bool, which allows you to use operator[] for assign-
ment. That is, you can write both x = b[n] and b[n] =
x.

bool operator[](size t
n) const

Returns true if bit n is set.

unsigned long
to ulong() const

Returns an unsigned long corresponding to the bits in
*this. Throws overflow error if it is impossible to rep-
resent *this as an unsigned long. (That is, if N is larger
than the number of bits in an unsigned long and if any
of the high-order bits are set.

template<class Char,
class Traits, class
Alloc> basic string
<Char,Traits,Alloc>
to string() const

Returns a string representation of *this: each character
is 1 if the corresponding bit is set, and 0 if it is not.
In general, character position i corresponds to bit posi-
tion N - 1 - i. Note that this member function relies
on two language features, member templates and explicit
function template argument specification, that are not yet
universally available; this member function is disabled for
compilers that do not support those features. Note also
that the syntax for calling this member function is some-
what cumbersome. To convert a bitset b to an ordinary
string, you must write b.template to string<char,
char traits<char>, allocator<char> >()

bitset operator&(const
bitset&, const
bitset&)

Bitwise and of two bitsets. This is a global function, not
a member function. Note that the expression b1 & b2
is equivalent to creating a temporary copy of b1, using
operator&=, and returning the temporary copy.

bitset operator|(const
bitset&, const
bitset&)

Bitwise or of two bitsets. This is a global function, not
a member function. Note that the expression b1 | b2
is equivalent to creating a temporary copy of b1, using
operator|=, and returning the temporary copy.

bitset operator(̂const
bitset&, const
bitset&)

Bitwise exclusive or of two bitsets. This is a global func-
tion, not a member function. Note that the expression b1
b̂2 is equivalent to creating a temporary copy of b1, using
operator=̂, and returning the temporary copy.

Systems/C++ C++ Library 147

Member Description

template <class Char,
class Traits, size t
N> basic istream<Char,
Traits> operator>>
(basic istream
<Char,Traits>& is,
bitset<N>& x)

Extract a bitset from an input stream. This function first
skips whitespace, then extracts up to N characters from
the input stream. It stops either when it has successfully
extracted N character, or when extraction fails, or when it
sees a character that is something other than 1 (in which
case it does not extract that character). It then assigns a
value to the bitset in the same way as if it were initializing
the bitset from a string. So, for example, if the input
stream contains the characters "1100abc", it will assign
the value 12ul to the bitset, and the next character read
from the input stream will be a.

template <class Char,
class Traits, size t N>
basic ostream<Char,Traits>
operator>>
(basic ostream
<Char,Traits>& os,
const bitset<N>& x)

Output a bitset to an output stream. This func-
tion behaves as if it converts the bitset to a
string and then writes that string to the output
stream. That is, it is equivalent to os << x.template
to string<Char,Traits,allocator<Char> >()

Notes

See also

vector, bit vector, string

148 Systems/C++ C++ Library

Chapter 8

Iterators

8.1 Introduction

Summary

Iterators are a generalization of pointers: they are objects that point to other objects.
As the name suggests, iterators are often used to iterate over a range of objects: if an
iterator points to one element in a range, then it is possible to increment it so that
it points to the next element. Iterators are central to generic programming because
they are an interface between containers and algorithms: algorithms typically take
iterators as arguments, so a container need only provide a way to access its elements
using iterators. This makes it possible to write a generic algorithm that operates
on many different kinds of containers, even containers as different as a vector and
a doubly linked list. The STL defines several different concepts related to iterators,
several predefined iterators, and a collection of types and functions for manipulating
iterators.

Description

Iterators are in fact not a single concept, but six concepts that form a hierarchy:
some of them define only a very restricted set of operations, while others define
additional functionality. The five concepts that are actually used by algorithms are
Input Iterator, Output Iterator, Forward Iterator, Bidirectional Iterator, and Ran-
dom Access Iterator. A sixth concept, Trivial Iterator, is introduced only to clarify
the definitions of the other iterator concepts. The most restricted sorts of itera-
tors are Input Iterators and Output Iterators, both of which permit ”single pass”
algorithms but do not necessarily support ”multi-pass” algorithms. Input iterators
only guarantee read access: it is possible to dereference an Input Iterator to obtain
the value it points to, but not it is not necessarily possible to assign a new value
through an input iterator. Similarly, Output Iterators only guarantee write access:
it is possible to assign a value through an Output Iterator, but not necessarily possi-
ble to refer to that value. Forward Iterators are a refinement of Input Iterators and

Systems/C++ C++ Library 149

Output Iterators: they support the Input Iterator and Output Iterator operations
and also provide additional functionality. In particular, it is possible to use ”multi-
pass” algorithms with Forward Iterators. A Forward Iterator may be constant, in
which case it is possible to access the object it points to but not to to assign a new
value through it, or mutable, in which case it is possible to do both. Bidirectional
Iterators, like Forward Iterators, allow multi-pass algorithms. As the name suggests,
they are different in that they support motion in both directions: a Bidirectional
Iterator may be incremented to obtain the next element or decremented to obtain
the previous element. A Forward Iterator, by contrast, is only required to support
forward motion. An iterator used to traverse a singly linked list, for example, would
be a Forward Iterator, while an iterator used to traverse a doubly linked list would
be a Bidirectional Iterator. Finally, Random Access Iterators allow the operations
of pointer arithmetic: addition of arbitrary offsets, subscripting, subtraction of one
iterator from another to find a distance, and so on. Most algorithms are expressed
not in terms of a single iterator but in terms of a range of iterators ; the notation
[first, last) refers to all of the iterators from first up to, but not including,
last. Note that a range may be empty, i.e. first and last may be the same
iterator. Note also that if there are n iterators in a range, then the notation [first,
last) represents n+1 positions. This is crucial: algorithms that operate on n things
frequently require n+1 positions. Linear search, for example (find) must be able
to return some value to indicate that the search was unsuccessful. Sometimes it is
important to be able to infer some properties of an iterator: the type of object that
is returned when it is dereferenced, for example. There are two different mechanisms
to support this sort of inferrence: an older mechanism called Iterator Tags, and a
newer mechanism called iterator traits .

Concepts

• Trivial Iterator

• Input Iterator

• Output Iterator

• Forward Iterator

• Bidirectional Iterator

• Random Access Iterator

Types

• istream iterator

• ostream iterator

• reverse iterator

150 Systems/C++ C++ Library

• reverse bidirectional iterator

• insert iterator

• front insert iterator

• back insert iterator

• iterator traits

• input iterator tag

• output iterator tag

• forward iterator tag

• bidirectional iterator tag

• random access iterator tag

• input iterator

• output iterator

• forward iterator

• bidirectional iterator

• random access iterator

Functions

• distance type

• value type

• iterator category

• distance

• advance

• inserter

• front inserter

• back inserter

Systems/C++ C++ Library 151

Notes

Ranges are not a well-defined concept for Trivial Iterators, because a Trivial Iter-
ator cannot be incremented: there is no such thing as a next element. They are
also not a well-defined concept for Output Iterators, because it is impossible to
compare two Output Iterators for equality. Equality is crucial to the definition of
a range, because only by comparing an iterator for equality with the last element
is it possible to step through a range. Sometimes the notation [first, last)
refers to the iterators first, first+1, ..., last-1 and sometimes it refers to the
objects pointed to by those iterators: *first, *(first+1), ..., *(last-1). In most
cases it will be obvious from context which of these is meant; where the distinc-
tion is important, the notation will be qualified explicitly as ”range of iterators” or
”range of objects”. The iterator traits class relies on a C++ feature known
as partial specialization. Many of today’s compilers don’t implement the complete
standard; in particular, many compilers do not support partial specialization. If
your compiler does not support partial specialization, then you will not be able to
use iterator traits, and you will instead have to continue using the functions
iterator category, distance type, and value type.

See also

8.2 Concepts

8.2.1 Trivial Iterator

Description

A Trivial Iterator is an object that may be dereferenced to refer to some other object.
Arithmetic operations (such as increment and comparison) are not guaranteed to
be supported.

Refinement of

Assignable, Equality Comparable, Default Constructible

Associated types

Value type The type of the value obtained by dereferencing a Trivial Iterator

Notation

X A type that is a model of Trivial Iterator
T The value type of X

x, y Object of type X
t Object of type T

152 Systems/C++ C++ Library

Definitions

A type that is a model of Trivial Iterator may be mutable, meaning that the values
referred to by objects of that type may be modified, or constant, meaning that
they may not. For example, int* is a mutable iterator type and const int* is a
constant iterator type. If an iterator type is mutable, this implies that its value type
is a model of Assignable; the converse, though, is not necessarily true. A Trivial
Iterator may have a singular value, meaning that the results of most operations,
including comparison for equality, are undefined. The only operation that a is
guaranteed to be supported is assigning a nonsingular iterator to a singular iterator.
A Trivial Iterator may have a dereferenceable value, meaning that dereferencing it
yields a well-defined value. Dereferenceable iterators are always nonsingular, but
the converse is not true. For example, a null pointer is nonsingular (there are well
defined operations involving null pointers) even thought it is not dereferenceable.
Invalidating a dereferenceable iterator means performing an operation after which
the iterator might be nondereferenceable or singular. For example, if p is a pointer,
then delete p invalidates p.

Valid expressions

In addition to the expressions defined in Assignable, Equality Comparable, and
Default Constructible, the following expressions must be valid.

Name Expression Type requirements Return type

Default constructor X x
Dereference *x Convertible to T

Dereference assignment *x = t X is mutable
Member access x->m T is a type for which x.m

is defined

Expression semantics

Name Expression Precondi-

tion

Semantics Postcon-

dition
Default constructor X x x is singular

Dereference *x x is derefer-
enceable

Dereference assignment *x = t x is derefer-
enceable

*x is a copy
of t

Member access x->m x is derefer-
enceable

Equivalent
to (*x).m

Complexity guarantees

The complexity of operations on trivial iterators is guaranteed to be amortized
constant time.

Systems/C++ C++ Library 153

Invariants

Identity x == y if and only if &*x == &*y

Models

• A pointer to an object that is not part of an array.

Notes

The requirement for the return type of *x is specified as ”convertible to T”, rather
than simply T, because it sometimes makes sense for an iterator to return some sort
of proxy object instead of the object that the iterator conceptually points to. Proxy
objects are implementation details rather than part of an interface (one use of them,
for example, is to allow an iterator to behave differently depending on whether its
value is being read or written), so the value type of an iterator that returns a proxy
is still T. Defining operator-> for iterators depends on a feature that is part of
the C++ language but that is not yet implemented by all C++ compilers. If your
compiler does not yet support this feature, the workaround is to use (*it).m instead
of it->m.

See also

Input Iterator, Output Iterator, Forward Iterator, Bidirectional Iterator, Random
Access Iterator, Iterator Overview

8.2.2 Input Iterator

Description

An Input Iterator is an iterator that may be dereferenced to refer to some object,
and that may be incremented to obtain the next iterator in a sequence. Input
Iterators are not required to be mutable.

Refinement of

Trivial iterator.

Associated types

Value type The type of the value obtained by dereferencing an Input Iterator
Distance type A signed integral type used to represent the distance from one iterator

to another, or the number of elements in a range.

154 Systems/C++ C++ Library

Notation

X A type that is a model of Input Iterator
T The value type of X

i, j Object of type X
t Object of type T

Definitions

An iterator is past-the-end if it points beyond the last element of a container. Past-
the-end values are nonsingular and nondereferenceable. An iterator is valid if it
is dereferenceable or past-the-end. An iterator i is incrementable if there is a
”next” iterator, that is, if ++i is well-defined. Past-the-end iterators are not in-
crementable. An Input Iterator j is reachable from an Input Iterator i if, after
applying operator++ to i a finite number of times, i == j. The notation [i,j)
refers to a range of iterators beginning with i and up to but not including j. The
range [i,j) is a valid range if both i and j are valid iterators, and j is reachable
from i .

Valid expressions

In addition to the expressions defined in Trivial Iterator, the following expressions
must be valid.

Name Expression Type reqs Return type

Preincrement ++i X&
Postincrement (void)i++

Postincrement and dereference *i++ T

Expression semantics

Name Expression Precon-

dition

Semantics Postcondition

Dereference *t i is incre-
mentable

Preincrement ++i i is derefer-
enceable

i is dereference-
able or past-the-
end

Postincrement (void)i++ i is derefer-
enceable

Equivalent to
(void)++i

i is dereference-
able or past-the-
end

Postincrement
and derefer-
ence

*i++ i is derefer-
enceable

Equivalent to T
t = *i; ++i;
return t;

i is dereference-
able or past-the-
end

Complexity guarantees

All operations are amortized constant time.

Systems/C++ C++ Library 155

Invariants

Models

• istream iterator

Notes

i == j does not imply ++i == ++j. Every iterator in a valid range [i, j) is
dereferenceable, and j is either dereferenceable or past-the-end. The fact that every
iterator in the range is dereferenceable follows from the fact that incrementable
iterators must be deferenceable. After executing ++i, it is not required that copies
of the old value of i be dereferenceable or that they be in the domain of operator==.
It is not guaranteed that it is possible to pass through the same input iterator twice.

See also

Output Iterator, Iterator overview

8.2.3 Output Iterator

Description

An Output Iterator is a type that provides a mechanism for storing (but not nec-
essarily accessing) a sequence of values. Output Iterators are in some sense the
converse of Input Iterators, but they have a far more restrictive interface: they do
not necessarily support member access or equality, and they do not necessarily have
either an associated distance type or even a value type . Intuitively, one picture of
an Output Iterator is a tape: you can write a value to the current location and you
can advance to the next location, but you cannot read values and you cannot back
up or rewind.

Refinement of

Assignable, DefaultConstructible

Associated types

None.

Notation

X A type that is a model of Output Iterator
x, y Object of type X

156 Systems/C++ C++ Library

Definitions

If x is an Output Iterator of type X, then the expression *x = t; stores the value
t into x. Note that operator=, like other C++ functions, may be overloaded; it
may, in fact, even be a template function. In general, then, t may be any of several
different types. A type T belongs to the set of value types of X if, for an object t
of type T, *x = t; is well-defined and does not require performing any non-trivial
conversions on t. An Output Iterator may be singular, meaning that the results of
most operations, including copying and dereference assignment, are undefined. The
only operation that is guaranteed to be supported is assigning a nonsingular iterator
to a singular iterator. An Output Iterator may be dereferenceable, meaning that
assignment through it is defined. Dereferenceable iterators are always nonsingular,
but nonsingular iterators are not necessarily dereferenceable.

Valid expressions

Name Expression Type re-

quirements

Return type

Default constructor X x;
X()

Copy constructor X(x) X
Copy constructor X y(x); or X y = x;

Dereference assignment *x = t t is convertible
to a type in
the set of value
types of X.

Result is not
used

Preincrement ++x X&
Postincrement (void) x++ void

Postincrement and assign *x++ = t; Result is not
used

Expression semantics

Systems/C++ C++ Library 157

Name Expression Precondition Semantics Postcondi-

tion
Default con-
structor

X x;
X()

x may be singu-
lar

Copy con-
structor

X(x) x is nonsingular *X(x) = t is
equivalent to *x
= t

Copy con-
structor

X x(y); or X
x = y;

y is nonsingular *y = t is equiv-
alent to *x = t

Dereference
assignment

*x = t x is dereference-
able. If there
has been a previ-
ous assignment
through x, then
there has been
an intervening
increment.

Preincrement ++x x is derefer-
enceable. x
has previously
been assigned
through. If x
has previously
been incre-
mented, then
there has been
an interven-
ing assignment
through x

x points to the
next location
into which a
value may be
stored

Postincrement (void) x++ x is dereference-
able. x has pre-
viously been as-
signed through.

Equivalent to
(void) ++x

x points to the
next location
into which a
value may be
stored

Postincrement
and assign

*x++ = t; x is dereference-
able. If there
has been a previ-
ous assignment
through x, then
there has been
an intervening
increment.

Equivalent to *x
= t; ++x;

x points to the
next location
into which a
value may be
stored

Complexity guarantees

The complexity of operations on output iterators is guaranteed to be amortized
constant time.

Invariants

158 Systems/C++ C++ Library

Models

• ostream iterator

• insert iterator

• front insert iterator

• back insert iterator

Notes

Other iterator types, including Trivial Iterator and Input Iterator, define the notion
of a value type, the type returned when an iterator is dereferenced. This notion
does not apply to Output Iterators, however, since the dereference operator (unary
operator*) does not return a usable value for Output Iterators. The only context in
which the dereference operator may be used is assignment through an output itera-
tor: *x = t. Although Input Iterators and output iterators are roughly symmetrical
concepts, there is an important sense in which accessing and storing values are not
symmetrical: for an Input Iterator operator* must return a unique type, but, for
an Output Iterator, in the expression *x = t, there is no reason why operator=
must take a unique type. Consequently, there need not be any unique ”value type”
for Output Iterators. There should be only one active copy of a single Output
Iterator at any one time. That is: after creating and using a copy x of an Output
Iterator y, the original output iterator y should no longer be used. Assignment
through an Output Iterator x is expected to alternate with incrementing x, and there
must be an assignment through x before x is ever incremented. Any other order of
operations results in undefined behavior. That is: *x = t; ++x; *x = t2; ++xis
acceptable, but *x = t; ++x; ++x; *x = t2; is not. Note that an Output
Iterator need not define comparison for equality. Even if an operator== is defined,
x == y need not imply ++x == ++y. If you are implementing an Output Iterator
class X, one sensible way to define *x = t is to define X::operator*() to return
an object of some private class X proxy, and then to define X proxy::operator=.
Note that you may overload X proxy::operator=, or even define it as a member
template; this allows assignment of more than one type through Output Iterators
of class X.

See also

Trivial Iterator, Input Iterator, Iterator overview

8.2.4 Forward Iterator

Description

Systems/C++ C++ Library 159

A Forward Iterator is an iterator that corresponds to the usual intuitive notion of
a linear sequence of values. It is possible to use Forward Iterators (unlike Input
Iterators and Output Iterators) in multipass algorithms. Forward Iterators do not,
however, allow stepping backwards through a sequence, but only, as the name sug-
gests, forward. A type that is a model of Forward Iterator may be either mutable
or immutable, as defined in the Trivial Iterators requirements.

Refinement of

Input Iterator, Output Iterator

Associated types

The same as for Input Iterator

Notation

X A type that is a model of Forward Iterator
T The value type of X

i, j Object of type X
t Object of type T

Definitions

Valid expressions

Forward Iterator does not define any new expressions beyond those defined in Input
Iterator. However, some of the restrictions described in Input Iterator are relaxed.

Name Expression Type reqs Return type

Preincrement ++i X&
Postincrement i++ X

Expression semantics

Forward Iterator does not define any new expressions beyond those defined in Input
Iterator. However, some of the restrictions described in Input Iterator are relaxed.

160 Systems/C++ C++ Library

Name Expression Pre-

condi-
tion

Semantics Postcondition

Preincrement ++i i is
derefer-
enceable

i points to the next
value

i is dereferenceable
or past-the-end. &i
== &++i. If i
== j, then ++i ==
++j.

Postincrement i++ i is
derefer-
enceable

Equivalent to {
X tmp = i; ++i;
return tmp; }

i is dereferenceable
or past-the-end.

Complexity guarantees

The complexity of operations on Forward Iterators is guaranteed to be amortized
constant time.

Invariants

Models

Notes

The restrictions described in Input Iterator have been removed. Incrementing a
forward iterator does not invalidate copies of the old value and it is guaranteed that,
if i and j are dereferenceable and i == j, then ++i == ++j. As a consequence of
these two facts, it is possible to pass through the same Forward Iterator twice.

See also

Input Iterator, Output Iterator, Bidirectional Iterator, Random Access Iterator,
Iterator overview

8.2.5 Bidirectional Iterator

Description

A Bidirectional Iterator is an iterator that can be both incremented and decre-
mented. The requirement that a Bidirectional Iterator can be decremented is the
only thing that distinguishes Bidirectional Iterators from Forward Iterators.

Refinement of

Forward Iterator

Systems/C++ C++ Library 161

Associated types

The same as for Forward Iterator.

Notation

X A type that is a model of Bidirectional Iterator
T The value type of X

i, j Object of type X
t Object of type T

Definitions

Valid expressions

In addition to the expressions defined in Forward Iterator, the following expressions
must be valid.

Name Expression Type reqs Return type

Predecrement --i X&
Postdecrement i-- X

Expression Semantics

Semantics of an expression is defined only where it is not defined in Forward Iterator.

Name Expression Precondition Semantics Postcondi-

tion
Predecrement --i i is dereference-

able or past-the-
end. There ex-
ists a derefer-
enceable itera-
tor j such that
i == ++j.

i is modified to
point to the pre-
vious element.

i is derefer-
enceable. &i
= &--i. If i
== j, then --i
== --j. If j is
dereferenceable
and i == ++j,
then --i == j.

Postdecrement i-- i is dereference-
able or past-the-
end. There ex-
ists a derefer-
enceable itera-
tor j such that
i == ++j.

Equivalent to
{
X tmp = i;
--i;
return tmp;

}

Complexity guarantees

The complexity of operations on bidirectional iterators is guaranteed to be amortized
constant time.

162 Systems/C++ C++ Library

Invariants

Symmetry of increment and decrement If i is dereferenceable, then ++i; --i; is a
null operation. Similarly, --i; ++i; is a null
operation.

Models

• T*

• list<T>::iterator

Notes

See also

Input Iterator, Output Iterator, Forward Iterator, Random Access Iterator, Iterator
overview

8.2.6 Random Access Iterator

Description

A Random Access Iterator is an iterator that provides both increment and decrement
(just like a Bidirectional Iterator), and that also provides constant-time methods for
moving forward and backward in arbitrary-sized steps. Random Access Iterators
provide essentially all of the operations of ordinary C pointer arithmetic.

Refinement of

Bidirectional Iterator, LessThan Comparable

Associated types

The same as for Bidirectional Iterator

Notation

X A type that is a model of Random Access Iterator
T The value type of X

Distance The distance type of X
i, j Object of type X
t Object of type T
n Object of type Distance

Systems/C++ C++ Library 163

Definitions

Valid expressions

In addition to the expressions defined in Bidirectional Iterator, the following expres-
sions must be valid.

Name Expression Type reqs Return type

Iterator addition i += n X&
Iterator addition i + n or n + i X

Iterator subtraction i -= n X&
Iterator subtraction i - n X

Difference i - j Distance
Element operator i[n] Convertible to T

Element assignment i[n] = t X is mutable Convertible to T

Expression semantics

Semantics of an expression is defined only where it differs from, or is not defined in,
Bidirectional Iterator or LessThan Comparable.

164 Systems/C++ C++ Library

Name Expression Precondition Semantics Postcondi-

tion
Forward
motion

i += n Including i
itself, there
must be n deref-
erenceable or
past-the-end it-
erators following
or preceding
i, depending
on whether n
is positive or
negative.

If n > 0, equiv-
alent to execut-
ing ++i n times.
If n < 0, equiva-
lent to executing
--i n times. If
n == 0, this is a
null operation.

i is dereference-
able or past-the-
end.

Iterator ad-
dition

i + n or n + i Same as for i +=
n

Equivalent to
X tmp = i;
return tmp +=
n; . The two
forms i + n
and n + i are
identical.

Result is derefer-
enceable or past-
the-end

Iterator
subtraction

i -= n Including i
itself, there
must be n deref-
erenceable or
past-the-end
iterators preced-
ing or following
i, depending
on whether n
is positive or
negative.

Equivalent to i
+= (-n).

i is dereference-
able or past-the-
end.

Iterator
subtraction

i - n Same as for i -=
n

Equivalent to
X tmp = i;
return tmp -=
n; .

Result is derefer-
enceable or past-
the-end

Difference i - j Either i is
reachable from j
or j is reachable
from i, or both.

Returns a num-
ber n such that i
== j + n

Element
operator

i[n] i + n exists and
is dereference-
able.

Equivalent to
*(i + n)

Element
assignment

i[n] = t i + n exists and
is dereference-
able.

Equivalent to
*(i + n) = t

i[n] is a copy of
t.

Less i < j Either i is
reachable from j
or j is reachable
from i, or both.

As described in
LessThan Com-
parable

Systems/C++ C++ Library 165

Complexity guarantees

All operations on Random Access Iterators are amortized constant time.

Invariants

Symmetry of addition
and subtraction

If i + n is well-defined, then i += n; i -= n; and (i + n)
- n are null operations. Similarly, if i - n is well-defined,
then i -= n; i += n; and (i - n) + n are null opera-
tions.

Relation between dis-
tance and addition

If i - j is well-defined, then i == j + (i - j).

Reachability and dis-
tance

If i is reachable from j, then i - j >= 0.

Ordering operator < is a strict weak ordering, as defined in
LessThan Comparable.

Models

• T*

• vector<T>::iterator

• vector<T>::const iterator

• deque<T>::iterator

• deque<T>::const iterator

Notes

”Equivalent to” merely means that i += n yields the same iterator as if i had been
incremented (decremented) n times. It does not mean that this is how operator+=
should be implemented; in fact, this is not a permissible implementation. It is
guaranteed that i += n is amortized constant time, regardless of the magnitude of n.
One minor syntactic oddity: in C, if p is a pointer and n is an int, then p[n] and n[p]
are equivalent. This equivalence is not guaranteed, however, for Random Access
Iterators: only i[n] need be supported. This isn’t a terribly important restriction,
though, since the equivalence of p[n] and n[p] has essentially no application except
for obfuscated C contests. The precondition defined in LessThan Comparable is
that i and j be in the domain of operator <. Essentially, then, this is a definition
of that domain: it is the set of pairs of iterators such that one iterator is reachable
from the other. All of the other comparison operators have the same domain and
are defined in terms of operator <, so they have exactly the same semantics as
described in LessThan Comparable. This complexity guarantee is in fact the only
reason why Random Access Iterator exists as a distinct concept. Every operation in
iterator arithmetic can be defined for Bidirectional Iterators; in fact, that is exactly

166 Systems/C++ C++ Library

what the algorithms advance and distance do. The distinction is simply that
the Bidirectional Iterator implementations are linear time, while Random Access
Iterators are required to support random access to elements in amortized constant
time. This has major implications for the sorts of algorithms that can sensibly be
written using the two types of iterators.

See also

LessThan Comparable, Trivial Iterator, Bidirectional Iterator, Iterator overview

8.3 Iterator Tags

8.3.1 Introduction

Summary

Iterator tag functions are a method for accessing information that is associated
with iterators. Specifically, an iterator type must, as discussed in the Input Iterator
requirements, have an associated distance type and value type. It is sometimes
important for an algorithm parameterized by an iterator type to be able to de-
termine the distance type and value type. Iterator tags also allow algorithms to
determine an iterator’s category, so that they can take different actions depend-
ing on whether an iterator is an Input Iterator, Output Iterator, Forward Iterator,
Bidirectional Iterator, or Random Access Iterator. Note that the iterator tag func-
tions distance type, value type, and iterator category are an older method of
accessing the type information associated with iterators: they were defined in the
original STL. The draft C++ standard, however, defines a different and more conve-
nient mechanism: iterator traits. Both mechanisms are supported , for reasons
of backwards compatibility, but the older mechanism will eventually be removed.

Description

The basic idea of the iterator tag functions, and of iterator traits, is quite sim-
ple: iterators have associated type information, and there must be a way to access
that information. Specifically, iterator tag functions and iterator traits are used
to determine an iterator’s value type, distance type, and iterator category. An it-
erator’s category is the most specific concept that it is a model of: Input Iterator,
Output Iterator, Forward Iterator, Bidirectional Iterator, or Random Access Itera-
tor. This information is expressed in the C++ type system by defining five category
tag types, input iterator tag, output iterator tag, forward iterator tag,
bidirectional iterator tag, and random access iterator tag, each of which
corresponds to one of those concepts. The function iterator category takes a sin-
gle argument, an iterator, and returns the tag corresponding to that iterator’s cate-
gory. That is, it returns a random access iterator tag if its argument is a pointer,

Systems/C++ C++ Library 167

a bidirectional iterator tag if its argument is a list::iterator, and so on.
Iterator traits provides the same information in a slightly different way: if I is an
iterator, then iterator traits<I>::iterator category is a nested typedef: it is
one of the five category tag types. An iterator’s value type is the type of object that
is returned when the iterator is dereferenced. (See the discussion in the Input Iter-
ator requirements.) Ideally, one might want value type to take a single argument,
an iterator, and return the iterator’s value type. Unfortunately, that’s impossible:
a function must return an object, and types aren’t objects. Instead, value type re-
turns the value (T*) 0, where T is the argument’s value type. The iterator traits
class, however, does not have this restriction: iterator traits<I>::value type
is a type, not a value. It is a nested typedef, and it can be used in declarations of
variables, as an function’s argument type or return type, and in any other ways that
C++ types can be used. (Note that the function value type need not be defined
for Output Iterators, since an Output Iterator need not have a value type. Similarly,
iterator traits<I>::value type is typically defined as void when I is an output
iterator) An iterator’s distance type, or difference type (the terms are synonymous)
is the type that is used to represent the distance between two iterators. (See the
discussion in the Input Iterator requirements.) The function distance type returns
this information in the same form that value type does: its argument is an iterator,
and it returns the value (Distance*) 0, where Distance is the iterator’s distance
type. Similarly, iterator traits<I>::difference type is I’s distance type. Just
as with value type, the function distance type need not be defined for Output
Iterators, and, if I is an Output Iterator, iterator traits<I>::difference type
may be defined as void. An Output Iterator need not have a distance type.
The functions iterator category, value type, and distance type must be pro-
vided for every type of iterator. (Except, as noted above, that value type and
distance type need not be provided for Output Iterators.) In principle, this is
simply a matter of overloading: anyone who defines a new iterator type must de-
fine those three functions for it. In practice, there’s a slightly more convenient
method. The STL defines five base classes, output iterator, input iterator,
forward iterator, bidirectional iterator, and random access iterator. The
functions iterator category, value type, and distance type are defined for
those base classes. The effect, then, is that if you are defining a new type of iterator
you can simply derive it from one of those base classes, and the iterator tag functions
will automatically be defined correctly. These base classes contain no member func-
tions or member variables, so deriving from one of them ought not to incur any over-
head. (Again, note that base classes are provided solely for the convenience of people
who define iterators. If you define a class Iter that is a new kind of Bidirectional
Iterator, you do not have to derive it from the base class bidirectional iterator.
You do, however, have to make sure that iterator category, value type, and
distance type are defined correctly for arguments of type Iter, and deriving Iter
from bidirectional iterator is usually the most convenient way to do that.)

Examples

This example uses the value type iterator tag function in order to declare a tem-
porary variable of an iterator’s value type. Note the use of an auxiliary function,

168 Systems/C++ C++ Library

iter swap. This is a very common idiom: most uses of iterator tags involve aux-
iliary functions.

template <class ForwardIterator1, class ForwardIterator2,
class ValueType>

inline void __iter_swap(ForwardIterator1 a, ForwardIterator2 b,
ValueType*) {

ValueType tmp = *a;
*a = *b;
*b = tmp;

}

template <class ForwardIterator1, class ForwardIterator2>
inline void iter_swap(ForwardIterator1 a, ForwardIterator2 b) {

__iter_swap(a, b, value_type(a));
}

This example does exactly the same thing, using iterator traits instead. Note
how much simpler it is: the auxiliary function is no longer required.

template <class ForwardIterator1, class ForwardIterator2>
inline void iter_swap(ForwardIterator1 a, ForwardIterator2 b) {

iterator_traits<ForwardIterator1>::value_type tmp = *a;
*a = *b;
*b = tmp;

}

This example uses the iterator category iterator tag function: reverse can be
implemented for either Bidirectional Iterators or for Random Access Iterators, but
the algorithm for Random Access Iterators is more efficient. Consequently, reverse
is written to dispatch on the iterator category. This dispatch takes place at compile
time, and should not incur any run-time penalty.

Systems/C++ C++ Library 169

template <class BidirectionalIterator>
void __reverse(BidirectionalIterator first, BidirectionalIterator last,

bidirectional_iterator_tag) {
while (true)
if (first == last || first == --last)

return;
else

iter_swap(first++, last);
}

template <class RandomAccessIterator>
void __reverse(RandomAccessIterator first, RandomAccessIterator last,

random_access_iterator_tag) {
while (first < last) iter_swap(first++, --last);

}

template <class BidirectionalIterator>
inline void reverse(BidirectionalIterator first,

BidirectionalIterator last) {
__reverse(first, last, iterator_category(first));

}

In this case, iterator traits would not be different in any substantive way: it
would still be necessary to use auxiliary functions to dispatch on the iterator cate-
gory. The only difference is changing the top-level function to

template <class BidirectionalIterator>
inline void reverse(BidirectionalIterator first,

BidirectionalIterator last) {
__reverse(first, last,

iterator_traits<first>::iterator_category());
}

Concepts

Types

• output iterator

• input iterator

• forward iterator

• bidirectional iterator

• random access iterator

170 Systems/C++ C++ Library

• output iterator tag

• input iterator tag

• forward iterator tag

• bidirectional iterator tag

• random access iterator tag

• iterator traits

Functions

• iterator category

• value type

• distance type

Notes

Output Iterators have neither a distance type nor a value type; in many ways,
in fact, Output Iterators aren’t really iterators. Output iterators do not have a
value type, because it is impossible to obtain a value from an output iterator but
only to write a value through it. They do not have a distance type, similarly,
because it is impossible to find the distance from one output iterator to another.
Finding a distance requires a comparison for equality, and output iterators do not
support operator==. The iterator traits class relies on a C++ feature known
as partial specialization. Many of today’s compilers don’t implement the complete
standard; in particular, many compilers do not support partial specialization. If
your compiler does not support partial specialization, then you will not be able
to use iterator traits, and you will have to continue to use the older iterator
tag functions. Note that Trivial Iterator does not appear in this list. The Trivial
Iterator concept is introduced solely for conceptual clarity; the STL does not actually
define any Trivial Iterator types, so there is no need for a Trivial Iterator tag. There
is, in fact, a strong reason not to define one: the C++ type system does not provide
any way to distinguish between a pointer that is being used as a trivial iterator
(that is, a pointer to an object that isn’t part of an array) and a pointer that is
being used as a Random Access Iterator into an array.

See also

Input Iterator, Output Iterator, Forward Iterator, Bidirectional Iterator, Random
Access Iterator, iterator traits, Iterator Overview

Systems/C++ C++ Library 171

8.3.2 iterator traits

Description

As described in the Iterator Overview, one of the most important facts about it-
erators is that they have associated types. An iterator type, for example, has an
associated value type: the type of object that the iterator points to. It also has
an associated distance type, or difference type, a signed integral type that can be
used to represent the distance between two iterators. (Pointers, for example, are
iterators; the value type of int* is int. Its distance type is ptrdiff t, because,
if p1 and p2 are pointers, the expression p1 - p2 has type ptrdiff t.) Generic
algorithms often need to have access to these associated types; an algorithm that
takes a range of iterators, for example, might need to declare a temporary variable
whose type is the iterators’ value type. The class iterator traits is a mecha-
nism that allows such declarations. The most obvious way to allow declarations
of that sort would be to require that all iterators declare nested types; an iterator
I’s value type, for example, would be I::value type. That can’t possibly work,
though. Pointers are iterators, and pointers aren’t classes; if I is (say) int*, then
it’s impossible to define I::value type to be int. Instead, I’s value type is written
iterator traits<I>::value type. iterator traits is a template class that con-
tains nothing but nested typedefs; in addition to value type, iterator traits
defines the nested types iterator category, difference type, pointer, and
reference. The library contains two definitions of iterator traits: a fully generic
one, and a specialization that is used whenever the template argument is a pointer
type . The fully generic version defines iterator traits<I>::value type as a
synonym for I::value type, iterator traits<I>::difference type as a syn-
onym for I::difference type, and so on. Since pointers don’t have nested types,
iterator traits<T*> has a different definition.

template <class Iterator>
struct iterator_traits {
typedef typename Iterator::iterator_category iterator_category;
typedef typename Iterator::value_type value_type;
typedef typename Iterator::difference_type difference_type;
typedef typename Iterator::pointer pointer;
typedef typename Iterator::reference reference;

};

template <class T>
struct iterator_traits<T*> {
typedef random_access_iterator_tag iterator_category;
typedef T value_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef T& reference;

};

If you are defining a new iterator type I, then you must ensure that

172 Systems/C++ C++ Library

iterator traits<I> is defined properly. There are two ways to do
this. First, you can define your iterator so that it has nested types
I::value type, I::difference type, and so on. Second, you can ex-
plicitly specialize iterator traits for your type. The first way is al-
most always more convenient, however, especially since you can easily en-
sure that your iterator has the appropriate nested types just by in-
heriting from one of the base classes input iterator, output iterator,
forward iterator, bidirectional iterator, or random access iterator. Note
that iterator traits is new; it was added to the draft C++ standard relatively
recently. Both the old iterator tags mechanism and the new iterator traits mech-
anism are currently supported , but the old iterator tag functions are no longer part
of the standard C++ library and they will eventually be removed.

Example

This generic function returns the last element in a non-empty range. Note that there
is no way to define a function with this interface in terms of the old value type
function, because the function’s return type must be declared to be the iterator’s
value type.

template <class InputIterator>
iterator_traits<InputIterator>::value_type
last_value(InputIterator first, InputIterator last) {
iterator_traits<InputIterator>::value_type result = *first;
for (++first; first != last; ++first)
result = *first;

return result;
}

(Note: this is an example of how to use iterator traits; it is not an example
of good code. There are better ways of finding the last element in a range of
bidirectional iterators, or even forward iterators.)

Definition

Defined in the standard header iterator, and in the nonstandard backward-
compatibility header iterator.h.

Template parameters

Parameter Description Default

Iterator The iterator type whose associated types are being ac-
cessed.

Systems/C++ C++ Library 173

Model of

Default Constructible, Assignable

Type requirements

• Iterator is a model of one of the iterator concepts. (Input Iterator, Output
Iterator, Forward Iterator,

Bidirectional Iterator, or Random Access Iterator.)

Public base classes

None.

Members

None, except for nested types.

Member Description

iterator category One of the types input iterator tag, output iterator tag,
forward iterator tag, bidirectional iterator tag, or
random access iterator tag. An iterator’s category is the most
specific iterator concept that it is a model of.

value type Iterator’s value type, as defined in the Trivial Iterator require-
ments.

difference type Iterator’s distance type, as defined in the Input Iterator require-
ments.

pointer Iterator’s pointer type: a pointer to its value type.
reference Iterator’s reference type: a reference to its value type.

Notes

The iterator traits class relies on a C++ feature known as partial specialization.
Many of today’s compilers don’t implement the complete standard; in particular,
many compilers do not support partial specialization. If your compiler does not sup-
port partial specialization, then you will not be able to use iterator traits, and
you will have to continue using the old iterator tag functions iterator category,
distance type, and value type. This is one reason that those functions have not
yet been removed.

See also

The iterator overview, iterator tags, input iterator tag, out-
put iterator tag, forward iterator tag, bidirectional iterator tag,
random access iterator tag, input iterator, output iterator, for-
ward iterator, bidirectional iterator, random access iterator

174 Systems/C++ C++ Library

8.3.3 Iterator tag classes

input iterator tag

Description

Input iterator tag is an empty class: it has no member functions, member vari-
ables, or nested types. It is used solely as a ”tag”: a representation of the Input
Iterator concept within the C++ type system. Specifically, it is used as a return
value for the function iterator category. Iterator category takes a single ar-
gument, an iterator, and returns an object whose type depends on the iterator’s
category. Iterator category’s return value is of type input iterator tag if its
argument is an Input Iterator.

Example

See iterator category

Definition

Defined in the standard header iterator, and in the nonstandard backward-
compatibility header iterator.h.

Template parameters

None.

Model of

Assignable

Type requirements

None.

Public base classes

None.

Members

None.

Systems/C++ C++ Library 175

New Members

None.

Notes

See also

iterator category, Iterator Tags, iterator traits,
output iterator tag, forward iterator tag, bidirectional iterator tag,
random access iterator tag

output iterator tag

Description

Output iterator tag is an empty class: it has no member functions, member vari-
ables, or nested types. It is used solely as a ”tag”: a representation of the Output
Iterator concept within the C++ type system. Specifically, it is used as a return
value for the function iterator category. Iterator category takes a single ar-
gument, an iterator, and returns an object whose type depends on the iterator’s
category. Iterator category’s return value is of type output iterator tag if its
argument is an Output Iterator.

Example

See iterator category

Definition

Defined in the standard header iterator, and in the nonstandard backward-
compatibility header iterator.h.

Template parameters

None.

Model of

Assignable

Type requirements

None.

176 Systems/C++ C++ Library

Public base classes

None.

Members

None.

New Members

None.

Notes

See also

iterator category, Iterator Tags, iterator traits,
input iterator tag, forward iterator tag, bidirectional iterator tag,
random access iterator tag

forward iterator tag

Description

Forward iterator tag is an empty class: it has no member functions, member vari-
ables, or nested types. It is used solely as a ”tag”: a representation of the Forward
Iterator concept within the C++ type system. Specifically, it is used as a return
value for the function iterator category. Iterator category takes a single ar-
gument, an iterator, and returns an object whose type depends on the iterator’s
category. Iterator category’s return value is of type forward iterator tag if its
argument is a Forward Iterator.

Example

See iterator category

Definition

Defined in the standard header iterator, and in the nonstandard backward-
compatibility header iterator.h.

Template parameters

None.

Systems/C++ C++ Library 177

Model of

Assignable

Type requirements

None.

Public base classes

None.

Members

None.

New Members

None.

Notes

See also

iterator category, Iterator Tags, iterator traits,
output iterator tag, input iterator tag, bidirectional iterator tag,
random access iterator tag

bidirectional iterator tag

Description

Bidirectional iterator tag is an empty class: it has no member functions, mem-
ber variables, or nested types. It is used solely as a ”tag”: a representation of
the Bidirectional Iterator concept within the C++ type system. Specifically, it is
used as a return value for the function iterator category. Iterator category
takes a single argument, an iterator, and returns an object whose type de-
pends on the iterator’s category. Iterator category’s return value is of type
bidirectional iterator tag if its argument is a Bidirectional Iterator.

Example

See iterator category

178 Systems/C++ C++ Library

Definition

Defined in the standard header iterator, and in the nonstandard backward-
compatibility header iterator.h.

Template parameters

None.

Model of

Assignable

Type requirements

None.

Public base classes

None.

Members

None.

New Members

None.

Notes

See also

iterator category, Iterator Tags, iterator traits, output iterator tag,
input iterator tag, forward iterator tag random access iterator tag

Systems/C++ C++ Library 179

random access iterator tag

Description

Random access iterator tag is an empty class: it has no member functions, mem-
ber variables, or nested types. It is used solely as a ”tag”: a representation of the
Random Access Iterator concept within the C++ type system. Specifically, it is
used as a return value for the function iterator category. Iterator category
takes a single argument, an iterator, and returns an object whose type de-
pends on the iterator’s category. Iterator category’s return value is of type
random access iterator tag if its argument is a Random Access Iterator.

Example

See iterator category

Definition

Defined in the standard header iterator, and in the nonstandard backward-
compatibility header iterator.h.

Template parameters

None.

Model of

Assignable

Type requirements

None.

Public base classes

None.

Members

None.

New Members

None.

180 Systems/C++ C++ Library

Notes

See also

iterator category, Iterator Tags, iterator traits, output iterator tag,
input iterator tag, forward iterator tag, bidirectional iterator tag

8.4 Iterator functions

8.4.1 distance

Prototype

Distance is an overloaded name; there are actually two distance functions.

template <class InputIterator>
inline iterator_traits<InputIterator>::difference_type
distance(InputIterator first, InputIterator last);

template <class InputIterator, class Distance>
void distance(InputIterator first, InputIterator last, Distance& n);

Description

Finds the distance between first and last, i.e. the number of times that first
must be incremented until it is equal to last. The first version of distance,
which takes two arguments, simply returns that distance; the second version, which
takes three arguments and which has a return type of void, increments n by that
distance. The second version of distance was the one defined in the original STL,
and the first version is the one defined in the draft C++ standard; the definition
was changed because the older interface was clumsy and error-prone. The older
interface required the use of a temporary variable, and it has semantics that are
somewhat nonintuitive: it increments n by the distance from first to last, rather
than storing that distance in n. Both interfaces are currently supported , for
reasons of backward compatibility, but eventually the older version will be removed.

Definition

Defined in the standard header iterator, and in the nonstandard backward-
compatibility header iterator.h.

Systems/C++ C++ Library 181

Requirements on types

For the first version:

• InputIterator is a model of Input Iterator.

For the second version:

• InputIterator is a model of Input Iterator.

• Distance is an integral type that is able to represent a distance between
iterators of type InputIterator.

Preconditions

• [first, last) is a valid range, as defined in the

Input Iterator requirements.

Complexity

Constant time if InputIterator is a model of random access iterator, otherwise
linear time.

Example

int main() {
list<int> L;
L.push_back(0);
L.push_back(1);

assert(distance(L.begin(), L.end()) == L.size());
}

Notes

This is the reason that distance is not defined for output iterators: it is impossible
to compare two output iterators for equality. Forgetting to initialize n to 0 is a
common mistake. The new distance interface uses the iterator traits class,
which relies on a C++ feature known as partial specialization. Many of today’s
compilers don’t implement the complete standard; in particular, many compilers
do not support partial specialization. If your compiler does not support partial
specialization, then you will not be able to use the newer version of distance, or
any other STL components that involve iterator traits.

182 Systems/C++ C++ Library

See also

distance type, advance, Input iterator, Random access iterator, Iterator tags,
iterator traits, Iterator overview.

8.4.2 advance

Prototype

template <class InputIterator, class Distance>
void advance(InputIterator& i, Distance n);

Description

Advance(i, n) increments the iterator i by the distance n. If n > 0 it is equivalent
to executing ++i n times, and if n < 0 it is equivalent to executing --i n times. If
n == 0, the call has no effect.

Definition

Defined in the standard header iterator, and in the nonstandard backward-
compatibility header iterator.h.

Requirements on types

• InputIterator is a model of Input Iterator.

• Distance is an integral type that is convertible to InputIterator’s distance
type.

Preconditions

• i is nonsingular.

• Every iterator between i and i+n (inclusive) is nonsingular.

• If InputIterator is a model of input iterator or forward iterator, then n must
be nonnegative. If InputIterator is a model of

bidirectional iterator or random access iterator, then this precondition does
not apply.

Systems/C++ C++ Library 183

Complexity

Constant time if InputIterator is a model of random access iterator, otherwise
linear time.

Example

list<int> L;
L.push_back(0);
L.push_back(1);

list<int>::iterator i = L.begin();
advance(i, 2);
assert(i == L.end());

Notes

See also

distance, Input iterator, Bidirectional Iterator, Random access iterator,
iterator traits, Iterator overview.

8.5 Iterator classes

8.5.1 istream iterator

Description

An istream iterator is an Input Iterator that performs formatted input of ob-
jects of type T from a particular istream. When end of stream is reached, the
istream iterator takes on a special end of stream value, which is a past-the-end
iterator. Note that all of the restrictions of an Input Iterator must be obeyed,
including the restrictions on the ordering of operator* and operator++ operations.

Example

Fill a vector with values read from standard input.

vector<int> V;
copy(istream_iterator<int>(cin), istream_iterator<int>(),

back_inserter(V));

184 Systems/C++ C++ Library

Definition

Defined in the standard header iterator, and in the nonstandard backward-
compatibility header iterator.h.

Template parameters

Parameter Description Default

T The istream iterator’s value type. Operator* returns a
const T&.

Distance The istream iterator’s distance type. ptrdiff t

Model of

Input Iterator

Type requirements

The value type T must be a type such that cin >> T is a valid expression. The
value type T must be a model of Default Constructible. The distance type must, as
described in the Input Iterator requirements, be a signed integral type.

Public base classes

None.

Members

Systems/C++ C++ Library 185

Member Where defined Description

istream iterator() istream iterator See below.
istream iterator(istream&) istream iterator See below.
istream iterator(const
istream iterator&)

Trivial Iterator The copy constructor

istream iterator&
operator=(const
istream iterator&)

Trivial Iterator The assignment operator

const T& operator*() const Input Iterator Returns the next object in
the stream.

istream iterator& operator++() Input Iterator Preincrement.
istream iterator&
operator++(int)

Input Iterator Postincrement.

bool operator==(const
istream iterator&, const
istream iterator&)

Trivial iterator The equality operator.
This is a global function,
not a member function.

input iterator tag
iterator category(const
istream iterator&)

iterator tags Returns the iterator’s cat-
egory.

T* value type(const
istream iterator&)

iterator tags Returns the iterator’s value
type.

Distance* distance type(const
istream iterator&)

iterator tags Returns the iterator’s dis-
tance type. ¡

New members

These members are not defined in the Input Iterator requirements, but are specific
to istream iterator.

Function Description

istream iterator() The default constructor: Constructs an end-of-
stream iterator. This is a past-the-end iterator, and
it is useful when constructing a ”range”.

istream iterator(istream& s) Creates an istream iterator that reads values
from the input stream s. When s reaches end of
stream, this iterator will compare equal to an end-
of-stream iterator created using the default construc-
tor.

Notes

See also

ostream iterator, Input Iterator, Output Iterator.

186 Systems/C++ C++ Library

8.5.2 ostream iterator

Description

An ostream iterator is an Output Iterator that performs formatted output of ob-
jects of type T to a particular ostream. Note that all of the restrictions of an Output
Iterator must be obeyed, including the restrictions on the ordering of operator* and
operator++ operations.

Example

Copy the elements of a vector to the standard output, one per line.

vector<int> V;
// ...
copy(V.begin(), V.end(), ostream_iterator<int>(cout, "\n"));

Definition

Defined in the standard header iterator, and in the nonstandard backward-
compatibility header iterator.h.

Template parameters

Parameter Description Default

T The type of object that will be written to the ostream.
The set of value types of an ostream iterator consists of
a single type, T.

Model of

Output Iterator.

Type requirements

T must be a type such that cout << T is a valid expression.

Public base classes

None.

Systems/C++ C++ Library 187

Members

Member Where defined Description

ostream iterator(ostream&) ostream iterator See below.
ostream iterator(ostream&,
const char* s)

ostream iterator See below.

ostream iterator(const
ostream iterator&)

Output Iterator The copy constructor

ostream iterator&
operator=(const
ostream iterator&)

Output Iterator The assignment operator

ostream iterator&
operator=(const T&)

Output Iterator Used to implement the Output
Iterator requirement *i = t.

ostream iterator&
operator*()

Output Iterator Used to implement the Output
Iterator requirement *i = t.

ostream iterator&
operator++()

Output Iterator Preincrement

ostream iterator&
operator++(int)

Output Iterator Postincrement

output iterator tag
iterator category(const
ostream iterator&)

iterator tags Returns the iterator’s category.

New members

These members are not defined in the Output Iterator requirements, but are specific
to ostream iterator.

Function Description

ostream iterator(ostream& s) Creates an
ostream iterator such
that assignment of t through
it is equivalent to s << t.

ostream iterator(ostream& s, const char* delim) Creates an
ostream iterator such
that assignment of t through
it is equivalent to s << t <<
delim.

See also

istream iterator, Output Iterator, Input Iterator.

8.5.3 front insert iterator

Description

188 Systems/C++ C++ Library

Front insert iterator is an iterator adaptor that functions as an Output Iterator:
assignment through a front insert iterator inserts an object before the first
element of a Front Insertion Sequence.

Example

list<int> L;
L.push_front(3);
front_insert_iterator<list<int> > ii(L);
*ii++ = 0;
*ii++ = 1;
*ii++ = 2;
copy(L.begin(), L.end(), ostream_iterator<int>(cout, " "));
// The values that are printed are 2 1 0 3

Definition

Defined in the standard header iterator, and in the nonstandard backward-
compatibility header iterator.h.

Template parameters

Parameter Description Default

FrontInsertionSequence The type of Front Insertion Sequence into
which values will be inserted.

Model of

Output Iterator. A front insert iterator’s set of value types (as de-
fined in the Output Iterator requirements) consists of a single type:
FrontInsertionSequence::value type.

Type requirements

The template parameter FrontInsertionSequence must be a Front Insertion Se-
quence.

Public base classes

None.

Systems/C++ C++ Library 189

Members

Member Where defined Description

front insert iterator
(FrontInsertionSequence&)

front insert iterator See below.

front insert iterator (const
front insert iterator&)

Trivial Iterator The copy constructor

front insert iterator
operator=(const
front insert iterator&)

Trivial Iterator The assignment oper-
ator

front insert iterator&
operator*()

Output Iterator Used to implement
the output iterator
expression *i = x.

front insert iterator
operator=(const
FrontInsertionSequence::
value type&)

Output Iterator Used to implement
the output iterator
expression *i = x.

front insert iterator&
operator++()

Output Iterator Preincrement.

front insert iterator&
operator++(int)

Output Iterator Postincrement.

output iterator tag
iterator category(const
front insert iterator&)

iterator tags Returns the iterator’s
category. This is a
global function, not a
member.

template<class
FrontInsertionSequence>
front insert iterator
<FrontInsertionSequence>
front inserter
(FrontInsertionSequence& S)

front insert iterator See below.

New members

These members are not defined in the Output Iterator requirements, but are specific
to front insert iterator.

Member Description

front insert iterator
(FrontInsertionSequence& S)

Constructs a front insert iterator
that inserts objects before the first el-
ement of S.

template<class FrontInsertionSequence>
front insert iterator
<FrontInsertionSequence>
front inserter
(FrontInsertionSequence& S);

Equivalent to front insert iterator
<FrontInsertionSequence>(S). This
is a global function, not a member func-
tion.

Notes

190 Systems/C++ C++ Library

Note the difference between assignment through a
FrontInsertionSequence::iterator and assignment through an
front insert iterator<FrontInsertionSequence>. If i is a valid
FrontInsertionSequence::iterator, then it points to some particular element
in the front insertion sequence; the expression *i = t replaces that element with t,
and does not change the total number of elements in the sequence. If ii is a valid
front insert iterator<FrontInsertionSequence>, however, then the expression
*ii = t is equivalent, for some FrontInsertionSequence seq, to the expression
seq.push front(t). That is, it does not overwrite any of seq’s elements and it
does change seq’s size. Note the difference between a front insert iterator
and an insert iterator. It may seem that a front insert iterator is the same
as an insert iterator constructed with an insertion point that is the beginning of
a sequence. In fact, though, there is a very important difference: every assignment
through a front insert iterator corresponds to an insertion before the first
element of the sequence. If you are inserting elements at the beginning of a sequence
using an insert iterator, then the elements will appear in the order in which
they were inserted. If, however, you are inserting elements at the beginning of a
sequence using a front insert iterator, then the elements will appear in the
reverse of the order in which they were inserted. This function exists solely for the
sake of convenience: since it is a non-member function, the template parameters
may be inferred and the type of the front insert iterator need not be declared
explicitly. One easy way to reverse a range and insert it at the beginning of a Front
Insertion Sequence S, for example, is copy(first, last, front inserter(S)).

See also

insert iterator, back insert iterator, Output Iterator, Sequence, Front Insertion Se-
quence, Iterator overview

8.5.4 back insert iterator

Description

Back insert iterator is an iterator adaptor that functions as an Output Iterator:
assignment through a back insert iterator inserts an object after the last element
of a Back Insertion Sequence.

Example

Systems/C++ C++ Library 191

list<int> L;
L.push_front(3);
back_insert_iterator<list<int> > ii(L);
*ii++ = 0;
*ii++ = 1;
*ii++ = 2;
copy(L.begin(), L.end(), ostream_iterator<int>(cout, " "));
// The values that are printed are 3 0 1 2

Definition

Defined in the standard header iterator, and in the nonstandard backward-
compatibility header iterator.h.

Template parameters

Parameter Description Default

BackInsertionSequence The type of Back Insertion Sequence into which
values will be inserted.

Model of

Output Iterator. An insert iterator’s set of value types (as defined in the Output Iter-
ator requirements) consists of a single type: BackInsertionSequence::value type.

Type requirements

The template parameter BackInsertionSequence must be a Back Insertion Se-
quence.

Public base classes

None.

Members

192 Systems/C++ C++ Library

Member Where defined Description

back insert iterator
(BackInsertionSequence&)

back insert iterator See below.

back insert iterator (const
back insert iterator&)

Trivial Iterator The copy constructor

back insert iterator
operator=(const
back insert iterator&)

Trivial Iterator The assignment opera-
tor

back insert iterator&
operator*()

Output Iterator Used to implement the
output iterator expres-
sion *i = x.

back insert iterator
operator=(const
BackInsertionSequence::
value type&)

Output Iterator Used to implement the
output iterator expres-
sion *i = x.

back insert iterator&
operator++()

Output Iterator Preincrement.

back insert iterator&
operator++(int)

Output Iterator Postincrement.

output iterator tag
iterator category(const
back insert iterator&)

iterator tags Returns the iterator’s
category. This is a
global function, not a
member.

template<class
BackInsertionSequence>
back insert iterator
<BackInsertionSequence>
back inserter
(BackInsertionSequence& S)

back insert iterator See below.

New members

These members are not defined in the Output Iterator requirements, but are specific
to back insert iterator.

Member function Description

back insert iterator
(BackInsertionSequence& S)

Constructs a back insert iterator
that inserts objects after the last ele-
ment of S. (That is, it inserts objects
just before S’s past-the-end iterator.)

template<class BackInsertionSequence>
back insert iterator
<BackInsertionSequence> back inserter
(BackInsertionSequence& S);

Equivalent to back insert iterator
<BackInsertionSequence>(S). This is
a global function, not a member func-
tion.

Notes

Note the difference between assignment through a
BackInsertionSequence::iterator and assignment through a

Systems/C++ C++ Library 193

back insert iterator<BackInsertionSequence>. If i is a valid
BackInsertionSequence::iterator, then it points to some particular element in
the back insertion sequence; the expression *i = t replaces that element with t,
and does not change the total number of elements in the back insertion sequence. If
ii is a valid back insert iterator<BackInsertionSequence>, however, then the
expression *ii = t is equivalent, to the expression seq.push back(t). That is, it
does not overwrite any of seq’s elements and it does change seq’s size. This func-
tion exists solely for the sake of convenience: since it is a non-member function, the
template parameters may be inferred and the type of the back insert iterator
need not be declared explicitly. One easy way to reverse a range and insert it at the
end of a Back Insertion Sequence S, for example, is reverse copy(first, last,
back inserter(S)).

See also

insert iterator, front insert iterator, Output Iterator, Back Insertion Sequence, Se-
quence, Iterator overview

8.5.5 insert iterator

Description

Insert iterator is an iterator adaptor that functions as an Output Iterator: as-
signment through an insert iterator inserts an object into a Container. Specif-
ically, if ii is an insert iterator, then ii keeps track of a Container c and an
insertion point p; the expression *ii = x performs the insertion c.insert(p, x).
There are two different Container concepts that define this expression: Sequence,
and Sorted Associative Container. Both concepts define insertion into a container
by means of c.insert(p, x), but the semantics of this expression is very different
in the two cases. For a Sequence S, the expression S.insert(p, x) means to insert
the value x immediately before the iterator p. That is, the two-argument version
of insert allows you to control the location at which the new element will be in-
serted. For a Sorted Associative Container, however, no such control is possible:
the elements in a Sorted Associative Container always appear in ascending order of
keys. Sorted Associative Containers define the two-argument version of insert as
an optimization. The first argument is only a hint: it points to the location where
the search will begin. If you assign through an insert iterator several times, then
you will be inserting several elements into the underlying container. In the case of
a Sequence, they will appear at a particular location in the underlying sequence, in
the order in which they were inserted: one of the arguments to insert iterator’s
constructor is an iterator p, and the new range will be inserted immediately be-
fore p. In the case of a Sorted Associative Container, however, the iterator in the
insert iterator’s constructor is almost irrelevant. The new elements will not nec-
essarily form a contiguous range; they will appear in the appropriate location in
the container, in ascending order by key. The order in which they are inserted
only affects efficiency: inserting an already-sorted range into a Sorted Associative
Container is an O(N) operation.

194 Systems/C++ C++ Library

Example

Insert a range of elements into a list.

list<int> L;
L.push_front(3);
insert_iterator<list<int> > ii(L, L.begin());
*ii++ = 0;
*ii++ = 1;
*ii++ = 2;
copy(L.begin(), L.end(), ostream_iterator<int>(cout, " "));
// The values that are printed are 0 1 2 3.

Merge two sorted lists, inserting the resulting range into a set. Note that a set
never contains duplicate elements.

int main()
{
const int N = 6;

int A1[N] = {1, 3, 5, 7, 9, 11};
int A2[N] = {1, 2, 3, 4, 5, 6};
set<int> result;

merge(A1, A1 + N, A2, A2 + N,
inserter(result, result.begin()));

copy(result.begin(), result.end(), ostream_iterator<int>(cout, " "));
cout << endl;

// The output is "1 2 3 4 5 6 7 9 11".
}

Definition

Defined in the standard header iterator, and in the nonstandard backward-
compatibility header iterator.h.

Template parameters

Parameter Description Default

Container The type of Container into which values will be inserted.

Model of

Systems/C++ C++ Library 195

Output Iterator. An insert iterator’s set of value types (as defined in the Output
Iterator requirements) consists of a single type: Container::value type.

Type requirements

• The template parameter Container is a model of Container.

• Container is variable-sized, as described in the

Container requirements.

• Container has a two-argument insert member function. Specifically, if c is
an object of type Container, p is an object of type Container::iterator and
v is an object of type Container::value type, then c.insert(p, v) must
be a valid expression.

Public base classes

None.

Members

Member Where defined Description

insert iterator(Container&,
Container::iterator)

insert iterator See below.

insert iterator(const
insert iterator&)

Trivial Iterator The copy constructor

insert iterator&
operator=(const
insert iterator&)

Trivial Iterator The assignment operator

insert iterator&
operator*()

Output Iterator Used to implement the output
iterator expression *i = x.

insert iterator&
operator=(const
Container::value type&)

Output Iterator Used to implement the output
iterator expression *i = x.

insert iterator&
operator++()

Output Iterator Preincrement.

insert iterator&
operator++(int)

Output Iterator Postincrement.

output iterator tag
iterator category(const
insert iterator&)

iterator tags Returns the iterator’s category.
This is a global function, not a
member.

template<class
Container, class Iter)
insert iterator<Container>
inserter(Container& C,
Iter i);

insert iterator See below.

196 Systems/C++ C++ Library

New members

These members are not defined in the Output Iterator requirements, but are specific
to insert iterator.

Member Description

insert iterator(Container&
C, Container::iterator i)

Constructs an insert iterator that inserts objects in
C. If Container is a Sequence, then each object will be
inserted immediately before the element pointed to by
i. If C is a Sorted Associative Container, then the first
insertion will use i as a hint for beginning the search.
The iterator i must be a dereferenceable or past-the-
end iterator in C.

template<class
Container, class Iter)
insert iterator<Container>
inserter(Container& C,
Iter i);

Equivalent to insert iterator<Container>(C, i).
This is a global function, not a member function.

Notes

Note the difference between assignment through a Container::iterator
and assignment through an insert iterator<Container>. If i is a valid
Sequence::iterator, then it points to some particular element in the container;
the expression *i = t replaces that element with t, and does not change the total
number of elements in the container. If ii is a valid insert iterator<container>,
however, then the expression *ii = t is equivalent, for some container c and some
valid container::iterator j, to the expression c.insert(j, t). That is, it does
not overwrite any of c’s elements and it does change c’s size. This function exists
solely for the sake of convenience: since it is a non-member function, the template
parameters may be inferred and the type of the insert iterator need not be de-
clared explicitly. One easy way to reverse a range and insert it into a Sequence S,
for example, is reverse copy(first, last, inserter(S, S.begin())).

See also

front insert iterator, back insert iterator, Output Iterator, Sequence, Iterator
overview

8.5.6 reverse iterator

Description

Reverse iterator is an iterator adaptor that enables backwards
traversal of a range. Operator++ applied to an object of class
reverse iterator<RandomAccessIterator> means the same thing as operator--

Systems/C++ C++ Library 197

applied to an object of class RandomAccessIterator. There are two different
reverse iterator adaptors: the class reverse iterator has a template argument
that is a Random Access Iterator, and the class reverse bidirectional iterator
has a template argument that is a Bidirectional Iterator.

Example

template <class T>
void forw(const vector<T>& V)
{

vector<T>::iterator first = V.begin();
vector<T>::iterator last = V.end();
while (first != last)

cout << *first++ << endl;
}

template <class T>
void rev(const vector<T>& V)
{

typedef reverse_iterator<vector<T>::iterator,
T,
vector<T>::reference_type,
vector<T>::difference_type>

reverse_iterator;
reverse_iterator rfirst(V.end());
reverse_iterator rlast(V.begin());

while (rfirst != rlast)
cout << *rfirst++ << endl;

}

In the function forw, the elements are printed in the order *first, *(first+1),
..., *(last-1). In the function rev, they are printed in the order *(last - 1),
*(last-2), ..., *first.

Definition

Defined in the standard header iterator, and in the nonstandard backward-
compatibility header iterator.h.

Template parameters

198 Systems/C++ C++ Library

Parameter Description Default

RandomAccessIterator The base iterator class. Incrementing an ob-
ject of class reverse iterator<Iterator> cor-
responds to decrementing an object of class
Iterator.

T The reverse iterator’s value type. This should
always be the same as the base iterator’s value
type.

Reference The reverse iterator’s reference type. This
should always be the same as the base iterator’s
reference type.

T&

Distance The reverse iterator’s distance type. This should
always be the same as the base iterator’s dis-
tance type.

ptrdiff t

Model of

Random Access Iterator

Type requirements

The base iterator type (that is, the template parameter RandomAccessIterator)
must be a Random Access Iterator. The reverse iterator’s value type, refer-
ence type, and distance type (that is, the template parameters T, Reference, and
Distance, respectively) must be the same as the base iterator’s value type, reference
type, and distance type.

Public base classes

None.

Members

Member Where defined Description

self reverse iterator See below
reverse iterator() Trivial Iterator The default constructor
reverse iterator(const
reverse iterator& x)

Trivial Iterator The copy constructor

reverse iterator&
operator=(const
reverse iterator& x)

Trivial Iterator The assignment operator

reverse iterator
(RandomAccessIterator
x)

reverse iterator See below.

Systems/C++ C++ Library 199

Member Where defined Description

RandomAccessIterator
base()

reverse iterator See below.

Reference operator*()
const

Trivial Iterator The dereference operator

reverse iterator&
operator++()

Forward Iterator Preincrement

reverse iterator
operator++(int)

Forward Iterator Postincrement

reverse iterator&
operator--()

Bidirectional Iterator Predecrement

reverse iterator
operator--(int)

Bidirectional Iterator Postdecrement

reverse iterator
operator+(Distance)

Random Access Iterator Iterator addition

reverse iterator&
operator+=(Distance)

Random Access Iterator Iterator addition

reverse iterator
operator-(Distance)

Random Access Iterator Iterator subtraction

reverse iterator&
operator-=(Distance)

Random Access Iterator Iterator subtraction

Reference
operator[](Distance)

Random Access Iterator Random access to an ele-
ment.

reverse iterator
operator+(Distance,
reverse iterator)

Random Access Iterator Iterator addition. This is a
global function, not a mem-
ber function.

Distance operator-(const
reverse iterator&, const
reverse iterator&)

Random Access Iterator Finds the distance between
two iterators. This is a
global function, not a mem-
ber function.

bool operator==(const
reverse iterator&, const
reverse iterator&)

Trivial Iterator Compares two iterators for
equality. This is a global
function, not a member
function.

bool operator<(const
reverse iterator&, const
reverse iterator&)

Random Access Iterator Determines whether the first
argument precedes the sec-
ond. This is a global func-
tion, not a member function.

random access iterator tag
iterator category(const
reverse iterator&)

Iterator tags Returns the iterator’s cate-
gory. This is a global func-
tion, not a member function.

T* value type(const
reverse iterator&)

Iterator tags Returns the iterator’s value
type. This is a global func-
tion, not a member function.

Distance*
distance type(const
reverse iterator&)

Iterator tags Returns the iterator’s dis-
tance type. This is a
global function, not a mem-
ber function.

New members

200 Systems/C++ C++ Library

These members are not defined in the Random Access Iterator requirements, but
are specific to reverse iterator.

Member Description

self A typedef for reverse iterator<RandomAccessIterator,
T, Reference, Distance>.

RandomAccessIterator
base()

Returns the current value of the reverse iterator’s base
iterator. If ri is a reverse iterator and i is any iterator,
the two fundamental identities of reverse iterators can be
written as reverse iterator(i).base() == i and &*ri
== &*(ri.base() - 1).

reverse iterator
(RandomAccessIterator
i)

Constructs a reverse iterator whose base iterator is i.

Notes

There isn’t really any good reason to have two separate classes: this separation
is purely because of a technical limitation in some of today’s C++ compilers. If
the two classes were combined into one, then there would be no way to declare
the return types of the iterator tag functions iterator category, distance type
and value type correctly. The iterator traits class solves this problem: it addresses
the same issues as the iterator tag functions, but in a cleaner and more flexible
manner. Iterator traits, however, rely on partial specialization, and many C++
compilers do not yet implement partial specialization. Once compilers that support
partial specialization become more common, these two different reverse iterator
classes will be combined into a single class. The declarations for rfirst and
rlast are written in this clumsy form simply as an illustration of how to declare
a reverse iterator. Vector is a Reversible Container, so it provides a typedef
for the appropriate instantiation of reverse iterator. The usual way of declaring
these variables is much simpler:

vector<T>::reverse_iterator rfirst = rbegin();
vector<T>::reverse_iterator rlast = rend();

Note the implications of this remark. The variable rfirst is initialized as
reverse iterator<...> rfirst(V.end());. The value obtained when it is deref-
erenced, however, is *(V.end() - 1). This is a general property: the fundamental
identity of reverse iterators is &*(reverse iterator(i)) == &*(i - 1). This code
sample shows why this identity is important: if [f, l) is a valid range, then it allows
[reverse iterator(l), reverse iterator(f)) to be a valid range as well. Note
that the iterator l is not part of the range, but it is required to be dereferenceable
or past-the-end. There is no requirement that any such iterator precedes f.

Systems/C++ C++ Library 201

See also

Reversible Container, reverse bidirectional iterator, Random Access Iterator, itera-
tor tags, Iterator Overview

8.5.7 raw storage iterator

Description

In C++, the operator new allocates memory for an object and then creates an
object at that location by calling a constructor. Occasionally, however, it is useful
to separate those two operations. If i is an iterator that points to a region of
uninitialized memory, then you can use construct to create an object in the location
pointed to by i. Raw storage iterator is an adaptor that makes this procedure
more convenient. If r is a raw storage iterator, then it has some underlying
iterator i. The expression *r = x is equivalent to construct(&*i, x).

Example

class Int {
public:
Int(int x) : val(x) {}
int get() { return val; }

private:
int val;

};

int main()
{
int A1[] = {1, 2, 3, 4, 5, 6, 7};
const int N = sizeof(A1) / sizeof(int);

Int* A2 = (Int*) malloc(N * sizeof(Int));
transform(A1, A1 + N,

raw_storage_iterator<Int*, int>(A2),
negate<int>());

}

Definition

Defined in the standard header memory, and in the nonstandard backward-
compatibility header iterator.h.

Template parameters

202 Systems/C++ C++ Library

Parameter Description Default

OutputIterator The type of the raw storage iterator’s underlying it-
erator.

T The type that will be used as the argument to the con-
structor.

Model of

Output Iterator

Type requirements

• ForwardIterator is a model of Forward Iterator

• ForwardIterator’s value type has a constructor that takes a single argument
of type T.

Public base classes

None.

Members

Member Where defined Description

raw storage iterator
(ForwardIterator x)

raw storage iterator See below.

raw storage iterator(const
raw storage iterator&)

trivial iterator The copy constructor

raw storage iterator&
operator=(const
raw storage iterator&)

trivial iterator The assignment operator

raw storage iterator&
operator*()

Output Iterator Used to implement the
output iterator expres-
sion *i = x.

raw storage iterator&
operator=(const
Sequence::value type&)

Output Iterator Used to implement the
output iterator expres-
sion *i = x.

raw storage iterator&
operator++()

Output Iterator Preincrement.

raw storage iterator&
operator++(int)

Output Iterator Postincrement.

output iterator tag
iterator category(const
raw storage iterator&)

iterator tags Returns the iterator’s
category. This is a global
function, not a member.

Systems/C++ C++ Library 203

New members

These members are not defined in the Output Iterator requirements, but are specific
to raw storage iterator.

Function Description

raw storage iterator(ForwardIterator i) Creates a
raw storage iterator whose
underlying iterator is i.

raw storage iterator& operator=(const T& val) Constructs an object of
ForwardIterator’s value
type at the location pointed to
by the iterator, using val as
the constructor’s argument.

Notes

In particular, this sort of low-level memory management is used in the implementa-
tion of some container classes.

See also

Allocators, construct, destroy, uninitialized copy uninitialized fill,
uninitialized fill n,

204 Systems/C++ C++ Library

Chapter 9

Algorithms

9.1 Non-mutating algorithms

9.1.1 for each

Prototype

template <class InputIterator, class UnaryFunction>
UnaryFunction for_each(InputIterator first, InputIterator last,

UnaryFunction f);

Description

For each applies the function object f to each element in the range [first, last);
f’s return value, if any, is ignored. Applications are performed in forward order, i.e.
from first to last. For each returns the function object after it has been applied
to each element.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• InputIterator is a model of Input Iterator

• UnaryFunction is a model of Unary Function

Systems/C++ C++ Library 205

• UnaryFunction does not apply any non-constant operation through its argu-
ment.

• InputIterator’s value type is convertible to UnaryFunction’s argument type.

Preconditions

• [first, last) is a valid range.

Complexity

Linear. Exactly last - first applications of UnaryFunction.

Example

template<class T> struct print : public unary_function<T, void>
{
print(ostream& out) : os(out), count(0) {}
void operator() (T x) { os << x << ’ ’; ++count; }
ostream& os;
int count;

};

int main()
{
int A[] = {1, 4, 2, 8, 5, 7};
const int N = sizeof(A) / sizeof(int);

print<int> P = for_each(A, A + N, print<int>(cout));
cout << endl << P.count << " objects printed." << endl;

}

Notes

This return value is sometimes useful, since a function object may have local state.
It might, for example, count the number of times that it is called, or it might have
a status flag to indicate whether or not a call succeeded.

See also

The function object overview, count, copy

206 Systems/C++ C++ Library

9.1.2 find

Prototype

template<class InputIterator, class EqualityComparable>
InputIterator find(InputIterator first, InputIterator last,

const EqualityComparable& value);

Description

Returns the first iterator i in the range [first, last) such that *i == value.
Returns last if no such iterator exists.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• EqualityComparable is a model of EqualityComparable.

• InputIterator is a model of InputIterator.

• Equality is defined between objects of type EqualityComparable and objects
of InputIterator’s value type.

Preconditions

• [first, last) is a valid range.

Complexity

Linear: at most last - first comparisons for equality.

Example

list<int> L;
L.push_back(3);
L.push_back(1);
L.push_back(7);

list<int>::iterator result = find(L.begin(), L.end(), 7);
assert(result == L.end() || *result == 7);

Systems/C++ C++ Library 207

Notes

See also

find if.

9.1.3 find if

Prototype

template<class InputIterator, class Predicate>
InputIterator find_if(InputIterator first, InputIterator last,

Predicate pred);

Description

Returns the first iterator i in the range [first, last) such that pred(*i) is true.
Returns last if no such iterator exists.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• Predicate is a model of Predicate.

• InputIterator is a model of InputIterator.

• The value type of InputIterator is convertible to the argument type of Predi-
cate.

Preconditions

• [first, last) is a valid range.

• For each iterator i in the range [first, last), *i is in the domain of Predi-
cate.

208 Systems/C++ C++ Library

Complexity

Linear: at most last - first applications of Pred.

Example

list<int> L;
L.push_back(-3);
L.push_back(0);
L.push_back(3);
L.push_back(-2);

list<int>::iterator result = find_if(L.begin(), L.end(),
bind2nd(greater<int>(), 0));

assert(result == L.end() || *result > 0);

Notes

See also

find.

9.1.4 adjacent find

Prototype

Adjacent find is an overloaded name; there are actually two adjacent find func-
tions.

template <class ForwardIterator>
ForwardIterator adjacent_find(ForwardIterator first,

ForwardIterator last);

template <class ForwardIterator, class BinaryPredicate>
ForwardIterator adjacent_find(ForwardIterator first,

ForwardIterator last,
BinaryPredicate binary_pred);

Description

The first version of adjacent find returns the first iterator i such that i and i+1
are both valid iterators in [first, last), and such that *i == *(i+1). It returns
last if no such iterator exists. The second version of adjacent find returns the

Systems/C++ C++ Library 209

first iterator i such that i and i+1 are both valid iterators in [first, last), and
such that binary pred(*i, *(i+1)) is true. It returns last if no such iterator
exists.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator’s value type is Equality Comparable.

For the second version:

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator’s value type is convertible to BinaryPredicate’s first ar-
gument type and to its second argument type.

Preconditions

• [first, last) is a valid range.

Complexity

Linear. If first == last then no comparison are performed; otherwise, at most
(last - first) - 1 comparisons.

Example

Find the first element that is greater than its successor.

int A[] = {1, 2, 3, 4, 6, 5, 7, 8};
const int N = sizeof(A) / sizeof(int);

const int* p = adjacent_find(A, A + N, greater<int>());

cout << "Element " << p - A << " is out of order: "
<< *p << " > " << *(p + 1) << "." << endl;

210 Systems/C++ C++ Library

Notes

See also

find, mismatch, equal, search

9.1.5 find first of

Prototype

find first of is an overloaded name; there are actually two find first of func-
tions.

template <class InputIterator, class ForwardIterator>
InputIterator find_first_of(InputIterator first1,

InputIterator last1,
ForwardIterator first2,
ForwardIterator last2);

template <class InputIterator, class ForwardIterator,
class BinaryPredicate>

InputIterator find_first_of(InputIterator first1,
InputIterator last1,
ForwardIterator first2,
ForwardIterator last2,
BinaryPredicate comp);

Description

Find first of is similar to find, in that it performs linear seach through a range
of Input Iterators. The difference is that while find searches for one particular
value, find first of searches for any of several values. Specifically, find first of
searches for the first occurrance in the range [first1, last1) of any of the ele-
ments in [first2, last2). (Note that this behavior is reminiscent of the function
strpbrk from the standard C library.) The two versions of find first of differ
in how they compare elements for equality. The first uses operator==, and the
second uses and arbitrary user-supplied function object comp. The first version
returns the first iterator i in [first1, last1) such that, for some iterator j in
[first2, last2), *i == *j. The second returns the first iterator i in [first1,
last1) such that, for some iterator j in [first2, last2), comp(*i, *j) is true.
As usual, both versions return last1 if no such iterator i exists.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Systems/C++ C++ Library 211

Requirements on types

For the first version:

• InputIterator is a model of Input Iterator.

• ForwardIterator is a model of Forward Iterator.

• InputIterator’s value type is EqualityComparable, and can be compared for
equality with ForwardIterator’s value type.

For the second version:

• InputIterator is a model of Input Iterator.

• ForwardIterator is a model of Forward Iterator.

• BinaryPredicate is a model of Binary Predicate.

• InputIterator’s value type is convertible to BinaryPredicate’s first argu-
ment type.

• ForwardIterator’s value type is convertible to BinaryPredicate’s second
argument type.

Preconditions

• [first1, last1) is a valid range.

• [first2, last2) is a valid range.

Complexity

At most (last1 - first1) * (last2 - first2) comparisons.

Example

Like strpbrk, one use for find first of is finding whitespace in a string; space,
tab, and newline are all whitespace characters.

212 Systems/C++ C++ Library

int main()
{
const char* WS = "\t\n ";
const int n_WS = strlen(WS);

char* s1 = "This sentence contains five words.";
char* s2 = "OneWord";

char* end1 = find_first_of(s1, s1 + strlen(s1),
WS, WS + n_WS);

char* end2 = find_first_of(s2, s2 + strlen(s2),
WS, WS + n_WS);

printf("First word of s1: \%.*s\n", end1 - s1, s1);
printf("First word of s2: \%.*s\n", end2 - s2, s2);

}

Notes

See also

find, find if, search

9.1.6 count

Prototype

Count is an overloaded name: there are two count functions.

template <class InputIterator, class EqualityComparable>
iterator_traits<InputIterator>::difference_type
count(InputIterator first, InputIterator last,

const EqualityComparable& value);

template <class InputIterator, class EqualityComparable, class Size>
void count(InputIterator first, InputIterator last,

const EqualityComparable& value,
Size& n);

Description

Count finds the number of elements in [first, last) that are equal to value. More
precisely, the first version of count returns the number of iterators i in [first,

Systems/C++ C++ Library 213

last) such that *i == value. The second version of count adds to n the number of
iterators i in [first, last) such that *i == value. The second version of count
was the one defined in the original STL, and the first version is the one defined
in the draft C++ standard; the definition was changed because the older interface
was clumsy and error-prone. The older interface required the use of a temporary
variable, which had to be initialized to 0 before the call to count. Both interfaces
are currently supported , for reasons of backward compatibility, but eventually the
older version will be removed.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version, which takes three arguments:

• InputIterator is a model of Input Iterator.

• EqualityComparable is a model of Equality Comparable.

• InputIterator’s value type is a model of Equality Comparable.

• An object of InputIterator’s value type can be compared for equality with
an object of type EqualityComparable.

For the second version, which takes four arguments:

• InputIterator is a model of Input Iterator.

• EqualityComparable is a model of Equality Comparable.

• Size is an integral type that can hold values of InputIterator’s distance
type.

• InputIterator’s value type is a model of Equality Comparable.

• An object of InputIterator’s value type can be compared for equality with
an object of type EqualityComparable.

Preconditions

• [first, last) is a valid range.

For the second version:

214 Systems/C++ C++ Library

• [first, last) is a valid range.

• n plus the number of elements equal to value does not exceed the maximum
value of type Size.

Complexity

Linear. Exactly last - first comparisons.

Example

int main() {
int A[] = { 2, 0, 4, 6, 0, 3, 1, -7 };
const int N = sizeof(A) / sizeof(int);

cout << "Number of zeros: "
<< count(A, A + N, 0)
<< endl;

}

Notes

The new count interface uses the iterator traits class, which relies on a C++
feature known as partial specialization. Many of today’s compilers don’t implement
the complete standard; in particular, many compilers do not support partial spe-
cialization. If your compiler does not support partial specialization, then you will
not be able to use the newer version of count, or any other STL components that
involve iterator traits.

See also

count if, find, find if

9.1.7 count if

Prototype

Count if is an overloaded name: there are two count if functions.

Systems/C++ C++ Library 215

template <class InputIterator, class Predicate>
iterator_traits<InputIterator>::difference_type
count_if(InputIterator first, InputIterator last, Predicate pred);

template <class InputIterator, class Predicate, class Size>
void count_if(InputIterator first, InputIterator last,

Predicate pred,
Size& n);

Description

Count if finds the number of elements in [first, last) that satisfy the predicate
pred. More precisely, the first version of count if returns the number of iterators
i in [first, last) such that pred(*i) is true. The second version of count adds
to n the number of iterators i in [first, last) such that pred(*i) is true. The
second version of count if was the one defined in the original STL, and the first
version is the one defined in the draft C++ standard; the definition was changed
because the older interface was clumsy and error-prone. The older interface required
the use of a temporary variable, which had to be initialized to 0 before the call
to count if. Both interfaces are currently supported , for reasons of backward
compatibility, but eventually the older version will be removed.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version, which takes three arguments:

• InputIterator is a model of Input Iterator.

• Predicate is a model of Predicate.

• InputIterator’s value type is convertible to Predicate’s argument type.

For the second version, which takes four arguments:

• InputIterator is a model of Input Iterator.

• Predicate is a model of Predicate.

• Size is an integral type that can hold values of InputIterator’s distance
type.

• InputIterator’s value type is convertible to Predicate’s argument type.

216 Systems/C++ C++ Library

Preconditions

For the first version:

• [first, last) is a valid range.

For the second version:

• [first, last) is a valid range.

• n plus the number of elements that satisfy pred does not exceed the maximum
value of type Size.

Complexity

Linear. Exactly last - first applications of pred.

Example

int main() {
int A[] = { 2, 0, 4, 6, 0, 3, 1, -7 };
const int N = sizeof(A) / sizeof(int);

cout << "Number of even elements: "
<< count_if(A, A + N,

compose1(bind2nd(equal_to<int>(), 0),
bind2nd(modulus<int>(), 2)))

<< endl;
}

Notes

The new count interface uses the iterator traits class, which relies on a C++
feature known as partial specialization. Many of today’s compilers don’t implement
the complete standard; in particular, many compilers do not support partial spe-
cialization. If your compiler does not support partial specialization, then you will
not be able to use the newer version of count, or any other STL components that
involve iterator traits.

See also

count, find, find if

Systems/C++ C++ Library 217

9.1.8 mismatch

Prototype

Mismatch is an overloaded name; there are actually two mismatch functions.

template <class InputIterator1, class InputIterator2>
pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2);

template <class InputIterator1, class InputIterator2,
class BinaryPredicate>

pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2,
BinaryPredicate binary_pred);

Description

Mismatch finds the first position where the two ranges [first1, last1) and
[first2, first2 + (last1 - first1)) differ. The two versions of mismatch use
different tests for whether elements differ. The first version of mismatch finds the
first iterator i in [first1, last1) such that *i != *(first2 + (i - first1)).
The return value is a pair whose first element is i and whose second element is
*(first2 + (i - first1)). If no such iterator i exists, the return value is a pair
whose first element is last1 and whose second element is *(first2 + (last1 -
first1)). The second version of mismatch finds the first iterator i in [first1,
last1) such that binary pred(*i, *(first2 + (i - first1)) is false. The re-
turn value is a pair whose first element is i and whose second element is *(first2
+ (i - first1)). If no such iterator i exists, the return value is a pair whose first
element is last1 and whose second element is *(first2 + (last1 - first1)).

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

218 Systems/C++ C++ Library

• InputIterator1’s value type is a model of Equality Comparable.

• InputIterator2’s value type is a model of Equality Comparable.

• InputIterator1’s value type can be compared for equality with
InputIterator2’s value type.

For the second version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• BinaryPredicate is a model of Binary Predicate.

• InputIterator1’s value type is convertible to BinaryPredicate’s first argu-
ment type.

• InputIterator2’s value type is convertible to BinaryPredicate’s second ar-
gument type.

Preconditions

• [first1, last1) is a valid range.

• [first2, first2 + (last2 - last1)) is a valid range.

Complexity

Linear. At most last1 - first1 comparisons.

Example

int A1[] = { 3, 1, 4, 1, 5, 9, 3 };
int A2[] = { 3, 1, 4, 2, 8, 5, 7 };
const int N = sizeof(A1) / sizeof(int);

pair<int*, int*> result = mismatch(A1, A1 + N, A2);
cout << "The first mismatch is in position " << result.first - A1

<< endl;
cout << "Values are: " << *(result.first) << ", " << *(result.second)

<< endl;

Notes

Systems/C++ C++ Library 219

See also

equal, search, find, find if

9.1.9 equal

Prototype

Equal is an overloaded name; there are actually two equal functions.

template <class InputIterator1, class InputIterator2>
bool equal(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2);

template <class InputIterator1, class InputIterator2,
class BinaryPredicate>

bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, BinaryPredicate binary_pred);

Description

Equal returns true if the two ranges [first1, last1) and [first2, first2 +
(last1 - first1)) are identical when compared element-by-element, and other-
wise returns false. The first version of equal returns true if and only if for
every iterator i in [first1, last1), *i == *(first2 + (i - first1)). The
second version of equal returns true if and only if for every iterator i in [first1,
last1), binary pred(*i, *(first2 + (i - first1)) is true.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• InputIterator1’s value type is a model of Equality Comparable.

• InputIterator2’s value type is a model of Equality Comparable.

220 Systems/C++ C++ Library

• InputIterator1’s value type can be compared for equality with
InputIterator2’s value type.

For the second version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• BinaryPredicate is a model of Binary Predicate.

• InputIterator1’s value type is convertible to BinaryPredicate’s first argu-
ment type.

• InputIterator2’s value type is convertible to BinaryPredicate’s second ar-
gument type.

Preconditions

• [first1, last1) is a valid range.

• [first2, first2 + (last2 - last1)) is a valid range.

Complexity

Linear. At most last1 - first1 comparisons.

Example

int A1[] = { 3, 1, 4, 1, 5, 9, 3 };
int A2[] = { 3, 1, 4, 2, 8, 5, 7 };
const int N = sizeof(A1) / sizeof(int);

cout << "Result of comparison: " << equal(A1, A1 + N, A2) << endl;

Notes

Note that this is very similar to the behavior of mismatch: The only real difference
is that while equal will simply return false if the two ranges differ, mismatch
returns the first location where they do differ. The expression equal(f1, l1, f2)
is precisely equivalent to the expression mismatch(f1, l1, f2).first == l1, and
this is in fact how equal could be implemented.

Systems/C++ C++ Library 221

See also

mismatch, search, find, find if

9.1.10 search

Prototype

Search is an overloaded name; there are actually two search functions.

template <class ForwardIterator1, class ForwardIterator2>
ForwardIterator1 search(ForwardIterator1 first1,

ForwardIterator1 last1,
ForwardIterator2 first2,
ForwardIterator2 last2);

template <class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1 search(ForwardIterator1 first1,
ForwardIterator1 last1,
ForwardIterator2 first2,
ForwardIterator2 last2,
BinaryPredicate binary_pred);

Description

Search finds a subsequence within the range [first1, last1) that is identical to
[first2, last2) when compared element-by-element. It returns an iterator point-
ing to the beginning of that subsequence, or else last1 if no such subsequence exists.
The two versions of search differ in how they determine whether two elements are
the same: the first uses operator==, and the second uses the user-supplied function
object binary pred. The first version of search returns the first iterator i in the
range [first1, last1 - (last2 - first2)) such that, for every iterator j in
the range [first2, last2), *(i + (j - first2)) == *j. The second version re-
turns the first iterator i in [first1, last1 - (last2 - first2)) such that, for
every iterator j in [first2, last2), binary pred(*(i + (j - first2)), *j) is
true. These conditions simply mean that every element in the subrange beginning
with i must be the same as the corresponding element in [first2, last2).

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

222 Systems/C++ C++ Library

Requirements on types

For the first version:

• ForwardIterator1 is a model of Forward Iterator.

• ForwardIterator2 is a model of Forward Iterator.

• ForwardIterator1’s value type is a model of EqualityComparable.

• ForwardIterator2’s value type is a model of EqualityComparable.

• Objects of ForwardIterator1’s value type can be compared for equality with
Objects of ForwardIterator2’s value type.

For the second version:

• ForwardIterator1 is a model of Forward Iterator.

• ForwardIterator2 is a model of Forward Iterator.

• BinaryPredicate is a model of Binary Predicate.

• ForwardIterator1’s value type is convertible to BinaryPredicate’s first ar-
gument type.

• ForwardIterator2’s value type is convertible to BinaryPredicate’s second
argument type.

Preconditions

• [first1, last1) is a valid range.

• [first2, last2) is a valid range.

Complexity

Worst case behavior is quadratic: at most (last1 - first1) * (last2 -
first2) comparisons. This worst case, however, is rare. Average complexity is
linear.

Systems/C++ C++ Library 223

Example

const char S1[] = "Hello, world!";
const char S2[] = "world";
const int N1 = sizeof(S1) - 1;
const int N2 = sizeof(S2) - 1;

const char* p = search(S1, S1 + N1, S2, S2 + N2);
printf("Found subsequence \"%s\" at character %d of sequence \"%s\".\n",

S2, p - S1, S1);

Notes

The reason that this range is [first1, last1 - (last2 - first2)), instead of
simply [first1, last1), is that we are looking for a subsequence that is equal to
the complete sequence [first2, last2). An iterator i can’t be the beginning of
such a subsequence unless last1 - i is greater than or equal to last2 - first2.
Note the implication of this: you may call search with arguments such that last1
- first1 is less than last2 - first2, but such a search will always fail.

See also

find, find if, find end, search n, mismatch, equal

9.1.11 search n

Prototype

Search n is an overloaded name; there are actually two search n functions.

template <class ForwardIterator, class Integer, class T>
ForwardIterator search_n(ForwardIterator first, ForwardIterator last,

Integer count, const T& value);

template <class ForwardIterator, class Integer,
class T, class BinaryPredicate>

ForwardIterator search_n(ForwardIterator first, ForwardIterator last,
Integer count, const T& value,
BinaryPredicate binary_pred);

Description

Search n searches for a subsequence of count consecutive elements in the range
[first, last), all of which are equal to value. It returns an iterator pointing to

224 Systems/C++ C++ Library

the beginning of that subsequence, or else last if no such subsequence exists. The
two versions of search n differ in how they determine whether two elements are
the same: the first uses operator==, and the second uses the user-supplied function
object binary pred. The first version of search returns the first iterator i in the
range [first, last - count) such that, for every iterator j in the range [i,
i + count), *j == value. The second version returns the first iterator i in the
range [first, last - count) such that, for every iterator j in the range [i, i +
count), binary pred(*j, value) is true.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• ForwardIterator is a model of Forward Iterator.

• Integer is an integral type.

• T is a model of EqualityComparable.

• ForwardIterator’s value type is a model of EqualityComparable.

• Objects of ForwardIterator’s value type can be compared for equality with
Objects of type T.

For the first version:

• ForwardIterator is a model of Forward Iterator.

• Integer is an integral type.

• T is a model of EqualityComparable.

• BinaryPredicate is a model of Binary Predicate.

• ForwardIterator’s value type is convertible to BinaryPredicate’s first ar-
gument type.

• T is convertible to BinaryPredicate’s second argument type.

Preconditions

• [first, last) is a valid range.

• count is non-negative .

Systems/C++ C++ Library 225

Complexity

Linear. Search n performs at most last - first comparisons. (The C++ stan-
dard permits the complexity to be O(n (last - first)), but this is unnecessarily
lax. There is no reason for search n to examine any element more than once.)

Example

bool eq_nosign(int x, int y) { return abs(x) == abs(y); }

void lookup(int* first, int* last, size_t count, int val) {
cout << "Searching for a sequence of "

<< count
<< " ’" << val << "’"
<< (count != 1 ? "s: " : ": ");

int* result = search_n(first, last, count, val);
if (result == last)
cout << "Not found" << endl;

else
cout << "Index = " << result - first << endl;

}

void lookup_nosign(int* first, int* last, size_t count, int val) {
cout << "Searching for a (sign-insensitive) sequence of "

<< count
<< " ’" << val << "’"
<< (count != 1 ? "s: " : ": ");

int* result = search_n(first, last, count, val, eq_nosign);
if (result == last)
cout << "Not found" << endl;

else
cout << "Index = " << result - first << endl;

}

int main() {
const int N = 10;
int A[N] = {1, 2, 1, 1, 3, -3, 1, 1, 1, 1};

lookup(A, A+N, 1, 4);
lookup(A, A+N, 0, 4);
lookup(A, A+N, 1, 1);
lookup(A, A+N, 2, 1);
lookup(A, A+N, 3, 1);
lookup(A, A+N, 4, 1);

lookup(A, A+N, 1, 3);
lookup(A, A+N, 2, 3);
lookup_nosign(A, A+N, 1, 3);
lookup_nosign(A, A+N, 2, 3);

}

226 Systems/C++ C++ Library

The output is

Searching for a sequence of 1 ’4’: Not found
Searching for a sequence of 0 ’4’s: Index = 0
Searching for a sequence of 1 ’1’: Index = 0
Searching for a sequence of 2 ’1’s: Index = 2
Searching for a sequence of 3 ’1’s: Index = 6
Searching for a sequence of 4 ’1’s: Index = 6
Searching for a sequence of 1 ’3’: Index = 4
Searching for a sequence of 2 ’3’s: Not found
Searching for a (sign-insensitive) sequence of 1 ’3’: Index = 4
Searching for a (sign-insensitive) sequence of 2 ’3’s: Index = 4

Notes

Note that count is permitted to be zero: a subsequence of zero elements is well
defined. If you call search n with count equal to zero, then the search will always
succeed: no matter what value is, every range contains a subrange of zero consecu-
tive elements that are equal to value. When search n is called with count equal to
zero, the return value is always first. The reason that this range is [first, last
- count), rather than just [first, last), is that we are looking for a subsequence
whose length is count; an iterator i can’t be the beginning of such a subsequence
unless last - count is greater than or equal to count. Note the implication of
this: you may call search n with arguments such that last - first is less than
count, but such a search will always fail.

See also

search, find end, find, find if

9.1.12 find end

Prototype

find end is an overloaded name; there are actually two find end functions.

Systems/C++ C++ Library 227

template <class ForwardIterator1, class ForwardIterator2>
ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2);

template <class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate comp);

Description

Find end is misnamed: it is much more similar to search than to find, and a
more accurate name would have been search end. Like search, find end at-
tempts to find a subsequence within the range [first1, last1) that is identical
to [first2, last2). The difference is that while search finds the first such sub-
sequence, find end finds the last such subsequence. Find end returns an iterator
pointing to the beginning of that subsequence; if no such subsequence exists, it re-
turns last1. The two versions of find end differ in how they determine whether
two elements are the same: the first uses operator==, and the second uses the
user-supplied function object comp. The first version of find end returns the last
iterator i in the range [first1, last1 - (last2 - first2)) such that, for every
iterator j in the range [first2, last2), *(i + (j - first2)) == *j. The sec-
ond version of find end returns the last iterator i in [first1, last1 - (last2 -
first2)) such that, for every iterator j in [first2, last2), binary pred(*(i +
(j - first2)), *j) is true. These conditions simply mean that every element in
the subrange beginning with i must be the same as the corresponding element in
[first2, last2).

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• ForwardIterator1 is a model of Forward Iterator.

• ForwardIterator2 is a model of Forward Iterator.

• ForwardIterator1’s value type is a model of EqualityComparable.

228 Systems/C++ C++ Library

• ForwardIterator2’s value type is a model of EqualityComparable.

• Objects of ForwardIterator1’s value type can be compared for equality with
Objects of ForwardIterator2’s value type.

For the second version:

• ForwardIterator1 is a model of Forward Iterator.

• ForwardIterator2 is a model of Forward Iterator.

• BinaryPredicate is a model of Binary Predicate.

• ForwardIterator1’s value type is convertible to BinaryPredicate’s first ar-
gument type.

• ForwardIterator2’s value type is convertible to BinaryPredicate’s second
argument type.

Preconditions

• [first1, last1) is a valid range.

• [first2, last2) is a valid range.

Complexity

The number of comparisons is proportional to (last1 - first1) * (last2 -
first2). If both ForwardIterator1 and ForwardIterator2 are models of Bidirec-
tional Iterator, then the average complexity is linear and the worst case is at most
(last1 - first1) * (last2 - first2) comparisons.

Example

Systems/C++ C++ Library 229

int main()
{
char* s = "executable.exe";
char* suffix = "exe";

const int N = strlen(s);
const int N_suf = strlen(suffix);

char* location = find_end(s, s + N,
suffix, suffix + N_suf);

if (location != s + N) {
cout << "Found a match for " << suffix << " within " << s << endl;
cout << s << endl;

int i;
for (i = 0; i < (location - s); ++i)
cout << ’ ’;

for (i = 0; i < N_suf; ++i)
cout << ’^’;

cout << endl;
}
else
cout << "No match for " << suffix << " within " << s << endl;

}

Notes

The reason that this range is [first1, last1 - (last2 - first2)), instead of
simply [first1, last1), is that we are looking for a subsequence that is equal to
the complete sequence [first2, last2). An iterator i can’t be the beginning of
such a subsequence unless last1 - i is greater than or equal to last2 - first2.
Note the implication of this: you may call find end with arguments such that last1
- first1 is less than last2 - first2, but such a search will always fail.

See also

search

9.2 Mutating algorithms

9.2.1 copy

Prototype

230 Systems/C++ C++ Library

template <class InputIterator, class OutputIterator>
OutputIterator copy(InputIterator first, InputIterator last,

OutputIterator result);

Description

Copy copies elements from the range [first, last) to the range [result, result
+ (last - first)). That is, it performs the assignments *result = *first,
*(result + 1) = *(first + 1), and so on. Generally, for every integer n from 0
to last - first, copy performs the assignment *(result + n) = *(first + n).
Assignments are performed in forward order, i.e. in order of increasing n. The
return value is result + (last - first)

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• InputIterator is a model of Input Iterator.

• OutputIterator is a model of Output Iterator.

• InputIterator’s value type is convertible to a type in OutputIterator’s set of
value types.

Preconditions

• [first, last) is a valid range.

• result is not an iterator within the range [first, last).

• There is enough space to hold all of the elements being copied. More for-
mally, the requirement is that [result, result + (last - first)) is a
valid range.

Complexity

Linear. Exactly last - first assignments are performed.

Systems/C++ C++ Library 231

Example

vector<int> V(5);
iota(V.begin(), V.end(), 1);

list<int> L(V.size());
copy(V.begin(), V.end(), L.begin());
assert(equal(V.begin(), V.end(), L.begin()));

Notes

Note the implications of this. Copy cannot be used to insert elements into an empty
Container: it overwrites elements, rather than inserting elements. If you want to
insert elements into a Sequence, you can either use its insert member function
explicitly, or else you can use copy along with an insert iterator adaptor. The
order of assignments matters in the case where the input and output ranges overlap:
copy may not be used if result is in the range [first, last). That is, it may not
be used if the beginning of the output range overlaps with the input range, but it may
be used if the end of the output range overlaps with the input range; copy backward
has opposite restrictions. If the two ranges are completely nonoverlapping, of course,
then either algorithm may be used. The order of assignments also matters if result
is an ostream iterator, or some other iterator whose semantics depends on the
order or assignments.

See also

copy backward, copy n

9.2.2 copy n

Prototype

template <class InputIterator, class Size, class OutputIterator>
OutputIterator copy_n(InputIterator first, Size count,

OutputIterator result);

Description

Copy n copies elements from the range [first, first + n) to the range [result,
result + n). That is, it performs the assignments *result = *first, *(result
+ 1) = *(first + 1), and so on. Generally, for every integer i from 0 up to
(but not including) n, copy n performs the assignment *(result + i) = *(first
+ i). Assignments are performed in forward order, i.e. in order of increasing n.
The return value is result + n.

232 Systems/C++ C++ Library

Definition

Defined in the standard header algorithm

Requirements on types

• InputIterator is a model of Input Iterator.

• OutputIterator is a model of Output Iterator.

• Size is an integral type.

• InputIterator’s value type is convertible to a type in OutputIterator’s set of
value types.

Preconditions

• n >= 0.

• [first, first + n) is a valid range.

• result is not an iterator within the range [first, first + n).

• [result, result + n) is a valid range.

Complexity

Linear. Exactly n assignments are performed.

Example

vector<int> V(5);
iota(V.begin(), V.end(), 1);

list<int> L(V.size());
copy_n(V.begin(), V.size(), L.begin());
assert(equal(V.begin(), V.end(), L.begin()));

Notes

Copy n is almost, but not quite, redundant. If first is an input iterator, as opposed
to a forward iterator, then the copy n operation can’t be expressed in terms of copy.

Systems/C++ C++ Library 233

See also

copy, copy backward

9.2.3 copy backward

Prototype

template <class BidirectionalIterator1, class BidirectionalIterator2>
BidirectionalIterator2 copy_backward(BidirectionalIterator1 first,

BidirectionalIterator1 last,
BidirectionalIterator2 result);

Description

Copy backward copies elements from the range [first, last) to the range [result
- (last - first), result) . That is, it performs the assignments *(result -
1) = *(last - 1), *(result - 2) = *(last - 2), and so on. Generally, for ev-
ery integer n from 0 to last - first, copy backward performs the assignment
*(result - n - 1) = *(last - n - 1). Assignments are performed from the
end of the input sequence to the beginning, i.e. in order of increasing n. The
return value is result - (last - first)

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• BidirectionalIterator1 and BidirectionalIterator2 are models of BidirectionalIt-
erator.

• BidirectionalIterator1’s value type is convertible to BidirectionalIterator2’s
value type.

Preconditions

• [first, last) is a valid range.

• result is not an iterator within the range [first, last).

• There is enough space to hold all of the elements being copied. More for-
mally, the requirement is that [result - (last - first), result) is a
valid range.

234 Systems/C++ C++ Library

Complexity

Linear. Exactly last - first assignments are performed.

Example

vector<int> V(15);
iota(V.begin(), V.end(), 1);
copy_backward(V.begin(), V.begin() + 10, V.begin() + 15);

Notes

Result is an iterator that points to the end of the output range. This is highly
unusual: in all other STL algorithms that denote an output range by a single iterator,
that iterator points to the beginning of the range. The order of assignments matters
in the case where the input and output ranges overlap: copy backward may not be
used if result is in the range [first, last). That is, it may not be used if the
end of the output range overlaps with the input range, but it may be used if the
beginning of the output range overlaps with the input range; copy has opposite
restrictions. If the two ranges are completely nonoverlapping, of course, then either
algorithm may be used.

See also

copy, copy n

9.2.4 Swap

swap

Prototype

template <class Assignable>
void swap(Assignable& a, Assignable& b);

Description

Assigns the contents of a to b and the contents of b to a. This is used as a primitive
operation by many other algorithms.

Systems/C++ C++ Library 235

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• Assignable is a model of Assignable.

Preconditions

None.

Complexity

Amortized constant time.

Example

int x = 1;
int y = 2;
assert(x == 1 && y == 2);
swap(x, y);
assert(x == 2 && y == 1);

Notes

The time required to swap two objects of type T will obviously depend on the type;
”constant time” does not mean that performance will be the same for an 8-bit char
as for a 128-bit complex<double>.

See also

iter swap, swap ranges

iter swap

Prototype

template <class ForwardIterator1, class ForwardIterator2>
inline void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

236 Systems/C++ C++ Library

Description

Equivalent to swap(*a, *b).

Definition

Declared in algorithm.

Requirements on types

• ForwardIterator1 and ForwardIterator2 are models of

Forward Iterator.

• ForwardIterator1 and ForwardIterator2 are mutable.

• ForwardIterator1 and ForwardIterator2 have the same value type.

Preconditions

• ForwardIterator1 and ForwardIterator2 are dereferenceable.

Complexity

See swap for a discussion.

Example

int x = 1;
int y = 2;
assert(x == 1 && y == 2);
iter_swap(&x, &y);
assert(x == 2 && y == 1);

Notes

Strictly speaking, iter swap is redundant. It exists only for technical reasons: in
some circumstances, some compilers have difficulty performing the type deduction
required to interpret swap(*a, *b).

See also

swap, swap ranges

Systems/C++ C++ Library 237

swap ranges

Prototype

template <class ForwardIterator1, class ForwardIterator2>
ForwardIterator2 swap_ranges(ForwardIterator1 first1,

ForwardIterator1 last1,
ForwardIterator2 first2);

Description

Swap ranges swaps each of the elements in the range [first1, last1) with the cor-
responding element in the range [first2, first2 + (last1 - first1)). That
is, for each integer n such that 0 <= n < (last1 - first1), it swaps *(first1 +
n) and *(first2 + n). The return value is first2 + (last1 - first1).

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

ForwardIterator1 and ForwardIterator2 must both be models of Forward It-
erator. The value types of ForwardIterator1 and ForwardIterator2 must be
convertible to each other.

Preconditions

• [first1, last1) is a valid range.

• [first2, first2 + (last1 - first1)) is a valid range.

• The two ranges [first1, last1) and [first2, first2 + (last1 -
first1)) do not overlap.

Complexity

Linear. Exactly last1 - first1 swaps are performed.

238 Systems/C++ C++ Library

Example

vector<int> V1, V2;
V1.push_back(1);
V1.push_back(2);
V2.push_back(3);
V2.push_back(4);

assert(V1[0] == 1 && V1[1] == 2 && V2[0] == 3 && V2[1] == 4);
swap_ranges(V1.begin(), V1.end(), V2.begin());
assert(V1[0] == 3 && V1[1] == 4 && V2[0] == 1 && V2[1] == 2);

Notes

See also

swap, iter swap.

9.2.5 transform

Prototype

Transform is an overloaded name; there are actually two transform functions.

template <class InputIterator, class OutputIterator,
class UnaryFunction>

OutputIterator transform(InputIterator first, InputIterator last,
OutputIterator result, UnaryFunction op);

template <class InputIterator1, class InputIterator2,
class OutputIterator, class BinaryFunction>

OutputIterator transform(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, OutputIterator result,
BinaryFunction binary_op);

Description

Transform performs an operation on objects; there are two versions of transform,
one of which uses a single range of Input Iterators and one of which uses two ranges
of Input Iterators. The first version of transform performs the operation op(*i)
for each iterator i in the range [first, last), and assigns the result of that op-
eration to *o, where o is the corresponding output iterator. That is, for each n

Systems/C++ C++ Library 239

such that 0 <= n < last - first, it performs the assignment *(result + n) =
op(*(first + n)). The return value is result + (last - first). The second
version of transform is very similar, except that it uses a Binary Function instead
of a Unary Function: it performs the operation op(*i1, *i2) for each iterator
i1 in the range [first1, last1) and assigns the result to *o, where i2 is the
corresponding iterator in the second input range and where o is the correspond-
ing output iterator. That is, for each n such that 0 <= n < last1 - first1, it
performs the assignment *(result + n) = op(*(first1 + n), *(first2 + n).
The return value is result + (last1 - first1). Note that transform may be
used to modify a sequence ”in place”: it is permissible for the iterators first and
result to be the same.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first (unary) version:

• InputIterator must be a model of Input Iterator.

• OutputIterator must be a model of Output Iterator.

• UnaryFunction must be a model of Unary Function.

• InputIterator’s value type must be convertible to UnaryFunction’s argu-
ment type.

• UnaryFunction’s result type must be convertible to a type in
OutputIterator’s set of value types.

For the second (binary) version:

• InputIterator1 and InputIterator2 must be models of Input Iterator.

• OutputIterator must be a model of Output Iterator.

• BinaryFunction must be a model of Binary Function.

• InputIterator1’s and InputIterator2’s value types must be convertible,
respectively, to BinaryFunction’s first and second argument types.

• UnaryFunction’s result type must be convertible to a type in
OutputIterator’s set of value types.

240 Systems/C++ C++ Library

Preconditions

For the first (unary) version:

• [first, last) is a valid range.

• result is not an iterator within the range [first+1, last).

• There is enough space to hold all of the elements being copied. More for-
mally, the requirement is that [result, result + (last - first)) is a
valid range.

For the second (binary) version:

• [first1, last1) is a valid range.

• [first2, first2 + (last1 - first1)) is a valid range.

• result is not an iterator within the range [first1+1, last1) or [first2 +
1, first2 + (last1 - first1)).

• There is enough space to hold all of the elements being copied. More formally,
the requirement is that [result, result + (last1 - first1)) is a valid
range.

Complexity

Linear. The operation is applied exactly last - first times in the case of the
unary version, or last1 - first1 in the case of the binary version.

Example

Replace every number in an array with its negative.

const int N = 1000;
double A[N];
iota(A, A+N, 1);

transform(A, A+N, A, negate<double>());

Calculate the sum of two vectors, storing the result in a third vector.

Systems/C++ C++ Library 241

const int N = 1000;
vector<int> V1(N);
vector<int> V2(N);
vector<int> V3(N);

iota(V1.begin(), V1.end(), 1);
fill(V2.begin(), V2.end(), 75);

assert(V2.size() >= V1.size() && V3.size() >= V1.size());
transform(V1.begin(), V1.end(), V2.begin(), V3.begin(),

plus<int>());

Notes

The Output Iterator result is not permitted to be the same as any of the
Input Iterators in the range [first, last), with the exception of first it-
self. That is: transform(V.begin(), V.end(), V.begin(), fabs) is valid, but
transform(V.begin(), V.end(), V.begin() + 1, fabs) is not.

See also

The function object overview, copy, generate, fill

9.2.6 Replace

replace

Prototype

template <class ForwardIterator, class T>
void replace(ForwardIterator first, ForwardIterator last,

const T& old_value, const T& new_value)

Description

Replace replaces every element in the range [first, last) equal to old value
with new value. That is: for every iterator i, if *i == old value then it performs
the assignment *i = new value.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

242 Systems/C++ C++ Library

Requirements on types

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator is mutable.

• T is convertible to ForwardIterator’s value type.

• T is Assignable.

• T is EqualityComparable, and may be compared for equality with objects of
ForwardIterator’s value type.

Preconditions

• [first, last) is a valid range.

Complexity

Linear. Replace performs exactly last - first comparisons for equality, and at
most last - first assignments.

Example

vector<int> V;
V.push_back(1);
V.push_back(2);
V.push_back(3);
V.push_back(1);

replace(V.begin(), V.end(), 1, 99);
assert(V[0] == 99 && V[3] == 99);

Notes

See also

replace if, replace copy, replace copy if

Systems/C++ C++ Library 243

replace if

Prototype

template <class ForwardIterator, class Predicate, class T>
void replace_if(ForwardIterator first, ForwardIterator last,

Predicate pred, const T& new_value)

Description

Replace if replaces every element in the range [first, last) for which pred
returns true with new value. That is: for every iterator i, if pred(*i) is true
then it performs the assignment *i = new value.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator is mutable.

• Predicate is a model of Predicate.

• ForwardIterator’s value type is convertible to Predicate’s argument type.

• T is convertible to Forward Iterator’s value type.

• T is Assignable.

Preconditions

• [first, last) is a valid range.

Complexity

Linear. Replace if performs exactly last - first applications of pred, and at
most last - first assignments.

244 Systems/C++ C++ Library

Example

Replace every negative number with 0.

vector<int> V;
V.push_back(1);
V.push_back(-3);
V.push_back(2);
V.push_back(-1);

replace_if(V.begin(), V.end(), bind2nd(less<int>(), 0), -1);
assert(V[1] == 0 && V[3] == 0);

Notes

See also

replace, replace copy, replace copy if

replace copy

Prototype

template <class InputIterator, class OutputIterator, class T>
OutputIterator replace_copy(InputIterator first, InputIterator last,

OutputIterator result, const T& old_value,
const T& new_value);

Description

Replace copy copies elements from the range [first, last) to the range [result,
result + (last-first)), except that any element equal to old value is not
copied; new value is copied instead. More precisely, for every integer n such
that 0 <= n < last-first, replace copy performs the assignment *(result+n)
= new value if *(first+n) == old value, and *(result+n) = *(first+n) oth-
erwise.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Systems/C++ C++ Library 245

Requirements on types

• InputIterator is a model of Input Iterator.

• OutputIterator is a model of Output Iterator.

• T is EqualityComparable, and may be compared for equality with objects of
InputIterator’s value type.

• T is Assignable.

• T is convertible to a type in OutputIterator’s set of value types.

Preconditions

• [first, last) is a valid range.

• There is enough space in the output range to store the copied values. That is,
[result, result + (last-first)) is a valid range.

• result is not an iterator within the range [first, last).

Complexity

Linear. Replace copy performs exactly last - first comparisons for equality and
exactly last - first assignments.

Example

vector<int> V1;
V1.push_back(1);
V1.push_back(2);
V1.push_back(3);
V1.push_back(1);

vector<int> V2(4);

replace_copy(V1.begin(), V1.end(), V2.begin(), 1, 99);
assert(V[0] == 99 && V[1] == 2 && V[2] == 3 && V[3] == 99);

Notes

See also

copy, replace, replace if, replace copy if

246 Systems/C++ C++ Library

replace copy if

Prototype

template <class InputIterator, class OutputIterator, class Predicate,
class T>

OutputIterator replace_copy_if(InputIterator first, InputIterator last,
OutputIterator result, Predicate pred,
const T& new_value)

Description

Replace copy if copies elements from the range [first, last) to the range
[result, result + (last-first)), except that any element for which pred
is true is not copied; new value is copied instead. More precisely, for every
integer n such that 0 <= n < last-first, replace copy if performs the as-
signment *(result+n) = new value if pred(*(first+n)), and *(result+n) =
*(first+n) otherwise.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• InputIterator is a model of Input Iterator.

• OutputIterator is a model of Output Iterator.

• Predicate is a model of Predicate.

• T is convertible to Predicate’s argument type.

• T is Assignable.

• T is convertible to a type in OutputIterator’s set of value types.

Preconditions

• [first, last) is a valid range.

• There is enough space in the output range to store the copied values. That is,
[result, result + (last-first)) is a valid range.

• result is not an iterator within the range [first, last).

Systems/C++ C++ Library 247

Complexity

Linear. Replace copy performs exactly last - first applications of pred and
exactly last - first assignments.

Example

Copy elements from one vector to another, replacing all negative numbers with 0.

vector<int> V1;
V1.push_back(1);
V1.push_back(-1);
V1.push_back(-5);
V1.push_back(2);

vector<int> V2(4);

replace_copy_if(V1.begin(), V1.end(), V2.begin(),
bind2nd(less<int>(), 0),
0);

assert(V[0] == 1 && V[1] == 0 && V[2] == 0 && V[3] == 2);

Notes

See also

copy, replace, replace if, replace copy

9.2.7 fill

Prototype

template <class ForwardIterator, class T>
void fill(ForwardIterator first, ForwardIterator last, const T& value);

Description

Fill assigns the value value to every element in the range [first, last). That
is, for every iterator i in [first, last), it performs the assignment *i = value.

248 Systems/C++ C++ Library

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator is mutable.

• T is a model of Assignable.

• T is convertible to Forward Iterator’s value type.

Preconditions

• [first, last) is a valid range.

Complexity

Linear. Fill performs exactly last - first assignments.

Example

vector<double> V(4);
fill(V.begin(), V.end(), 137);
assert(V[0] == 137 && V[1] == 137 && V[2] == 137 && V[3] == 137);

Notes

The reason that fill requires its argument to be a mutable forward iterator, rather
than merely an output iterator, is that it uses a range [first, last) of iterators.
There is no sensible way to describe a range of output iterators, because it is im-
possible to compare two output iterators for equality. The fill n algorithm does
have an interface that permits use of an output iterator.

See also

copy, fill n, generate, generate n, iota

Systems/C++ C++ Library 249

9.2.8 fill n

Prototype

template <class OutputIterator, class Size, class T>
OutputIterator fill_n(OutputIterator first, Size n, const T& value);

Description

Fill n assigns the value value to every element in the range [first, first+n).
That is, for every iterator i in [first, first+n), it performs the assignment *i
= value. The return value is first + n.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• OutputIterator is a model of Output Iterator.

• Size is an integral type (either signed or unsigned).

• T is a model of Assignable.

• T is convertible to a type in OutputIterator’s set of value types.

Preconditions

• n >= 0.

• There is enough space to hold n values. That is, [first, first+n) is a valid
range.

Complexity

Linear. Fill n performs exactly n assignments.

250 Systems/C++ C++ Library

Example

vector<double> V;
fill_n(back_inserter(V), 4, 137);
assert(V.size() == 4 &&

V[0] == 42 && V[1] == 42 && V[2] == 42 && V[3] == 42);

Notes

See also

copy, fill, generate, generate n, iota

9.2.9 generate

Prototype

template <class ForwardIterator, class Generator>
void generate(ForwardIterator first, ForwardIterator last,

Generator gen);

Description

Generate assigns the result of invoking gen, a function object that takes no argu-
ments, to each element in the range [first, last).

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator is mutable.

• Generator is a model of Generator.

• Generator’s result type is convertible to ForwardIterator’s value type.

Systems/C++ C++ Library 251

Preconditions

• [first, last) is a valid range.

Complexity

Linear. Exactly last - first invocations of gen.

Example

Fill a vector with random numbers, using the standard C library function rand.

vector<int> V;
...
generate(V.begin(), V.end(), rand);

Notes

The function object gen is invoked for each iterator in the range [first, last),
as opposed to just being invoked a single time outside the loop. This distinction
is important because a Generator need not return the same result each time it is
invoked; it is permitted to read from a file, refer to and modify local state, and so
on. The reason that generate requires its argument to be a mutable Forward
Iterator, rather than just an Output Iterator, is that it uses a range [first, last)
of iterators. There is no sensible way to describe a range of Output Iterators, because
it is impossible to compare two Output Iterators for equality. The generate n
algorithm does have an interface that permits use of an Output Iterator.

See also

copy, fill, fill n, generate n, iota

9.2.10 generate n

Prototype

template <class OutputIterator, class Size, class Generator>
OutputIterator generate_n(OutputIterator first, Size n, Generator gen);

252 Systems/C++ C++ Library

Description

Generate n assigns the result of invoking gen, a function object that takes no argu-
ments, to each element in the range [first, first+n). The return value is first
+ n.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• OutputIterator is a model of Output Iterator.

• Size is an integral type (either signed or unsigned).

• Generator is a model of Generator.

• Generator’s result type is convertible to a type in OutputIterator’s set of
value types.

Preconditions

• n >= 0.

• There is enough space to hold n values. That is, [first, first+n) is a valid
range.

Complexity

Linear. Exactly n invocations of gen.

Example

Print 100 random numbers, using the C standard library function rand.

generate_n(ostream_iterator<int>(cout, "\n"), 100, rand);

Systems/C++ C++ Library 253

Notes

The function object gen is invoked n times (once for each iterator in the range
[first, first+n)), as opposed to just being invoked a single time outside the
loop. This distinction is important because a Generator need not return the same
result each time it is invoked; it is permitted to read from a file, refer to and modify
local state, and so on.

See also

copy, fill, fill n, generate, iota

9.2.11 Remove

remove

Prototype

template <class ForwardIterator, class T>
ForwardIterator remove(ForwardIterator first, ForwardIterator last,

const T& value);

Description

Remove removes from the range [first, last) all elements that are equal to
value. That is, remove returns an iterator new last such that the range [first,
new last) contains no elements equal to value. The iterators in the range
[new last, last) are all still dereferenceable, but the elements that they point
to are unspecified. Remove is stable, meaning that the relative order of elements
that are not equal to value is unchanged.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator is mutable.

• T is a model of Equality Comparable.

• Objects of type T can be compared for equality with objects of
ForwardIterator’s value type.

254 Systems/C++ C++ Library

Preconditions

• [first, last) is a valid range.

Complexity

Linear. Remove performs exactly last - first comparisons for equality.

Example

vector<int> V;
V.push_back(3);
V.push_back(1);
V.push_back(4);
V.push_back(1);
V.push_back(5);
V.push_back(9);

copy(V.begin(), V.end(), ostream_iterator<int>(cout, " "));
// The output is "3 1 4 1 5 9".

vector<int>::iterator new_end = remove(V.begin(), V.end(), 1);
copy(V.begin(), new_end, ostream_iterator<int>(cout, " "));

// The output is "3 4 5 9".

Notes

The meaning of ”removal” is somewhat subtle. Remove does not destroy any it-
erators, and does not change the distance between first and last. (There’s
no way that it could do anything of the sort.) So, for example, if V is a vector,
remove(V.begin(), V.end(), 0) does not change V.size(): V will contain just
as many elements as it did before. Remove returns an iterator that points to the
end of the resulting range after elements have been removed from it; it follows that
the elements after that iterator are of no interest, and may be discarded. If you are
removing elements from a Sequence, you may simply erase them. That is, a rea-
sonable way of removing elements from a Sequence is S.erase(remove(S.begin(),
S.end(), x), S.end()).

See also

remove if, remove copy, remove copy if, unique, unique copy.

Systems/C++ C++ Library 255

remove if

Prototype

template <class ForwardIterator, class Predicate>
ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,

Predicate pred);

Description

Remove if removes from the range [first, last) every element x such that
pred(x) is true. That is, remove if returns an iterator new last such that the
range [first, new last) contains no elements for which pred is true. The iter-
ators in the range [new last, last) are all still dereferenceable, but the elements
that they point to are unspecified. Remove if is stable, meaning that the relative
order of elements that are not removed is unchanged.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator is mutable.

• Predicate is a model of Predicate.

• ForwardIterator’s value type is convertible to Predicate’s argument type.

Preconditions

• [first, last) is a valid range.

Complexity

Linear. Remove if performs exactly last - first applications of pred.

256 Systems/C++ C++ Library

Example

Remove all even numbers from a vector.

vector<int> V;
V.push_back(1);
V.push_back(4);
V.push_back(2);
V.push_back(8);
V.push_back(5);
V.push_back(7);

copy(V.begin(), V.end(), ostream_iterator<int>(cout, " "));
// The output is "1 4 2 8 5 7"

vector<int>::iterator new_end =
remove_if(V.begin(), V.end(),

compose1(bind2nd(equal_to<int>(), 0),
bind2nd(modulus<int>(), 2)));

V.erase(new_end, V.end()); [1]

copy(V.begin(), V.end(), ostream_iterator<int>(cout, " "));
// The output is "1 5 7".

Notes

The meaning of ”removal” is somewhat subtle. Remove if does not destroy any
iterators, and does not change the distance between first and last. (There’s
no way that it could do anything of the sort.) So, for example, if V is a vector,
remove if(V.begin(), V.end(), pred) does not change V.size(): V will con-
tain just as many elements as it did before. Remove if returns an iterator that
points to the end of the resulting range after elements have been removed from
it; it follows that the elements after that iterator are of no interest, and may
be discarded. If you are removing elements from a Sequence, you may simply
erase them. That is, a reasonable way of removing elements from a Sequence is
S.erase(remove if(S.begin(), S.end(), pred), S.end()).

See also

remove, remove copy, remove copy if, unique, unique copy.

remove copy

Prototype

Systems/C++ C++ Library 257

template <class InputIterator, class OutputIterator, class T>
OutputIterator remove_copy(InputIterator first, InputIterator last,

OutputIterator result, const T& value);

Description

Remove copy copies elements that are not equal to value from the range [first,
last) to a range beginning at result. The return value is the end of the resulting
range. This operation is stable, meaning that the relative order of the elements that
are copied is the same as in the range [first, last).

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• InputIterator is a model of Input Iterator.

• OutputIterator is a model of Output Iterator.

• InputIterator’s value type is convertible to a type in OutputIterator’s set
of value types.

• T is a model of Equality Comparable.

• Objects of type T can be compared for equality with objects of
InputIterator’s value type.

Preconditions

• [first, last) is a valid range.

• There is enough space in the output range to store the copied values. That is,
if there are n elements in [first, last) that are not equal to value, then
[result, result+n) is a valid range.

• result is not an iterator in the range [first, last).

Complexity

Linear. Exactly last - first comparisons for equality, and at most last - first
assignments.

258 Systems/C++ C++ Library

Example

Print all nonzero elements of a vector on the standard output.

vector<int> V;
V.push_back(-2);
V.push_back(0);
V.push_back(-1);
V.push_back(0);
V.push_back(1);
V.push_back(2);

remove_copy(V.begin(), V.end(),
ostream_iterator<int>(cout, "\n"),
0);

Notes

See also

copy, remove, remove if, remove copy if, unique, unique copy.

remove copy if

Prototype

template <class InputIterator, class OutputIterator, class Predicate>
OutputIterator remove_copy_if(InputIterator first, InputIterator last,

OutputIterator result, Predicate pred);

Description

Remove copy if copies elements from the range [first, last) to a range begin-
ning at result, except that elements for which pred is true are not copied. The
return value is the end of the resulting range. This operation is stable, meaning
that the relative order of the elements that are copied is the same as in the range
[first, last).

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Systems/C++ C++ Library 259

Requirements on types

• InputIterator is a model of Input Iterator.

• OutputIterator is a model of Output Iterator.

• InputIterator’s value type is convertible to a type in OutputIterator’s set
of value types.

• Predicate is a model of Predicate.

• InputIterator’s value type is convertible to Predicate’s argument type.

Preconditions

• [first, last) is a valid range.

• There is enough space in the output range to store the copied values. That
is, if there are n elements in [first, last) that do not satisfy pred, then
[result, result+n) is a valid range.

• result is not an iterator in the range [first, last).

Complexity

Linear. Exactly last - first applications of pred, and at most last - first
assignments.

Example

Fill a vector with the nonnegative elements of another vector.

vector<int> V1;
V.push_back(-2);
V.push_back(0);
V.push_back(-1);
V.push_back(0);
V.push_back(1);
V.push_back(2);

vector<int> V2;
remove_copy_if(V1.begin(), V1.end(),

back_inserter(V2),
bind2nd(less<int>(), 0));

260 Systems/C++ C++ Library

Notes

See also

copy, remove, remove if, remove copy, unique, unique copy.

9.2.12 unique

Prototype

Unique is an overloaded name; there are actually two unique functions.

template <class ForwardIterator>
ForwardIterator unique(ForwardIterator first, ForwardIterator last);

template <class ForwardIterator, class BinaryPredicate>
ForwardIterator unique(ForwardIterator first, ForwardIterator last,

BinaryPredicate binary_pred);

Description

Every time a consecutive group of duplicate elements appears in the range [first,
last), the algorithm unique removes all but the first element. That is, unique re-
turns an iterator new last such that the range [first, new last) contains no two
consecutive elements that are duplicates. The iterators in the range [new last,
last) are all still dereferenceable, but the elements that they point to are unspec-
ified. Unique is stable, meaning that the relative order of elements that are not
removed is unchanged. The reason there are two different versions of unique is that
there are two different definitions of what it means for a consecutive group of ele-
ments to be duplicates. In the first version, the test is simple equality: the elements
in a range [f, l) are duplicates if, for every iterator i in the range, either i ==
f or else *i == *(i-1). In the second, the test is an arbitrary Binary Predicate
binary pred: the elements in [f, l) are duplicates if, for every iterator i in the
range, either i == f or else binary pred(*i, *(i-1)) is true.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

Systems/C++ C++ Library 261

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator is mutable.

• ForwardIterator’s value type is Equality Comparable.

For the second version:

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator is mutable.

• BinaryPredicate is a model of Binary Predicate.

• ForwardIterator’s value type is convertible to BinaryPredicate’s first ar-
gument type and to BinaryPredicate’s second argument type.

Preconditions

• [first, last) is a valid range.

Complexity

Linear. Exactly (last - first) - 1 applications of operator== (in the case of
the first version of unique) or of binary pred (in the case of the second version).

Example

Remove duplicates from consecutive groups of equal ints.

vector<int> V;
V.push_back(1);
V.push_back(3);
V.push_back(3);
V.push_back(3);
V.push_back(2);
V.push_back(2);
V.push_back(1);

vector<int>::iterator new_end = unique(V.begin(), V.end());
copy(V.begin(), new_end, ostream_iterator<int>(cout, " "));

// The output it "1 3 2 1".

Remove all duplicates from a vector of chars, ignoring case. First sort the vector,
then remove duplicates from consecutive groups.

262 Systems/C++ C++ Library

inline bool eq_nocase(char c1, char c2)
{ return tolower(c1) == tolower(c2); }

inline bool lt_nocase(char c1, char c2)
{ return tolower(c1) < tolower(c2); }

int main()
{
const char init[] = "The Standard Template Library";
vector<char> V(init, init + sizeof(init));
sort(V.begin(), V.end(), lt_nocase);
copy(V.begin(), V.end(), ostream_iterator<char>(cout));
cout << endl;
vector<char>::iterator new_end = unique(V.begin(), V.end(),

eq_nocase);
copy(V.begin(), new_end, ostream_iterator<char>(cout));
cout << endl;

}
// The output is:
// aaaabddeeehiLlmnprrrStTtTy
// abdehiLmnprSty

Notes

Note that the meaning of ”removal” is somewhat subtle. Unique, like remove, does
not destroy any iterators and does not change the distance between first and last.
(There’s no way that it could do anything of the sort.) So, for example, if V is a
vector, remove(V.begin(), V.end(), 0) does not change V.size(): V will contain
just as many elements as it did before. Unique returns an iterator that points to
the end of the resulting range after elements have been removed from it; it follows
that the elements after that iterator are of no interest. If you are operating on a
Sequence, you may wish to use the Sequence’s erase member function to discard
those elements entirely. Strictly speaking, the first version of unique is redundant:
you can achieve the same functionality by using an object of class equal to as the
Binary Predicate argument. The first version is provided strictly for the sake of
convenience: testing for equality is an important special case. BinaryPredicate is
not required to be an equivalence relation. You should be cautious, though, about
using unique with a Binary Predicate that is not an equivalence relation: you could
easily get unexpected results.

See also

Binary Predicate, remove, remove if, unique copy, adjacent find,

Systems/C++ C++ Library 263

9.2.13 unique copy

Prototype

Unique copy is an overloaded name; there are actually two unique copy functions.

template <class InputIterator, class OutputIterator>
OutputIterator unique_copy(InputIterator first, InputIterator last,

OutputIterator result);

template <class InputIterator, class OutputIterator,
class BinaryPredicate>

OutputIterator unique_copy(InputIterator first, InputIterator last,
OutputIterator result,
BinaryPredicate binary_pred);

Description

Unique copy copies elements from the range [first, last) to a range beginning
with result, except that in a consecutive group of duplicate elements only the first
one is copied. The return value is the end of the range to which the elements are
copied. This behavior is similar to the Unix filter uniq. The reason there are two
different versions of unique copy is that there are two different definitions of what it
means for a consecutive group of elements to be duplicates. In the first version, the
test is simple equality: the elements in a range [f, l) are duplicates if, for every
iterator i in the range, either i == f or else *i == *(i-1). In the second, the test
is an arbitrary Binary Predicate binary pred: the elements in [f, l) are duplicates
if, for every iterator i in the range, either i == f or else binary pred(*i, *(i-1))
is true.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• InputIterator is a model of Input Iterator.

• InputIterator’s value type is Equality Comparable.

• OutputIterator is a model of Output Iterator.

264 Systems/C++ C++ Library

• InputIterator’s value type is convertible to a type in OutputIterator’s set
of value types.

For the second version:

• InputIterator is a model of Input Iterator.

• BinaryPredicate is a model of Binary Predicate.

• InputIterator’s value type is convertible to first argument type and to
BinaryPredicate’s second argument type.

• OutputIterator is a model of Output Iterator.

• InputIterator’s value type is convertible to a type in OutputIterator’s set
of value types.

Preconditions

• [first, last) is a valid range.

• There is enough space to hold all of the elements being copied. More formally,
if there are n elements in the range [first, last) after duplicates are re-
moved from consecutive groups, then [result, result + n) must be a valid
range.

Complexity

Linear. Exactly last - first applications of operator== (in the case of the first
version of unique) or of binary pred (in the case of the second version), and at
most last - first assignments.

Example

Print all of the numbers in an array, but only print the first one in a consecutive
group of identical numbers.

const int A[] = {2, 7, 7, 7, 1, 1, 8, 8, 8, 2, 8, 8};
unique_copy(A, A + sizeof(A) / sizeof(int),

ostream_iterator<int>(cout, " "));
// The output is "2 7 1 8 2 8".

Systems/C++ C++ Library 265

Notes

Strictly speaking, the first version of unique copy is redundant: you can achieve
the same functionality by using an object of class equal to as the Binary Predicate
argument. The first version is provided strictly for the sake of convenience: testing
for equality is an important special case. BinaryPredicate is not required to be
an equivalence relation. You should be cautious, though, about using unique copy
with a Binary Predicate that is not an equivalence relation: you could easily get
unexpected results.

See also

Binary Predicate, unique, remove copy, remove copy if, adjacent find

9.2.14 reverse

Prototype

template <class BidirectionalIterator>
void reverse(BidirectionalIterator first, BidirectionalIterator last);

Description

Reverse reverses a range. That is: for every i such that 0 <= i <= (last -
first) / 2), it exchanges *(first + i) and *(last - (i + 1)).

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• BidirectionalIterator is a model of Bidirectional Iterator.

• BidirectionalIterator is mutable.

Preconditions

• [first, last) is a valid range.

266 Systems/C++ C++ Library

Complexity

Linear: reverse(first, last) makes (last - first) / 2 calls to swap.

Example

vector<int> V;
V.push_back(0);
V.push_back(1);
V.push_back(2);
copy(V.begin(), V.end(), ostream_iterator<int>(cout, " "));

// Output: 0 1 2
reverse(V.begin(), V.end());
copy(V.begin(), V.end(), ostream_iterator<int>(cout, " "));

// Output: 2 1 0

Notes

See also

reverse copy

9.2.15 reverse copy

Prototype

template <class BidirectionalIterator, class OutputIterator>
OutputIterator reverse_copy(BidirectionalIterator first,

BidirectionalIterator last,
OutputIterator result);

Description

Reverse copy copies elements from the range [first, last) to the range [result,
result + (last - first)) such that the copy is a reverse of the original range.
Specifically: for every i such that 0 <= i < (last - first), reverse copy per-
forms the assignment *(result + (last - first) - i) = *(first + i). The
return value is result + (last - first).

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Systems/C++ C++ Library 267

Requirements on types

• BidirectionalIterator is a model of Bidirectional Iterator.

• OutputIterator is a model of Output Iterator.

• The value type of BidirectionalIterator is convertible to a type in OutputIter-
ator’s set of value types.

Preconditions

• [first, last) is a valid range.

• There is enough space to hold all of the elements being copied. More for-
mally, the requirement is that [result, result + (last - first)) is a
valid range.

• The ranges [first, last) and [result, result + (last - first)) do
not overlap.

Complexity

Linear: exactly last - first assignments.

Example

vector<int> V;
V.push_back(0);
V.push_back(1);
V.push_back(2);
copy(V.begin(), V.end(), ostream_iterator<int>(cout, " "));

// Output: 0 1 2
list<int> L(V.size());
reverse_copy(V.begin(), V.end(), L.begin());
copy(L.begin(), L.end(), ostream_iterator<int>(cout, " "));

// Output: 2 1 0

Notes

See also

reverse, copy

268 Systems/C++ C++ Library

9.2.16 rotate

Prototype

template <class ForwardIterator>
inline ForwardIterator rotate(ForwardIterator first,

ForwardIterator middle,
ForwardIterator last);

Description

Rotate rotates the elements in a range. That is, the element pointed to by middle
is moved to the position first, the element pointed to by middle + 1 is moved
to the position first + 1, and so on. One way to think about this operation is
that it exchanges the two ranges [first, middle) and [middle, last). Formally,
for every integer n such that 0 <= n < last - first, the element *(first + n)
is assigned to *(first + (n + (last - middle)) % (last - first)). Rotate
returns first + (last - middle).

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator is mutable.

Preconditions

• [first, middle) is a valid range.

• [middle, last) is a valid range.

Complexity

Linear. At most last - first swaps are performed.

Systems/C++ C++ Library 269

Example

char alpha[] = "abcdefghijklmnopqrstuvwxyz";
rotate(alpha, alpha + 13, alpha + 26);
printf("\%s\n", alpha);
// The output is nopqrstuvwxyzabcdefghijklm

Notes

It follows from these two requirements that [first, last) is a valid range. Rotate
uses a different algorithm depending on whether its arguments are Forward Iterators,
Bidirectional Iterators, or Random Access Iterators. All three algorithms, however,
are linear.

See also

rotate copy

9.2.17 rotate copy

Prototype

template <class ForwardIterator, class OutputIterator>
OutputIterator rotate_copy(ForwardIterator first,

ForwardIterator middle,
ForwardIterator last,
OutputIterator result);

Description

Rotate copy copies elements from the range [first, last) to the range [result,
result + (last - first)) such that *middle is copied to *result, *(middle +
1) is copied to *(result + 1), and so on. Formally, for every integer n such that
0 <= n < last - first, rotate copy performs the assignment *(result + (n +
(last - middle)) % (last - first)) = *(first + n). Rotate copy is similar
to copy followed by rotate, but is more efficient. The return value is result +
(last - first).

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

270 Systems/C++ C++ Library

Requirements on types

• ForwardIterator is a model of Forward Iterator.

• OutputIterator is a model of Output Iterator.

• ForwardIterator’s value type is convertible to a type in OutputIterator’s
set of value types.

Preconditions

• [first, middle) is a valid range.

• [middle, last) is a valid range.

• There is enough space to hold all of the elements being copied. More for-
mally, the requirement is that [result, result + (last - first)) is a
valid range.

• The ranges [first, last) and [result, result + (last - first)) do
not overlap.

Complexity

Linear. Rotate copy performs exactly last - first assignments.

Example

const char alpha[] = "abcdefghijklmnopqrstuvwxyz";
rotate_copy(alpha, alpha + 13, alpha + 26,

ostream_iterator<char>(cout));
// The output is nopqrstuvwxyzabcdefghijklm

Notes

It follows from these two requirements that [first, last) is a valid range.

See also

rotate, copy.

Systems/C++ C++ Library 271

9.2.18 random shuffle

Prototype

Random shuffle is an overloaded name; there are actually two random shuffle
functions.

template <class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first,

RandomAccessIterator last);

template <class RandomAccessIterator, class RandomNumberGenerator>
void random_shuffle(RandomAccessIterator first,

RandomAccessIterator last,
RandomNumberGenerator& rand)

Description

Random shuffle randomly rearranges the elements in the range [first, last):
that is, it randomly picks one of the N! possible orderings, where N is last - first.
There are two different versions of random shuffle. The first version uses an inter-
nal random number generator, and the second uses a Random Number Generator,
a special kind of function object, that is explicitly passed as an argument.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• RandomAccessIterator is a model of Random Access Iterator

For the second version:

• RandomAccessIterator is a model of Random Access Iterator

• RandomNumberGenerator is a model of Random Number Generator

• RandomAccessIterator’s distance type is convertible to
RandomNumberGenerator’s argument type.

272 Systems/C++ C++ Library

Preconditions

• [first, last) is a valid range.

• last - first is less than rand’s maximum value.

Complexity

Linear in last - first. If last != first, exactly (last - first) - 1 swaps
are performed.

Example

const int N = 8;
int A[] = {1, 2, 3, 4, 5, 6, 7, 8};
random_shuffle(A, A + N);
copy(A, A + N, ostream_iterator<int>(cout, " "));
// The printed result might be 7 1 6 3 2 5 4 8,
// or any of 40,319 other possibilities.

Notes

This algorithm is described in section 3.4.2 of Knuth (D. E. Knuth, The Art of
Computer Programming. Volume 2: Seminumerical Algorithms, second edition.
Addison-Wesley, 1981). Knuth credits Moses and Oakford (1963) and Dursten-
feld (1964). Note that there are N! ways of arranging a sequence of N elements.
Random shuffle yields uniformly distributed results; that is, the probability of any
particular ordering is 1/N!. The reason this comment is important is that there are
a number of algorithms that seem at first sight to implement random shuffling of a
sequence, but that do not in fact produce a uniform distribution over the N! possible
orderings. That is, it’s easy to get random shuffle wrong.

See also

random sample, random sample n, next permutation, prev permutation, Ran-
dom Number Generator

9.2.19 partition

Prototype

template <class ForwardIterator, class Predicate>
ForwardIterator partition(ForwardIterator first,

ForwardIterator last, Predicate pred)

Systems/C++ C++ Library 273

Description

Partition reorders the elements in the range [first, last) based on the func-
tion object pred, such that the elements that satisfy pred precede the elements
that fail to satisfy it. The postcondition is that, for some iterator middle in the
range [first, last), pred(*i) is true for every iterator i in the range [first,
middle) and false for every iterator i in the range [middle, last). The return
value of partition is middle.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• ForwardIterator is a model of Forward Iterator.

• Predicate is a model of Predicate.

• ForwardIterator’s value type is convertible to Predicate’s argument type.

Preconditions

• [first, last) is a valid range.

Complexity

Linear. Exactly last - first applications of pred, and at most (last -
first)/2 swaps.

Example

Reorder a sequence so that even numbers precede odd numbers.

int A[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
const int N = sizeof(A)/sizeof(int);
partition(A, A + N,

compose1(bind2nd(equal_to<int>(), 0),
bind2nd(modulus<int>(), 2)));

copy(A, A + N, ostream_iterator<int>(cout, " "));
// The output is "10 2 8 4 6 5 7 3 9 1". [1]

274 Systems/C++ C++ Library

Notes

The relative order of elements in these two blocks is not necessarily the same as
it was in the original sequence. A different algorithm, stable partition, does
guarantee to preserve the relative order.

See also

stable partition, Predicate, function object

9.2.20 stable partition

Prototype

template <class ForwardIterator, class Predicate>
ForwardIterator stable_partition(ForwardIterator first,

ForwardIterator last,
Predicate pred);

Description

Stable partition is much like partition: it reorders the elements in the range
[first, last) based on the function object pred, such that all of the elements that
satisfy pred appear before all of the elements that fail to satisfy it. The postcondition
is that, for some iterator middle in the range [first, last), pred(*i) is true
for every iterator i in the range [first, middle) and false for every iterator i
in the range [middle, last). The return value of stable partition is middle.
Stable partition differs from partition in that stable partition is guaranteed
to preserve relative order. That is, if x and y are elements in [first, last)
such that pred(x) == pred(y), and if x precedes y, then it will still be true after
stable partition is true that x precedes y.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• ForwardIterator is a model of Forward Iterator

• Predicate is a model of Predicate

• ForwardIterator’s value type is convertible to Predicate’s argument type.

Systems/C++ C++ Library 275

Preconditions

• [first, last) is a valid range.

Complexity

Stable partition is an adaptive algorithm: it attempts to allocate a temporary
memory buffer, and its run-time complexity depends on how much memory is avail-
able. Worst-case behavior (if no auxiliary memory is available) is at most N*log(N)
swaps, where N is last - first, and best case (if a large enough auxiliary memory
buffer is available) is linear in N. In either case, pred is applied exactly N times.

Example

Reorder a sequence so that even numbers precede odd numbers.

int A[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
const int N = sizeof(A)/sizeof(int);
stable_partition(A, A + N,

compose1(bind2nd(equal_to<int>(), 0),
bind2nd(modulus<int>(), 2)));

copy(A, A + N, ostream_iterator<int>(cout, " "));
// The output is "2 4 6 8 10 1 3 5 7 9". [1]

Notes

Note that the complexity of stable partition is greater than that of partition:
the guarantee that relative order will be preserved has a significant runtime cost. If
this guarantee isn’t important to you, you should use partition.

See also

partition, Predicate, function object

9.3 Sorting

9.3.1 Sort

sort

Prototype

276 Systems/C++ C++ Library

Sort is an overloaded name; there are actually two sort functions.

template <class RandomAccessIterator>
void sort(RandomAccessIterator first, RandomAccessIterator last);

template <class RandomAccessIterator, class StrictWeakOrdering>
void sort(RandomAccessIterator first, RandomAccessIterator last,

StrictWeakOrdering comp);

Description

Sort sorts the elements in [first, last) into ascending order, meaning that if i
and j are any two valid iterators in [first, last) such that i precedes j, then *j
is not less than *i. Note: sort is not guaranteed to be stable. That is, suppose that
*i and *j are equivalent: neither one is less than the other. It is not guaranteed that
the relative order of these two elements will be preserved by sort. The two versions
of sort differ in how they define whether one element is less than another. The first
version compares objects using operator<, and the second compares objects using
a function object comp.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version, the one that takes two arguments:

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• RandomAccessIterator’s value type is LessThan Comparable.

• The ordering relation on RandomAccessIterator’s value type is a strict weak
ordering, as defined in the LessThan Comparable requirements.

For the second version, the one that takes three arguments:

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• RandomAccessIterator’s value type is convertible to StrictWeakOrdering’s
argument type.

Systems/C++ C++ Library 277

Preconditions

• [first, last) is a valid range.

Complexity

O(N log(N)) comparisons (both average and worst-case), where N is last - first.

Example

int A[] = {1, 4, 2, 8, 5, 7};
const int N = sizeof(A) / sizeof(int);
sort(A, A + N);
copy(A, A + N, ostream_iterator<int>(cout, " "));
// The output is " 1 2 4 5 7 8".

Notes

Stable sorting is sometimes important if you are sorting records that have multiple
fields: you might, for example, want to sort a list of people by first name and then
by last name. The algorithm stable sort does guarantee to preserve the relative
ordering of equivalent elements.

See also

stable sort, partial sort, partial sort copy, sort heap, is sorted,
binary search, lower bound, upper bound, less<T>, StrictWeakOrdering,
LessThan Comparable

stable sort

Prototype

Stable sort is an overloaded name; there are actually two stable sort functions.

template <class RandomAccessIterator>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last);

template <class RandomAccessIterator, class StrictWeakOrdering>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last,

StrictWeakOrdering comp);

278 Systems/C++ C++ Library

Description

Stable sort is much like sort: it sorts the elements in [first, last) into ascend-
ing order, meaning that if i and j are any two valid iterators in [first, last) such
that i precedes j, then *j is not less than *i. Stable sort differs from sort in two
ways. First, stable sort uses an algorithm that has different run-time complexity
than sort. Second, as the name suggests, stable sort is stable: it preserves the
relative ordering of equivalent elements. That is, if x and y are elements in [first,
last) such that x precedes y, and if the two elements are equivalent (neither x <
y nor y < x) then a postcondition of stable sort is that x still precedes y. The
two versions of stable sort differ in how they define whether one element is less
than another. The first version compares objects using operator<, and the second
compares objects using a function object comp.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version, the one that takes two arguments:

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• RandomAccessIterator’s value type is LessThan Comparable.

• The ordering relation on RandomAccessIterator’s value type is a strict weak
ordering, as defined in the LessThan Comparable requirements.

For the second version, the one that takes three arguments:

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• RandomAccessIterator’s value type is convertible to StrictWeakOrdering’s
argument type.

Preconditions

• [first, last) is a valid range.

Systems/C++ C++ Library 279

Complexity

Stable sort is an adaptive algorithm: it attempts to allocate a temporary mem-
ory buffer, and its run-time complexity depends on how much memory is available.
Worst-case behavior (if no auxiliary memory is available) is N (log N)2̂ compar-
isons, where N is last - first, and best case (if a large enough auxiliary memory
buffer is available) is N (log N).

Example

Sort a sequence of characters, ignoring their case. Note that the relative order of
characters that differ only by case is preserved.

inline bool lt_nocase(char c1, char c2)
{ return tolower(c1) < tolower(c2); }

int main()
{
char A[] = "fdBeACFDbEac";
const int N = sizeof(A) - 1;
stable_sort(A, A+N, lt_nocase);
printf("\%s\n", A);
// The printed result is ""AaBbCcdDeEfF".

}

Notes

Note that two elements may be equivalent without being equal. One standard
example is sorting a sequence of names by last name: if two people have the same
last name but different first names, then they are equivalent but not equal. This
is why stable sort is sometimes useful: if you are sorting a sequence of records
that have several different fields, then you may want to sort it by one field without
completely destroying the ordering that you previously obtained from sorting it by
a different field. You might, for example, sort by first name and then do a stable
sort by last name. Stable sort uses the merge sort algorithm; see section 5.2.4 of
Knuth. (D. E. Knuth, The Art of Computer Programming. Volume 3: Sorting and
Searching. Addison-Wesley, 1975.)

See also

sort, partial sort, partial sort copy, binary search, lower bound,
upper bound, less<T>, StrictWeakOrdering, LessThan Comparable

280 Systems/C++ C++ Library

partial sort

Prototype

Partial sort is an overloaded name; there are actually two partial sort func-
tions.

template <class RandomAccessIterator>
void partial_sort(RandomAccessIterator first,

RandomAccessIterator middle,
RandomAccessIterator last);

template <class RandomAccessIterator, class StrictWeakOrdering>
void partial_sort(RandomAccessIterator first,

RandomAccessIterator middle,
RandomAccessIterator last,
StrictWeakOrdering comp);

Description

Partial sort rearranges the elements in the range [first, last) so that they
are partially in ascending order. Specifically, it places the smallest middle - first
elements, sorted in ascending order, into the range [first, middle). The remain-
ing last - middle elements are placed, in an unspecified order, into the range
[middle, last). The two versions of partial sort differ in how they define
whether one element is less than another. The first version compares objects using
operator<, and the second compares objects using a function object comp. The
postcondition for the first version of partial sort is as follows. If i and j are any
two valid iterators in the range [first, middle) such that i precedes j, and if k is
a valid iterator in the range [middle, last), then *j < *i and *k < *i will both
be false. The corresponding postcondition for the second version of partial sort
is that comp(*j, *i) and comp(*k, *i) are both false. Informally, this postcondi-
tion means that the first middle - first elements are in ascending order and that
none of the elements in [middle, last) is less than any of the elements in [first,
middle).

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

Systems/C++ C++ Library 281

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• RandomAccessIterator’s value type is LessThan Comparable.

• The ordering relation on RandomAccessIterator’s value type is a strict weak
ordering, as defined in the LessThan Comparable requirements.

For the second version:

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• RandomAccessIterator’s value type is convertible to StrictWeakOrdering’s
argument type.

Preconditions

• [first, middle) is a valid range.

• [middle, last) is a valid range.

(It follows from these two conditions that [first, last) is a valid range.)

Complexity

Approximately (last - first) * log(middle - first) comparisons.

Example

int A[] = {7, 2, 6, 11, 9, 3, 12, 10, 8, 4, 1, 5};
const int N = sizeof(A) / sizeof(int);

partial_sort(A, A + 5, A + N);
copy(A, A + N, ostream_iterator<int>(cout, " "));
// The printed result is "1 2 3 4 5 11 12 10 9 8 7 6".

282 Systems/C++ C++ Library

Notes

Note that the elements in the range [first, middle) will be the same (ignoring,
for the moment, equivalent elements) as if you had sorted the entire range using
sort(first, last). The reason for using partial sort in preference to sort is
simply efficiency: a partial sort, in general, takes less time. partial sort(first,
last, last) has the effect of sorting the entire range [first, last), just like
sort(first, last). They use different algorithms, however: sort uses the in-
trosort algorithm (a variant of quicksort), and partial sort uses heapsort. See
section 5.2.3 of Knuth (D. E. Knuth, The Art of Computer Programming. Volume
3: Sorting and Searching. Addison-Wesley, 1975.), and J. W. J. Williams (CACM
7, 347, 1964). Both heapsort and introsort have complexity of order N log(N), but
introsort is usually faster by a factor of 2 to 5.

See also

partial sort copy, sort, stable sort, binary search, lower bound,
upper bound, less<T>, StrictWeakOrdering, LessThan Comparable

partial sort copy

Prototype

Partial sort copy is an overloaded name; there are actually two
partial sort copy functions.

template <class InputIterator, class RandomAccessIterator>
RandomAccessIterator
partial_sort_copy(InputIterator first, InputIterator last,

RandomAccessIterator result_first,
RandomAccessIterator result_last);

template <class InputIterator, class RandomAccessIterator,
class StrictWeakOrdering>

RandomAccessIterator
partial_sort_copy(InputIterator first, InputIterator last,

RandomAccessIterator result_first,
RandomAccessIterator result_last, Compare comp);

Description

Partial sort copy copies the smallest N elements from the range [first,
last) to the range [result first, result first + N), where N is the
smaller of last - first and result last - result first. The elements in
[result first, result first + N) will be in ascending order. The two versions

Systems/C++ C++ Library 283

of partial sort copy differ in how they define whether one element is less than
another. The first version compares objects using operator<, and the second com-
pares objects using a function object comp. The postcondition for the first version of
partial sort copy is as follows. If i and j are any two valid iterators in the range
[result first, result first + N) such that i precedes j, then *j < *i will be
false. The corresponding postcondition for the second version is that comp(*j,
*i) will be false. The return value is result first + N.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• InputIterator is a model of InputIterator.

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• The value types of InputIterator and RandomAccessIterator are the same.

• RandomAccessIterator’s value type is LessThan Comparable.

• The ordering relation on RandomAccessIterator’s value type is a strict weak
ordering, as defined in the LessThan Comparable requirements.

For the second version:

• InputIterator is a model of InputIterator.

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• The value types of InputIterator and RandomAccessIterator are the same.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• RandomAccessIterator’s value type is convertible to StrictWeakOrdering’s
argument type.

284 Systems/C++ C++ Library

Preconditions

• [first, last) is a valid range.

• [result first, result last) is a valid range.

• [first, last) and [result first, result last) do not overlap.

Complexity

Approximately (last - first) * log(N) comparisons, where N is the smaller of
last - first and result last - result first.

Example

int A[] = {7, 2, 6, 11, 9, 3, 12, 10, 8, 4, 1, 5};
const int N = sizeof(A) / sizeof(int);

vector<int> V(4);
partial_sort_copy(A, A + N, V.begin(), V.end());
copy(V.begin(), V.end(), ostream_iterator<int>(cout, " "));
// The printed result is "1 2 3 4".

Notes

See also

partial sort, sort, stable sort, binary search, lower bound, upper bound,
less<T>, StrictWeakOrdering, LessThan Comparable

is sorted

Prototype

Is sorted is an overloaded name; there are actually two is sorted functions.

template <class ForwardIterator>
bool is_sorted(ForwardIterator first, ForwardIterator last)

template <class ForwardIterator, class StrictWeakOrdering>
bool is_sorted(ForwardIterator first, ForwardIterator last,

StrictWeakOrdering comp)

Systems/C++ C++ Library 285

Description

Is sorted returns true if the range [first, last) is sorted in ascending order,
and false otherwise. The two versions of is sorted differ in how they define
whether one element is less than another. The first version compares objects using
operator<, and the second compares objects using the function object comp. The
first version of is sorted returns true if and only if, for every iterator i in the
range [first, last - 1), *(i + 1) < *i is false. The second version returns
true if and only if, for every iterator i in the range [first, last - 1), comp(*(i
+ 1), *i) is false

Definition

Defined in algo.h.

Requirements on types

For the first version:

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator’s value type is a model of LessThan Comparable.

• The ordering on objects of ForwardIterator’s value type is a strict weak
ordering, as defined in the LessThan Comparable requirements.

For the second version:

• ForwardIterator is a model of Forward Iterator.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• ForwardIterator’s value type is convertible to StrictWeakOrdering’s argu-
ment type.

Preconditions

• [first, last) is a valid range.

Complexity

Linear. Zero comparisons if [first, last) is an empty range, otherwise at most
(last - first) - 1 comparisons.

286 Systems/C++ C++ Library

Example

int A[] = {1, 4, 2, 8, 5, 7};
const int N = sizeof(A) / sizeof(int);

assert(!is_sorted(A, A + N));
sort(A, A + N);
assert(is_sorted(A, A + N));

Notes

See also

sort, stable sort, partial sort, partial sort copy, sort heap,
binary search, lower bound, upper bound, less<T>, StrictWeakOrdering,
LessThan Comparable

9.3.2 nth element

Prototype

Nth element is an overloaded name; there are actually two nth element functions.

template <class RandomAccessIterator>
void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last);

template <class RandomAccessIterator, class StrictWeakOrdering>
void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last, StrictWeakOrdering comp);

Description

Nth element is similar to partial sort, in that it partially orders a range of ele-
ments: it arranges the range [first, last) such that the element pointed to by
the iterator nth is the same as the element that would be in that position if the
entire range [first, last) had been sorted. Additionally, none of the elements in
the range [nth, last) is less than any of the elements in the range [first, nth).
The two versions of nth element differ in how they define whether one element is
less than another. The first version compares objects using operator<, and the
second compares objects using a function object comp. The postcondition for the
first version of nth element is as follows. There exists no iterator i in the range
[first, nth) such that *nth < *i, and there exists no iterator j in the range

Systems/C++ C++ Library 287

[nth + 1, last) such that *j < *nth. The postcondition for the second version
of nth element is as follows. There exists no iterator i in the range [first, nth)
such that comp(*nth, *i) is true, and there exists no iterator j in the range [nth
+ 1, last) such that comp(*j, *nth) is true.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version, the one that takes three arguments:

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• RandomAccessIterator’s value type is LessThan Comparable.

• The ordering relation on RandomAccessIterator’s value type is a strict weak
ordering, as defined in the LessThan Comparable requirements.

For the second version, the one that takes four arguments:

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• RandomAccessIterator’s value type is convertible to StrictWeakOrdering’s
argument type.

Preconditions

• [first, nth) is a valid range.

• [nth, last) is a valid range.

(It follows from these two conditions that [first, last) is a valid range.)

Complexity

On average, linear in last - first.

288 Systems/C++ C++ Library

Example

int A[] = {7, 2, 6, 11, 9, 3, 12, 10, 8, 4, 1, 5};
const int N = sizeof(A) / sizeof(int);

nth_element(A, A + 6, A + N);
copy(A, A + N, ostream_iterator<int>(cout, " "));
// The printed result is "5 2 6 1 4 3 7 8 9 10 11 12".

Notes

The way in which this differs from partial sort is that neither the range [first,
nth) nor the range [nth, last) is be sorted: it is simply guaranteed that none of
the elements in [nth, last) is less than any of the elements in [first, nth). In
that sense, nth element is more similar to partition than to sort. Nth element
does less work than partial sort, so, reasonably enough, it is faster. That’s the
main reason to use nth element instead of partial sort. Note that this is
significantly less than the run-time complexity of partial sort.

See also

partial sort, partition, sort, StrictWeakOrdering, LessThan Comparable

9.3.3 Binary search

lower bound

Prototype

Lower bound is an overloaded name; there are actually two lower bound functions.

template <class ForwardIterator, class LessThanComparable>
ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,

const LessThanComparable& value);

template <class ForwardIterator, class T, class StrictWeakOrdering>
ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,

const T& value, StrictWeakOrdering comp);

Description

Lower bound is a version of binary search: it attempts to find the element value
in an ordered range [first, last) . Specifically, it returns the first position

Systems/C++ C++ Library 289

where value could be inserted without violating the ordering. The first version
of lower bound uses operator< for comparison, and the second uses the function
object comp. The first version of lower bound returns the furthermost iterator i
in [first, last) such that, for every iterator j in [first, i), *j < value. The
second version of lower bound returns the furthermost iterator i in [first, last)
such that, for every iterator j in [first, i), comp(*j, value) is true.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• ForwardIterator is a model of Forward Iterator.

• LessThanComparable is a model of LessThan Comparable.

• The ordering on objects of type LessThanComparable is a strict weak ordering,
as defined in the LessThan Comparable requirements.

• ForwardIterator’s value type is the same type as LessThanComparable.

For the second version:

• ForwardIterator is a model of Forward Iterator.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• ForwardIterator’s value type is the same type as T.

• ForwardIterator’s value type is convertible to StrictWeakOrdering’s argu-
ment type.

Preconditions

For the first version:

• [first, last) is a valid range.

• [first, last) is ordered in ascending order according to operator<. That
is, for every pair of iterators i and j in [first, last) such that i precedes
j, *j < *i is false.

290 Systems/C++ C++ Library

For the second version:

• [first, last) is a valid range.

• [first, last) is ordered in ascending order according to the function object
comp. That is, for every pair of iterators i and j in [first, last) such that
i precedes j, comp(*j, *i) is false.

Complexity

The number of comparisons is logarithmic: at most log(last - first) + 1. If
ForwardIterator is a Random Access Iterator then the number of steps through
the range is also logarithmic; otherwise, the number of steps is proportional to last
- first.

Example

int main()
{
int A[] = { 1, 2, 3, 3, 3, 5, 8 };
const int N = sizeof(A) / sizeof(int);

for (int i = 1; i <= 10; ++i) {
int* p = lower_bound(A, A + N, i);
cout << "Searching for " << i << ". ";
cout << "Result: index = " << p - A << ", ";
if (p != A + N)
cout << "A[" << p - A << "] == " << *p << endl;

else
cout << "which is off-the-end." << endl;

}
}

The output is:

Searching for 1. Result: index = 0, A[0] == 1
Searching for 2. Result: index = 1, A[1] == 2
Searching for 3. Result: index = 2, A[2] == 3
Searching for 4. Result: index = 5, A[5] == 5
Searching for 5. Result: index = 5, A[5] == 5
Searching for 6. Result: index = 6, A[6] == 8
Searching for 7. Result: index = 6, A[6] == 8
Searching for 8. Result: index = 6, A[6] == 8
Searching for 9. Result: index = 7, which is off-the-end.
Searching for 10. Result: index = 7, which is off-the-end.

Systems/C++ C++ Library 291

Notes

Note that you may use an ordering that is a strict weak ordering but not a total
ordering; that is, there might be values x and y such that x < y, x > y, and x ==
y are all false. (See the LessThan Comparable requirements for a more complete
discussion.) Finding value in the range [first, last), then, doesn’t mean finding
an element that is equal to value but rather one that is equivalent to value: one
that is neither greater than nor less than value. If you’re using a total ordering,
however (if you’re using strcmp, for example, or if you’re using ordinary arithmetic
comparison on integers), then you can ignore this technical distinction: for a total
ordering, equality and equivalence are the same. If an element that is equivalent
to value is already present in the range [first, last), then the return value
of lower bound will be an iterator that points to that element. This difference
between Random Access Iterators and Forward Iterators is simply because advance
is constant time for Random Access Iterators and linear time for Forward Iterators.

See also

upper bound, equal range, binary search

upper bound

Prototype

Upper bound is an overloaded name; there are actually two upper bound functions.

template <class ForwardIterator, class LessThanComparable>
ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,

const LessThanComparable& value);

template <class ForwardIterator, class T, class StrictWeakOrdering>
ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,

const T& value, StrictWeakOrdering comp);

Description

Upper bound is a version of binary search: it attempts to find the element value in
an ordered range [first, last) . Specifically, it returns the last position where
value could be inserted without violating the ordering. The first version of
upper bound uses operator< for comparison, and the second uses the function ob-
ject comp. The first version of upper bound returns the furthermost iterator i in
[first, last) such that, for every iterator j in [first, i), value < *j is false.
The second version of upper bound returns the furthermost iterator i in [first,
last) such that, for every iterator j in [first, i), comp(value, *j) is false.

292 Systems/C++ C++ Library

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• ForwardIterator is a model of Forward Iterator.

• LessThanComparable is a model of LessThan Comparable.

• The ordering on objects of type LessThanComparable is a strict weak ordering,
as defined in the LessThan Comparable requirements.

• ForwardIterator’s value type is the same type as LessThanComparable.

For the second version:

• ForwardIterator is a model of Forward Iterator.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• ForwardIterator’s value type is the same type as T.

• ForwardIterator’s value type is convertible to StrictWeakOrdering’s argu-
ment type.

Preconditions

For the first version:

• [first, last) is a valid range.

• [first, last) is ordered in ascending order according to operator<. That
is, for every pair of iterators i and j in [first, last) such that i precedes
j, *j < *i is false.

For the second version:

• [first, last) is a valid range.

• [first, last) is ordered in ascending order according to the function object
comp. That is, for every pair of iterators i and j in [first, last) such that
i precedes j, comp(*j, *i) is false.

Systems/C++ C++ Library 293

Complexity

The number of comparisons is logarithmic: at most log(last - first) + 1. If
ForwardIterator is a Random Access Iterator then the number of steps through
the range is also logarithmic; otherwise, the number of steps is proportional to last
- first.

Example

int main()
{
int A[] = { 1, 2, 3, 3, 3, 5, 8 };
const int N = sizeof(A) / sizeof(int);

for (int i = 1; i <= 10; ++i) {
int* p = upper_bound(A, A + N, i);
cout << "Searching for " << i << ". ";
cout << "Result: index = " << p - A << ", ";
if (p != A + N)
cout << "A[" << p - A << "] == " << *p << endl;

else
cout << "which is off-the-end." << endl;

}
}

The output is:

Searching for 1. Result: index = 1, A[1] == 2
Searching for 2. Result: index = 2, A[2] == 3
Searching for 3. Result: index = 5, A[5] == 5
Searching for 4. Result: index = 5, A[5] == 5
Searching for 5. Result: index = 6, A[6] == 8
Searching for 6. Result: index = 6, A[6] == 8
Searching for 7. Result: index = 6, A[6] == 8
Searching for 8. Result: index = 7, which is off-the-end.
Searching for 9. Result: index = 7, which is off-the-end.
Searching for 10. Result: index = 7, which is off-the-end.

Notes

Note that you may use an ordering that is a strict weak ordering but not a total
ordering; that is, there might be values x and y such that x < y, x > y, and x ==
y are all false. (See the LessThan Comparable requirements for a more complete
discussion.) Finding value in the range [first, last), then, doesn’t mean finding
an element that is equal to value but rather one that is equivalent to value: one
that is neither greater than nor less than value. If you’re using a total ordering,

294 Systems/C++ C++ Library

however (if you’re using strcmp, for example, or if you’re using ordinary arithmetic
comparison on integers), then you can ignore this technical distinction: for a total
ordering, equality and equivalence are the same. Note that even if an element that
is equivalent to value is already present in the range [first, last), the return
value of upper bound will not point to that element. The return value is either last
or else an iterator i such that value < *i. If i is not equal to first, however, then
*(i - 1) is less than or equivalent to value. This difference between Random
Access Iterators and Forward Iterators is simply because advance is constant time
for Random Access Iterators and linear time for Forward Iterators.

See also

lower bound, equal range, binary search

equal range

Prototype

Equal range is an overloaded name; there are actually two equal range functions.

template <class ForwardIterator, class LessThanComparable>
pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first, ForwardIterator last,

const LessThanComparable& value);

template <class ForwardIterator, class T, class StrictWeakOrdering>
pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first, ForwardIterator last, const T& value,

StrictWeakOrdering comp);

Description

Equal range is a version of binary search: it attempts to find the element value in
an ordered range [first, last) . The value returned by equal range is essentially
a combination of the values returned by lower bound and upper bound: it returns
a pair of iterators i and j such that i is the first position where value could be
inserted without violating the ordering and j is the last position where value could
be inserted without violating the ordering. It follows that every element in the range
[i, j) is equivalent to value, and that [i, j) is the largest subrange of [first,
last) that has this property. The first version of equal range uses operator<
for comparison, and the second uses the function object comp. The first version of
equal range returns a pair of iterators [i, j). i is the furthermost iterator in
[first, last) such that, for every iterator k in [first, i), *k < value. j is the
furthermost iterator in [first, last) such that, for every iterator k in [first,

Systems/C++ C++ Library 295

j), value < *k is false. For every iterator k in [i, j), neither value < *k nor *k
< value is true. The second version of equal range returns a pair of iterators [i,
j). i is the furthermost iterator in [first, last) such that, for every iterator k
in [first, i), comp(*k, value) is true. j is the furthermost iterator in [first,
last) such that, for every iterator k in [first, j), comp(value, *k) is false.
For every iterator k in [i, j), neither comp(value, *k) nor comp(*k, value) is
true.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• ForwardIterator is a model of Forward Iterator.

• LessThanComparable is a model of LessThan Comparable.

• The ordering on objects of type LessThanComparable is a strict weak ordering,
as defined in the LessThan Comparable requirements.

• ForwardIterator’s value type is the same type as LessThanComparable.

For the second version:

• ForwardIterator is a model of Forward Iterator.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• ForwardIterator’s value type is the same type as T.

• ForwardIterator’s value type is convertible to StrictWeakOrdering’s argu-
ment type.

Preconditions

For the first version:

• [first, last) is a valid range.

• [first, last) is ordered in ascending order according to operator<. That
is, for every pair of iterators i and j in [first, last) such that i precedes
j, *j < *i is false.

296 Systems/C++ C++ Library

For the second version:

• [first, last) is a valid range.

• [first, last) is ordered in ascending order according to the function object
comp. That is, for every pair of iterators i and j in [first, last) such that
i precedes j, comp(*j, *i) is false.

Complexity

The number of comparisons is logarithmic: at most 2 * log(last - first) + 1.
If ForwardIterator is a Random Access Iterator then the number of steps through
the range is also logarithmic; otherwise, the number of steps is proportional to last
- first.

Example

int main()
{
int A[] = { 1, 2, 3, 3, 3, 5, 8 };
const int N = sizeof(A) / sizeof(int);

for (int i = 2; i <= 4; ++i) {
pair<int*, int*> result = equal_range(A, A + N, i);

cout << endl;
cout << "Searching for " << i << endl;
cout << " First position where " << i << " could be inserted: "

<< result.first - A << endl;
cout << " Last position where " << i << " could be inserted: "

<< result.second - A << endl;
if (result.first < A + N)
cout << " *result.first = " << *result.first << endl;

if (result.second < A + N)
cout << " *result.second = " << *result.second << endl;

}
}

The output is:

Systems/C++ C++ Library 297

Searching for 2
First position where 2 could be inserted: 1
Last position where 2 could be inserted: 2
*result.first = 2
*result.second = 3

Searching for 3
First position where 3 could be inserted: 2
Last position where 3 could be inserted: 5
*result.first = 3
*result.second = 5

Searching for 4
First position where 4 could be inserted: 5
Last position where 4 could be inserted: 5
*result.first = 5
*result.second = 5

Notes

Note that you may use an ordering that is a strict weak ordering but not a total
ordering; that is, there might be values x and y such that x < y, x > y, and x ==
y are all false. (See the LessThan Comparable requirements for a more complete
discussion.) Finding value in the range [first, last), then, doesn’t mean finding
an element that is equal to value but rather one that is equivalent to value: one
that is neither greater than nor less than value. If you’re using a total ordering,
however (if you’re using strcmp, for example, or if you’re using ordinary arithmetic
comparison on integers), then you can ignore this technical distinction: for a total
ordering, equality and equivalence are the same. Note that equal range may
return an empty range; that is, it may return a pair both of whose elements are
the same iterator. Equal range returns an empty range if and only if the range
[first, last) contains no elements equivalent to value. In this case it follows
that there is only one position where value could be inserted without violating the
range’s ordering, so the return value is a pair both of whose elements are iterators
that point to that position. This difference between Random Access Iterators and
Forward Iterators is simply because advance is constant time for Random Access
Iterators and linear time for Forward Iterators.

See also

lower bound, upper bound, binary search

binary search

Prototype

298 Systems/C++ C++ Library

Binary search is an overloaded name; there are actually two binary search func-
tions.

template <class ForwardIterator, class LessThanComparable>
bool binary_search(ForwardIterator first, ForwardIterator last,

const LessThanComparable& value);

template <class ForwardIterator, class T, class StrictWeakOrdering>
bool binary_search(ForwardIterator first, ForwardIterator last,

const T& value, StrictWeakOrdering comp);

Description

Binary search is a version of binary search: it attempts to find the element value
in an ordered range [first, last) It returns true if an element that is equivalent
to value is present in [first, last) and false if no such element exists. The
first version of binary search uses operator< for comparison, and the second uses
the function object comp. Specifically, the first version returns true if and only if
there exists an iterator i in [first, last) such that *i < value and value <
*i are both false. The second version returns true if and only if there exists an
iterator i in [first, last) such that comp(*i, value) and comp(value, *i) are
both false.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• ForwardIterator is a model of Forward Iterator.

• LessThanComparable is a model of LessThan Comparable.

• The ordering on objects of type LessThanComparable is a strict weak ordering,
as defined in the LessThan Comparable requirements.

• ForwardIterator’s value type is the same type as LessThanComparable.

For the second version:

• ForwardIterator is a model of Forward Iterator.

Systems/C++ C++ Library 299

• StrictWeakOrdering is a model of Strict Weak Ordering.

• ForwardIterator’s value type is the same type as T.

• ForwardIterator’s value type is convertible to StrictWeakOrdering’s argu-
ment type.

Preconditions

For the first version:

• [first, last) is a valid range.

• [first, last) is ordered in ascending order according to operator<. That
is, for every pair of iterators i and j in [first, last) such that i precedes
j, *j < *i is false.

For the second version:

• [first, last) is a valid range.

• [first, last) is ordered in ascending order according to the function object
comp. That is, for every pair of iterators i and j in [first, last) such that
i precedes j, comp(*j, *i) is false.

Complexity

The number of comparisons is logarithmic: at most log(last - first) + 2. If
ForwardIterator is a Random Access Iterator then the number of steps through
the range is also logarithmic; otherwise, the number of steps is proportional to last
- first.

Example

int main()
{
int A[] = { 1, 2, 3, 3, 3, 5, 8 };
const int N = sizeof(A) / sizeof(int);

for (int i = 1; i <= 10; ++i) {
cout << "Searching for " << i << ": "

<< (binary_search(A, A + N, i) ? "present" : "not present")
<< endl;

}
}

300 Systems/C++ C++ Library

The output is:

Searching for 1: present
Searching for 2: present
Searching for 3: present
Searching for 4: not present
Searching for 5: present
Searching for 6: not present
Searching for 7: not present
Searching for 8: present
Searching for 9: not present
Searching for 10: not present

Notes

Note that you may use an ordering that is a strict weak ordering but not a total
ordering; that is, there might be values x and y such that x < y, x > y, and x ==
y are all false. (See the LessThan Comparable requirements for a more complete
discussion.) Finding value in the range [first, last), then, doesn’t mean finding
an element that is equal to value but rather one that is equivalent to value: one
that is neither greater than nor less than value. If you’re using a total ordering,
however (if you’re using strcmp, for example, or if you’re using ordinary arithmetic
comparison on integers), then you can ignore this technical distinction: for a total
ordering, equality and equivalence are the same. Note that this is not necessarily
the information you are interested in! Usually, if you’re testing whether an element is
present in a range, you’d like to know where it is (if it’s present), or where it should
be inserted (if it’s not present). The functions lower bound, upper bound, and
equal range provide this information. This difference between Random Access
Iterators and Forward Iterators is simply because advance is constant time for
Random Access Iterators and linear time for Forward Iterators.

See also

lower bound, upper bound, equal range

9.3.4 merge

Prototype

Merge is an overloaded name: there are actually two merge functions.

Systems/C++ C++ Library 301

template <class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template <class InputIterator1, class InputIterator2,
class OutputIterator, class StrictWeakOrdering>

OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, StrictWeakOrdering comp);

Description

Merge combines two sorted ranges [first1, last1) and [first2, last2) into
a single sorted range. That is, it copies elements from [first1, last1)
and [first2, last2) into [result, result + (last1 - first1) + (last2 -
first2)) such that the resulting range is in ascending order. Merge is stable, mean-
ing both that the relative order of elements within each input range is preserved,
and that for equivalent elements in both input ranges the element from the first
range precedes the element from the second. The return value is result + (last1
- first1) + (last2 - first2). The two versions of merge differ in how elements
are compared. The first version uses operator<. That is, the input ranges and the
output range satisfy the condition that for every pair of iterators i and j such that
i precedes j, *j < *i is false. The second version uses the function object comp.
That is, the input ranges and the output range satisfy the condition that for every
pair of iterators i and j such that i precedes j, comp(*j, *i) is false.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• InputIterator1’s value type is the same type as InputIterator2’s value
type.

• InputIterator1’s value type is a model of LessThan Comparable.

302 Systems/C++ C++ Library

• The ordering on objects of InputIterator1’s value type is a strict weak or-
dering, as defined in the LessThan Comparable requirements.

• InputIterator1’s value type is convertible to a type in OutputIterator’s set
of value types.

For the second version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• InputIterator1’s value type is the same type as InputIterator2’s value
type.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• InputIterator1’s value type is convertible to StrictWeakOrdering’s argu-
ment type.

• InputIterator1’s value type is convertible to a type in OutputIterator’s set
of value types.

Preconditions

For the first version:

• [first1, last1) is a valid range.

• [first1, last1) is in ascending order. That is, for every pair of iterators i
and j in [first1, last1) such that i precedes j, *j < *i is false.

• [first2, last2) is a valid range.

• [first2, last2) is in ascending order. That is, for every pair of iterators i
and j in [first2, last2) such that i precedes j, *j < *i is false.

• The ranges [first1, last1) and [result, result + (last1 - first1)
+ (last2 - first2)) do not overlap.

• The ranges [first2, last2) and [result, result + (last1 - first1)
+ (last2 - first2)) do not overlap.

• There is enough space to hold all of the elements being copied. More formally,
the requirement is that [result, result + (last1 - first1) + (last2 -
first2)) is a valid range.

For the second version:

Systems/C++ C++ Library 303

• [first1, last1) is a valid range.

• [first1, last1) is in ascending order. That is, for every pair of iterators i
and j in [first1, last1) such that i precedes j, comp(*j, *i) is false.

• [first2, last2) is a valid range.

• [first2, last2) is in ascending order. That is, for every pair of iterators i
and j in [first2, last2) such that i precedes j, comp(*j, *i) is false.

• The ranges [first1, last1) and [result, result + (last1 - first1)
+ (last2 - first2)) do not overlap.

• The ranges [first2, last2) and [result, result + (last1 - first1)
+ (last2 - first2)) do not overlap.

• There is enough space to hold all of the elements being copied. More formally,
the requirement is that [result, result + (last1 - first1) + (last2 -
first2)) is a valid range.

Complexity

Linear. No comparisons if both [first1, last1) and [first2, last2) are empty
ranges, otherwise at most (last1 - first1) + (last2 - first2) - 1 compar-
isons.

Example

int main()
{
int A1[] = { 1, 3, 5, 7 };
int A2[] = { 2, 4, 6, 8 };
const int N1 = sizeof(A1) / sizeof(int);
const int N2 = sizeof(A2) / sizeof(int);

merge(A1, A1 + N1, A2, A2 + N2,
ostream_iterator<int>(cout, " "));

// The output is "1 2 3 4 5 6 7 8"
}

Notes

Note that you may use an ordering that is a strict weak ordering but not a total
ordering; that is, there might be values x and y such that x < y, x > y, and x ==
y are all false. (See the LessThan Comparable requirements for a more complete
discussion.) Two elements x and y are equivalent if neither x < y nor y < x. If
you’re using a total ordering, however (if you’re using strcmp, for example, or if
you’re using ordinary arithmetic comparison on integers), then you can ignore this
technical distinction: for a total ordering, equality and equivalence are the same.

304 Systems/C++ C++ Library

See also

inplace merge, set union, sort

9.3.5 inplace merge

Prototype

Inplace merge is an overloaded name: there are actually two inplace merge func-
tions.

template <class BidirectionalIterator>
inline void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last);

template <class BidirectionalIterator, class StrictWeakOrdering>
inline void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last,
StrictWeakOrdering comp);

Description

Inplace merge combines two consecutive sorted ranges [first, middle) and
[middle, last) into a single sorted range [first, last). That is, it starts
with a range [first, last) that consists of two pieces each of which is in as-
cending order, and rearranges it so that the entire range is in ascending order.
Inplace merge is stable, meaning both that the relative order of elements within
each input range is preserved, and that for equivalent elements in both input ranges
the element from the first range precedes the element from the second. The two ver-
sions of inplace merge differ in how elements are compared. The first version uses
operator<. That is, the input ranges and the output range satisfy the condition
that for every pair of iterators i and j such that i precedes j, *j < *i is false.
The second version uses the function object comp. That is, the input ranges and the
output range satisfy the condition that for every pair of iterators i and j such that
i precedes j, comp(*j, *i) is false.

Definition

Defined in algo.h.

Requirements on types

For the first version:

Systems/C++ C++ Library 305

• BidirectionalIterator is a model of Bidirectional Iterator.

• BidirectionalIterator is mutable.

• BidirectionalIterator’s value type is a model of LessThan Comparable.

• The ordering on objects of BidirectionalIterator’s value type is a strict
weak ordering, as defined in the LessThan Comparable requirements.

For the second version:

• BidirectionalIterator is a model of Bidirectional Iterator.

• BidirectionalIterator is mutable.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• BidirectionalIterator’s value type is convertible to StrictWeakOrdering’s
argument type.

Preconditions

For the first version:

• [first, middle) is a valid range.

• [middle, last) is a valid range.

• [first, middle) is in ascending order. That is, for every pair of iterators i
and j in [first, middle) such that i precedes j, *j < *i is false.

• [middle, last) is in ascending order. That is, for every pair of iterators i
and j in [middle, last) such that i precedes j, *j < *i is false.

For the second version:

• [first, middle) is a valid range.

• [middle, last) is a valid range.

• [first, middle) is in ascending order. That is, for every pair of iterators i
and j in [first, middle) such that i precedes j, comp(*j, *i) is false.

• [middle, last) is in ascending order. That is, for every pair of iterators i
and j in [middle, last) such that i precedes j, comp(*j, *i) is false.

306 Systems/C++ C++ Library

Complexity

Inplace merge is an adaptive algorithm: it attempts to allocate a temporary mem-
ory buffer, and its run-time complexity depends on how much memory is available.
Inplace merge performs no comparisons if [first, last) is an empty range. Oth-
erwise, worst-case behavior (if no auxiliary memory is available) is O(N log(N)),
where N is last - first, and best case (if a large enough auxiliary memory buffer
is available) is at most (last - first) - 1 comparisons.

Example

int main()
{
int A[] = { 1, 3, 5, 7, 2, 4, 6, 8 };

inplace_merge(A, A + 4, A + 8);
copy(A, A + 8, ostream_iterator<int>(cout, " "));
// The output is "1 2 3 4 5 6 7 8".

}

Notes

Note that you may use an ordering that is a strict weak ordering but not a total
ordering; that is, there might be values x and y such that x < y, x > y, and x ==
y are all false. (See the LessThan Comparable requirements for a fuller discussion.)
Two elements x and y are equivalent if neither x < y nor y < x. If you’re using
a total ordering, however (if you’re using strcmp, for example, or if you’re using
ordinary arithmetic comparison on integers), then you can ignore this technical
distinction: for a total ordering, equality and equivalence are the same.

See also

merge, set union, sort

9.3.6 Set operations on sorted ranges

includes

Prototype

Includes is an overloaded name; there are actually two includes functions.

Systems/C++ C++ Library 307

template <class InputIterator1, class InputIterator2>
bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);

template <class InputIterator1, class InputIterator2,
class StrictWeakOrdering>

bool includes(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
StrictWeakOrdering comp);

Description

Includes tests whether one sorted range includes another sorted range. That is, it
returns true if and only if, for every element in [first2, last2), an equivalent el-
ement is also present in [first1, last1) . Both [first1, last1) and [first2,
last2) must be sorted in ascending order. The two versions of includes differ in
how they define whether one element is less than another. The first version com-
pares objects using operator<, and the second compares objects using the function
object comp.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• InputIterator1 and InputIterator2 have the same value type.

• InputIterator’s value type is a model of LessThan Comparable.

• The ordering on objects of InputIterator1’s value type is a strict weak or-
dering, as defined in the LessThan Comparable requirements.

For the second version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

308 Systems/C++ C++ Library

• InputIterator1 and InputIterator2 have the same value type.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• InputIterator1’s value type is convertible to StrictWeakOrdering’s argu-
ment type.

Preconditions

For the first version:

• [first1, last1) is a valid range.

• [first2, last2) is a valid range.

• [first1, last1) is ordered in ascending order according to operator<. That
is, for every pair of iterators i and j in [first1, last1) such that i precedes
j, *j < *i is false.

• [first2, last2) is ordered in ascending order according to operator<. That
is, for every pair of iterators i and j in [first2, last2) such that i precedes
j, *j < *i is false.

For the second version:

• [first1, last1) is a valid range.

• [first2, last2) is a valid range.

• [first1, last1) is ordered in ascending order according to comp. That is,
for every pair of iterators i and j in [first1, last1) such that i precedes
j, comp(*j, *i) is false.

• [first2, last2) is ordered in ascending order according to comp. That is,
for every pair of iterators i and j in [first2, last2) such that i precedes
j, comp(*j, *i) is false.

Complexity

Linear. Zero comparisons if either [first1, last1) or [first2, last2) is an
empty range, otherwise at most 2 * ((last1 - first1) + (last2 - first2))
- 1 comparisons.

Systems/C++ C++ Library 309

Example

int A1[] = { 1, 2, 3, 4, 5, 6, 7 };
int A2[] = { 1, 4, 7 };
int A3[] = { 2, 7, 9 };
int A4[] = { 1, 1, 2, 3, 5, 8, 13, 21 };
int A5[] = { 1, 2, 13, 13 };
int A6[] = { 1, 1, 3, 21 };

const int N1 = sizeof(A1) / sizeof(int);
const int N2 = sizeof(A2) / sizeof(int);
const int N3 = sizeof(A3) / sizeof(int);
const int N4 = sizeof(A4) / sizeof(int);
const int N5 = sizeof(A5) / sizeof(int);
const int N6 = sizeof(A6) / sizeof(int);

cout << "A2 contained in A1: "
<< (includes(A1, A1 + N1, A2, A2 + N2) ? "true" : "false") << endl;

cout << "A3 contained in A1: "
<< (includes(A1, A1 + N2, A3, A3 + N3) ? "true" : "false") << endl;

cout << "A5 contained in A4: "
<< (includes(A4, A4 + N4, A5, A5 + N5) ? "true" : "false") << endl;

cout << "A6 contained in A4: "
<< (includes(A4, A4 + N4, A6, A6 + N6) ? "true" : "false") << endl;

The output is:

A2 contained in A1: true
A3 contained in A1: false
A5 contained in A4: false
A6 contained in A4: true

Notes

This reads ”an equivalent element” rather than ”the same element” because the or-
dering by which the input ranges are sorted is permitted to be a strict weak ordering
that is not a total ordering: there might be values x and y that are equivalent (that
is, neither x < y nor y < x is true) but not equal. See the LessThan Comparable
requirements for a fuller discussion.) If you’re using a total ordering (if you’re using
strcmp, for example, or if you’re using ordinary arithmetic comparison on integers),
then you can ignore this technical distinction: for a total ordering, equality and
equivalence are the same. Note that the range [first2, last2) may contain a
consecutive range of equivalent elements: there is no requirement that every ele-
ment in the range be unique. In this case, includes will return false unless, for
every element in [first2, last2), a distinct equivalent element is also present in

310 Systems/C++ C++ Library

[first1, last1). That is, if a certain value appears n times in [first2, last2)
and m times in [first1, last1), then includes will return false if m < n.

See also

set union, set intersection, set difference, set symmetric difference,
sort

set union

Prototype

Set union is an overloaded name; there are actually two set union functions.

template <class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template <class InputIterator1, class InputIterator2,
class OutputIterator, class StrictWeakOrdering>

OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result,
StrictWeakOrdering comp);

Description

Set union constructs a sorted range that is the union of the sorted ranges [first1,
last1) and [first2, last2). The return value is the end of the output range.
In the simplest case, set union performs the ”union” operation from set theory:
the output range contains a copy of every element that is contained in [first1,
last1), [first2, last2), or both. The general case is more complicated, because
the input ranges may contain duplicate elements. The generalization is that if a value
appears m times in [first1, last1) and n times in [first2, last2) (where m or
n may be zero), then it appears max(m,n) times in the output range. Set union is
stable, meaning both that the relative order of elements within each input range is
preserved, and that if an element is present in both input ranges it is copied from
the first range rather than the second. The two versions of set union differ in how
they define whether one element is less than another. The first version compares
objects using operator<, and the second compares objects using a function object
comp.

Systems/C++ C++ Library 311

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• OutputIterator is a model of Output Iterator.

• InputIterator1 and InputIterator2 have the same value type.

• InputIterator’s value type is a model of LessThan Comparable.

• The ordering on objects of InputIterator1’s value type is a strict weak or-
dering, as defined in the LessThan Comparable requirements.

• InputIterator’s value type is convertible to a type in OutputIterator’s set
of value types.

For the second version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• OutputIterator is a model of Output Iterator.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• InputIterator1 and InputIterator2 have the same value type.

• InputIterator1’s value type is convertible to StrictWeakOrdering’s argu-
ment type.

• InputIterator’s value type is convertible to a type in OutputIterator’s set
of value types.

Preconditions

For the first version:

• [first1, last1) is a valid range.

• [first2, last2) is a valid range.

312 Systems/C++ C++ Library

• [first1, last1) is ordered in ascending order according to operator<. That
is, for every pair of iterators i and j in [first1, last1) such that i precedes
j, *j < *i is false.

• [first2, last2) is ordered in ascending order according to operator<. That
is, for every pair of iterators i and j in [first2, last2) such that i precedes
j, *j < *i is false.

• There is enough space to hold all of the elements being copied. More formally,
the requirement is that [result, result + n) is a valid range, where n is
the number of elements in the union of the two input ranges.

• [first1, last1) and [result, result + n) do not overlap.

• [first2, last2) and [result, result + n) do not overlap.

For the second version:

• [first1, last1) is a valid range.

• [first2, last2) is a valid range.

• [first1, last1) is ordered in ascending order according to comp. That is,
for every pair of iterators i and j in [first1, last1) such that i precedes
j, comp(*j, *i) is false.

• [first2, last2) is ordered in ascending order according to comp. That is,
for every pair of iterators i and j in [first2, last2) such that i precedes
j, comp(*j, *i) is false.

• There is enough space to hold all of the elements being copied. More formally,
the requirement is that [result, result + n) is a valid range, where n is
the number of elements in the union of the two input ranges.

• [first1, last1) and [result, result + n) do not overlap.

• [first2, last2) and [result, result + n) do not overlap.

Complexity

Linear. Zero comparisons if either [first1, last1) or [first2, last2) is empty,
otherwise at most 2 * ((last1 - first1) + (last2 - first2)) - 1 compar-
isons.

Example

Systems/C++ C++ Library 313

inline bool lt_nocase(char c1, char c2)
{ return tolower(c1) < tolower(c2); }

int main()
{
int A1[] = {1, 3, 5, 7, 9, 11};
int A2[] = {1, 1, 2, 3, 5, 8, 13};
char A3[] = {’a’, ’b’, ’B’, ’B’, ’f’, ’H’};
char A4[] = {’A’, ’B’, ’b’, ’C’, ’D’, ’F’, ’F’, ’h’, ’h’};

const int N1 = sizeof(A1) / sizeof(int);
const int N2 = sizeof(A2) / sizeof(int);
const int N3 = sizeof(A3);
const int N4 = sizeof(A4);

cout << "Union of A1 and A2: ";
set_union(A1, A1 + N1, A2, A2 + N2,

ostream_iterator<int>(cout, " "));
cout << endl

<< "Union of A3 and A4: ";
set_union(A3, A3 + N3, A4, A4 + N4,

ostream_iterator<char>(cout, " "),
lt_nocase);

cout << endl;
}

The output is

Union of A1 and A2: 1 1 2 3 5 7 8 9 11 13
Union of A3 and A4: a b B B C D f F H h

Notes

Even this is not a completely precise description, because the ordering by which
the input ranges are sorted is permitted to be a strict weak ordering that is not a
total ordering: there might be values x and y that are equivalent (that is, neither
x < y nor y < x) but not equal. See the LessThan Comparable requirements for a
more complete discussion. If the range [first1, last1) contains m elements that
are equivalent to each other and the range [first2, last2) contains n elements
from that equivalence class (where either m or n may be zero), then the output
range contains max(m, n) elements from that equivalence class. Specifically, m of
these elements will be copied from [first1, last1) and max(n-m, 0) of them
will be copied from [first2, last2). Note that this precision is only important
if elements can be equivalent but not equal. If you’re using a total ordering (if
you’re using strcmp, for example, or if you’re using ordinary arithmetic comparison
on integers), then you can ignore this technical distinction: for a total ordering,
equality and equivalence are the same.

314 Systems/C++ C++ Library

See also

includes, set intersection, set difference, set symmetric difference,
sort, merge

set intersection

Prototype

Set intersection is an overloaded name; there are actually two set intersection
functions.

template <class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator set_intersection(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
OutputIterator result);

template <class InputIterator1, class InputIterator2,
class OutputIterator, class StrictWeakOrdering>

OutputIterator set_intersection(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
OutputIterator result,
StrictWeakOrdering comp);

Description

Set intersection constructs a sorted range that is the intersection of the sorted
ranges [first1, last1) and [first2, last2). The return value is the end of the
output range. In the simplest case, set intersection performs the ”intersection”
operation from set theory: the output range contains a copy of every element that
is contained in both [first1, last1) and [first2, last2). The general case is
more complicated, because the input ranges may contain duplicate elements. The
generalization is that if a value appears m times in [first1, last1) and n times
in [first2, last2) (where m or n may be zero), then it appears min(m,n) times
in the output range. Set intersection is stable, meaning both that elements
are copied from the first range rather than the second, and that the relative order
of elements in the output range is the same as in the first input range. The two
versions of set intersection differ in how they define whether one element is less
than another. The first version compares objects using operator<, and the second
compares objects using a function object comp.

Systems/C++ C++ Library 315

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• OutputIterator is a model of Output Iterator.

• InputIterator1 and InputIterator2 have the same value type.

• InputIterator’s value type is a model of LessThan Comparable.

• The ordering on objects of InputIterator1’s value type is a strict weak or-
dering, as defined in the LessThan Comparable requirements.

• InputIterator’s value type is convertible to a type in OutputIterator’s set
of value types.

For the second version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• OutputIterator is a model of Output Iterator.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• InputIterator1 and InputIterator2 have the same value type.

• InputIterator1’s value type is convertible to StrictWeakOrdering’s argu-
ment type.

• InputIterator’s value type is convertible to a type in OutputIterator’s set
of value types.

Preconditions

For the first version:

• [first1, last1) is a valid range.

• [first2, last2) is a valid range.

316 Systems/C++ C++ Library

• [first1, last1) is ordered in ascending order according to operator<. That
is, for every pair of iterators i and j in [first1, last1) such that i precedes
j, *j < *i is false.

• [first2, last2) is ordered in ascending order according to operator<. That
is, for every pair of iterators i and j in [first2, last2) such that i precedes
j, *j < *i is false.

• There is enough space to hold all of the elements being copied. More formally,
the requirement is that [result, result + n) is a valid range, where n is
the number of elements in the intersection of the two input ranges.

• [first1, last1) and [result, result + n) do not overlap.

• [first2, last2) and [result, result + n) do not overlap.

For the second version:

• [first1, last1) is a valid range.

• [first2, last2) is a valid range.

• [first1, last1) is ordered in ascending order according to comp. That is,
for every pair of iterators i and j in [first1, last1) such that i precedes
j, comp(*j, *i) is false.

• [first2, last2) is ordered in ascending order according to comp. That is,
for every pair of iterators i and j in [first2, last2) such that i precedes
j, comp(*j, *i) is false.

• There is enough space to hold all of the elements being copied. More formally,
the requirement is that [result, result + n) is a valid range, where n is
the number of elements in the intersection of the two input ranges.

• [first1, last1) and [result, result + n) do not overlap.

• [first2, last2) and [result, result + n) do not overlap.

Complexity

Linear. Zero comparisons if either [first1, last1) or [first2, last2) is empty,
otherwise at most 2 * ((last1 - first1) + (last2 - first2)) - 1 compar-
isons.

Example

Systems/C++ C++ Library 317

inline bool lt_nocase(char c1, char c2)
{ return tolower(c1) < tolower(c2); }

int main()
{
int A1[] = {1, 3, 5, 7, 9, 11};
int A2[] = {1, 1, 2, 3, 5, 8, 13};
char A3[] = {’a’, ’b’, ’b’, ’B’, ’B’, ’f’, ’h’, ’H’};
char A4[] = {’A’, ’B’, ’B’, ’C’, ’D’, ’F’, ’F’, ’H’ };

const int N1 = sizeof(A1) / sizeof(int);
const int N2 = sizeof(A2) / sizeof(int);
const int N3 = sizeof(A3);
const int N4 = sizeof(A4);

cout << "Intersection of A1 and A2: ";
set_intersection(A1, A1 + N1, A2, A2 + N2,

ostream_iterator<int>(cout, " "));
cout << endl

<< "Intersection of A3 and A4: ";
set_intersection(A3, A3 + N3, A4, A4 + N4,

ostream_iterator<char>(cout, " "),
lt_nocase);

cout << endl;
}

The output is

Intersection of A1 and A2: 1 3 5
Intersection of A3 and A4: a b b f h

Notes

Even this is not a completely precise description, because the ordering by which
the input ranges are sorted is permitted to be a strict weak ordering that is not a
total ordering: there might be values x and y that are equivalent (that is, neither
x < y nor y < x) but not equal. See the LessThan Comparable requirements for
a fuller discussion. The output range consists of those elements from [first1,
last1) for which equivalent elements exist in [first2, last2). Specifically, if the
range [first1, last1) contains n elements that are equivalent to each other and
the range [first1, last1) contains m elements from that equivalence class (where
either m or n may be zero), then the output range contains the first min(m, n) of
these elements from [first1, last1). Note that this precision is only important
if elements can be equivalent but not equal. If you’re using a total ordering (if
you’re using strcmp, for example, or if you’re using ordinary arithmetic comparison
on integers), then you can ignore this technical distinction: for a total ordering,
equality and equivalence are the same.

318 Systems/C++ C++ Library

See also

includes, set union, set difference, set symmetric difference, sort

set difference

Prototype

Set difference is an overloaded name; there are actually two set difference
functions.

template <class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator set_difference(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
OutputIterator result);

template <class InputIterator1, class InputIterator2,
class OutputIterator, class StrictWeakOrdering>

OutputIterator set_difference(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
OutputIterator result,
StrictWeakOrdering comp);

Description

Set difference constructs a sorted range that is the set difference of the sorted
ranges [first1, last1) and [first2, last2). The return value is the end of
the output range. In the simplest case, set difference performs the ”difference”
operation from set theory: the output range contains a copy of every element that
is contained in [first1, last1) and not contained in [first2, last2). The
general case is more complicated, because the input ranges may contain duplicate
elements. The generalization is that if a value appears m times in [first1, last1)
and n times in [first2, last2) (where m or n may be zero), then it appears
max(m-n, 0) times in the output range. Set difference is stable, meaning both
that elements are copied from the first range rather than the second, and that the
relative order of elements in the output range is the same as in the first input range.
The two versions of set difference differ in how they define whether one element
is less than another. The first version compares objects using operator<, and the
second compares objects using a function object comp.

Systems/C++ C++ Library 319

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• OutputIterator is a model of Output Iterator.

• InputIterator1 and InputIterator2 have the same value type.

• InputIterator’s value type is a model of LessThan Comparable.

• The ordering on objects of InputIterator1’s value type is a strict weak or-
dering, as defined in the LessThan Comparable requirements.

• InputIterator’s value type is convertible to a type in OutputIterator’s set
of value types.

For the second version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• OutputIterator is a model of Output Iterator.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• InputIterator1 and InputIterator2 have the same value type.

• InputIterator1’s value type is convertible to StrictWeakOrdering’s argu-
ment type.

• InputIterator’s value type is convertible to a type in OutputIterator’s set
of value types.

Preconditions

For the first version:

• [first1, last1) is a valid range.

• [first2, last2) is a valid range.

320 Systems/C++ C++ Library

• [first1, last1) is ordered in ascending order according to operator<. That
is, for every pair of iterators i and j in [first1, last1) such that i precedes
j, *j < *i is false.

• [first2, last2) is ordered in ascending order according to operator<. That
is, for every pair of iterators i and j in [first2, last2) such that i precedes
j, *j < *i is false.

• There is enough space to hold all of the elements being copied. More formally,
the requirement is that [result, result + n) is a valid range, where n is
the number of elements in the difference of the two input ranges.

• [first1, last1) and [result, result + n) do not overlap.

• [first2, last2) and [result, result + n) do not overlap.

For the second version:

• [first1, last1) is a valid range.

• [first2, last2) is a valid range.

• [first1, last1) is ordered in ascending order according to comp. That is,
for every pair of iterators i and j in [first1, last1) such that i precedes
j, comp(*j, *i) is false.

• [first2, last2) is ordered in ascending order according to comp. That is,
for every pair of iterators i and j in [first2, last2) such that i precedes
j, comp(*j, *i) is false.

• There is enough space to hold all of the elements being copied. More formally,
the requirement is that [result, result + n) is a valid range, where n is
the number of elements in the difference of the two input ranges.

• [first1, last1) and [result, result + n) do not overlap.

• [first2, last2) and [result, result + n) do not overlap.

Complexity

Linear. Zero comparisons if either [first1, last1) or [first2, last2) is empty,
otherwise at most 2 * ((last1 - first1) + (last2 - first2)) - 1 compar-
isons.

Example

Systems/C++ C++ Library 321

inline bool lt_nocase(char c1, char c2)
{ return tolower(c1) < tolower(c2); }

int main()
{
int A1[] = {1, 3, 5, 7, 9, 11};
int A2[] = {1, 1, 2, 3, 5, 8, 13};
char A3[] = {’a’, ’b’, ’b’, ’B’, ’B’, ’f’, ’g’, ’h’, ’H’};
char A4[] = {’A’, ’B’, ’B’, ’C’, ’D’, ’F’, ’F’, ’H’ };

const int N1 = sizeof(A1) / sizeof(int);
const int N2 = sizeof(A2) / sizeof(int);
const int N3 = sizeof(A3);
const int N4 = sizeof(A4);

cout << "Difference of A1 and A2: ";
set_difference(A1, A1 + N1, A2, A2 + N2,

ostream_iterator<int>(cout, " "));
cout << endl

<< "Difference of A3 and A4: ";
set_difference(A3, A3 + N3, A4, A4 + N4,

ostream_iterator<char>(cout, " "),
lt_nocase);

cout << endl;
}

The output is

Difference of A1 and A2: 7 9 11
Difference of A3 and A4: B B g H

Notes

Even this is not a completely precise description, because the ordering by which the
input ranges are sorted is permitted to be a strict weak ordering that is not a total
ordering: there might be values x and y that are equivalent (that is, neither x < y
nor y < x) but not equal. See the LessThan Comparable requirements for a fuller
discussion. The output range consists of those elements from [first1, last1)
for which equivalent elements do not exist in [first2, last2). Specifically, if the
range [first1, last1) contains m elements that are equivalent to each other and
the range [first2, last2) contains n elements from that equivalence class (where
either m or n may be zero), then the output range contains the last max(m - n, 0) of
these elements from [first1, last1). Note that this precision is only important
if elements can be equivalent but not equal. If you’re using a total ordering (if
you’re using strcmp, for example, or if you’re using ordinary arithmetic comparison
on integers), then you can ignore this technical distinction: for a total ordering,
equality and equivalence are the same.

322 Systems/C++ C++ Library

See also

includes, set union, set intersection, set symmetric difference, sort

set symmetric difference

Prototype

Set symmetric difference is an overloaded name; there are actually two
set symmetric difference functions.

template <class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator set_symmetric_difference(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
OutputIterator result);

template <class InputIterator1, class InputIterator2,
class OutputIterator, class StrictWeakOrdering>

OutputIterator set_symmetric_difference(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
OutputIterator result,
StrictWeakOrdering comp);

Description

Set symmetric difference constructs a sorted range that is the set symmet-
ric difference of the sorted ranges [first1, last1) and [first2, last2).
The return value is the end of the output range. In the simplest case,
set symmetric difference performs a set theoretic calculation: it constructs the
union of the two sets A - B and B - A, where A and B are the two input ranges.
That is, the output range contains a copy of every element that is contained in
[first1, last1) but not [first2, last2), and a copy of every element that
is contained in [first2, last2) but not [first1, last1). The general case is
more complicated, because the input ranges may contain duplicate elements. The
generalization is that if a value appears m times in [first1, last1) and n times
in [first2, last2) (where m or n may be zero), then it appears |m-n| times in
the output range. Set symmetric difference is stable, meaning that the rela-
tive order of elements within each input range is preserved. The two versions of
set symmetric difference differ in how they define whether one element is less
than another. The first version compares objects using operator<, and the second
compares objects using a function object comp.

Systems/C++ C++ Library 323

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• OutputIterator is a model of Output Iterator.

• InputIterator1 and InputIterator2 have the same value type.

• InputIterator’s value type is a model of LessThan Comparable.

• The ordering on objects of InputIterator1’s value type is a strict weak or-
dering, as defined in the LessThan Comparable requirements.

• InputIterator’s value type is convertible to a type in OutputIterator’s set
of value types.

For the second version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• OutputIterator is a model of Output Iterator.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• InputIterator1 and InputIterator2 have the same value type.

• InputIterator1’s value type is convertible to StrictWeakOrdering’s argu-
ment type.

• InputIterator’s value type is convertible to a type in OutputIterator’s set
of value types.

Preconditions

For the first version:

• [first1, last1) is a valid range.

• [first2, last2) is a valid range.

324 Systems/C++ C++ Library

• [first1, last1) is ordered in ascending order according to operator<. That
is, for every pair of iterators i and j in [first1, last1) such that i precedes
j, *j < *i is false.

• [first2, last2) is ordered in ascending order according to operator<. That
is, for every pair of iterators i and j in [first2, last2) such that i precedes
j, *j < *i is false.

• There is enough space to hold all of the elements being copied. More formally,
the requirement is that [result, result + n) is a valid range, where n is
the number of elements in the symmetric difference of the two input ranges.

• [first1, last1) and [result, result + n) do not overlap.

• [first2, last2) and [result, result + n) do not overlap.

For the second version:

• [first1, last1) is a valid range.

• [first2, last2) is a valid range.

• [first1, last1) is ordered in ascending order according to comp. That is,
for every pair of iterators i and j in [first1, last1) such that i precedes
j, comp(*j, *i) is false.

• [first2, last2) is ordered in ascending order according to comp. That is,
for every pair of iterators i and j in [first2, last2) such that i precedes
j, comp(*j, *i) is false.

• There is enough space to hold all of the elements being copied. More formally,
the requirement is that [result, result + n) is a valid range, where n is
the number of elements in the symmetric difference of the two input ranges.

• [first1, last1) and [result, result + n) do not overlap.

• [first2, last2) and [result, result + n) do not overlap.

Complexity

Linear. Zero comparisons if either [first1, last1) or [first2, last2) is empty,
otherwise at most 2 * ((last1 - first1) + (last2 - first2)) - 1 compar-
isons.

Example

Systems/C++ C++ Library 325

inline bool lt_nocase(char c1, char c2)
{ return tolower(c1) < tolower(c2); }

int main()
{
int A1[] = {1, 3, 5, 7, 9, 11};
int A2[] = {1, 1, 2, 3, 5, 8, 13};
char A3[] = {’a’, ’b’, ’b’, ’B’, ’B’, ’f’, ’g’, ’h’, ’H’};
char A4[] = {’A’, ’B’, ’B’, ’C’, ’D’, ’F’, ’F’, ’H’ };

const int N1 = sizeof(A1) / sizeof(int);
const int N2 = sizeof(A2) / sizeof(int);
const int N3 = sizeof(A3);
const int N4 = sizeof(A4);

cout << "Symmetric difference of A1 and A2: ";
set_symmetric_difference(A1, A1 + N1, A2, A2 + N2,

ostream_iterator<int>(cout, " "));
cout << endl

<< "Symmetric difference of A3 and A4: ";
set_symmetric_difference(A3, A3 + N3, A4, A4 + N4,

ostream_iterator<char>(cout, " "),
lt_nocase);

cout << endl;
}

The output is

Symmetric difference of A1 and A2: 1 2 7 8 9 11 13
Symmetric difference of A3 and A4: B B C D F g H

Notes

Even this is not a completely precise description, because the ordering by which
the input ranges are sorted is permitted to be a strict weak ordering that is not
a total ordering: there might be values x and y that are equivalent (that is, nei-
ther x < y nor y < x) but not equal. See the LessThan Comparable requirements
for a more complete discussion. The output range consists of those elements from
[first1, last1) for which equivalent elements do not exist in [first2, last2),
and those elements from [first2, last2) for which equivalent elements do not ex-
ist in [first1, last1). Specifically, suppose that the range [first1, last1) con-
tains m elements that are equivalent to each other and the range [first2, last2)
contains n elements from that equivalence class (where either m or n may be zero).
If m > n then the output range contains the last m - n of these elements elements
from [first1, last1), and if m < n then the output range contains the last n -
m of these elements elements from [first2, last2).

326 Systems/C++ C++ Library

See also

includes, set union, set intersection, set difference, sort

9.3.7 Heap operations

push heap

Prototype

Push heap is an overloaded name; there are actually two push heap functions.

template <class RandomAccessIterator>
void push_heap(RandomAccessIterator first, RandomAccessIterator last);

template <class RandomAccessIterator, class StrictWeakOrdering>
void push_heap(RandomAccessIterator first, RandomAccessIterator last,

StrictWeakOrdering comp);

Description

Push heap adds an element to a heap . It is assumed that [first, last - 1) is
already a heap; the element to be added to the heap is *(last - 1). The two
versions of push heap differ in how they define whether one element is less than
another. The first version compares objects using operator<, and the second com-
pares objects using a function object comp. The postcondition for the first version is
that is heap(first, last) is true, and the postcondition for the second version
is that is heap(first, last, comp) is true.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• RandomAccessIterator’s value type is a model of LessThan Comparable.

Systems/C++ C++ Library 327

• The ordering on objects of RandomAccessIterator’s value type is a strict weak
ordering, as defined in the LessThan Comparable requirements.

For the second version:

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• RandomAccessIterator’s value type is convertible to StrictWeakOrdering’s
argument type.

Preconditions

For the first version:

• [first, last) is a valid range.

• [first, last - 1) is a valid range. That is, [first, last) is nonempty.

• [first, last - 1) is a heap. That is, is heap(first, last - 1) is true.

For the second version:

• [first, last) is a valid range.

• [first, last - 1) is a valid range. That is, [first, last) is nonempty.

• [first, last) is a heap. That is, is heap(first, last - 1, comp) is
true.

Complexity

Logarithmic. At most log(last - first) comparisons.

Example

328 Systems/C++ C++ Library

int main()
{
int A[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

make_heap(A, A + 9);
cout << "[A, A + 9) = ";
copy(A, A + 9, ostream_iterator<int>(cout, " "));

push_heap(A, A + 10);
cout << endl << "[A, A + 10) = ";
copy(A, A + 10, ostream_iterator<int>(cout, " "));
cout << endl;

}

The output is

[A, A + 9) = 8 7 6 3 4 5 2 1 0
[A, A + 10) = 9 8 6 3 7 5 2 1 0 4

Notes

A heap is a particular way of ordering the elements in a range of random access
iterators [f, l). The reason heaps are useful (especially for sorting, or as priority
queues) is that they satisfy two important properties. First, *f is the largest element
in the heap. Second, it is possible to add an element to a heap (using push heap),
or to remove *f, in logarithmic time. Internally, a heap is a tree represented as a
sequential range. The tree is constructed so that that each node is less than or equal
to its parent node.

See also

make heap, pop heap, sort heap, is heap, sort

pop heap

Prototype

Pop heap is an overloaded name; there are actually two pop heap functions.

Systems/C++ C++ Library 329

template <class RandomAccessIterator>
void pop_heap(RandomAccessIterator first, RandomAccessIterator last);

template <class RandomAccessIterator, class StrictWeakOrdering>
inline void pop_heap(RandomAccessIterator first,

RandomAccessIterator last,
StrictWeakOrdering comp);

Description

Pop heap removes the largest element (that is, *first) from the heap [first,
last). The two versions of pop heap differ in how they define whether one element
is less than another. The first version compares objects using operator<, and the
second compares objects using a function object comp. The postcondition for the
first version of pop heap is that is heap(first, last-1) is true and that *(last
- 1) is the element that was removed from the heap. The postcondition for the
second version is that is heap(first, last-1, comp) is true and that *(last -
1) is the element that was removed from the heap.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• RandomAccessIterator’s value type is a model of LessThan Comparable.

• The ordering on objects of RandomAccessIterator’s value type is a strict weak
ordering, as defined in the LessThan Comparable requirements.

For the second version:

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• RandomAccessIterator’s value type is convertible to StrictWeakOrdering’s
argument type.

330 Systems/C++ C++ Library

Preconditions

For the first version:

• [first, last) is a valid range.

• [first, last - 1) is a valid range. That is, [first, last) is nonempty.

• [first, last) is a heap. That is, is heap(first, last) is true.

For the second version:

• [first, last) is a valid range.

• [first, last - 1) is a valid range. That is, [first, last) is nonempty.

• [first, last) is a heap. That is, is heap(first, last, comp) is true.

Complexity

Logarithmic. At most 2 * log(last - first) comparisons.

Example

int main()
{
int A[] = {1, 2, 3, 4, 5, 6};
const int N = sizeof(A) / sizeof(int);

make_heap(A, A+N);
cout << "Before pop: ";
copy(A, A+N, ostream_iterator<int>(cout, " "));

pop_heap(A, A+N);
cout << endl << "After pop: ";
copy(A, A+N-1, ostream_iterator<int>(cout, " "));
cout << endl << "A[N-1] = " << A[N-1] << endl;

}

The output is

Before pop: 6 5 3 4 2 1
After pop: 5 4 3 1 2
A[N-1] = 6

Systems/C++ C++ Library 331

Notes

A heap is a particular way of ordering the elements in a range of Random Access
Iterators [f, l). The reason heaps are useful (especially for sorting, or as priority
queues) is that they satisfy two important properties. First, *f is the largest element
in the heap. Second, it is possible to add an element to a heap (using push heap),
or to remove *f, in logarithmic time. Internally, a heap is a tree represented as
a sequential range. The tree is constructed so that that each node is less than or
equal to its parent node. Pop heap removes the largest element from a heap, and
shrinks the heap. This means that if you call keep calling pop heap until only a
single element is left in the heap, you will end up with a sorted range where the
heap used to be. This, in fact, is exactly how sort heap is implemented.

See also

make heap, push heap, sort heap, is heap, sort

make heap

Prototype

Make heap is an overloaded name; there are actually two make heap functions.

template <class RandomAccessIterator>
void make_heap(RandomAccessIterator first, RandomAccessIterator last);

template <class RandomAccessIterator, class StrictWeakOrdering>
void make_heap(RandomAccessIterator first, RandomAccessIterator last,

StrictWeakOrdering comp);

Description

Make heap turns the range [first, last) into a heap . The two versions of
make heap differ in how they define whether one element is less than another.
The first version compares objects using operator<, and the second compares ob-
jects using a function object comp. In the first version the postcondition is that
is heap(first, last) is true, and in the second version the postcondition is that
is heap(first, last, comp) is true.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

332 Systems/C++ C++ Library

Requirements on types

For the first version:

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• RandomAccessIterator’s value type is a model of LessThan Comparable.

• The ordering on objects of RandomAccessIterator’s value type is a strict weak
ordering, as defined in the LessThan Comparable requirements.

For the second version:

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• RandomAccessIterator’s value type is convertible to StrictWeakOrdering’s
argument type.

Preconditions

• [first, last) is a valid range.

Complexity

Linear. At most 3*(last - first) comparisons.

Example

int main()
{
int A[] = {1, 4, 2, 8, 5, 7};
const int N = sizeof(A) / sizeof(int);

make_heap(A, A+N);
copy(A, A+N, ostream_iterator<int>(cout, " "));
cout << endl;

sort_heap(A, A+N);
copy(A, A+N, ostream_iterator<int>(cout, " "));
cout << endl;

}

Systems/C++ C++ Library 333

Notes

A heap is a particular way of ordering the elements in a range of Random Access
Iterators [f, l). The reason heaps are useful (especially for sorting, or as priority
queues) is that they satisfy two important properties. First, *f is the largest element
in the heap. Second, it is possible to add an element to a heap (using push heap),
or to remove *f, in logarithmic time. Internally, a heap is simply a tree represented
as a sequential range. The tree is constructed so that that each node is less than or
equal to its parent node.

See also

push heap, pop heap, sort heap, sort, is heap

sort heap

Prototype

Sort heap is an overloaded name; there are actually two sort heap functions.

template <class RandomAccessIterator>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last);

template <class RandomAccessIterator, class StrictWeakOrdering>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last,

StrictWeakOrdering comp);

Description

Sort heap turns a heap [first, last) into a sorted range. Note that this is
not a stable sort: the relative order of equivalent elements is not guaranteed to be
preserved. The two versions of sort heap differ in how they define whether one
element is less than another. The first version compares objects using operator<,
and the second compares objects using a function object comp.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version, the one that takes two arguments:

334 Systems/C++ C++ Library

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• RandomAccessIterator’s value type is a model of LessThan Comparable.

• The ordering on objects of RandomAccessIterator’s value type is a strict weak
ordering, as defined in the LessThan Comparable requirements.

For the second version, the one that takes three arguments:

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator is mutable.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• RandomAccessIterator’s value type is convertible to StrictWeakOrdering’s
argument type.

Preconditions

For the first version, the one that takes two arguments:

• [first, last) is a valid range.

• [first, last) is a heap. That is, is heap(first, last) is true.

For the second version, the one that takes three arguments:

• [first, last) is a valid range.

• [first, last) is a heap. That is, is heap(first, last, comp) is true.

Complexity

At most N * log(N) comparisons, where N is last - first.

Example

Systems/C++ C++ Library 335

int main()
{
int A[] = {1, 4, 2, 8, 5, 7};
const int N = sizeof(A) / sizeof(int);

make_heap(A, A+N);
copy(A, A+N, ostream_iterator<int>(cout, " "));
cout << endl;

sort_heap(A, A+N);
copy(A, A+N, ostream_iterator<int>(cout, " "));
cout << endl;

}

Notes

A heap is a particular way of ordering the elements in a range of Random Access
Iterators [f, l). The reason heaps are useful (especially for sorting, or as priority
queues) is that they satisfy two important properties. First, *f is the largest element
in the heap. Second, it is possible to add an element to a heap (using push heap),
or to remove *f, in logarithmic time. Internally, a heap is a tree represented as a
sequential range. The tree is constructed so that that each node is less than or equal
to its parent node.

See also

push heap, pop heap, make heap, is heap, sort, stable sort, partial sort,
partial sort copy

is heap

Prototype

Is heap is an overloaded name; there are actually two is heap functions.

template <class RandomAccessIterator>
bool is_heap(RandomAccessIterator first, RandomAccessIterator last);

template <class RandomAccessIterator, class StrictWeakOrdering>
inline bool is_heap(RandomAccessIterator first,

RandomAccessIterator last,
StrictWeakOrdering comp)

336 Systems/C++ C++ Library

Description

Is heap returns true if the range [first, last) is a heap , and false otherwise.
The two versions differ in how they define whether one element is less than another:
the first version compares objects using operator<, and the second compares objects
using a function object comp.

Definition

Defined in the standard header algorithm.

Requirements on types

For the first version:

• RandomAccessIterator is a model of Random Access Iterator.

• RandomAccessIterator’s value type is a model of LessThan Comparable.

• The ordering on objects of RandomAccessIterator’s value type is a strict weak
ordering, as defined in the LessThan Comparable requirements.

For the second version:

• RandomAccessIterator is a model of Random Access Iterator.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• RandomAccessIterator’s value type is convertible to StrictWeakOrdering’s
argument type.

Preconditions

• [first, last) is a valid range.

Complexity

Linear. Zero comparisons if [first, last) is an empty range, otherwise at most
(last - first) - 1 comparisons.

Systems/C++ C++ Library 337

Example

int A[] = {1, 2, 3, 4, 5, 6, 7};
const int N = sizeof(A) / sizeof(int);

assert(!is_heap(A, A+N));
make_heap(A, A+N);
assert(is_heap(A, A+N));

Notes

A heap is a particular way of ordering the elements in a range of Random Access
Iterators [f, l). The reason heaps are useful (especially for sorting, or as priority
queues) is that they satisfy two important properties. First, *f is the largest element
in the heap. Second, it is possible to add an element to a heap (using push heap),
or to remove *f, in logarithmic time. Internally, a heap is a tree represented as a
sequential range. The tree is constructed so that that each node is less than or equal
to its parent node.

See also

make heap, push heap, pop heap, sort heap

9.3.8 Minimum and maximum

min

Prototype

Min is an overloaded name; there are actually two min functions.

template <class T> const T& min(const T& a, const T& b);

template <class T, class BinaryPredicate>
const T& min(const T& a, const T& b, BinaryPredicate comp);

Description

Min returns the lesser of its two arguments; it returns the first argument if neither
is less than the other. The two versions of min differ in how they define whether one
element is less than another. The first version compares objects using operator<,
and the second compares objects using the function object comp.

338 Systems/C++ C++ Library

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• T is a model of LessThan Comparable.

For the second version:

• BinaryPredicate is a model of Binary Predicate.

• T is convertible to BinaryPredicate’s first argument type and to its second
argument type.

Preconditions

Complexity

Example

const int x = min(3, 9);
assert(x == 3);

Notes

See also

max, min element, max element, LessThan Comparable

max

Prototype

Max is an overloaded name; there are actually two max functions.

template <class T> const T& max(const T& a, const T& b);

template <class T, class BinaryPredicate>
const T& max(const T& a, const T& b, BinaryPredicate comp);

Systems/C++ C++ Library 339

Description

Max returns the greater of its two arguments; it returns the first argument if neither is
greater than the other. The two versions of max differ in how they define whether one
element is less than another. The first version compares objects using operator<,
and the second compares objects using the function object comp.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• T is a model of LessThan Comparable.

For the second version:

• BinaryPredicate is a model of Binary Predicate.

• T is convertible to BinaryPredicate’s first argument type and to its second
argument type.

Preconditions

Complexity

Example

const int x = max(3, 9);
assert(x == 9);

Notes

See also

min, min element, max element, LessThan Comparable

340 Systems/C++ C++ Library

min element

Prototype

Min element is an overloaded name; there are actually two min element functions.

template <class ForwardIterator>
ForwardIterator min_element(ForwardIterator first,

ForwardIterator last);

template <class ForwardIterator, class BinaryPredicate>
ForwardIterator min_element(ForwardIterator first,

ForwardIterator last,
BinaryPredicate comp);

Description

Min element finds the smallest element in the range [first, last). It returns
the first iterator i in [first, last) such that no other iterator in [first, last)
points to a value smaller than *i. The return value is last if and only if [first,
last) is an empty range. The two versions of min element differ in how they define
whether one element is less than another. The first version compares objects using
operator<, and the second compares objects using a function object comp. The first
version of min element returns the first iterator i in [first, last) such that, for
every iterator j in [first, last), *j < *i is false. The second version returns
the first iterator i in [first, last) such that, for every iterator j in [first,
last), comp(*j, *i) is false.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator’s value type is LessThan Comparable.

For the second version:

• ForwardIterator is a model of Forward Iterator.

Systems/C++ C++ Library 341

• BinaryPredicate is a model of Binary Predicate.

• ForwardIterator’s value type is convertible to BinaryPredicate’s first ar-
gument type and second argument type.

Preconditions

• [first, last) is a valid range.

Complexity

Linear. Zero comparisons if [first, last) is an empty range, otherwise exactly
(last - first) - 1 comparisons.

Example

int main()
{
list<int> L;
generate_n(front_inserter(L), 1000, rand);

list<int>::const_iterator it = min_element(L.begin(), L.end());
cout << "The smallest element is " << *it << endl;

}

Notes

See also

min, max, max element, LessThan Comparable, sort, nth element

max element

Prototype

Max element is an overloaded name; there are actually two max element functions.

342 Systems/C++ C++ Library

template <class ForwardIterator>
ForwardIterator max_element(ForwardIterator first,

ForwardIterator last);

template <class ForwardIterator, class BinaryPredicate>
ForwardIterator max_element(ForwardIterator first,

ForwardIterator last,
BinaryPredicate comp);

Description

Max element finds the largest element in the range [first, last). It returns the
first iterator i in [first, last) such that no other iterator in [first, last)
points to a value greater than *i. The return value is last if and only if [first,
last) is an empty range. The two versions of max element differ in how they define
whether one element is less than another. The first version compares objects using
operator<, and the second compares objects using a function object comp. The first
version of max element returns the first iterator i in [first, last) such that, for
every iterator j in [first, last), *i < *j is false. The second version returns
the first iterator i in [first, last) such that, for every iterator j in [first,
last), comp(*i, *j) is false.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator’s value type is LessThan Comparable.

For the second version:

• ForwardIterator is a model of Forward Iterator.

• BinaryPredicate is a model of Binary Predicate.

• ForwardIterator’s value type is convertible to BinaryPredicate’s first ar-
gument type and second argument type.

Systems/C++ C++ Library 343

Preconditions

• [first, last) is a valid range.

Complexity

Linear. Zero comparisons if [first, last) is an empty range, otherwise exactly
(last - first) - 1 comparisons.

Example

int main()
{
list<int> L;
generate_n(front_inserter(L), 1000, rand);

list<int>::const_iterator it = max_element(L.begin(), L.end());
cout << "The largest element is " << *it << endl;

}

Notes

See also

min, max, min element, LessThan Comparable, sort, nth element

9.3.9 lexicographical compare

Prototype

Lexicographical compare is an overloaded name; there are actually two
lexicographical compare functions.

344 Systems/C++ C++ Library

template <class InputIterator1, class InputIterator2>
bool lexicographical_compare(InputIterator1 first1,

InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2);

template <class InputIterator1, class InputIterator2,
class BinaryPredicate>

bool lexicographical_compare(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
BinaryPredicate comp);

Description

Lexicographical compare returns true if the range of elements [first1, last1)
is lexicographically less than the range of elements [first2, last2), and false
otherwise. Lexicographical comparison means ”dictionary” (element-by-element)
ordering. That is, [first1, last1) is less than [first2, last2) if *first1 is
less than *first2, and greater if *first1 is greater than *first2. If the two first
elements are equivalent then lexicographical compare compares the two second
elements, and so on. As with ordinary dictionary order, the first range is consid-
ered to be less than the second if every element in the first range is equal to the
corresponding element in the second but the second contains more elements. The
two versions of lexicographical compare differ in how they define whether one
element is less than another. The first version compares objects using operator<,
and the second compares objects using a function object comp.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• InputIterator1’s value type is a model of LessThan Comparable.

• InputIterator2’s value type is a model of LessThan Comparable.

Systems/C++ C++ Library 345

• If v1 is an object of InputIterator1’s value type and v2 is an object of
InputIterator2’s value type, then both v1 < v2 and v2 < v1 are defined.

For the second version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• BinaryPredicate is a model of Binary Predicate.

• InputIterator1’s value type is convertible to BinaryPredicate’s first argu-
ment type and second argument type.

• InputIterator2’s value type is convertible to BinaryPredicate’s first argu-
ment type and second argument type.

Preconditions

• [first1, last1) is a valid range.

• [first2, last2) is a valid range.

Complexity

Linear. At most 2 * min(last1 - first1, last2 - first2) comparisons.

Example

int main()
{
int A1[] = {3, 1, 4, 1, 5, 9, 3};
int A2[] = {3, 1, 4, 2, 8, 5, 7};
int A3[] = {1, 2, 3, 4};
int A4[] = {1, 2, 3, 4, 5};

const int N1 = sizeof(A1) / sizeof(int);
const int N2 = sizeof(A2) / sizeof(int);
const int N3 = sizeof(A3) / sizeof(int);
const int N4 = sizeof(A4) / sizeof(int);

bool C12 = lexicographical_compare(A1, A1 + N1, A2, A2 + N2);
bool C34 = lexicographical_compare(A3, A3 + N3, A4, A4 + N4);

cout << "A1[] < A2[]: " << (C12 ? "true" : "false") << endl;
cout << "A3[] < A4[]: " << (C34 ? "true" : "false") << endl;

}

346 Systems/C++ C++ Library

Notes

See also

equal, mismatch, lexicographical compare 3way, search, LessThan Compara-
ble, Strict Weak Ordering, sort

9.3.10 next permutation

Prototype

Next permutation is an overloaded name; there are actually two next permutation
functions.

template <class BidirectionalIterator>
bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last);

template <class BidirectionalIterator, class StrictWeakOrdering>
bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last,
StrictWeakOrdering comp);

Description

Next permutation transforms the range of elements [first, last) into the lex-
icographically next greater permutation of the elements. There is a finite num-
ber of distinct permutations (at most N! , where N is last - first), so, if the
permutations are ordered by lexicographical compare, there is an unambiguous
definition of which permutation is lexicographically next. If such a permutation
exists, next permutation transforms [first, last) into that permutation and
returns true. Otherwise it transforms [first, last) into the lexicographically
smallest permutation and returns false. The postcondition is that the new per-
mutation of elements is lexicographically greater than the old (as determined by
lexicographical compare) if and only if the return value is true. The two ver-
sions of next permutation differ in how they define whether one element is less
than another. The first version compares objects using operator<, and the second
compares objects using a function object comp.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Systems/C++ C++ Library 347

Requirements on types

For the first version, the one that takes two arguments:

• BidirectionalIterator is a model of Bidirectional Iterator.

• BidirectionalIterator is mutable.

• BidirectionalIterator’s value type is LessThan Comparable.

• The ordering relation on BidirectionalIterator’s value type is a strict weak
ordering, as defined in the LessThan Comparable requirements.

For the second version, the one that takes three arguments:

• BidirectionalIterator is a model of Bidirectional Iterator.

• BidirectionalIterator is mutable.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• BidirectionalIterator’s value type is convertible to StrictWeakOrdering’s
argument type.

Preconditions

• [first, last) is a valid range.

Complexity

Linear. At most (last - first) / 2 swaps.

Example

This example uses next permutation to implement the worst known deterministic
sorting algorithm. Most sorting algorithms are O(N log(N)), and even bubble sort
is only O(N2̂). This algorithm is actually O(N!).

348 Systems/C++ C++ Library

template <class BidirectionalIterator>
void snail_sort(BidirectionalIterator first, BidirectionalIterator last)
{
while (next_permutation(first, last)) {}

}

int main()
{
int A[] = {8, 3, 6, 1, 2, 5, 7, 4};
const int N = sizeof(A) / sizeof(int);

snail_sort(A, A+N);
copy(A, A+N, ostream_iterator<int>(cout, "\n"));

}

Notes

If all of the elements in [first, last) are distinct from each other, then there
are exactly N! permutations. If some elements are the same as each other, though,
then there are fewer. There are, for example, only three (3!/2!) permutations of
the elements 1 1 2. Note that the lexicographically smallest permutation is, by
definition, sorted in nondecreasing order.

See also

prev permutation, lexicographical compare, LessThan Comparable, Strict
Weak Ordering, sort

9.3.11 prev permutation

Prototype

Prev permutation is an overloaded name; there are actually two prev permutation
functions.

template <class BidirectionalIterator>
bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last);

template <class BidirectionalIterator, class StrictWeakOrdering>
bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last,
StrictWeakOrdering comp);

Systems/C++ C++ Library 349

Description

Prev permutation transforms the range of elements [first, last) into the lex-
icographically next smaller permutation of the elements. There is a finite num-
ber of distinct permutations (at most N! , where N is last - first), so, if the
permutations are ordered by lexicographical compare, there is an unambiguous
definition of which permutation is lexicographically previous. If such a permuta-
tion exists, prev permutation transforms [first, last) into that permutation
and returns true. Otherwise it transforms [first, last) into the lexicographi-
cally greatest permutation and returns false. The postcondition is that the new
permutation of elements is lexicographically less than the old (as determined by
lexicographical compare) if and only if the return value is true. The two ver-
sions of prev permutation differ in how they define whether one element is less
than another. The first version compares objects using operator<, and the second
compares objects using a function object comp.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• BidirectionalIterator is a model of Bidirectional Iterator.

• BidirectionalIterator is mutable.

• BidirectionalIterator’s value type is LessThan Comparable.

• The ordering relation on BidirectionalIterator’s value type is a strict weak
ordering, as defined in the LessThan Comparable requirements.

For the second version:

• BidirectionalIterator is a model of Bidirectional Iterator.

• BidirectionalIterator is mutable.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• BidirectionalIterator’s value type is convertible to StrictWeakOrdering’s
argument type.

Preconditions

• [first, last) is a valid range.

350 Systems/C++ C++ Library

Complexity

Linear. At most (last - first) / 2 swaps.

Example

int main()
{
int A[] = {2, 3, 4, 5, 6, 1};
const int N = sizeof(A) / sizeof(int);

cout << "Initially: ";
copy(A, A+N, ostream_iterator<int>(cout, " "));
cout << endl;

prev_permutation(A, A+N);
cout << "After prev_permutation: ";
copy(A, A+N, ostream_iterator<int>(cout, " "));
cout << endl;

next_permutation(A, A+N);
cout << "After next_permutation: ";
copy(A, A+N, ostream_iterator<int>(cout, " "));
cout << endl;

}

Notes

If all of the elements in [first, last) are distinct from each other, then there
are exactly N! permutations. If some elements are the same as each other, though,
then there are fewer. There are, for example, only three (3!/2!) permutations of
the elements 1 1 2. Note that the lexicographically greatest permutation is, by
definition, sorted in nonascending order.

See also

next permutation, lexicographical compare, LessThan Comparable, Strict
Weak Ordering, sort

9.4 Generalized numeric algorithms

9.4.1 iota

Prototype

Systems/C++ C++ Library 351

template <class ForwardIterator, class T>
void iota(ForwardIterator first, ForwardIterator last, T value);

Description

Iota assigns sequentially increasing values to a range. That is, it assigns value to
*first, value + 1 to *(first + 1) and so on. In general, each iterator i in the
range [first, last) is assigned value + (i - first).

Definition

Defined in the standard header numeric.

Requirements on types

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator is mutable.

• T is Assignable.

• If x is an object of type T, then x++ is defined.

• T is convertible to ForwardIterator’s value type.

Preconditions

• [first, last) is a valid range.

Complexity

Linear. Exactly last - first assignments.

Example

int main()
{
vector<int> V(10);

iota(V.begin(), V.end(), 7);
copy(V.begin(), V.end(), ostream_iterator<int>(cout, " "));
cout << endl;

}

352 Systems/C++ C++ Library

Notes

The name iota is taken from the programming language APL.

See also

fill, generate, partial sum

9.4.2 accumulate

Prototype

Accumulate is an overloaded name; there are actually two accumulate functions.

template <class InputIterator, class T>
T accumulate(InputIterator first, InputIterator last, T init);

template <class InputIterator, class T, class BinaryFunction>
T accumulate(InputIterator first, InputIterator last, T init,

BinaryFunction binary_op);

Description

Accumulate is a generalization of summation: it computes the sum (or some other
binary operation) of init and all of the elements in the range [first, last). The
function object binary op is not required to be either commutative or associative:
the order of all of accumulate’s operations is specified. The result is first initialized
to init. Then, for each iterator i in [first, last), in order from beginning to
end, it is updated by result = result + *i (in the first version) or result =
binary op(result, *i) (in the second version).

Definition

Defined in the standard header numeric, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version, the one that takes two arguments:

• InputIterator is a model of Input Iterator.

• T is a model of Assignable.

Systems/C++ C++ Library 353

• If x is an object of type T and y is an object of InputIterator’s value type,
then x + y is defined.

• The return type of x + y is convertible to T.

For the second version, the one that takes three arguments:

• InputIterator is a model of Input Iterator.

• T is a model of Assignable.

• BinaryFunction is a model of Binary Function.

• T is convertible to BinaryFunction’s first argument type.

• The value type of InputIterator is convertible to BinaryFunction’s second
argument type.

• BinaryFunction’s return type is convertible to T.

Preconditions

• [first, last) is a valid range.

Complexity

Linear. Exactly last - first invocations of the binary operation.

Example

int main()
{
int A[] = {1, 2, 3, 4, 5};
const int N = sizeof(A) / sizeof(int);

cout << "The sum of all elements in A is "
<< accumulate(A, A + N, 0)
<< endl;

cout << "The product of all elements in A is "
<< accumulate(A, A + N, 1, multiplies<int>())
<< endl;

}

354 Systems/C++ C++ Library

Notes

There are several reasons why it is important that accumulate starts with the value
init. One of the most basic is that this allows accumulate to have a well-defined
result even if [first, last) is an empty range: if it is empty, the return value is
init. If you want to find the sum of all of the elements in [first, last), you can
just pass 0 as init.

See also

inner product, partial sum, adjacent difference, count

9.4.3 inner product

Prototype

Inner product is an overloaded name; there are actually two inner product func-
tions.

template <class InputIterator1, class InputIterator2, class T>
T inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, T init);

template <class InputIterator1, class InputIterator2, class T,
class BinaryFunction1, class BinaryFunction2>

T inner_product(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, T init,
BinaryFunction1 binary_op1,
BinaryFunction2 binary_op2);

Description

Inner product calculates a generalized inner product of the ranges [first1,
last1) and [first2, last2). The first version of inner product returns init
plus the inner product of the two ranges . That is, it first initializes the result to
init and then, for each iterator i in [first1, last1), in order from the begin-
ning to the end of the range, updates the result by result = result + (*i) *
*(first2 + (i - first1)). The second version of inner product is identical to
the first, except that it uses two user-supplied function objects instead of operator+
and operator*. That is, it first initializes the result to init and then, for each it-
erator i in [first1, last1), in order from the beginning to the end of the range,
updates the result by result = binary op1(result, binary op2(*i, *(first2
+ (i - first1))).

Systems/C++ C++ Library 355

Definition

Defined in the standard header numeric, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• T is a model of Assignable.

• If x is an object of type T, y is an object of InputIterator1’s value type, and
z is an object of InputIterator2’s value type, then x + y * z is defined.

• The type of x + y * z is convertible to T.

For the second version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• T is a model of Assignable.

• BinaryFunction1 is a model of Binary Function.

• BinaryFunction2 is a model of Binary Function.

• InputIterator1’s value type is convertible to BinaryFunction2’s first argu-
ment type.

• InputIterator2’s value type is convertible to BinaryFunction2’s second ar-
gument type.

• T is convertible to BinaryFunction1’s first argument type.

• BinaryFunction2’s return type is convertible to BinaryFunction1’s second
argument type.

• BinaryFunction1’s return type is convertible to T.

Preconditions

• [first1, last1) is a valid range.

• [first2, first2 + (last1 - first1)) is a valid range.

356 Systems/C++ C++ Library

Complexity

Linear. Exactly last1 - first1 applications of each binary operation.

Example

int main()
{
int A1[] = {1, 2, 3};
int A2[] = {4, 1, -2};
const int N1 = sizeof(A1) / sizeof(int);

cout << "The inner product of A1 and A2 is "
<< inner_product(A1, A1 + N1, A2, 0)
<< endl;

}

Notes

There are several reasons why it is important that inner product starts with the
value init. One of the most basic is that this allows inner product to have a
well-defined result even if [first1, last1) is an empty range: if it is empty, the
return value is init. The ordinary inner product corresponds to setting init to 0.
Neither binary operation is required to be either associative or commutative: the
order of all operations is specified.

See also

accumulate, partial sum, adjacent difference, count

9.4.4 partial sum

Prototype

Partial sum is an overloaded name; there are actually two partial sum functions.

template <class InputIterator, class OutputIterator>
OutputIterator partial_sum(InputIterator first, InputIterator last,

OutputIterator result);

template <class InputIterator, class OutputIterator,
class BinaryOperation>

OutputIterator partial_sum(InputIterator first, InputIterator last,
OutputIterator result,
BinaryOperation binary_op);

Systems/C++ C++ Library 357

Description

Partial sum calculates a generalized partial sum: *first is assigned to *result,
the sum of *first and *(first + 1) is assigned to *(result + 1), and so on.
More precisely, a running sum is first initialized to *first and assigned to *result.
For each iterator i in [first + 1, last), in order from beginning to end, the sum
is updated by sum = sum + *i (in the first version) or sum = binary op(sum, *i)
(in the second version) and is assigned to *(result + (i - first)).

Definition

Defined in the standard header numeric, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• InputIterator is a model of Input Iterator.

• OutputIterator is a model of Output Iterator.

• If x and y are objects of InputIterator’s value type, then x + y is defined.

• The return type of x + y is convertible to InputIterator’s value type.

• InputIterator’s value type is convertible to a type in OutputIterator’s set
of value types.

For the second version:

• InputIterator is a model of Input Iterator.

• OutputIterator is a model of Output Iterator.

• BinaryFunction is a model of BinaryFunction.

• InputIterator’s value type is convertible to BinaryFunction’s first argument
type and second argument type.

• BinaryFunction’s result type is convertible to InputIterator’s value type.

• InputIterator’s value type is convertible to a type in OutputIterator’s set
of value types.

Preconditions

• [first, last) is a valid range.

• [result, result + (last - first)) is a valid range.

358 Systems/C++ C++ Library

Complexity

Linear. Zero applications of the binary operation if [first, last) is a empty
range, otherwise exactly (last - first) - 1 applications.

Example

int main()
{
const int N = 10;
int A[N];

fill(A, A+N, 1);
cout << "A: ";
copy(A, A+N, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "Partial sums of A: ";
partial_sum(A, A+N, ostream_iterator<int>(cout, " "));
cout << endl;

}

Notes

Note that result is permitted to be the same iterator as first. This is useful for
computing partial sums ”in place”. The binary operation is not required to be
either associative or commutative: the order of all operations is specified.

See also

adjacent difference, accumulate, inner product, count

9.4.5 adjacent difference

Prototype

Adjacent difference is an overloaded name; there are actually two
adjacent difference functions.

Systems/C++ C++ Library 359

template <class InputIterator, class OutputIterator>
OutputIterator adjacent_difference(InputIterator first,

InputIterator last,
OutputIterator result);

template <class InputIterator, class OutputIterator,
class BinaryFunction>

OutputIterator adjacent_difference(InputIterator first,
InputIterator last,
OutputIterator result,
BinaryFunction binary_op);

Description

Adjacent difference calculates the differences of adjacent elements in the range
[first, last). This is, *first is assigned to *result , and, for each iterator
i in the range [first + 1, last), the difference of *i and *(i - 1) is assigned
to *(result + (i - first)). The first version of adjacent difference uses
operator- to calculate differences, and the second version uses a user-supplied bi-
nary function. In the first version, for each iterator i in the range [first + 1,
last), *i - *(i - 1) is assigned to *(result + (i - first)). In the second
version, the value that is assigned to *(result + 1) is instead binary op(*i, *(i
- 1)).

Definition

Defined in the standard header numeric, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

For the first version:

• ForwardIterator is a model of Forward Iterator.

• OutputIterator is a model of Output Iterator.

• If x and y are objects of ForwardIterator’s value type, then x - y is defined.

• InputIterators value type is convertible to a type in OutputIterator’s set
of value types.

• The return type of x - y is convertible to a type in OutputIterator’s set of
value types.

For the second version:

360 Systems/C++ C++ Library

• ForwardIterator is a model of Forward Iterator.

• OutputIterator is a model of Output Iterator.

• BinaryFunction is a model of Binary Function.

• InputIterator’s value type is convertible to a BinaryFunction’s first argu-
ment type and second argument type.

• InputIterators value type is convertible to a type in OutputIterator’s set
of value types.

• BinaryFunction’s result type is convertible to a type in OutputIterator’s
set of value types.

Preconditions

• [first, last) is a valid range.

• [result, result + (last - first)) is a valid range.

Complexity

Linear. Zero applications of the binary operation if [first, last) is an empty
range, otherwise exactly (last - first) - 1 applications.

Example

int main()
{
int A[] = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100};
const int N = sizeof(A) / sizeof(int);
int B[N];

cout << "A[]: ";
copy(A, A + N, ostream_iterator<int>(cout, " "));
cout << endl;

adjacent_difference(A, A + N, B);
cout << "Differences: ";
copy(B, B + N, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "Reconstruct: ";
partial_sum(B, B + N, ostream_iterator<int>(cout, " "));
cout << endl;

}

Systems/C++ C++ Library 361

Notes

The reason it is useful to store the value of the first element, as well as simply
storing the differences, is that this provides enough information to reconstruct the
input range. In particular, if addition and subtraction have the usual arithmetic
definitions, then adjacent difference and partial sum are inverses of each other.
Note that result is permitted to be the same iterator as first. This is useful for
computing differences ”in place”.

See also

partial sum, accumulate, inner product, count

362 Systems/C++ C++ Library

Chapter 10

Function Objects

10.1 Introduction

Summary

A Function Object, or Functor (the two terms are synonymous) is simply any object
that can be called as if it is a function. An ordinary function is a function object,
and so is a function pointer; more generally, so is an object of a class that defines
operator().

Description

The basic function object concepts are Generator, Unary Function, and Binary
Function: these describe, respectively, objects that can be called as f(), f(x),
and f(x,y). (This list could obviously be extended to ternary function and be-
yond, but, in practice, no STL algorithms require function objects of more than
two arguments.) All other function object concepts defined by the STL are refine-
ments of these three. Function objects that return bool are an important special
case. A Unary Function whose return type is bool is called a Predicate, and a
Binary Function whose return type is bool is called a Binary Predicate. There is
an important distinction, but a somewhat subtle one, between function objects
and adaptable function objects. In general, a function object has restrictions
on the type of its argument. The type restrictions need not be simple, though:
operator() may be overloaded, or may be a member template, or both. Similarly,
there need be no way for a program to determine what those restrictions are. An
adaptable function object, however, does specify what the argument and return
types are, and provides nested typedefs so that those types can be named and
used in programs. If a type F0 is a model of Adaptable Generator, then it must
define F0::result type. Similarly, if F1 is a model of Adaptable Unary Func-
tion then it must define F1::argument type and F1::result type, and if F2 is a
model of Adaptable Binary Function then it must define F2::first argument type,
F2::second argument type, and F2::result type. The STL provides base classes

Systems/C++ C++ Library 363

unary function and binary function to simplify the definition of Adaptable
Unary Functions and Adaptable Binary Functions. Adaptable function ob-
jects are important because they can be used by function object adaptors: func-
tion objects that transform or manipulate other function objects. The STL pro-
vides many different function object adaptors, including unary negate (which
returns the logical complement of the value returned by a particular Adapt-
ablePredicate), and unary compose and binary compose, which perform com-
position of function object. Finally, the STL includes many different prede-
fined function objects, including arithmetic operations (plus, minus, multiplies,
divides, modulus, and negate), comparisons (equal to, not equal to greater,
less, greater equal, and less equal), and logical operations (logical and,
logical or, and logical not). It is possible to perform very sophisticated opera-
tions without actually writing a new function object, simply by combining predefined
function objects and function object adaptors.

Examples

Fill a vector with random numbers. In this example, the function object is simply
a function pointer.

vector<int> V(100);
generate(V.begin(), V.end(), rand);

Sort a vector of double by magnitude, i.e. ignoring the elements’ signs. In this
example, the function object is an object of a user-defined class.

struct less_mag : public binary_function<double, double, bool> {
bool operator()(double x, double y) { return fabs(x) < fabs(y); }

};

vector<double> V;
...
sort(V.begin(), V.end(), less_mag());

Find the sum of elements in a vector. In this example, the function object is of a
user-defined class that has local state.

364 Systems/C++ C++ Library

struct adder : public unary_function<double, void>
{

adder() : sum(0) {}
double sum;
void operator()(double x) { sum += x; }

};

vector<double> V;
...
adder result = for_each(V.begin(), V.end(), adder()); [3]
cout << "The sum is " << result.sum << endl;

Remove all elements from a list that are greater than 100 and less than 1000.

list<int> L;
...
list<int>::iterator new_end =

remove_if(L.begin(), L.end(),
compose2(logical_and<bool>(),

bind2nd(greater<int>(), 100),
bind2nd(less<int>(), 1000)));

L.erase(new_end, L.end());

Concepts

• Generator

• Unary Function

• Binary Function

• Predicate

• Binary Predicate

• Adaptable Generator

• Adaptable Unary Function

• Adaptable Binary Function

• Adaptable Predicate

• Adaptable Binary Predicate

Systems/C++ C++ Library 365

Types

• plus

• minus

• multiplies (formerly called times)

• divides

• modulus,

• negate

• equal to

• not equal to

• greater

• less

• greater equal

• less equal,

• logical and

• logical or

• logical not

• subtractive rng

• identity

• project1st

• project2nd

• select1st

• select2nd

• unary function

• binary function

• unary compose

• binary compose

• unary negate

366 Systems/C++ C++ Library

• binary negate

• binder1st

• binder2nd

• pointer to unary function

• pointer to binary function

Functions

• compose1

• compose2

• not1

• not2

• bind1st

• bind2nd

• ptr fun

Notes

The reason for the name ”adaptable function object” is that adaptable func-
tion objects may be used by function object adaptors. The unary function
and binary function bases are similar to the input iterator, output iterator,
forward iterator, bidirectional iterator, and random access iterator
bases: they are completely empty, and serve only to provide type information. This
is an example of how to use function objects; it is not the recommended way of cal-
culating the sum of elements in a vector. The accumulate algorithm is a better way
of calculating a sum.

See also

10.2 Concepts

10.2.1 Generator

Description

A Generator is a kind of function object: an object that is called as if it were an
ordinary C++ function. A Generator is called with no arguments.

Systems/C++ C++ Library 367

Refinement of

Assignable

Associated types

Result type The type returned when the Generator is called

Notation

F A type that is a model of Generator
Result The result type of F

f Object of type F

Definitions

The range of a Generator is the set of all possible value that it may return.

Valid expressions

Name Expression Type reqs Return type

Function call f() Result

Expression semantics

Name Expression Precondition Semantics Postcondi-

tion
Function call f() Returns some

value of type
Result

The return
value is in f’s
range.

Complexity guarantees

Invariants

Models

• Result (*)()

368 Systems/C++ C++ Library

Notes

Two different invocations of f may return different results: a Generator may refer
to local state, perform I/O, and so on. The expression f() is permitted to change
f’s state; f might, for example, represent a pseudo-random number generator.

See also

Function Object overview, Unary Function, Binary Function, Adaptable Generator

10.2.2 Unary Function

Description

A Unary Function is a kind of function object: an object that is called as if it were
an ordinary C++ function. A Unary Function is called with a single argument.

Refinement of

Assignable

Associated types

Argument type The type of the Unary Function’s argument.
Result type The type returned when the Unary Function is called

Notation

F A type that is a model of Unary Function
X The argument type of F

Result The result type of F
f Object of type F
x Object of type X

Definitions

The domain of a Unary Function is the set of all permissible values for its argument.
The range of a Unary Function is the set of all possible values that it may return.

Valid expressions

Name Expression Type reqs Return type

Function call f(x) Result

Systems/C++ C++ Library 369

Expression semantics

Name Expression Precondition Semantics Postcondi-

tion
Function call f(x) x is in f’s domain Calls f with x

as an argument,
and returns a
value of type
Result

The return
value is in f’s
range

Complexity guarantees

Invariants

Models

• Result (*)(X)

Notes

Two different invocations of f may return different results, even if f is called with
the same arguments both times. A Unary Function may refer to local state, perform
I/O, and so on. The expression f(x) is permitted to change f’s state.

See also

Function Object overview, Generator, Binary Function Adaptable Unary Function

10.2.3 Binary Function

Description

A Binary Function is a kind of function object: an object that is called as if it were
an ordinary C++ function. A Binary Function is called with two arguments.

Refinement of

Assignable

Associated types

First argument type The type of the Binary Function’s first argument.
Second argument type The type of the Binary Function’s second argument.

Result type The type returned when the Binary Function is called

370 Systems/C++ C++ Library

Notation

F A type that is a model of BinaryFunction
X The first argument type of F
Y The second argument type of F

Result The result type of F
f Object of type F
x Object of type X
y Object of type Y

Definitions

The domain of a Binary Function is the set of all ordered pairs (x, y) that are
permissible values for its arguments. The range of a Binary Function is the set of
all possible value that it may return.

Valid expressions

Name Expression Type reqs Return type

Function call f(x,y) Result

Expression semantics

Name Expression Precondition Semantics Postcondi-

tion
Function call f(x,y) The ordered

pair (x,y) is in
f’s domain

Calls f with x
and y as argu-
ments, and re-
turns a value of
type Result

The return value
is in f’s range

Complexity guarantees

Invariants

Models

• Result (*)(X,Y)

Notes

Two different invocations of f may return different results, even if f is called with
the same arguments both times. A Binary Function may refer to local state, perform
I/O, and so on. The expression f(x,y) is permitted to change f’s state.

Systems/C++ C++ Library 371

See also

Function Object overview, Generator, Unary Function Adaptable Binary Function

10.2.4 Adaptable Generator

Description

An Adaptable Generator is a Generator with a nested typedef that defines its result
type. This nested typedef makes it possible to use function object adaptors.

Refinement of

Generator

Associated types

Result type F::result type The type returned when the Generator is called

Notation

F A type that is a model of Adaptable Generator

Definitions

Valid expressions

None, except for those defined by Generator

Expression semantics

Complexity guarantees

Invariants

372 Systems/C++ C++ Library

Models

The STL does not include any types that are models of Adaptable Generator. An
example of a user-defined Adaptable Generator is as follows.

struct counter
{
typedef int result_type;

counter() : n(0) {}
result_type operator()() { return n++; }

result_type n;
};

Notes

Note the implication of this: a function pointer T (*f)() is a Generator, but not
an Adaptable Generator: the expression f::result type is nonsensical.

See also

Generator, Adaptable Unary Function, Adaptable Binary Function

10.2.5 Adaptable Unary Function

Description

An Adaptable Unary Function is a Unary Function with nested typedefs that define
its argument type and result type. These nested typedef make it possible to use
function object adaptors.

Refinement of

Unary Function

Associated types

Argument type F::argument type The type of F’s argument
Result type F::result type The type returned when the Unary Function is

called

Notation

F A type that is a model of Unary Function

Systems/C++ C++ Library 373

Definitions

Valid expressions

None, except for those defined by Unary Function

Expression semantics

Complexity guarantees

Invariants

Models

• negate

• identity

• pointer to unary function

Notes

Note the implication of this: a function pointer T (*f)(X) is a Unary Function,
but not an Adaptable Unary Function: the expressions f::argument type and
f::result type are nonsensical. When you define a class that is a model of
Adaptable Unary Function, you must provide these typedefs. The easiest way to
do this is to derive the class from the base class unary function. This is an empty
class, with no member functions or member variables; the only reason it exists is
to make defining Adaptable Unary Functions more convenient. Unary function is
very similar to the base classes used by the iterator tag functions.

See also

Unary Function, Adaptable Generator, Adaptable Binary Function

10.2.6 Adaptable Binary Function

Description

An Adaptable Binary Function is a Binary Function with nested typedefs that
define its argument types and result type. These nested typedefs make it
possible to use function object adaptors.

374 Systems/C++ C++ Library

Refinement of

Binary Function

Associated types

First argument type F::first argument type The type of F’s first argument
Second argument type F::second argument type The type of F’s second argument

Result type F::result type The type returned when the Bi-
nary Function is called

Notation

F A type that is a model of Binary Function

Definitions

Valid expressions

None, except for those defined by Binary Function

Expression semantics

Complexity guarantees

Invariants

Models

• plus

• project1st

• pointer to binary function

Systems/C++ C++ Library 375

Notes

Note the implication of this: a function pointer T (*f)(X,Y) is a Binary Function,
but not an Adaptable Binary Function: the expressions f::first argument type,
f::second argument type, and f::result type are nonsensical. When you de-
fine a class that is a model of Adaptable Binary Function, you must provide these
typedefs. The easiest way to do this is to derive the class from the base class
binary function. This is an empty class, with no member functions or member
variables; the only reason it exists is to make defining Adaptable Binary Functions
more convenient. Binary function is very similar to the base classes used by the
iterator tag functions.

See also

Binary Function, Adaptable Generator, Adaptable Unary Function

10.2.7 Predicates

Predicate

Description

A Predicate is a Unary Function whose result represents the truth or falsehood
of some condition. A Predicate might, for example, be a function that takes an
argument of type int and returns true if the argument is positive.

Refinement of

Unary Function

Associated types

Result type The type returned when the Predicate is called. The result type must be
convertible to bool.

Notation

F A type that is a model of Predicate
X The argument type of F
f Object of type F
x Object of type X

Valid expressions

Name Expression Type reqs Return type

Function call f(x) Convertible to bool

376 Systems/C++ C++ Library

Expression semantics

Name Expression Precondition Semantics Postcondi-

tion
Function call f(x) x is in the do-

main of f.
Returns true if
the condition is
satisfied, false
if it is not.

The result is
either true or
false.

Complexity guarantees

Invariants

Models

• bool (*)(int)

Notes

See also

Adaptable Predicate, Binary Predicate, Adaptable Binary Predicate

Binary Predicate

Description

A Binary Predicate is a Binary Function whose result represents the truth or false-
hood of some condition. A Binary Predicate might, for example, be a function that
takes two arguments and tests whether they are equal.

Refinement of

Binary Function

Associated types

Result type The type returned when the Binary Predicate is called. The result type
must be convertible to bool.

Systems/C++ C++ Library 377

Notation

F A type that is a model of Binary Predicate
X The first argument type of F
Y The second argument type of F
f Object of type F
x Object of type X
y Object of type Y

Valid expressions

Name Expression Type reqs Return type

Function call f(x,y) Convertible to bool

Expression semantics

Name Expression Precondition Semantics Postcondi-

tion
Function call f(x,y) The ordered

pair (x,y) is in
the domain of f.

Returns true if
the condition is
satisfied, false
if it is not.

The result is
either true or
false.

Complexity guarantees

Invariants

Models

• bool (*)(int,int)

• equal to

Notes

See also

Predicate, Adaptable Predicate, Adaptable Binary Predicate

378 Systems/C++ C++ Library

Adaptable Predicate

Description

An Adaptable Predicate is a Predicate that is also an Adaptable Unary Function.
That is, it is a Unary Function whose return type is bool, and that includes nested
typedefs that define its argument type and return type.

Refinement of

Predicate, Adaptable Unary Function

Associated types

None, except for those associated with Predicate and Adaptable Unary Function.

Notation

Definitions

Valid expressions

None, except for those defined by the Predicate and Adaptable Unary Function
requirements.

Expression semantics

Complexity guarantees

Invariants

Models

• logical not

• unary negate

Notes

Systems/C++ C++ Library 379

See also

Predicate, Binary Predicate, Adaptable Binary Predicate

Adaptable Binary Predicate

Description

An Adaptable Binary Predicate is a Binary Predicate that is also an Adaptable
Binary Function. That is, it is a Binary Function whose return type is bool, and
that includes nested typedefs that define its argument types and return type.

Refinement of

Predicate, Adaptable Binary Function

Associated types

None, except for those associated with Predicate and Adaptable Binary Function.

Notation

Definitions

Valid expressions

None, except for those defined by the Predicate and Adaptable Binary Function
requirements.

Expression semantics

Complexity guarantees

Invariants

380 Systems/C++ C++ Library

Models

• less

• equal to

• logical and

• logical or

• binary negate

Notes

See also

Binary Predicate, Predicate, Adaptable Predicate

StrictWeakOrdering

Description

A Strict Weak Ordering is a Binary Predicate that compares two objects, returning
true if the first precedes the second. This predicate must satisfy the standard
mathematical definition of a strict weak ordering. The precise requirements are
stated below, but what they roughly mean is that a Strict Weak Ordering has to
behave the way that ”less than” behaves: if a is less than b then b is not less than
a, if a is less than b and b is less than c then a is less than c, and so on.

Refinement of

Binary Predicate

Associated types

First argument type The type of the Strict Weak Ordering’s first argument.
Second argument type The type of the Strict Weak Ordering’s second argument. The

first argument type and second argument type must be the
same.

Result type The type returned when the Strict Weak Ordering is called.
The result type must be convertible to bool.

Notation

F A type that is a model of Strict Weak Ordering
X The type of Strict Weak Ordering’s arguments.
f Object of type F

x, y, z Object of type X

Systems/C++ C++ Library 381

Definitions

• Two objects x and y are equivalent if both f(x, y) and f(y, x) are false.
Note that an object is always (by the irreflexivity invariant) equivalent to
itself.

Valid expressions

None, except for those defined in the Binary Predicate requirements.

Expression semantics

Name Expression Precondition Semantics Postcondi-

tion
Function call f(x, y) The ordered

pair (x,y) is in
the domain of f

Returns true
if x precedes
y, and false
otherwise

The result is
either true or
false

Complexity guarantees

Invariants

Irreflexivity f(x, x) must be false.
Antisymmetry f(x, y) implies !f(y, x)
Transitivity f(x, y) and f(y, z) imply f(x, z).

Transitivity of equivalence Equivalence (as defined above) is transitive: if x is equiv-
alent to y and y is equivalent to z, then x is equivalent to
z. (This implies that equivalence does in fact satisfy the
mathematical definition of an equivalence relation.)

Models

• less<int>

• less<double>

• greater<int>

• greater<double>

382 Systems/C++ C++ Library

Notes

The first three axioms, irreflexivity, antisymmetry, and transitivity, are the definition
of a partial ordering; transitivity of equivalence is required by the definition of a strict
weak ordering. A total ordering is one that satisfies an even stronger condition:
equivalence must be the same as equality.

See also

LessThan Comparable, less, Binary Predicate, function objects

10.2.8 Random Number Generator

Description

A Random Number Generator is a function object that can be used to generate a
random sequence of integers. That is: if f is a Random Number Generator and N
is a positive integer, then f(N) will return an integer less than N and greater than
or equal to 0. If f is called many times with the same value of N, it will yield a
sequence of numbers that is uniformly distributed in the range [0, N).

Refinement of

Unary Function

Associated types

Argument type The type of the Random Number Generator’s argument. This must
be an integral type.

Result type The type returned when the Random Number Generator is called. It
must be the same as the argument type.

Notation

F A type that is a model of Random Number Generator.
Integer The argument type of F.

f Object of type F.
N Object of type Integer

Definitions

The domain of a Random Number Generator (i.e. the set of permissible values
for its argument) is the set of numbers that are greater than zero and less than
some maximum value. The range of a Random Number Generator is the set of
nonnegative integers that are less than the Random Number Generator’s argument.

Systems/C++ C++ Library 383

Valid expressions

None, except for those defined by Unary Function.

Expression semantics

Name Expression Precondition Semantics Postcondi-

tion
Function call f(N) N is positive. Returns a

pseudo-random
number of type
Integer.

The return
value is less
than N, and
greater than or
equal to 0.

Complexity guarantees

Invariants

Uniformity In the limit as f is called many times with the same argument N, every
integer in the range [0, N) will appear an equal number of times.

Models

Notes

Uniform distribution means that all of the numbers in the range [0, N) appear
with equal frequency. Or, to put it differently, the probability for obtaining any
particular value is 1/N. Random number generators are a very subtle subject: a good
random number generator must satisfy many statistical properties beyond uniform
distribution. See section 3.4 of Knuth for a discussion of what it means for a sequence
to be random, and section 3.2 for several algorithms that may be used to write
random number generators. (D. E. Knuth, The Art of Computer Programming.
Volume 2: Seminumerical Algorithms, third edition. Addison-Wesley, 1998.)

See also

384 Systems/C++ C++ Library

10.3 Predefined function objects

10.3.1 Arithmetic operations

plus

Description

Plus<T> is a function object. Specifically, it is an Adaptable Binary Function. If f
is an object of class plus<T> and x and y are objects of class T, then f(x,y) returns
x+y.

Example

Each element in V3 will be the sum of the corresponding elements in V1 and V2

const int N = 1000;
vector<double> V1(N);
vector<double> V2(N);
vector<double> V3(N);

iota(V1.begin(), V1.end(), 1);
fill(V2.begin(), V2.end(), 75);

assert(V2.size() >= V1.size() && V3.size() >= V1.size());
transform(V1.begin(), V1.end(), V2.begin(), V3.begin(),

plus<double>());

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

T The function object’s argument type and result type.

Model of

Adaptable Binary Function, Default Constructible

Systems/C++ C++ Library 385

Type requirements

T must be a numeric type; if x and y are objects of type T, then x+y must be defined
and must have a return type that is convertible to T. T must be Assignable.

Public base classes

binary function<T, T, T>

Members

Member Where de-

fined

Description

first argument type Adaptable
Binary Func-
tion

The type of the first argument: T

second argument type Adaptable
Binary Func-
tion

The type of the second argument: T

result type Adaptable
Binary Func-
tion

The type of the result: T

T operator()(const T&
x, const T& y)

Adaptable
Binary Func-
tion

Function call operator. The return value
is x + y.

plus() Default Con-
structible

The default constructor.

New members

All of plus’s members are defined in the Adaptable Binary Function and Default
Constructible requirements. Plus does not introduce any new members.

Notes

See also

The Function Object overview, Adaptable Binary Function, binary function,
minus, multiplies, divides, modulus, negate

minus

Description

Minus<T> is a function object. Specifically, it is an Adaptable Binary Function. If
f is an object of class minus<T> and x and y are objects of class T, then f(x,y)
returns x-y.

386 Systems/C++ C++ Library

Example

Each element in V3 will be the difference of the corresponding elements in V1 and
V2

const int N = 1000;
vector<double> V1(N);
vector<double> V2(N);
vector<double> V3(N);

iota(V1.begin(), V1.end(), 1);
fill(V2.begin(), V2.end(), 75);

assert(V2.size() >= V1.size() && V3.size() >= V1.size());
transform(V1.begin(), V1.end(), V2.begin(), V3.begin(),

minus<double>());

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

T The function object’s argument type and result type.

Model of

Adaptable Binary Function, Default Constructible

Type requirements

T must be a numeric type; if x and y are objects of type T, then x-y must be defined
and must have a return type that is convertible to T. T must be Assignable.

Public base classes

binary function<T, T, T>

Systems/C++ C++ Library 387

Members

Member Where de-

fined

Description

first argument type Adaptable
Binary Func-
tion

The type of the first argument: T

second argument type Adaptable
Binary Func-
tion

The type of the second argument: T

result type Adaptable
Binary Func-
tion

The type of the result: T

T operator()(const T&
x, const T& y)

Adaptable
Binary Func-
tion

Function call operator. The return value
is x - y.

minus() Default Con-
structible

The default constructor.

New members

All of minus’s members are defined in the Adaptable Binary Function and Default
Constructible requirements. Minus does not introduce any new members.

Notes

See also

The Function Object overview, Adaptable Binary Function, binary function,
plus, multiplies, divides, modulus, negate

multiplies

Description

Multiplies<T> is a function object. Specifically, it is an Adaptable Binary Func-
tion. If f is an object of class multiplies<T> and x and y are objects of class T,
then f(x,y) returns x*y.

Example

Each element in V3 will be the product of the corresponding elements in V1 and V2

388 Systems/C++ C++ Library

const int N = 1000;
vector<double> V1(N);
vector<double> V2(N);
vector<double> V3(N);

iota(V1.begin(), V1.end(), 1);
fill(V2.begin(), V2.end(), 75);

assert(V2.size() >= V1.size() && V3.size() >= V1.size());
transform(V1.begin(), V1.end(), V2.begin(), V3.begin(),

multiplies<double>());

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

T The function object’s argument type and result type.

Model of

Adaptable Binary Function, Default Constructible

Type requirements

T must be a numeric type; if x and y are objects of type T, then x*y must be defined
and must have a return type that is convertible to T. T must be Assignable.

Public base classes

binary function<T, T, T>

Members

Systems/C++ C++ Library 389

Member Where de-

fined

Description

first argument type Adaptable
Binary Func-
tion

The type of the first argument: T

second argument type Adaptable
Binary Func-
tion

The type of the second argument: T

result type Adaptable
Binary Func-
tion

The type of the result: T

T operator()(const T&
x, const T& y)

Adaptable
Binary Func-
tion

Function call operator. The return value
is x * y.

multiplies() Default Con-
structible

The default constructor.

New members

All of multiplies’s members are defined in the Adaptable Binary Function and
Default Constructible requirements. Multiplies does not introduce any new mem-
bers.

Notes

Warning: the name of this function object has been changed from times to
multiplies. The name was changed for two reasons. First, it is called multiplies
in the C++ standard. Second, the name times conflicts with a function in the Unix
header <sys/times.h>.

See also

The Function Object overview, Adaptable Binary Function, binary function,
plus, minus, divides, modulus, negate

divides

Description

Divides<T> is a function object. Specifically, it is an Adaptable Binary Function.
If f is an object of class divides<T> and x and y are objects of class T, then f(x,y)
returns x/y.

390 Systems/C++ C++ Library

Example

Each element in V3 will be the quotient of the corresponding elements in V1 and V2

const int N = 1000;
vector<double> V1(N);
vector<double> V2(N);
vector<double> V3(N);

iota(V1.begin(), V1.end(), 1);
fill(V2.begin(), V2.end(), 75);

assert(V2.size() >= V1.size() && V3.size() >= V1.size());
transform(V1.begin(), V1.end(), V2.begin(), V3.begin(),

divides<double>());

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

T The function object’s argument type and result type.

Model of

Adaptable Binary Function, Default Constructible

Type requirements

T must be a numeric type; if x and y are objects of type T, then x/y must be defined
and must have a return type that is convertible to T. T must be Assignable.

Public base classes

binary function<T, T, T>

Systems/C++ C++ Library 391

Members

Member Where de-

fined

Description

first argument type Adaptable
Binary Func-
tion

The type of the first argument: T

second argument type Adaptable
Binary Func-
tion

The type of the second argument: T

result type Adaptable
Binary Func-
tion

The type of the result: T

T operator()(const T&
x, const T& y)

Adaptable
Binary Func-
tion

Function call operator. The return value
is x / y.

divides() Default Con-
structible

The default constructor.

New members

All of divides’s members are defined in the Adaptable Binary Function and Default
Constructible requirements. Divides does not introduce any new members.

Notes

See also

The Function Object overview, Adaptable Binary Function, binary function,
plus, minus, multiplies, modulus, negate

modulus

Description

Modulus<T> is a function object. Specifically, it is an Adaptable Binary Function.
If f is an object of class modulus<T> and x and y are objects of class T, then f(x,y)
returns x%y.

Example

Each element in V3 will be the modulus of the corresponding elements in V1 and V2

392 Systems/C++ C++ Library

const int N = 1000;
vector<double> V1(N);
vector<double> V2(N);
vector<double> V3(N);

iota(V1.begin(), V1.end(), 1);
fill(V2.begin(), V2.end(), 75);

assert(V2.size() >= V1.size() && V3.size() >= V1.size());
transform(V1.begin(), V1.end(), V2.begin(), V3.begin(),

modulus<int>());

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

T The function object’s argument type and result type.

Model of

Adaptable Binary Function, Default Constructible

Type requirements

T must be an integral type; if x and y are objects of type T, then x%y must be defined
and must have a return type that is convertible to T. T must be Assignable.

Public base classes

binary function<T, T, T>

Members

Systems/C++ C++ Library 393

Member Where de-

fined

Description

first argument type Adaptable
Binary Func-
tion

The type of the first argument: T

second argument type Adaptable
Binary Func-
tion

The type of the second argument: T

result type Adaptable
Binary Func-
tion

The type of the result: T

T operator()(const T&
x, const T& y)

Adaptable
Binary Func-
tion

Function call operator. The return value
is x % y.

modulus() Default Con-
structible

The default constructor.

New members

All of modulus’s members are defined in the Adaptable Binary Function and Default
Constructible requirements. Modulus does not introduce any new members.

Notes

See also

The Function Object overview, Adaptable Binary Function, binary function,
plus, minus, multiplies, divides, negate

negate

Description

Negate<T> is a function object. Specifically, it is an Adaptable Unary Function. If
f is an object of class negate<T> and x is an object of class T, then f(x) returns
-x.

Example

Each element in V2 will be the negative (additive inverse) of the corresponding
element in V1.

394 Systems/C++ C++ Library

const int N = 1000;
vector<double> V1(N);
vector<double> V2(N);

iota(V1.begin(), V1.end(), 1);

assert(V2.size() >= V1.size());
transform(V1.begin(), V1.end(), V2.begin(),

negate<int>());

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

T The function object’s argument type and result type.

Model of

Adaptable Unary Function, Default Constructible

Type requirements

T must be a numeric type; if x is an object of type T, then -x must be defined and
must have a return type that is convertible to T. T must be Assignable.

Public base classes

unary function<T, T>

Members

Systems/C++ C++ Library 395

Member Where de-

fined

Description

argument type Adaptable
Unary Func-
tion

The type of the second argument: T

result type Adaptable
Unary Func-
tion

The type of the result: T

T operator()(const T&
x)

Adaptable
Unary Func-
tion

Function call operator. The return value
is -x.

negate() Default Con-
structible

The default constructor.

New members

All of negate’s members are defined in the Adaptable Unary Function and Default
Constructible requirements. Negate does not introduce any new members.

Notes

See also

The Function Object overview, Adaptable Unary Function, unary function, plus,
minus, multiplies, divides, modulus

10.3.2 Comparisons

equal to

Description

Equal to<T> is a function object. Specifically, it is an Adaptable Binary Predicate,
which means it is a function object that tests the truth or falsehood of some condi-
tion. If f is an object of class equal to<T> and x and y are objects of class T, then
f(x,y) returns true if x == y and false otherwise.

Example

Rearrange a vector such that all of the elements that are equal to zero precede all
nonzero elements.

vector<int> V;
...
partition(V.begin(), V.end(), bind2nd(equal_to<int>(), 0));

396 Systems/C++ C++ Library

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

T The type of equal to’s arguments.

Model of

Adaptable Binary Predicate, DefaultConstructible

Type requirements

T is EqualityComparable.

Public base classes

binary function<T, T, bool>.

Members

Member Where de-

fined

Description

first argument type Adaptable
Binary Predi-
cate

The type of the first argument: T

second argument type Adaptable
Binary Predi-
cate

The type of the second argument: T

result type Adaptable
Binary Predi-
cate

The type of the result: bool

equal to() Default Con-
structible

The default constructor.

bool operator()(const
T& x, const T& y)

Binary Func-
tion

Function call operator. The return value
is x == y.

New members

All of equal to’s members are defined in the Adaptable Binary Predicate and De-
faultConstructible requirements. Equal to does not introduce any new members.

Systems/C++ C++ Library 397

Notes

See also

The function object overview, Adaptable Binary Predicate, not equal to, greater,
less, greater equal, less equal

not equal to

Description

Not equal to<T> is a function object. Specifically, it is an Adaptable Binary Pred-
icate, which means it is a function object that tests the truth or falsehood of some
condition. If f is an object of class not equal to<T> and x and y are objects of
class T, then f(x,y) returns true if x != y and false otherwise.

Example

Finds the first nonzero element in a list.

list<int> L;
...
list<int>::iterator first_nonzero =

find_if(L.begin(), L.end(), bind2nd(not_equal_to<int>(), 0));
assert(first_nonzero == L.end() || *first_nonzero != 0);

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

T The type of not equal to’s arguments.

Model of

Adaptable Binary Predicate, DefaultConstructible

Type requirements

T is EqualityComparable.

398 Systems/C++ C++ Library

Public base classes

binary function<T, T, bool>.

Members

Member Where de-

fined

Description

first argument type Adaptable
Binary Predi-
cate

The type of the first argument: T

second argument type Adaptable
Binary Predi-
cate

The type of the second argument: T

result type Adaptable
Binary Predi-
cate

The type of the result: bool

not equal to() Default Con-
structible

The default constructor.

bool operator()(const
T& x, const T& y)

Binary Func-
tion

Function call operator. The return value
is x != y.

New members

All of not equal to’s members are defined in the Adaptable Binary Predicate and
DefaultConstructible requirements. Not equal to does not introduce any new mem-
bers.

Notes

See also

The function object overview, Adaptable Binary Predicate, equal to, greater,
less, greater equal, less equal

less

Description

Less<T> is a function object. Specifically, it is an Adaptable Binary Predicate, which
means it is a function object that tests the truth or falsehood of some condition.
If f is an object of class less<T> and x and y are objects of class T, then f(x,y)
returns true if x < y and false otherwise.

Systems/C++ C++ Library 399

Example

Finds the first negative element in a list.

list<int> L;
...
list<int>::iterator first_negative =

find_if(L.begin(), L.end(), bind2nd(less<int>(), 0));
assert(first_negative == L.end() || *first_negative < 0);

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

T The type of less’s arguments.

Model of

Adaptable Binary Predicate, DefaultConstructible

Type requirements

T is LessThan Comparable.

Public base classes

binary function<T, T, bool>.

Members

400 Systems/C++ C++ Library

Member Where de-

fined

Description

first argument type Adaptable
Binary Predi-
cate

The type of the first argument: T

second argument type Adaptable
Binary Predi-
cate

The type of the second argument: T

result type Adaptable
Binary Predi-
cate

The type of the result: bool

less() Default Con-
structible

The default constructor.

bool operator()(const
T& x, const T& y)

Binary Func-
tion

Function call operator. The return value
is x < y.

New members

All of less’s members are defined in the Adaptable Binary Predicate and Default-
Constructible requirements. less does not introduce any new members.

Notes

See also

The function object overview, Strict Weak Ordering, Adaptable Binary Predi-
cate, LessThan Comparable, equal to, not equal to, greater, greater equal,
less equal

greater

Description

Greater<T> is a function object. Specifically, it is an Adaptable Binary Predicate,
which means it is a function object that tests the truth or falsehood of some condi-
tion. If f is an object of class greater<T> and x and y are objects of class T, then
f(x,y) returns true if x > y and false otherwise.

Example

Sort a vector in descending order, rather than the default ascending order.

vector<int> V;
...
sort(V.begin(), V.end(), greater<int>());

Systems/C++ C++ Library 401

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

T The type of greater’s arguments.

Model of

Adaptable Binary Predicate, DefaultConstructible

Type requirements

T is LessThan Comparable.

Public base classes

binary function<T, T, bool>.

Members

Member Where de-

fined

Description

first argument type Adaptable
Binary Predi-
cate

The type of the first argument: T

second argument type Adaptable
Binary Predi-
cate

The type of the second argument: T

result type Adaptable
Binary Predi-
cate

The type of the result: bool

greater() Default Con-
structible

The default constructor.

bool operator()(const
T& x, const T& y)

Binary Func-
tion

Function call operator. The return value
is x > y.

New members

All of greater’s members are defined in the Adaptable Binary Predicate and De-
faultConstructible requirements. Greater does not introduce any new members.

402 Systems/C++ C++ Library

Notes

See also

The function object overview, Adaptable Binary Predicate, LessThan Comparable,
equal to, not equal to, less, greater equal, less equal

less equal

Description

Less equal<T> is a function object. Specifically, it is an Adaptable Binary Predi-
cate, which means it is a function object that tests the truth or falsehood of some
condition. If f is an object of class less equal<T> and x and y are objects of class
T, then f(x,y) returns true if x <= y and false otherwise.

Example

Finds the first non-positive element in a list.

list<int> L;
...
list<int>::iterator first_nonpositive =

find_if(L.begin(), L.end(), bind2nd(less_equal<int>(), 0));
assert(first_nonpositive == L.end() || *first_nonpositive <= 0);

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

T The type of less equal’s arguments.

Model of

Adaptable Binary Predicate, DefaultConstructible

Systems/C++ C++ Library 403

Type requirements

T is LessThan Comparable.

Public base classes

binary function<T, T, bool>.

Members

Member Where de-

fined

Description

first argument type Adaptable
Binary Predi-
cate

The type of the first argument: T

second argument type Adaptable
Binary Predi-
cate

The type of the second argument: T

result type Adaptable
Binary Predi-
cate

The type of the result: bool

less equal() Default Con-
structible

The default constructor.

bool operator()(const
T& x, const T& y)

Binary Func-
tion

Function call operator. The return value
is x <= y.

New members

All of less equal’s members are defined in the Adaptable Binary Predicate and
DefaultConstructible requirements. Less equal does not introduce any new mem-
bers.

Notes

See also

The function object overview, Adaptable Binary Predicate, equal to,
not equal to, greater, less, greater equal,

greater equal

Description

404 Systems/C++ C++ Library

Greater equal<T> is a function object. Specifically, it is an Adaptable Binary
Predicate, which means it is a function object that tests the truth or falsehood of
some condition. If f is an object of class greater equal<T> and x and y are objects
of class T, then f(x,y) returns true if x >= y and false otherwise.

Example

Find the first nonnegative element in a list.

list<int> L;
...
list<int>::iterator first_nonnegative =

find_if(L.begin(), L.end(), bind2nd(greater_equal<int>(), 0));
assert(first_nonnegative == L.end() || *first_nonnegative >= 0);

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

T The type of greater equal’s arguments.

Model of

Adaptable Binary Predicate, DefaultConstructible

Type requirements

T is LessThan Comparable.

Public base classes

binary function<T, T, bool>.

Systems/C++ C++ Library 405

Members

Member Where de-

fined

Description

first argument type Adaptable
Binary Predi-
cate

The type of the first argument: T

second argument type Adaptable
Binary Predi-
cate

The type of the second argument: T

result type Adaptable
Binary Predi-
cate

The type of the result: bool

greater equal() Default Con-
structible

The default constructor.

bool operator()(const
T& x, const T& y)

Binary Func-
tion

Function call operator. The return value
is x >= y.

New members

All of greater equal’s members are defined in the Adaptable Binary Predicate
and DefaultConstructible requirements. Greater equal does not introduce any new
members.

Notes

See also

The function object overview, Adaptable Binary Predicate, equal to,
not equal to, greater less, less equal

10.3.3 Logical operations

logical and

Description

Logical and<T> is a function object; specifically, it is an Adaptable Binary Predi-
cate, which means it is a function object that tests the truth or falsehood of some
condition. If f is an object of class logical and<T> and x and y are objects of class
T (where T is convertible to bool) then f(x,y) returns true if and only if both x
and y are true.

406 Systems/C++ C++ Library

Example

Finds the first element in a list that lies in the range from 1 to 10.

list<int> L;
...
list<int>::iterator in_range =

find_if(L.begin(), L.end(),
compose2(logical_and<bool>(),

bind2nd(greater_equal<int>(), 1),
bind2nd(less_equal<int>(), 10)));

assert(in_range == L.end() || (*in_range >= 1 && *in_range <= 10));

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

T The type of logical and’s arguments

Model of

Adaptable Binary Predicate, DefaultConstructible

Type requirements

T must be convertible to bool.

Public base classes

binary function<T, T, bool>

Members

Systems/C++ C++ Library 407

Member Where de-

fined

Description

first argument type Adaptable
Binary Func-
tion

The type of the first argument: T

second argument type Adaptable
Binary Func-
tion

The type of the second argument: T

result type Adaptable
Binary Func-
tion

The type of the result: bool

bool operator()(const
T& x, const T& y)
const

Binary Func-
tion

Function call operator. The return value
is x && y.

logical and() Default Con-
structible

The default constructor.

New members

All of logical and’s members are defined in the Adaptable Binary Function and
Default Constructible requirements. Logical and does not introduce any new mem-
bers.

Notes

Logical and and logical or are not very useful by themselves. They are mainly
useful because, when combined with the function object adaptor binary compose,
they perform logical operations on other function objects.

See also

The function object overview, logical or, logical not.

logical or

Description

Logical or<T> is a function object; specifically, it is an Adaptable Binary Predi-
cate, which means it is a function object that tests the truth or falsehood of some
condition. If f is an object of class logical and<T> and x and y are objects of class
T (where T is convertible to bool) then f(x,y) returns true if and only if either x
or y is true.

408 Systems/C++ C++ Library

Example

Finds the first instance of either ’ ’ or ’\n’ in a string.

char str[MAXLEN];
...
const char* wptr = find_if(str, str + MAXLEN,

compose2(logical_or<bool>(),
bind2nd(equal_to<char>(), ’ ’),
bind2nd(equal_to<char>(), ’\n’)));

assert(wptr == str + MAXLEN || *wptr == ’ ’ || *wptr == ’\n’);

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

T The type of logical or’s arguments

Model of

Adaptable Binary Predicate, DefaultConstructible

Type requirements

T must be convertible to bool.

Public base classes

binary function<T, T, bool>

Members

Systems/C++ C++ Library 409

Member Where de-

fined

Description

first argument type Adaptable
Binary Func-
tion

The type of the first argument: T

second argument type Adaptable
Binary Func-
tion

The type of the second argument: T

result type Adaptable
Binary Func-
tion

The type of the result: bool

bool operator()(const
T& x, const T& y)
const

Binary Func-
tion

Function call operator. The return value
is x || y.

logical or() Default Con-
structible

The default constructor.

New members

All of logical or’s members are defined in the Adaptable Binary Function and
Default Constructible requirements. Logical or does not introduce any new mem-
bers.

Notes

Logical and and logical or are not very useful by themselves. They are mainly
useful because, when combined with the function object adaptor binary compose,
they perform logical operations on other function objects.

See also

The function object overview, logical and, logical not.

logical not

Description

Logical not<T> is a function object; specifically, it is an Adaptable Predicate, which
means it is a function object that tests the truth or falsehood of some condition.
If f is an object of class logical not<T> and x is an object of class T (where T is
convertible to bool) then f(x) returns true if and only if x is false.

Example

Transforms a vector of bool into its logical complement.

410 Systems/C++ C++ Library

vector<bool> V;
...
transform(V.begin(), V.end(), V.begin(), logical_not<bool>());

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

T The type of logical not’s argument

Model of

Adaptable Predicate, DefaultConstructible

Type requirements

T must be convertible to bool.

Public base classes

unary function<T, bool>

Members

Member Where de-

fined

Description

argument type Adaptable
Unary Func-
tion

The type of the second argument: T

result type Adaptable
Unary Func-
tion

The type of the result: bool

bool operator()(const
T& x) const

Unary Func-
tion

Function call operator. The return value
is !x.

logical not() Default Con-
structible

The default constructor.

Notes

Systems/C++ C++ Library 411

See also

The function object overview, logical or, logical and.

10.4 Function object adaptors

10.4.1 binder1st

Description

Binder1st is a function object adaptor: it is used to transform an adaptable binary
function into an adaptable unary function. Specifically, if f is an object of class
binder1st<AdaptableBinaryFunction>, then f(x) returns F(c, x), where F is
an object of class AdaptableBinaryFunction and where c is a constant. Both F
and c are passed as arguments to binder1st’s constructor. The easiest way to
create a binder1st is not to call the constructor explicitly, but instead to use the
helper function bind1st.

Example

Finds the first nonzero element in a list.

list<int> L;
...
list<int>::iterator first_nonzero =

find_if(L.begin(), L.end(), bind1st(not_equal_to<int>(), 0));
assert(first_nonzero == L.end() || *first_nonzero != 0);

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

AdaptableBinaryFunction The type of the binary function whose first
argument is being bound to a constant.

Model of

Adaptable Unary Function

412 Systems/C++ C++ Library

Type requirements

AdaptableBinaryFunction must be a model of Adaptable Binary Function.

Public base classes

unary_function<AdaptableBinaryFunction::second_argument_type,
AdaptableBinaryFunction::result_type>

Members

Member Where de-

fined

Description

argument type Adaptable
Unary Func-
tion

The type of the function ob-
ject’s argument, which is
AdaptableBinaryFunction::
second argument type

result type Adaptable
Unary Func-
tion

The type of the result:
AdaptableBinaryFunction::
result type

result type
operator()(const
argument type& x) const

Adaptable
Unary Func-
tion

Function call. Returns F(c, x),
where F and c are the arguments
with which this binder1st was con-
structed.

binder1st(const
AdaptableBinaryFunction&
F,
AdaptableBinaryFunction::
first argument type c)

binder1st See below

template <class
AdaptableBinaryFunction,
class T> binder1st
<AdaptableBinaryFunction>
bind1st(const
AdaptableBinaryFunction&
F, const T& c);

binder1st See below

New members

These members are not defined in the Adaptable Unary Function requirements, but
are specific to binder1st.

Systems/C++ C++ Library 413

Member Description

binder1st(const
AdaptableBinaryFunction&
F, AdaptableBinaryFunction::
first argument type c)

The constructor. Creates a binder1st such
that calling it with the argument x (where
x is of type AdaptableBinaryFunction::
second argument type) corresponds to the
call F(c, x).

template <class
AdaptableBinaryFunction,
class T> binder1st
<AdaptableBinaryFunction>
bind1st(const
AdaptableBinaryFunction&
F, const T& c);

If F is an object of type
AdaptableBinaryFunction, then
bind1st(F, c) is equivalent to
binder1st<AdaptableBinaryFunction>(F,
c), but is more convenient. The
type T must be convertible to
AdaptableBinaryFunction::first argument type.
This is a global function, not a member function.

Notes

Intuitively, you can think of this operation as ”binding” the first argument of a
binary function to a constant, thus yielding a unary function. This is a special case
of a closure.

See also

The function object overview, binder2nd, Adaptable Unary Function, Adaptable
Binary Function

10.4.2 binder2nd

Description

Binder2nd is a function object adaptor: it is used to transform an adaptable binary
function into an adaptable unary function. Specifically, if f is an object of class
binder2nd<AdaptableBinaryFunction>, then f(x) returns F(x, c), where F is
an object of class AdaptableBinaryFunction and where c is a constant. Both F
and c are passed as arguments to binder2nd’s constructor. The easiest way to
create a binder2nd is not to call the constructor explicitly, but instead to use the
helper function bind2nd.

Example

Finds the first positive number in a list.

414 Systems/C++ C++ Library

list<int> L;
...
list<int>::iterator first_positive =

find_if(L.begin(), L.end(), bind2nd(greater<int>(), 0));
assert(first_positive == L.end() || *first_positive > 0);

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

AdaptableBinaryFunction The type of the binary function whose second
argument is being bound to a constant.

Model of

Adaptable Unary Function

Type requirements

AdaptableBinaryFunction must be a model of Adaptable Binary Function.

Public base classes

unary_function<AdaptableBinaryFunction::first_argument_type,
AdaptableBinaryFunction::result_type>

Members

Systems/C++ C++ Library 415

Member Where de-

fined

Description

argument type Adaptable
Unary Func-
tion

The type of the function ob-
ject’s argument, which is
AdaptableBinaryFunction::
first argument type

result type Adaptable
Unary Func-
tion

The type of the result:
AdaptableBinaryFunction::
result type

result type
operator()(const
argument type& x) const

Adaptable
Unary Func-
tion

Function call. Returns F(x, c),
where F and c are the arguments
with which this binder1st was con-
structed.

binder2nd(const
AdaptableBinaryFunction&
F,
AdaptableBinaryFunction::
second argument type c)

binder2nd See below

template <class
AdaptableBinaryFunction,
class T> binder2nd
<AdaptableBinaryFunction>
bind2nd(const
AdaptableBinaryFunction&
F, const T& c);

binder2nd See below

New members

These members are not defined in the Adaptable Unary Function requirements, but
are specific to binder2nd.

Member Description

binder2nd(const
AdaptableBinaryFunction&
F, AdaptableBinaryFunction::
second argument type c)

The constructor. Creates a binder2nd such that
calling it with the argument x (where x is of type
AdaptableBinaryFunction::first argument type)
corresponds to the call F(x, c).

template <class
AdaptableBinaryFunction,
class T> binder2nd
<AdaptableBinaryFunction>
bind2nd(const
AdaptableBinaryFunction&
F, const T& c);

If F is an object of type
AdaptableBinaryFunction, then
bind2nd(F, c) is equivalent to
binder2nd<AdaptableBinaryFunction>(F,
c), but is more convenient. The type T must
be convertible to AdaptableBinaryFunction::
second argument type. This is a global function,
not a member function.

Intuitively, you can think of this operation as ”binding” the second argument of a
binary function to a constant, thus yielding a unary function. This is a special case
of a closure.

416 Systems/C++ C++ Library

See also

The function object overview, binder1st, Adaptable Unary Function, Adaptable
Binary Function

10.4.3 ptr fun

Prototype

template <class Arg, class Result>
pointer_to_unary_function<Arg, Result>
ptr_fun(Result (*x)(Arg));

template <class Arg1, class Arg2, class Result>
pointer_to_binary_function<Arg1, Arg2, Result>
ptr_fun(Result (*x)(Arg1, Arg2));

Description

Ptr fun takes a function pointer as its argument and returns a function pointer
adaptor, a type of function object. It is actually two different functions, not one (that
is, the name ptr fun is overloaded). If its argument is of type Result (*)(Arg)
then ptr fun creates a pointer to unary function, and if its argument is of type
Result (*)(Arg1, Arg2) then ptr fun creates a pointer to binary function.

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Requirements on types

The argument must be a pointer to a function that takes either one or two arguments.
The argument type(s) and the return type of the function are arbitrary, with the
restriction that the function must return a value; it may not be a void function.

Preconditions

Complexity

Example

See the examples in the discussions of pointer to unary function and
pointer to binary function.

Systems/C++ C++ Library 417

Notes

See also

Function Objects, pointer to unary function, pointer to binary function,
Adaptable Unary Function, Adaptable Binary Function

10.4.4 pointer to unary function

Description

Pointer to unary function is a function object adaptor that allows a function
pointer Result (*f)(Arg) to be treated as an Adaptable Unary Function. That
is: if F is a pointer to unary function<Arg, Result> that was initialized with
an underlying function pointer f of type Result (*)(Arg), then F(x) calls the
function f(x). The difference between f and F is that pointer to unary function
is an Adaptable Unary Function, i.e. it defines the nested typedefs argument type
and result type. Note that a function pointer of type Result (*)(Arg) is a
perfectly good Unary Function object, and may be passed to an STL algorithm
that expects an argument that is a Unary Function. The only reason for using the
pointer to unary function object is if you need to use an ordinary function in
a context that requires an Adaptable Unary Function, e.g. as the argument of a
function object adaptor. Most of the time, you need not declare an object of type
pointer to unary function directly. It is almost always easier to construct one
using the ptr fun function.

Example

The following code fragment replaces all of the numbers in a range with their ab-
solute values, using the standard library function fabs. There is no need to use a
pointer to unary function adaptor in this case.

transform(first, last, first, fabs);

The following code fragment replaces all of the numbers in a range with the negative
of their absolute values. In this case we are composing fabs and negate. This
requires that fabs be treated as an adaptable unary function, so we do need to use
a pointer to unary function adaptor.

transform(first, last, first,
compose1(negate<double>, ptr_fun(fabs)));

418 Systems/C++ C++ Library

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

Arg The function object’s argument type
Result The function object’s result type

Model of

Adaptable Unary Function

Type requirements

• Arg is Assignable.

• Result is Assignable.

Public base classes

unary function<Arg, Result>

Members

Member Where defined Description

argument type Adaptable Unary
Function

The type of the function object’s
argument: Arg.

result type Adaptable Unary
Function

The type of the result: Result

result type
operator()(argument type
x)

Unary Function Function call operator.

pointer to unary function
(Result (*f)(Arg))

pointer to unary -
function

See below.

pointer to unary function
()

pointer to unary -
function

See below.

template <class
Arg, class Result>
pointer to unary function
<Arg, Result>
ptr fun(Result
(*x)(Arg));

pointer to unary -
function

See below.

Systems/C++ C++ Library 419

New members

These members are not defined in the Adaptable Unary Function requirements, but
are specific to pointer to unary function.

Member Description

pointer to unary function
(Result (*f)(Arg))

The constructor. Creates a
pointer to unary function whose underlying
function is f.

pointer to unary function() The default constructor. This creates a
pointer to unary function that does not have an
underlying C function, and that therefore cannot
actually be called.

template <class
Arg, class Result>
pointer to unary function<Arg,
Result> ptr fun(Result
(*x)(Arg));

If f is of type Result (*)(Arg)
then ptr fun(f) is equivalent to
pointer to unary function<Arg,Result>(f),
but more convenient. This is a global function, not
a member.

Notes

See also

pointer to binary function, ptr fun, Adaptable Unary Function

10.4.5 pointer to binary function

Description

Pointer to binary function is a function object adaptor that allows a function
pointer Result (*f)(Arg1, Arg2) to be treated as an Adaptable Binary Func-
tion. That is: if F is a pointer to binary function<Arg1, Arg2, Result> that
was initialized with an underlying function pointer f of type Result (*)(Arg1,
Arg2), then F(x, y) calls the function f(x, y). The difference between f and
F is that pointer to binary function is an Adaptable Binary Function, i.e. it
defines the nested typedefs first argument type, second argument type, and
result type. Note that a function pointer of type Result (*)(Arg1, Arg2) is a
perfectly good Binary Function object, and may be passed to an STL algorithm
that expects an argument that is a Binary Function. The only reason for using the
pointer to binary function class is if you need to use an ordinary function in
a context that requires an Adaptable Binary Function, e.g. as the argument of a
function object adaptor. Most of the time, you need not declare an object of type
pointer to binary function directly. It is almost always easier to construct one
using the ptr fun function.

420 Systems/C++ C++ Library

Example

The following code fragment finds the first string in a list that is equal to "OK".
It uses the standard library function strcmp as an argument to a function object
adaptor, so it must first use a pointer to binary function adaptor to give strcmp
the Adaptable Binary Function interface.

list<char*> L;
...
list<char*>::iterator item =

find_if(L.begin(), L.end(),
not1(binder2nd(ptr_fun(strcmp), "OK")));

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

Arg1 The function object’s first argument type
Arg2 The function object’s second argument type
Result The function object’s result type

Model of

Adaptable Binary Function

Type requirements

• Arg1 is Assignable.

• Arg2 is Assignable.

• Result is Assignable.

Public base classes

binary function<Arg1, Arg2, Result>

Systems/C++ C++ Library 421

Members

Member Where defined Description

first argument type Adaptable Binary
Function

The type of the first ar-
gument: Arg1.

second argument type Adaptable Binary
Function

The type of the second
argument: Arg2

result type Adaptable Binary
Function

The type of the result:
Result

Result operator()(Arg1 x, Arg2
y)

Binary Function Function call operator.

pointer to binary function
(Result (*f)(Arg1, Arg2))

pointer to binary -
function

See below.

pointer to binary function() pointer to binary -
function

See below.

template <class Arg1,
class Arg2, class Result>
pointer to unary function<Arg1,
Arg2, Result> ptr fun(Result
(*x)(Arg1, Arg2));

pointer to binary -
function

See below.

New members

These members are not defined in the Adaptable Binary Function requirements, but
are specific to pointer to binary function.

Member Description

pointer to binary function
(Result (*f)(Arg1, Arg2))

The constructor. Creates a
pointer to binary function whose underly-
ing function is f.

pointer to binary function() The default constructor. This creates a
pointer to binary function that does not have
an underlying function, and that therefore cannot
actually be called.

template <class Arg1,
class Arg2, class Result>
pointer to unary function
<Arg1, Arg2, Result>
ptr fun(Result (*x)(Arg1,
Arg2));

If f is of type Result (*)(Arg1,
Arg2) then ptr fun(f) is equiva-
lent to pointer to binary function
<Arg1,Arg2,Result>(f), but more convenient.
This is a global function, not a member function.

Notes

See also

pointer to unary function, ptr fun, Adaptable Binary Function

422 Systems/C++ C++ Library

10.4.6 unary negate

Description

Unary negate is a function object adaptor: it is an Adaptable Predicate that rep-
resents the logical negation of some other Adaptable Predicate. That is: if f is an
object of class unary negate<AdaptablePredicate>, then there exists an object
pred of class AdaptablePredicate such that f(x) always returns the same value
as !pred(x). There is rarely any reason to construct a unary negate directly; it
is almost always easier to use the helper function not1.

Example

Finds the first element in a list that does not lie in the range from 1 to 10.

list<int> L;
...
list<int>::iterator in_range =

find_if(L.begin(), L.end(),
not1(compose2(logical_and<bool>(),

bind2nd(greater_equal<int>(), 1),
bind2nd(less_equal<int>(), 10))));

assert(in_range == L.end() || !(*in_range >= 1 && *in_range <= 10));

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

AdaptablePredicate The type of the function object that this
unary negate is the logical negation of.

Model of

Adaptable Predicate

Type requirements

AdaptablePredicate must be a model of Adaptable Predicate.

Systems/C++ C++ Library 423

Public base classes

unary function<AdaptablePredicate::argument type, bool>

Members

Member Where de-

fined

Description

argument type Adaptable
Unary Func-
tion

The type of the argument:
AdaptablePredicate::argument type

result type Adaptable
Unary Func-
tion

The type of the result: bool

bool
operator()(argument type)

Unary Func-
tion

Function call operator.

unary negate(const
AdaptablePredicate&
pred)

unary negate See below.

template <class
AdaptablePredicate>
unary negate
<AdaptablePredicate>
not1(const
AdaptablePredicate&
pred);

unary negate See below.

New members

These members are not defined in the Adaptable Predicate requirements, but are
specific to unary negate.

Member Description

unary negate(const
AdaptablePredicate& pred)

The constructor. Creates a
unary negate<AdaptablePredicate> whose
underlying predicate is pred.

template <class
AdaptablePredicate>
unary negate
<AdaptablePredicate>
not1(const
AdaptablePredicate& pred);

If p is of type AdaptablePredicate
then not1(p) is equivalent to
unary negate<AdaptablePredicate>(p), but
more convenient. This is a global function, not a
member function.

Notes

Strictly speaking, unary negate is redundant. It can be constructed using the
function object logical not and the adaptor unary compose.

424 Systems/C++ C++ Library

See also

The function object overview, Adaptable Predicate, Predicate, binary negate,
unary compose, binary compose

10.4.7 binary negate

Description

Binary negate is a function object adaptor: it is an Adaptable Binary Predicate
that represents the logical negation of some other Adaptable Binary Predicate. That
is: if f is an object of class binary negate<AdaptableBinaryPredicate>, then
there exists an object pred of class AdaptableBinaryPredicate such that f(x,y)
always returns the same value as !pred(x,y). There is rarely any reason to con-
struct a binary negate directly; it is almost always easier to use the helper function
not2.

Example

Finds the first character in a string that is neither ’ ’ nor ’\n’.

char str[MAXLEN];
...
const char* wptr = find_if(str, str + MAXLEN,

compose2(not2(logical_or<bool>()),
bind2nd(equal_to<char>(), ’ ’),
bind2nd(equal_to<char>(), ’\n’)));

assert(wptr == str + MAXLEN || !(*wptr == ’ ’ || *wptr == ’\n’));

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

AdaptableBinaryPredicate The type of the function object that this
binary negate is the logical negation of.

Model of

Adaptable Binary Predicate

Systems/C++ C++ Library 425

Type requirements

AdaptableBinaryPredicate must be a model of Adaptable Binary Predicate.

Public base classes

binary_function<AdaptableBinaryPredicate::first_argument_type,
AdaptableBinaryPredicate::second_argument_type,
bool>

Members

Member Where de-

fined

Description

first argument type Adaptable Bi-
nary Function

The type of the first argument:
AdaptableBinaryPredicate::
first argument type

second argument type Adaptable Bi-
nary Function

The type of the second argument:
AdaptableBinaryPredicate::
second argument type

result type Adaptable Bi-
nary Function

The type of the result: bool

binary negate(const
AdaptableBinaryPredicate&
pred)

binary negate See below.

template <class
AdaptableBinaryPredicate>
binary negate
<AdaptableBinaryPredicate>
not2(const
AdaptableBinaryPredicate&
pred);

binary negate See below.

New members

These members are not defined in the Adaptable Binary Predicate requirements,
but are specific to binary negate.

426 Systems/C++ C++ Library

Member Description

binary negate(const
AdaptableBinaryPredicate&
pred)

The constructor. Creates a
binary negate<AdaptableBinaryPredicate>
whose underlying predicate is pred.

template <class
AdaptableBinaryPredicate>
binary negate
<AdaptableBinaryPredicate>
not2(const
AdaptableBinaryPredicate&
pred);

If p is of type AdaptableBinaryPredicate
then not2(p) is equivalent to
binary negate<AdaptableBinaryPredicate>(p),
but more convenient. This is a global function, not
a member function.

Notes

See also

The function object overview, AdaptablePredicate, Predicate, unary negate,
unary compose, binary compose

10.4.8 Member function adaptors

mem fun

Description

Mem fun t is an adaptor for member functions. If X is some class with a member
function Result X::f() (that is, a member function that takes no arguments and
that returns a value of type Result), then a mem fun t<Result, X> is a function
object adaptor that makes it possible to call f() as if it were an ordinary function
instead of a member function. Mem fun t<Result, X>’s constructor takes a pointer
to one of X’s member functions. Then, like all function objects, mem fun t has an
operator() that allows the mem fun t to be invoked with ordinary function call
syntax. In this case, mem fun t’s operator() takes an argument of type X*. If
F is a mem fun t that was constructed to use the member function X::f, and if x
is a pointer of type X*, then the expression F(x) is equivalent to the expression
x->f(). The difference is simply that F can be passed to STL algorithms whose
arguments must be function objects. Mem fun t is one of a family of member function
adaptors. These adaptors are useful if you want to combine generic programming
with inheritance and polymorphism, since, in C++, polymorphism involves calling
member functions through pointers or references. As with many other adaptors, it
is usually inconvenient to use mem fun t’s constructor directly. It is usually better
to use the helper function mem fun instead.

Systems/C++ C++ Library 427

Example

struct B {
virtual void print() = 0;

};

struct D1 : public B {
void print() { cout << "I’m a D1" << endl; }

};

struct D2 : public B {
void print() { cout << "I’m a D2" << endl; }

};

int main()
{
vector<B*> V;

V.push_back(new D1);
V.push_back(new D2);
V.push_back(new D2);
V.push_back(new D1);

for_each(V.begin(), V.end(), mem_fun(&B::print));
}

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

Result The member function’s return type.
X The class whose member function the mem fun t invokes.

Model of

Adaptable Unary Function

Type requirements

• X has at least one member function that takes no arguments and that returns
a value of type Result.

428 Systems/C++ C++ Library

Public base classes

unary function<X*, Result>

Members

Member Where de-

fined

Description

argument type Adaptable
Unary Func-
tion

The type of the argument: X*

result type Adaptable
Unary Func-
tion

The type of the result: Result

Result operator()(X*
x) const

Unary Func-
tion

Function call operator. Invokes x->f(),
where f is the member function that was
passed to the constructor.

explicit
mem fun t(Result
(X::*f)())

mem fun t See below.

template <class
Result, class X>
mem fun t<Result,
X> mem fun(Result
(X::*f)());

mem fun t See below.

New members

These members are not defined in the Adaptable Unary Function requirements, but
are specific to mem fun t.

Member Description

explicit mem fun t(Result
(X::*f)())

The constructor. Creates a mem fun t that calls the
member function f.

template <class Result,
class X> mem fun t<Result, X>
mem fun(Result (X::*f)());

If f if of type Result (X::*) then mem fun(f) is
the same as mem fun t<Result, X>(f), but is more
convenient. This is a global function, not a member
function.

Notes

See also

mem fun ref t, mem fun1 t, mem fun1 ref t

Systems/C++ C++ Library 429

mem fun ref

Description

Mem fun ref t is an adaptor for member functions. If X is some class with a mem-
ber function Result X::f() (that is, a member function that takes no arguments
and that returns a value of type Result), then a mem fun ref t<Result, X> is a
function object adaptor that makes it possible to call f() as if it were an ordinary
function instead of a member function. mem fun ref t<Result, X>’s constructor
takes a pointer to one of X’s member functions. Then, like all function objects,
mem fun ref t has an operator() that allows the mem fun ref t to be invoked
with ordinary function call syntax. In this case, mem fun ref t’s operator() takes
an argument of type X&. If F is a mem fun ref t that was constructed to use the
member function X::f, and if x is of type X, then the expression F(x) is equiv-
alent to the expression x.f(). The difference is simply that F can be passed to
STL algorithms whose arguments must be function objects. Mem fun ref t is one
of a family of member function adaptors. These adaptors are useful if you want to
combine generic programming with inheritance and polymorphism, since, in C++,
polymorphism involves calling member functions through pointers or references.
In fact, though, mem fun ref t is usually not as useful as mem fun t. The differ-
ence between the two is that mem fun t’s argument is a pointer to an object while
mem fun ref t’s argument is a reference to an object. References, unlike pointers,
can’t be stored in STL containers: pointers are objects in their own right, but ref-
erences are merely aliases. As with many other adaptors, it is usually inconvenient
to use mem fun ref t’s constructor directly. It is usually better to use the helper
function mem fun ref instead.

Example

430 Systems/C++ C++ Library

struct B {
virtual void print() = 0;

};

struct D1 : public B {
void print() { cout << "I’m a D1" << endl; }

};

struct D2 : public B {
void print() { cout << "I’m a D2" << endl; }

};

int main()
{
vector<D1> V;

V.push_back(D1());
V.push_back(D1());

for_each(V.begin(), V.end(), mem_fun_ref(B::print));
}

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

Result The member function’s return type.
X The class whose member function the mem fun ref t in-

vokes.

Model of

Adaptable Unary Function

Type requirements

• X has at least one member function that takes no arguments and that returns
a value of type Result.

Systems/C++ C++ Library 431

Public base classes

unary function<X, Result>

Members

Member Where de-

fined

Description

argument type Adaptable
Unary Func-
tion

The type of the argument: X

result type Adaptable
Unary Func-
tion

The type of the result: Result

Result operator()(X&
x) const

Unary Func-
tion

Function call operator. Invokes x.f(),
where f is the member function that was
passed to the constructor.

explicit
mem fun ref t(Result
(X::*f)())

mem fun ref t See below.

template <class
Result, class X>
mem fun ref t<Result,
X> mem fun ref(Result
(X::*f)());

mem fun ref t See below.

New members

These members are not defined in the Adaptable Unary Function requirements, but
are specific to mem fun ref t.

Member Description

explicit mem fun ref t(Result
(X::*f)())

The constructor. Creates a mem fun ref t that
calls the member function f.

template <class
Result, class X>
mem fun ref t<Result,
X> mem fun ref(Result
(X::*f)());

If f is of type Result (X::*)()
then mem fun ref(f) is the same as
mem fun ref t<Result, X>(f), but is more
convenient. This is a global function, not a
member function.

Notes

See also

mem fun t, mem fun1 t, mem fun1 ref t

432 Systems/C++ C++ Library

mem fun1

Description

Mem fun1 t is an adaptor for member functions. If X is some class with a member
function Result X::f(Arg) (that is, a member function that takes one argument
of type Arg and that returns a value of type Result), then a mem fun1 t<Result,
X, Arg> is a function object adaptor that makes it possible to call f as if it were an
ordinary function instead of a member function. Mem fun1 t<Result, X, Arg>’s
constructor takes a pointer to one of X’s member functions. Then, like all function
objects, mem fun1 t has an operator() that allows the mem fun1 t to be invoked
with ordinary function call syntax. In this case, mem fun1 t’s operator() takes
two arguments; the first is of type X* and the second is of type Arg. If F is a
mem fun1 t that was constructed to use the member function X::f, and if x is a
pointer of type X* and a is a value of type Arg, then the expression F(x, a) is
equivalent to the expression x->f(a). The difference is simply that F can be passed
to STL algorithms whose arguments must be function objects. Mem fun1 t is one
of a family of member function adaptors. These adaptors are useful if you want to
combine generic programming with inheritance and polymorphism, since, in C++,
polymorphism involves calling member functions through pointers or references. As
with many other adaptors, it is usually inconvenient to use mem fun1 t’s constructor
directly. It is usually better to use the helper function mem fun instead.

Example

Systems/C++ C++ Library 433

struct Operation {
virtual double eval(double) = 0;

};

struct Square : public Operation {
double eval(double x) { return x * x; }

};

struct Negate : public Operation {
double eval(double x) { return -x; }

};

int main() {
vector<Operation*> operations;
vector<double> operands;

operations.push_back(new Square);
operations.push_back(new Square);
operations.push_back(new Negate);
operations.push_back(new Negate);
operations.push_back(new Square);

operands.push_back(1);
operands.push_back(2);
operands.push_back(3);
operands.push_back(4);
operands.push_back(5);

transform(operations.begin(), operations.end(),
operands.begin(),
ostream_iterator<double>(cout, "\n"),
mem_fun(Operation::eval));

}

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

Result The member function’s return type.
X The class whose member function the mem fun1 t invokes.
Arg The member function’s argument type.

Model of

434 Systems/C++ C++ Library

Adaptable Binary Function

Type requirements

• X has at least one member function that takes a single argument of type Arg
and that returns a value of type Result.

Public base classes

binary function<X*, Arg, Result>

Members

Member Where de-

fined

Description

first argument type Adaptable Bi-
nary Function

The type of the first argument: X*

second argument type Adaptable Bi-
nary Function

The type of the second argument:
Arg

result type Adaptable Bi-
nary Function

The type of the result: Result

Result operator()(X* x,
Arg a) const

Binary Func-
tion

Function call operator. Invokes
x->f(a), where f is the member
function that was passed to the
constructor.

explicit mem fun1 t(Result
(X::*f)(Arg))

mem fun1 t See below.

template <class Result,
class X, class Arg>
mem fun1 t<Result, X,
Arg> mem fun(Result
(X::*f)(Arg));

mem fun1 t See below.

New members

These members are not defined in the Adaptable Binary Function requirements, but
are specific to mem fun1 t.

Member Description

explicit mem fun1 t(Result
(X::*f)(Arg))

The constructor. Creates a mem fun1 t that calls
the member function f.

template <class Result,
class X, class Arg>
mem fun1 t<Result, X,
Arg> mem fun(Result
(X::*f)(Arg));

If f is of type Result (X::*)(Arg) then
mem fun(f) is the same as mem fun1 t<Result, X,
Arg>(f), but is more convenient. This is a global
function, not a member function.

Systems/C++ C++ Library 435

Notes

See also

mem fun t, mem fun ref t, mem fun1 ref t

mem fun1 ref

Description

Mem fun1 ref t is an adaptor for member functions. If X is some class with
a member function Result X::f(Arg) (that is, a member function that takes
one argument of type Arg and that returns a value of type Result), then a
mem fun1 ref t<Result, X, Arg> is a function object adaptor that makes it pos-
sible to call f as if it were an ordinary function instead of a member function.
Mem fun1 ref t<Result, X, Arg>’s constructor takes a pointer to one of X’s mem-
ber functions. Then, like all function objects, mem fun1 ref t has an operator()
that allows the mem fun1 ref t to be invoked with ordinary function call syntax.
In this case, mem fun1 ref t’s operator() takes two arguments; the first is of type
X and the second is of type Arg. If F is a mem fun1 ref t that was constructed to
use the member function X::f, and if x is an object of type X and a is a value of
type Arg, then the expression F(x, a) is equivalent to the expression x.f(a). The
difference is simply that F can be passed to STL algorithms whose arguments must
be function objects. Mem fun1 ref t is one of a family of member function adaptors.
These adaptors are useful if you want to combine generic programming with inher-
itance and polymorphism, since, in C++, polymorphism involves calling member
functions through pointers or references. In fact, though, mem fun1 ref t is usually
not as useful as mem fun1 t. The difference between the two is that mem fun1 t’s
first argument is a pointer to an object while mem fun1 ref t’s argument is a ref-
erence to an object. References, unlike pointers, can’t be stored in STL containers:
pointers are objects in their own right, but references are merely aliases. As with
many other adaptors, it is usually inconvenient to use mem fun1 ref t’s constructor
directly. It is usually better to use the helper function mem fun ref instead.

Example

Given a vector of vectors, extract one element from each vector.

436 Systems/C++ C++ Library

int main() {
int A1[5] = {1, 2, 3, 4, 5};
int A2[5] = {1, 1, 2, 3, 5};
int A3[5] = {1, 4, 1, 5, 9};

vector<vector<int> > V;
V.push_back(vector<int>(A1, A1 + 5));
V.push_back(vector<int>(A2, A2 + 5));
V.push_back(vector<int>(A3, A3 + 5));

int indices[3] = {0, 2, 4};

int& (vector<int>::*extract)(vector<int>::size_type);
extract = vector<int>::operator[];
transform(V.begin(), V.end(), indices,

ostream_iterator<int>(cout, "\n"),
mem_fun_ref(extract));

}

Definition

Defined in the standard header functional, and in the nonstandard backward-
compatibility header function.h.

Template parameters

Parameter Description Default

Result The member function’s return type.
X The class whose member function the mem fun1 ref t in-

vokes.
Arg The member function’s argument type.

Model of

Adaptable Binary Function

Type requirements

• X has at least one member function that takes a single argument of type Arg
and that returns a value of type Result.

Public base classes

binary function<X, Arg, Result>

Systems/C++ C++ Library 437

Members

Member Where de-

fined

Description

first argument type Adaptable Bi-
nary Function

The type of the first argument: X

second argument type Adaptable Bi-
nary Function

The type of the second argument: Arg

result type Adaptable Bi-
nary Function

The type of the result: Result

Result operator()(X&
x, Arg a) const

Binary Func-
tion

Function call operator. Invokes
x.f(a), where f is the member func-
tion that was passed to the constructor.

explicit
mem fun1 ref t(Result
(X::*f)(Arg))

mem fun1 ref t See below.

template <class
Result, class
X, class Arg>
mem fun1 ref t<Result,
X, Arg>
mem fun ref(Result
(X::*f)(Arg));

mem fun1 ref t See below.

New members

These members are not defined in the Adaptable Binary Function requirements, but
are specific to mem fun1 ref t.

Member Description

explicit mem fun1 ref t(Result
(X::*f)(Arg))

The constructor. Creates a mem fun1 ref t
that calls the member function f.

template <class Result, class X,
class Arg> mem fun1 ref t<Result,
X, Arg> mem fun1 ref(Result
(X::*f)(Arg));

If f is of type Result (X::*)(Arg)
then mem fun ref(f) is the same as
mem fun1 ref t<Result, X, Arg>(f), but is
more convenient. This is a global function,
not a member function.

Notes

See also

mem fun t, mem fun ref t, mem fun1 t

438 Systems/C++ C++ Library

Chapter 11

Utilities

11.1 Concepts

11.1.1 Assignable

Description

A type is Assignable if it is possible to copy objects of that type and to assign values
to variables.

Refinement of

Associated types

Notation

X A type that is a model of Assignable
x, y Object of type X

Definitions

Valid expressions

Name Expression Type requirements Return type

Copy constructor X(x) X
Copy constructor X x(y);

X x = y;
Assignment x = y X&

Swap swap(x,y) void

Systems/C++ C++ Library 439

Expression semantics

Name Expression Pre-

condi-
tion

Semantics Postcondition

Copy constructor X(x) X(x) is a copy of
x

Copy constructor X(x) X(x) is a copy of
x

Copy constructor X x(y);
X x = y;

x is a copy of y

Assignment x = y x is a copy of y
Swap swap(x,y) Equivalent to

{
X tmp = x;
x = y;
y = tmp;

}

Complexity guarantees

Invariants

Models

• int

Notes

One implication of this requirement is that a const type is not Assignable. For
example, const int is not Assignable: if x is declared to be of type const int,
then x = 7 is illegal. Similarly, the type pair<const int, int> is not Assignable.
The reason this says ”x is a copy of y”, rather than ”x == y”, is that operator== is
not necessarily defined: equality is not a requirement of Assignable. If the type X is
EqualityComparable as well as Assignable, then a copy of x should compare equal
to x.

See also

DefaultConstructible

440 Systems/C++ C++ Library

11.1.2 Default Constructible

Description

A type is DefaultConstructible if it has a default constructor, that is, if it is possible
to construct an object of that type without initializing the object to any particular
value.

Refinement of

Associated types

Notation

X A type that is a model of DefaultConstructible
x An object of type X

Definitions

Valid expressions

Name Expression Type reqs Return type

Default constructor X() X
Default constructor X x;

Expression semantics

Name Expression Precondition Semantics Postcon-

dition
Default constructor X()
Default constructor X x;

Complexity guarantees

Models

• int

• vector<double>

Systems/C++ C++ Library 441

Notes

The form X x = X() is not guaranteed to be a valid expression, because it uses a
copy constructor. A type that is DefaultConstructible is not necessarily Assignable

See also

Assignable

11.1.3 Equality Comparable

Description

A type is EqualityComparable if objects of that type can be compared for equality
using operator==, and if operator== is an equivalence relation.

Refinement of

Associated types

Notation

X A type that is a model of EqualityComparable
x, y, z Object of type X

Definitions

Valid expressions

Name Expression Type reqs Return type

Equality x == y Convertible to bool
Inequality x != y Convertible to bool

Expression semantics

Name Expression Precondition Semantics Post-

condi-
tion

Equality x == y x and y are in the do-
main of ==

Inequality x != y x and y are in the do-
main of ==

Equivalent to !(x ==
y)

442 Systems/C++ C++ Library

Complexity guarantees

Invariants

Identity &x == &y implies x == y
Reflexivity x == x
Symmetry x == y implies y == x
Transitivity x == y and y == z implies x == z

Models

• int

• vector<int>

Notes

See also

LessThanComparable.

11.1.4 LessThan Comparable

Description

A type is LessThanComparable if it is ordered: it must be possible to compare two
objects of that type using operator<, and operator< must be a partial ordering.

Refinement of

Associated types

Notation

X A type that is a model of LessThanComparable
x, y, z Object of type X

Definitions

Consider the relation !(x < y) && !(y < x). If this relation is transitive (that is,
if !(x < y) && !(y < x) && !(y < z) && !(z < y) implies !(x < z) && !(z
< x)), then it satisfies the mathematical definition of an equivalence relation. In this
case, operator< is a strict weak ordering. If operator< is a strict weak ordering,
and if each equivalence class has only a single element, then operator< is a total
ordering.

Systems/C++ C++ Library 443

Valid expressions

Name Expression Type reqs Return type

Less x < y Convertible to bool
Greater x > y Convertible to bool

Less or equal x <= y Convertible to bool
Greater or equal x >= y Convertible to bool

Expression semantics

Name Expression Precondition Semantics Post-

condi-
tion

Less x < y x and y are in the
domain of <

Greater x > y x and y are in the
domain of <

Equivalent to y <
x

Less or equal x <= y x and y are in the
domain of <

Equivalent to !(y
< x)

Greater or equal x >= y x and y are in the
domain of <

Equivalent to !(x
< y)

Complexity guarantees

Invariants

Irreflexivity x < x must be false.
Antisymmetry x < y implies !(y ¡ x)
Transitivity x < y and y < z implies x < z

Models

• int

Notes

Only operator< is fundamental; the other inequality operators are essentially syn-
tactic sugar. Antisymmetry is a theorem, not an axiom: it follows from irreflexivity
and transitivity. Because of irreflexivity and transitivity, operator< always satis-
fies the definition of a partial ordering. The definition of a strict weak ordering is
stricter, and the definition of a total ordering is stricter still.

See also

EqualityComparable, StrictWeakOrdering

444 Systems/C++ C++ Library

11.2 Functions

11.2.1 Relational Operators

Prototype

template <class T> bool operator!=(const T& x, const T& y);
template <class T> bool operator>(const T& x, const T& y);
template <class T> bool operator<=(const T& x, const T& y);
template <class T> bool operator>=(const T& x, const T& y);

Description

The Equality Comparable requirements specify that it must be possible to compare
objects using operator!= as well as operator==; similarly, the LessThan Com-
parable requirements include operator>, operator<= and operator>= as well as
operator<. Logically, however, most of these operators are redundant: all of them
can be defined in terms of operator== and operator<. These four templates use
operator== and operator< to define the other four relational operators. They exist
purely for the sake of convenience: they make it possible to write algorithms in terms
of the operators !=, >, <=, and >=, without requiring that those operators be explic-
itly defined for every type. As specified in the Equality Comparable requirements,
x != y is equivalent to !(x == y). As specified in the LessThan Comparable re-
quirements, x > y is equivalent to y < x, x >= y is equivalent to !(x < y), and x
<= y is equivalent to !(y < x).

Definition

Defined in the standard header utility, and in the nonstandard backward-
compatibility header function.h.

Requirements on types

The requirement for operator!= is that x == y is a valid expression for objects x
and y of type T. The requirement for operator> is that y < x is a valid expression
for objects x and y of type T. The requirement for operator<= is that y < x is a
valid expression for objects x and y of type T. The requirement for operator>= is
that x < y is a valid expression for objects x and y of type T.

Preconditions

The precondition for operator!= is that x and y are in the domain of operator==.
The precondition for operator>, operator<=, and operator>= is that x and y are
in the domain of operator<.

Systems/C++ C++ Library 445

Complexity

Example

template <class T> void relations(T x, T y)
{
if (x == y) assert(!(x != y));
else assert(x != y);

if (x < y) {
assert(x <= y);
assert(y > x);
assert(y >= x);

}
else if (y < x) {
assert(y <= x);
assert(x < y);
assert(x <= y);

}
else {
assert(x <= y);
assert(x >= y);

}
}

Notes

See also

Equality Comparable, LessThan Comparable

11.3 Classes

11.3.1 pair

Description

Pair<T1,T2> is a heterogeneous pair: it holds one object of type T1 and one of type
T2. A pair is much like a Container, in that it ”owns” its elements. It is not actually
a model of Container, though, because it does not support the standard methods
(such as iterators) for accessing the elements of a Container. Functions that need
to return two values often return a pair.

446 Systems/C++ C++ Library

Example

pair<bool, double> result = do_a_calculation();
if (result.first)
do_something_more(result.second);

else
report_error();

Definition

Defined in the standard header utility, and in the nonstandard backward-
compatibility header pair.h.

Template parameters

Parameter Description Default

T1 The type of the first element stored in the pair
T2 The type of the second element stored in the pair

Model of

Assignable

Type requirements

T1 and T2 must both be models of Assignable. Additional operations have ad-
ditional requirements. Pair’s default constructor may only be used if both T1
and T2 are DefaultConstructible, operator== may only be used if both T1 and
T2 are EqualityComparable, and operator< may only be used if both T1 and T2 are
LessThanComparable.

Public base classes

None.

Members

Systems/C++ C++ Library 447

Member Where de-

fined

Description

first type pair See below.
second type pair See below.
pair() pair The default constructor. See below.
pair(const first type&,
const second type&)

pair The pair constructor. See below.

pair(const pair&) Assignable The copy constructor
pair& operator=(const
pair&)

Assignable The assignment operator

first pair See below.
second pair See below.
bool operator==(const
pair&, const pair&)

pair See below.

bool operator<(const
pair&, const pair&)

pair See below.

template <class T1,
class T2> pair<T1, T2>
make pair(const T1&,
const T2&)

pair See below.

New members

These members are not defined in the Assignable requirements, but are specific to
pair.

448 Systems/C++ C++ Library

Member Description

first type The type of the pair’s first component. This is a
typedef for the template parameter T1

second type The type of the pair’s second component. This is a
typedef for the template parameter T2

pair() The default constructor. It uses constructs objects
of types T1 and T2 using their default constructors.
This constructor may only be used if both T1 and
T2 are DefaultConstructible.

pair(const first type& x,
const second type& y)

The pair constructor. Constructs a pair such that
first is constructed from x and second is con-
structed from y.

first Public member variable of type first type: the
first object stored in the pair.

second Public member variable of type second type: The
second object stored in the pair.

template <class T1, class
T2> bool operator==(const
pair<T1,T2>& x, const
pair<T1,T2>& y);

The equality operator. The return value is true if
and only the first elements of x and y are equal,
and the second elements of x and y are equal. This
operator may only be used if both T1 and T2 are
EqualityComparable. This is a global function, not
a member function.

template <class T1, class
T2> bool operator<(const
pair<T1,T2>& x, const
pair<T1,T2>& y);

The comparison operator. It uses lexicographic
comparison: the return value is true if the first
element of x is less than the first element of y, and
false if the first element of y is less than the first
element of x. If neither of these is the case, then
operator< returns the result of comparing the sec-
ond elements of x and y. This operator may only be
used if both T1 and T2 are LessThanComparable.
This is a global function, not a member function.

template <class T1,
class T2> pair<T1, T2>
make pair(const T1& x, const
T2& x)

Equivalent to pair<T1, T2>(x, y). This is a
global function, not a member function. It exists
only for the sake of convenience.

Notes

See also

Assignable, Default Constructible, LessThan Comparable

Systems/C++ C++ Library 449

450 Systems/C++ C++ Library

Chapter 12

Memory Allocation

12.1 Classes

12.1.1 Allocators

Summary

Allocators encapsulate allocation and deallocation of memory. They provide a low-
level interface that permits efficient allocation of many small objects; different allo-
cator types represent different schemes for memory management. Note that alloca-
tors simply allocate and deallocate memory, as opposed to creating and destroying
objects. The STL also includes several low-level algorithms for manipulating unini-
tialized memory. Note also that allocators do not attempt to encapsulate multiple
memory models. The C++ language only defines a single memory model (the dif-
ference of two pointers, for example, is always ptrdiff t), and this memory model
is the only one that allocators support. This is a major change from the definition
of allocators in the original STL.

Description

The details of the allocator interface are still subject to change, and we do not
guarantee that specific member functions will remain in future versions. You should
think of an allocator as a ”black box”. That is, you may select a container’s mem-
ory allocation strategy by instantiating the container template with a particular
allocator , but you should not make any assumptions about how the container ac-
tually uses the allocator. The available allocators are as follows. In most cases
you shouldn’t have to worry about the distinction: the default allocator, alloc, is
usually the best choice.

Systems/C++ C++ Library 451

alloc The default allocator. It is thread-safe, and usually has the best
performance characteristics.

pthread alloc A thread-safe allocator that uses a different memory pool for
each thread; you can only use pthread alloc if your operat-
ing system provides pthreads. Pthread alloc is usually faster
than alloc, especially on multiprocessor systems. It can, how-
ever, cause resource fragmentation: memory deallocated in one
thread is not available for use by other threads.

single client alloc A fast but thread-unsafe allocator. In programs that only have
one thread, this allocator might be faster than alloc.

malloc alloc An allocator that simply uses the standard library function
malloc. It is thread-safe but slow; the main reason why you
might sometimes want to use it is to get more useful informa-
tion from bounds-checking or leak-detection tools while you are
debugging.

Examples

vector<double> V(100, 5.0); // Uses the default allocator.
vector<double, single_client_alloc> local(V.begin(), V.end());

Concepts

• Allocator

Types

• alloc

• pthread alloc

• single client alloc

• malloc alloc

• raw storage iterator

Functions

• construct

• destroy

• uninitialized copy

452 Systems/C++ C++ Library

• uninitialized fill

• uninitialized fill n

• get temporary buffer

• return temporary buffer

Notes

Different containers may use different allocators. You might, for example, have some
containers that use the default allocator alloc and others that use pthread alloc.
Note, however, that vector<int> and vector<int, pthread alloc> are distinct
types.

See also

12.1.2 raw storage iterator

Description

In C++, the operator new allocates memory for an object and then creates an
object at that location by calling a constructor. Occasionally, however, it is useful
to separate those two operations. If i is an iterator that points to a region of
uninitialized memory, then you can use construct to create an object in the location
pointed to by i. Raw storage iterator is an adaptor that makes this procedure
more convenient. If r is a raw storage iterator, then it has some underlying
iterator i. The expression *r = x is equivalent to construct(&*i, x).

Example

Systems/C++ C++ Library 453

class Int {
public:
Int(int x) : val(x) {}
int get() { return val; }

private:
int val;

};

int main()
{
int A1[] = {1, 2, 3, 4, 5, 6, 7};
const int N = sizeof(A1) / sizeof(int);

Int* A2 = (Int*) malloc(N * sizeof(Int));
transform(A1, A1 + N,

raw_storage_iterator<Int*, int>(A2),
negate<int>());

}

Definition

Defined in the standard header memory, and in the nonstandard backward-
compatibility header iterator.h.

Template parameters

Parameter Description Default

OutputIterator The type of the raw storage iterator’s underlying it-
erator.

T The type that will be used as the argument to the con-
structor.

Model of

Output Iterator

Type requirements

• ForwardIterator is a model of Forward Iterator

• ForwardIterator’s value type has a constructor that takes a single argument
of type T.

454 Systems/C++ C++ Library

Public base classes

None.

Members

Member Where defined Description

raw storage iterator
(ForwardIterator x)

raw storage iterator See below.

raw storage iterator(const
raw storage iterator&)

trivial iterator The copy constructor

raw storage iterator&
operator=(const
raw storage iterator&)

trivial iterator The assignment operator

raw storage iterator&
operator*()

Output Iterator Used to implement the
output iterator expression
*i = x.

raw storage iterator&
operator=(const
Sequence::value type&)

Output Iterator Used to implement the
output iterator expression
*i = x.

raw storage iterator&
operator++()

Output Iterator Preincrement.

raw storage iterator&
operator++(int)

Output Iterator Postincrement.

output iterator tag
iterator category(const
raw storage iterator&)

iterator tags Returns the iterator’s cat-
egory. This is a global
function, not a member.

New members

These members are not defined in the Output Iterator requirements, but are specific
to raw storage iterator.

Function Description

raw storage iterator
(ForwardIterator i)

Creates a raw storage iterator whose underlying it-
erator is i.

raw storage iterator&
operator=(const T& val)

Constructs an object of ForwardIterator’s value type
at the location pointed to by the iterator, using val as
the constructor’s argument.

Notes

In particular, this sort of low-level memory management is used in the implementa-
tion of some container classes.

Systems/C++ C++ Library 455

See also

Allocators, construct, destroy, uninitialized copy uninitialized fill,
uninitialized fill n,

12.2 Functions

12.2.1 uninitialized copy

Prototype

template <class InputIterator, class ForwardIterator>
ForwardIterator uninitialized_copy(InputIterator first,

InputIterator last,
ForwardIterator result);

Description

In C++, the operator new allocates memory for an object and then creates an ob-
ject at that location by calling a constructor. Occasionally, however, it is useful to
separate those two operations. If each iterator in the range [result, result +
(last - first)) points to uninitialized memory, then uninitialized copy cre-
ates a copy of [first, last) in that range. That is, for each iterator i in the input
range, uninitialized copy creates a copy of *i in the location pointed to by the
corresponding iterator in the output range by calling construct(&*(result + (i
- first)), *i).

Definition

Defined in the standard header memory, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• InputIterator is a model of Input Iterator.

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator is mutable.

• ForwardIterator’s value type has a constructor that takes a single argument
whose type is InputIterator’s value type.

456 Systems/C++ C++ Library

Preconditions

• [first, last) is a valid range.

• [result, result + (last - first)) is a valid range.

• Each iterator in [result, result + (last - first)) points to a re-
gion of uninitialized memory that is large enough to store a value of
ForwardIterator’s value type.

Complexity

Linear. Exactly last - first constructor calls.

Example

class Int {
public:
Int(int x) : val(x) {}
int get() { return val; }

private:
int val;

};

int main()
{
int A1[] = {1, 2, 3, 4, 5, 6, 7};
const int N = sizeof(A1) / sizeof(int);

Int* A2 = (Int*) malloc(N * sizeof(Int));
uninitialized_copy(A1, A1 + N, A2);

}

Notes

In particular, this sort of low-level memory management is used in the implementa-
tion of some container classes.

See also

Allocators, construct, destroy, uninitialized fill, uninitialized fill n,
raw storage iterator

Systems/C++ C++ Library 457

12.2.2 uninitialized copy n

Prototype

template <class InputIterator, class Size, class ForwardIterator>
ForwardIterator uninitialized_copy_n(InputIterator first, Size count,

ForwardIterator result);

Description

In C++, the operator new allocates memory for an object and then creates an
object at that location by calling a constructor. Occasionally, however, it is useful
to separate those two operations. If each iterator in the range [result, result
+ n) points to uninitialized memory, then uninitialized copy n creates a copy
of [first, first + n) in that range. That is, for each iterator i in the input
range, uninitialized copy n creates a copy of *i in the location pointed to by the
corresponding iterator in the output range by calling construct(&*(result + (i
- first)), *i).

Definition

Defined in the standard header memory.

Requirements on types

• InputIterator is a model of Input Iterator.

• Size is an integral type.

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator is mutable.

• ForwardIterator’s value type has a constructor that takes a single argument
whose type is InputIterator’s value type.

Preconditions

• n >= 0

• [first, first + n) is a valid range.

• [result, result + n) is a valid range.

• Each iterator in [result, result + n) points to a region of uninitialized
memory that is large enough to store a value of ForwardIterator’s value
type.

458 Systems/C++ C++ Library

Complexity

Linear. Exactly n constructor calls.

Example

class Int {
public:
Int(int x) : val(x) {}
int get() { return val; }

private:
int val;

};

int main()
{
int A1[] = {1, 2, 3, 4, 5, 6, 7};
const int N = sizeof(A1) / sizeof(int);

Int* A2 = (Int*) malloc(N * sizeof(Int));
uninitialized_copy_n(A1, N, A2);

}

Notes

In particular, this sort of low-level memory management is used in the imple-
mentation of some container classes. Uninitialized copy n is almost, but not
quite, redundant. If first is an input iterator, as opposed to a forward iter-
ator, then the uninitialized copy n operation can’t be expressed in terms of
uninitialized copy.

See also

Allocators, construct, destroy, uninitialized copy, uninitialized fill,
uninitialized fill n, raw storage iterator

12.2.3 uninitialized fill

Prototype

template <class ForwardIterator, class T>
void uninitialized_fill(ForwardIterator first, ForwardIterator last,

const T& x);

Systems/C++ C++ Library 459

Description

In C++, the operator new allocates memory for an object and then creates an object
at that location by calling a constructor. Occasionally, however, it is useful to sep-
arate those two operations. If each iterator in the range [first, last) points to
uninitialized memory, then uninitialized fill creates copies of x in that range.
That is, for each iterator i in the range [first, last), uninitialized copy cre-
ates a copy of x in the location pointed to i by calling construct(&*i, x).

Definition

Defined in the standard header memory, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator is mutable.

• ForwardIterator’s value type has a constructor that takes a single argument
of type T.

Preconditions

• [first, last) is a valid range.

• Each iterator in [first, last) points to a region of uninitialized memory
that is large enough to store a value of ForwardIterator’s value type.

Complexity

Linear. Exactly last - first constructor calls.

Example

460 Systems/C++ C++ Library

class Int {
public:
Int(int x) : val(x) {}
int get() { return val; }

private:
int val;

};

int main()
{
const int N = 137;

Int val(46);
Int* A = (Int*) malloc(N * sizeof(Int));
uninitialized_fill(A, A + N, val);

}

Notes

In particular, this sort of low-level memory management is used in the implementa-
tion of some container classes.

See also

Allocators, construct, destroy, uninitialized copy, uninitialized fill n,
raw storage iterator

12.2.4 uninitialized fill n

Prototype

template <class ForwardIterator, class Size, class T>
ForwardIterator uninitialized_fill_n(ForwardIterator first, Size n,

const T& x);

Description

In C++, the operator new allocates memory for an object and then creates an
object at that location by calling a constructor. Occasionally, however, it is useful
to separate those two operations. If each iterator in the range [first, first
+ n) points to uninitialized memory, then uninitialized fill n creates copies of
x in that range. That is, for each iterator i in the range [first, first + n),
uninitialized fill n creates a copy of x in the location pointed to i by calling
construct(&*i, x).

Systems/C++ C++ Library 461

Definition

Defined in the standard header memory, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

• ForwardIterator is a model of Forward Iterator.

• ForwardIterator is mutable.

• Size is an integral type that is convertible to ForwardIterator’s distance
type.

• ForwardIterator’s value type has a constructor that takes a single argument
of type T.

Preconditions

• n is nonnegative.

• [first, first + n) is a valid range.

• Each iterator in [first, first + n) points to a region of uninitialized mem-
ory that is large enough to store a value of ForwardIterator’s value type.

Complexity

Linear. Exactly n constructor calls.

Example

class Int {
public:
Int(int x) : val(x) {}
int get() { return val; }

private:
int val;

};

int main()
{
const int N = 137;

Int val(46);
Int* A = (Int*) malloc(N * sizeof(Int));
uninitialized_fill_n(A, N, val);

}

462 Systems/C++ C++ Library

Notes

In particular, this sort of low-level memory management is used in the implementa-
tion of some container classes.

See also

Allocators, construct, destroy, uninitialized copy, uninitialized fill,
raw storage iterator

12.2.5 get temporary buffer

Prototype

template <class T>
pair<T*, ptrdiff_t> get_temporary_buffer(ptrdiff_t len, T*);

Description

Some algorithms, such as stable sort and inplace merge, are adaptive: they
attempt to use extra temporary memory to store intermediate results, and their
run-time complexity is better if that extra memory is available. The first ar-
gument to get temporary buffer specifies the requested size of the temporary
buffer, and the second specifies the type of object that will be stored in the
buffer. That is, get temporary buffer(len, (T*) 0) requests a buffer that is
aligned for objects of type T and that is large enough to hold len objects of
type T. The return value of get temporary buffer is a pair P whose first com-
ponent is a pointer to the temporary buffer and whose second argument indi-
cates how large the buffer is: the buffer pointed to by P.first is large enough
to hold P.second objects of type T. P.second is greater than or equal to 0 ,
and less than or equal to len. Note that P.first is a pointer to uninitialized
memory, rather than to actual objects of type T; this memory can be initialized
using uninitialized copy, uninitialized fill, or uninitialized fill n. As
the name suggests, get temporary buffer should only be used to obtain tempo-
rary memory. If a function allocates memory using get temporary buffer, then it
must deallocate that memory, using return temporary buffer , before it returns.
Note: get temporary buffer and return temporary buffer are only provided
for backward compatibility. If you are writing new code, you should instead use the
temporary buffer class.

Definition

Defined in the standard header memory, and in the nonstandard backward-
compatibility header algo.h.

Systems/C++ C++ Library 463

Requirements on types

Preconditions

• len is greater than 0.

Complexity

Example

int main()
{
pair<int*, ptrdiff_t> P = get_temporary_buffer(10000, (int*) 0);
int* buf = P.first;
ptrdiff_t N = P.second;
uninitialized_fill_n(buf, N, 42);
int* result = find_if(buf, buf + N, bind2nd(not_equal_to<int>(), 42));
assert(result == buf + N);
return_temporary_buffer(buf);

}

Notes

If P.second is 0, this means that get temporary buffer was unable to allocate a
temporary buffer at all. In that case, P.first is a null pointer. It is unspecified
whether get temporary buffer is implemented using malloc, or ::operator new,
or some other method. The only portable way to return memory that was allocated
using get temporary buffer is to use return temporary buffer.

See also

temporary buffer, return temporary buffer, Allocators

12.2.6 return temporary buffer

Prototype

template <class T> void return_temporary_buffer(T* p);

464 Systems/C++ C++ Library

Description

Return temporary buffer is used to deallocate memory that was allo-
cated using get temporary buffer. Note: get temporary buffer and
return temporary buffer are only provided for backward compatibility. If you
are writing new code, you should instead use the temporary buffer class.

Definition

Defined in the standard header memory, and in the nonstandard backward-
compatibility header algo.h.

Requirements on types

Preconditions

The argument p is a pointer to a block of memory that was allocated using
get temporary buffer(ptrdiff t, T*).

Complexity

Example

int main()
{
pair<int*, ptrdiff_t> P = get_temporary_buffer(10000, (int*) 0);
int* buf = P.first;
ptrdiff_t N = P.second;
uninitialized_fill_n(buf, N, 42);
int* result = find_if(buf, buf + N, bind2nd(not_equal_to<int>(), 42));
assert(result == buf + N);
return_temporary_buffer(buf);

}

Notes

As is always true, memory that was allocated using a particular alloca-
tion function must be deallocated using the corresponding deallocation func-
tion. Memory obtained using get temporary buffer must be deallocated using
return temporary buffer, rather than using free or ::operator delete.

See also

temporary buffer, get temporary buffer, Allocators

Systems/C++ C++ Library 465

	Introduction
	Linking with the Systems/C++ library for OS/390 and z/OS
	Linking with Systems/C++ z/Architecture library for z/OS
	Linking with the Systems/C++ library for Linux and z/Linux
	Introduction to the STL
	How to use the STL documentation
	Containers
	Concepts
	General concepts
	Container
	Forward Container
	Reversible Container
	Random Access Container

	Sequences
	Sequence
	Front Insertion Sequence
	Back Insertion Sequence

	Associative Containers
	Associative Container
	Simple Associative Container
	Pair Associative Container
	Sorted Associative Container
	Unique Associative Container
	Multiple Associative Container
	Unique Sorted Associative Container
	Multiple Sorted Associative Container

	Container classes
	Sequences
	vector
	deque
	list
	bit_vector

	Associative Containers
	set
	map
	multiset
	Character Traits
	char_traits
	basic_string

	Container adaptors
	stack
	queue
	priority_queue

	bitset

	Iterators
	Introduction
	Concepts
	Trivial Iterator
	Input Iterator
	Output Iterator
	Forward Iterator
	Bidirectional Iterator
	Random Access Iterator

	Iterator Tags
	Introduction
	iterator_traits
	Iterator tag classes
	input_iterator_tag
	output_iterator_tag
	forward_iterator_tag
	bidirectional_iterator_tag
	random_access_iterator_tag

	Iterator functions
	distance
	advance

	Iterator classes
	istream_iterator
	ostream_iterator
	front_insert_iterator
	back_insert_iterator
	insert_iterator
	reverse_iterator
	raw_storage_iterator

	Algorithms
	Non-mutating algorithms
	for_each
	find
	find_if
	adjacent_find
	find_first_of
	count
	count_if
	mismatch
	equal
	search
	search_n
	find_end

	Mutating algorithms
	copy
	copy_n
	copy_backward
	Swap
	swap
	iter_swap
	swap_ranges

	transform
	Replace
	replace
	replace_if
	replace_copy
	replace_copy_if

	fill
	fill_n
	generate
	generate_n
	Remove
	remove
	remove_if
	remove_copy
	remove_copy_if

	unique
	unique_copy
	reverse
	reverse_copy
	rotate
	rotate_copy
	random_shuffle
	partition
	stable_partition

	Sorting
	Sort
	sort
	stable_sort
	partial_sort
	partial_sort_copy
	is_sorted

	nth_element
	Binary search
	lower_bound
	upper_bound
	equal_range
	binary_search

	merge
	inplace_merge
	Set operations on sorted ranges
	includes
	set_union
	set_intersection
	set_difference
	set_symmetric_difference

	Heap operations
	push_heap
	pop_heap
	make_heap
	sort_heap
	is_heap

	Minimum and maximum
	min
	max
	min_element
	max_element

	lexicographical_compare
	next_permutation
	prev_permutation

	Generalized numeric algorithms
	iota
	accumulate
	inner_product
	partial_sum
	adjacent_difference

	Function Objects
	Introduction
	Concepts
	Generator
	Unary Function
	Binary Function
	Adaptable Generator
	Adaptable Unary Function
	Adaptable Binary Function
	Predicates
	Predicate
	Binary Predicate
	Adaptable Predicate
	Adaptable Binary Predicate
	StrictWeakOrdering

	Random Number Generator

	Predefined function objects
	Arithmetic operations
	plus
	minus
	multiplies
	divides
	modulus
	negate

	Comparisons
	equal_to
	not_equal_to
	less
	greater
	less_equal
	greater_equal

	Logical operations
	logical_and
	logical_or
	logical_not

	Function object adaptors
	binder1st
	binder2nd
	ptr_fun
	pointer_to_unary_function
	pointer_to_binary_function
	unary_negate
	binary_negate
	Member function adaptors
	mem_fun
	mem_fun_ref
	mem_fun1
	mem_fun1_ref

	Utilities
	Concepts
	Assignable
	Default Constructible
	Equality Comparable
	LessThan Comparable

	Functions
	Relational Operators

	Classes
	pair

	Memory Allocation
	Classes
	Allocators
	raw_storage_iterator

	Functions
	uninitialized_copy
	uninitialized_copy_n
	uninitialized_fill
	uninitialized_fill_n
	get_temporary_buffer
	return_temporary_buffer

