
Systems/C Compiler
Version 2.30

Copyright c© 2024, Dignus, LLC

Systems/C
C Compiler
Version 2.30

i

Copyright c© 2020 Dignus LLC, 8378 Six Forks Road Suite 203, Raleigh NC, 27615.
World rights reserved. No part of this publication may be stored in a retrieval
system, transmitted, or reproduced in any way, including but not limited to pho-
tocopy, photograph, magnetic or other record, without the prior agreement and
written permission of the publisher.

This product includes software developed by the University of California, Berkeley
and its contributors.

Copyright (c) 1990, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modifica-
tion, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgement:

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIB-
UTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

This product includes software developed by Thomas Pornin, which contains the
following copyright notices:

Copyright c© Thomas Pornin 1999, 2000

Redistribution and use in source and binary forms, with or without modifica-
tion, are permitted provided that the following conditions are met:

ii

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. The name of the authors may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes software developed by International Business Machines Cor-
poration, which contains the following copyright notices:

Copyright (c) 1995-2005 International Business Machines Corporation and oth-
ers All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the ”Software”), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, provided that
the above copyright notice(s) and this permission notice appear in all copies of
the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.

IBM, S/390, zSeries, z/Arch, z/Architecture, OS/390, zOS, MVS, VM, CMS, HLASM,
and High Level Assembler are registered trademarks of International Business Ma-
chines Corporation.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States and other countries.

Dignus, Systems/C, Systems/C++ and Systems/ASM are registered trademarks of
Dignus, LLC.

iii

iv

Contents

How To Use This Book 1

Systems/C Overview 3

Implementation Definitions 5
Implementation limits . 5
EBCDIC character set . 5
Basic Data Types and Alignments . 6
Return values . 7

Compiling, Linking and Running Programs 9
Running the compiler, DCC . 9

In OS/390 or z/OS . 9
In Windows . 10
In the UNIX environment . 10

Include File Processing . 11
In OS/390 and z/OS . 11
In UNIX and Windows . 12
Header filename mapping ($$HDRMAP) 12

Description of options . 15
Detailed description of the options . 23

The –D option (define a macro) . 23
The –I option (Specify additional locations to look for included files) 23
The –iquote dir option (Add dir to the list of directories to examine

for local include files) . 24
The –isystem dir option (Add dir to the list of system include direc-

tories) . 24
The –idirafter dir option (Add dir to the list of directories to search

after the system include directories) 24
The –Sdir option (Add dir to the list of directories to examine for

include files, honoring IBM’s SEARCH semantics) 24
The –nodiginc option (Disable “System Include” processing) 25
The –ofile option (Specify the name of the generated output file) . . 25
The –E option (preprocess only) . 25
The –femitdefs option (include #define values in preprocessor output) 26
The –M[=filename] option (generate a source dependence list) 26

Systems/C v

The –MM[=filename] option (generate a source dependence list) . . 26
The –MT target] option (specify the target for the dependence list) . 26
The –MF filename option (specify the name of the file for dependence

list) . 27
The –fdep[=filename] option (generate a source dependence list dur-

ing regular compilation) . 27
The –g option (debuggable code) . 27
The –g0 option (Disable debuggable code and debugging information) 27
The –gdwarf and –gdwarf-N options (generate DWARF debugging

information) . 28
The –gstabs option (generate STABS debugging information) 28
The –gisd option (generate ISD debugging information) 28
The –fansi-bitfield-packing option (ANSI rules for bitfield allocation) 28
The –nonint-bitfield option (Allow any integral in bitfield declaration 29
The –fanonstruct option (Allow Microsoft’s anonymous structure ex-

tension) . 29
The –fc370=version option (Specify IBM C compatibility) 30
The –fxplink option (Use eXtra Performance Linkage) 30
The –fdll option (In IBM compatibility mode, compile for DLL support) 30
The –fexportall option (In IBM compatibility mode, export all defined

data and functions) . 31
The –fcxx-comments and –fno-cxx-comments options (Enable and

disable recognition of C++-style // comments) 31
The –fep=name option (Specify entry point) 31
The –fprol=macro option (Specify alternate prologue macro) 31
The –fgnu89-inline and –fno-gnu89-inline options (Control use of legacy

gcc inlining rules) . 34
The –finline[=x[:y:z]] and –fno-inline options (Control inlining opti-

mization) . 34
The –O[n] option (Set optimization level) 35
The –fprv=macro option (Specify alternate PRV address macro) . . 35
The –fepil=macro option (Specify alternate epilogue macro) 36
The –lnameaddr and –fno-lnameaddr macros (Enable or disable gen-

eration of Logical Name Address info) 36
The –fopts[=macro] option (Request interesting options noted at top

of generated assembly) . 36
The –fendmacro[=text] option (Specify text to appear before the END

statement) . 37
The –frsa[=size] option (Specify the amount of space the compiler

reserves for the Register Save Area) 37
The –fhlasm option (Generated assembly source is to be assembled

with HLASM instead of DASM) 38
The –finstrument-functions option (Request function beginning/ending

instrumentation) . 38
The –fframe-base=N option (Specify register to use for addressing

automatic data) . 39

vi

The –hosted option (Indicate a hosted verses no-hosted environment) 39
The –fcode-base=N option (Specify register to use for addressing for

executable code) . 40
The –freserve-reg=N option (Reserve register #B) 40
The –fwarn-disable=N[,N,N-M,...] option (Disable emission of warn-

ing(s)) . 40
The –fwarn-enable=N[,N,N-M,...] option (Reenable disabled warn-

ing(s)) . 40
The –fwarn-promote=N[,N,N-M,...] option (Promote warning(s) to

error status) . 40
The –ftrim option (Remove trailing blanks from source) 41
The –faddh option (add “.h” to #include names) 41
The –flowerh option (convert #include names to lower case) 41
The –ffilencase option (ignore case in all input file names) 41
The –fno-searchlocal option (don’t look in “local” directories) 42
The –fpreinclude=filename option (#include the named file before

compiling the C source file) 42
The –trigraphs option (recognize trigraphs) 42
The –flisting[=filename] option (generate a listing) 42
The –fpagesize=n option (set the listing page size to n lines) 43
The –fshowinc and –fno-showinc options (enable/disable including

source from #include files in listing) 43
The –fstructmap and –fno-structmap options (enable/disable includ-

ing struct layout information in the listing) 43
The –fstructmaphex and –fno-structmaphex options (structure layout

information should/shouldn’t be displayed in hex) 43
The –frent option (generate re-entrant code) 43
The –fno-rent option (generate non-re-entrant code) 44
The –fmaxerrcount=N option (limit the number of reported errors) . 44
The –fundef option (undefined predefined #define values) 44
The –fincstripdir option (remove directory components from #include

names) . 45
The –fincstripsuf option (conditionally remove suffixes from #include

names) . 45
The –fincrepsuf option (conditionally replace suffixes from #include

names) . 45
The –fmargins[=m,n] option (specify margins for source lines). . . . 45
The –fmesg=style option (Specify message style) 46
The –fasciiout option (char and string constants are ASCII) 46
The –fno-alias-stmts option (generated ASM has no ALIAS statements) 46
The –fshort-names option (truncate long names) 47
The –fignore-case and –fno-ignore-case options (ignore/don’t ignore

case differences when generating assembly names) 47
The –fdollar option (allow dollar sign character in identifiers) 48
The –fatid option (allow commericial-at character in identifiers) . . . 48

vii

The –fwchar-ucs option (indicate that wide character constants are
UCS-2 or UCS-4.) . 48

The –fwchar=n option (specify the size of wchar t) 49
The –fsname=name option (specify section names) 49
The –fno-sname option (allow PLINK to choose unique section names) 49
The –fsnameprefix=char option (specify section name prefix) 50
The –fllgrande option (long long (64-bit) data in ”grande” (64-bit)

registers) . 50
The –fieee option (binary format floating point values and constants) 50
The –fsyntax-only option (do not generate assembly code) 51
The –fdfp option (Enable support for decimal floating point values) . 51
The –fmrc and –fno-mrc options (Mainframe or UNIX-style return

codes) . 51
The –ffar=ao and –ffar=oa options (Specify the component order of

far pointers) . 52
The –ffar-align option (align far pointers on doubleword boundaries) 52
The –fpatch and –fno-patch options (generate a patch area) 52
The –fpatchmul=n option (alter the size of the patch area) 53
The –flinux option (enable Linux/390 or z/Linux code generation) . 53
The –fvisibility=setting option (set ELF object symbol visibility) . . 53
The –version option (print the compiler version number on STDOUT) 54
The –famode=val option (specify runtime addressing mode) 54
The –fc99 option (enable ANSI C99 language features) 55
The –fc11 option (enable ANSI C11 language features) 55
The –fc23 option (enable ANSI C23 language features) 55
The –march=zN option (enable z/Architecture compilation) 55
The –march=esa390 and –march=esa390z options (enable ESA/390

compilation) . 56
The –milp32 option (32-bit compilation) 57
The –mlp64 option (64-bit compilation) 57
The –mafp option (enable/disable use of extended FP registers) . . . 58
The –mlong-double-128 and –mlong-double-64 options (enable/disable

128-bit long double characteristics) 58
The –mmvcle and –mno-mvcle options (enable/disable use of the MV-

CLE/CLCLE instruction) . 59
The –mextended-immediate and –mno-extended-immediate options

(enable/disable use of extended-immediate facility instructions) 59
The –mdistinct-operands and –mno-distinct-operands options (en-

able/disable use of distinct-operands facility instructions) . . 59
The –mload-store-on-condition and –mno-load-store-on-condition op-

tions (enable/disable use of load-store-on-condition facility in-
structions) . 59

The –mhfp-multiply-add and –mno-hfp-multiply-add options (enable/disable
use of HFP multiply-and-add facility instructions) 60

The –mlong-displacement and –mno-long-displacement options (en-
able/disable use of long-displacement facility instructions) . . 60

viii

The –mgeneral-instructions-extension and –mno-general-instructions-extension
options (enable/disable use of general-instructions-extension
facility instructions) . 60

The –mhigh-word-facility and –mno-high-word-facility options (en-
able/disable use of high-word facility instructions) 60

The –mhfp-extensions and –mno-hfp-extensions options (enable/disable
use of HFP extensions facility instructions) 60

The –fasmcomm=mode option (control the comments in the assembly
output) . 61

The –fasmlnno option (Include line numbers in C source comments
in generated assembly) . 61

The –fcodepage500 option (Primary source is in EBCDIC IBM-500
encoding) . 61

The –fsascdigraphs option (Support alternate digraphs combinations
in input source) . 62

The –fat option (Support @-operator in expressions) 62
The –fmin-lm-reg=val option (Set the minimum number of registers

in one LM instruction) . 63
The –fmin-stm-reg=val option (Set the minimum number of registers

in one STM instruction) . 63
The –fflex option (Enable FLEX/ES-specific optimizations) 63
The –fpack=val option (Specify a default maximum structure align-

ment) . 63
The –fpic option (Generate position independent code, small GOT) . 63
The –fPIC option (Generate position independent code for Linux &

z/TPF, large GOT) . 64
The –fuser-sys-hdrmap option (Use user $$HDRMAP for system #includes) 64
The –ffpremote/–ffplocal options (function pointers are remote/local) 64
The –fevents=filename option (Emit an IBM-compatible events listing) 64
The –fenum=val option (Specify default enumeration size) 65
The –fshort-enums option (Specify smallest enumeration size) 66
The –ftest[=name] option (Enable a separate test csect) 66
The –fprolkey=key option (Append a global prologue key) 66
The –fcommon and –fno-common options (Enable/disable common

linkage for uninitialized globals) 66
The –fdfe and –fno-dfe options (Enable/disable dead function elimi-

nation.) . 66
The –fmapat and –fno-mapat options (Enable/disable mapping ’@’

to ’ ’ in external symbol names) 67
The –fctrlz-is-eof and –fno-ctrlz-is-eof options (Enable/disable treat-

ing control-Z as an EOF character) 67
The –fextended-variadic-macros/–fno-extended-variadic-macros options

(enable/disable GCC variadic macros) 67
The –ffnio/–fno-fnio options (enable/disable function names in ob-

jects for debugging) . 68

ix

The –fhide-skipped/–fshow-skipped options (enable/disable omission
of preprocessor-skipped lines in listing) 68

The –fsigned-bitfields and –funsigned-bitfields options (set default
signedness of bitfields with bare types) 68

The –fwrapv and –fno-wrapv options (control optimizer wrapping as-
sumptions regarding signed integer arithmetic) 68

The –fwrapv-pointer and –fno-wrapv-pointer options (control opti-
mizer assumptions regarding pointer arithmetic) 69

The –fstrict-aliasing option (assume pointers to different types point
to different addresses) . 69

The –v option (print version information) 70
The –fsched-inst, –fsched-inst2 and –fno-sched-inst options (control

the behavior of the instruction scheduler) 70
The –fxref and –fno-xref options (enable/disable cross-reference listing 70
The –fsigned-char/–funsigned-char options (Control if char is signed

or unsigned by default) . 71
The –fsave-dsa-over-call/–fno-save-dsa-over-call options (Control if

DSA bytes are saved and restored over alternate linkage call) 71
The –flinkageospromote/–fno-linkageospromote options (Control pro-

motion of integral parameters smaller than int for linkage-OS) 71
The –fsource-enc=utf8 and –fsource-enc=ascii options (Select source

character encoding) . 72
The –fdwarf-extern and –fno-dwarf-extern options (enable/disable

generation of DWARF data for extern variables) 72
The –fgcc-version=ver option (Set a specific GCC version compati-

bility target) . 72
The –Wswitch-outside-range and –Wno-switch-outside-range options

(check case label range) . 72
The optWswitch and Wno-switch options (check enumerations in

switch) . 73
The –Wswitch-enum and –Wno-switch-enum options (check enumer-

ations in switch) . 73
The –Wlabel-unused and –Wno-label-unused options (check for un-

used statement labels) . 73
The –Wunused-parameter and –Wno-unused-parameter options (check

for unused function parameters) 73
The –Wunused-variable and –Wno-unused-variable options (check for

unused variables) . 74
The –Wunused-function and –Wno-unused-function options (check

for unused static functions) 74
The –Wincompatible-pointer-types and –Wno-incompatible-pointer-types

options (pointer conversion to incompatible types warning) . 74
The –Wdiv-by-zero and –Wno-div-by-zero options (generate division

by zero warning) . 74
Assembling the output . 75

Using HLASM . 75

x

Using Systems/ASM . 76
Linking Assembled objects on OS/390 or z/OS 76

A note on re-entrant (RENT) programs 77
Using PLINK . 78
Other useful utilities . 80
DPDSLIB — the Systems/C PDS library utility 80

Linking programs on OS/390 or z/OS . 81
Running programs . 83

DCC Advanced Features and C Extensions 85
Predefined macros . 85

int8, int16, int32, int64 . 87
grande and regpair long long type modifiers 87

ISO/IEC TS 18661-3:2015 floating point interchange and extended types . 88
Ieee and Hexadec type modifiers . 88
float128 floating point type . 89
attribute . 90

alias attribute . 90
aligned attribute . 90
constructor/destructor attributes 91
deprecated attribute . 91
unavailable attribute . 92
mode attribute . 92
noinline attribute . 93
noreturn attribute . 93
packed attribute . 93
used attribute . 94
weak attribute . 94
visibility attribute . 94

FUNCTION . 95
Packed Qualifier . 95

Anonymous Structures . 96
type-generic expressions . 97
static assertions . 97
The rent and norent qualifiers . 98
The inline keyword . 98
The @ operator . 99
Statement Expressions . 99

typeof operator . 100
bit sizeof and bit offsetof operators . 100

Binary constants with the ‘0b’ prefix . 101
Omitted operand in conditional expressions 101
Local labels . 102

asm (“name”) qualifier on function declarations 102
builtin macros and functions . 103

xi

has builtin (ıoperand) . 103
builtin alloca . 103
builtin bswap16 . 103
builtin bswap32 . 103
builtin bswap64 . 103
builtin isdigit . 104
builtin memcpy . 104
builtin mempcpy . 104
builtin memset . 104
builtin memcmp . 104
builtin prefetch . 104
builtin frame address . 105
builtin return address . 105
builtin extract return address . 105
builtin stpcpy . 106
builtin strcpy . 106
builtin strlen . 106
builtin strcmp . 106
builtin strcat . 106
builtin strchr . 106
builtin strrchr . 107
builtin strncat . 107
builtin strncmp . 107
builtin stpncpy . 107
builtin strncpy . 107
builtin strpbrk . 107
builtin fabs . 107
builtin fabsf . 107
builtin fabsl . 108
builtin abs . 108
builtin labs . 108
builtin popcount . 108
builtin popcountl . 108
builtin popcountll . 108
builtin clz . 108
builtin clzl . 108
builtin clzll . 109
builtin ctz . 109
builtin ctzl . 109
builtin ctzll . 109
builtin ffs . 109
builtin ffsl . 109
builtin ffsll . 109
builtin frexp . 110
builtin frexpf . 110

xii

builtin frexpl . 110
builtin huge val . 110
builtin huge valf . 110
builtin huge vall . 110
builtin inf . 110
builtin inff . 110
builtin infl . 111
builtin infd32 . 111
builtin infd64 . 111
builtin infd128 . 111
builtin nan . 111
builtin nanf . 111
builtin nanl . 112
builtin nand32 . 112
builtin nand64 . 112
builtin nand128 . 112
builtin nans . 112
builtin nansf . 112
builtin nansl . 112
builtin abort . 113
builtin unreachable . 113
builtin trap . 113

integer overflow builtins . 113
atomic functions . 114

atomic load n . 115
atomic load . 115
atomic store n . 115
atomic store . 115
atomic exchange n . 115
atomic exchange . 116
atomic compare exchange n . 116
atomic compare exchange . 116
atomic OP fetch . 116
atomic fetch OP . 117
atomic test and set . 117
atomic clear . 117
atomic ... fence . 117
atomic ... lock free . 118

64-bit integral arithmetic — long long . 118
128-bit integral arithmetic — int128 . 119
Decimal floating point types . 119
ANSI C99 features . 120

func identifier . 120
Bool data type . 121

Mixed statements and declarations 121

xiii

Declaration in for statements . 121
#pragma STDC FENV ACCESS . 121
//-style comments . 122
long long data types . 122
C99 preprocessor . 122

Inline assembly language support . 123
register(nn) — Type specifier. 123
asm [n] {...} — Inline assembly source 123
asm(“...”:output:input:clobber) — GCC-style inline assembly source 127

Direct references to ASM values . 130
#pragma compiler directives . 132

#pragma anonstruct (switch) . 132
#pragma csect (section, “name”) . 133
#pragma enum(enum size) . 133
#pragma epilkey(identifier, “key”) 134
#pragma error “text” . 134
#pragma export(identifier) . 134
#pragma filetag(“codepage”) . 135
#pragma linkage(identifier, type) . 135
#pragma map(identifier, “name”) 136
#pragma weakalias(identifier, “name”) 136
#pragma noinline(name) . 137
#pragma options(name[,name]...) . 137
#pragma pack(n) . 137
#pragma prolkey(identifier, “key”) 138
#pragma STDC FENV ACCESS switch 138
#pragma warning “text” . 139
#pragma weak(identifier) . 139
#pragma eject . 139
#pragma page(n) . 140
#pragma pagesize(n) . 140
#pragma showinc . 140
#pragma noshowinc . 140
#pragma ident “str” . 140
#pragma comment(user, “str”) . 140

C preprocessor extensions . 141
#warning . 141
#error . 141
#include next . 142
#ident . 142

Extensions for AR-mode support: far, based(), alet and aletof() . . 142
Remote function pointers . 144
Special “built-in” implementations for common C library functions. 145

xiv

Programming for z/Architecture 147

z/Architecture instructions . 147

64-bit z/Architecture programming model 147

Parameter passing and return values. 148

AMODE and address calculations . 149

ptr64 qualifier . 150

ptr31 qualifier . 151

Systems/C z/Architecture library . 152

Programming for OpenEdition 155

Programming for MVS 3.8 157

Programming for CMS 159

IBM Compatibility Mode 161

Requirements . 161

Compiling in IBM compatibility mode under JCL 161

How Systems/C differs from IBM C . 162

Differences from Systems/C . 162

The –fansi-bitfield-packing option . 163

Assembling with the Systems/ASM assembler 164

Pre-Linking . 165

Linking . 165

eXtra Performance Linkage . 165

Example . 166

Customizing DCC-generated Assembly Source 167

Specifying alternate Entry/Exit macros 167

Adding keywords to prologue/epilogue macros 168

#pragma prolkey(name, “key-string”) 169

#pragma epilkey(name, “key-string”) 169

Specifying an alternate base register . 169

Specifying an alternate frame register . 169

Specifying a block tag for automatic variables 170

Using the Systems/C Direct-CALL Interface 173

Debugging Systems/C Programs 175

Accessing symbols in a debugging session 175

Forcing a dump . 176

xv

Compiling for z/Linux and z/TPF 179
The –flinux option . 179
Using z/Linux system #include files . 180
Using z/TPF #include files . 181
Assembling z/Linux or z/TPF assembler source 181

Using the z/Linux as command . 182
Using the gcc driver to assemble . 182

Linking on z/Linux . 183
Example Linux/390 compile and link . 184
Using DCC for z/TPF . 184
Using DCC for Linux on other hosts . 185

Systems/C C Library 187

License Information File 189

Compiler Error and Warning Messages 191
1010 Warning — ISO C forbids evaluated comma operators in #if expressions191
1011 Warning — comment in the middle of a preprocessor directive . . . 191
1012 Error — too many levels of conditional inclusion (max 63) 191
1013 Error — division by 0 . 192
1014 Error — duplicate macro argument 192
1015 Error — empty character constant 192
1016 Error — #error XXX . 192
1017 Warning — file ’XXX’ not found . 192
1018 Warning — unexpected characters in #assert 192
1019 Warning — unexpected characters in preprocessing directive 192
1020 Warning — unexpected characters in #ifdef 193
1021 Warning — unexpected characters in #ifndef 193
1022 Warning — unexpected characters in #include 193
1023 Error — unexpected characters in constant integral expression . . . 193
1024 Warning — unexpected characters in #line 193
1025 Warning — unexpected characters in #unassert 193
1026 Warning — unexpected characters in #undef 193
1027 Warning — identifier not followed by whitespace in #define 193
1030 Error — illegal assertion name for #assert 194
1031 Error — illegal character ’X’ . 194
1032 Error — illegal macro name for #ifdef 194
1033 Error — illegal macro name for #ifndef 194
1034 Error — illegal assertion name for #unassert 194
1035 Error — illegal macro name for #undef 194
1036 Error — not enough arguments to macro 194
1037 Error — invalid escape sequence ’\X’ 194
1038 Error — macro expansion did not produce a valid filename for #include195
1039 Error — not a valid filename for #line 195

xvi

1040 Error — invalid ’#include’ . 195
1041 Error — invalid integer constant ’XXX’ 195
1042 Error — invalid token in constant integral expression 195
1043 Error — not a valid number for #line 195
1044 Error — invalid macro argument . 195
1045 Warning — operator ’##’ produced the invalid token ’XXX’ 196
1046 Error — invalid argument to Pragma 196
1047 Warning — input line too large . 196
1048 Error — macro XXX already defined 196
1049 Warning — malformed identifier with UCN: ’XXX’ 196
1050 Error — malformed UCN in XXX 196
1051 Error — too many arguments to macro ’XXX’ 196
1052 Warning — more arguments to macro than the ISO limit (127) . . . 197
1053 Error — too many arguments in macro definition (max 253) 197
1054 Warning — macro call with XXX arguments (ISO specifies 127 max) 197
1056 Error — Too many include directories 197
1057 Error — missing comma in macro argument list 197
1058 Error — missing comma before ’...’ 197
1059 Error — missing macro name . 197
1060 Warning — multicharacter constant 198
1061 Error — a colon was expected . 198
1062 Error — ’...’ must end the macro argument list 198
1063 Error — a right parenthesis was expected 198
1064 Error — could not flush output (disk full ?) 198
1065 Warning — non-standard line number in #line 198
1066 Error — operator ’##’ may neither begin nor end a macro 198
1067 Error — ’ VA ARGS ’ is forbidden in macros with a fixed number

of arguments . 199
1068 Error — output write error (disk full ?) 199
1069 Warning — null preprocessor directive 199
1070 Error — out-of-bound line number for #line 199
1071 Error — operator ’#’ not followed by a macro argument 199
1072 Error — quad sharp . 199
1073 Warning — reconstruction of <foo> in #include 199
1074 Warning — macro ’XXX’ redefined unidentically 200
1075 Error — trying to redefine the special macro XXX 200
1076 Warning — ’ STDC ’ redefined . 200
1077 Error — rogue #elif . 200
1078 Warning — rogue #elif in code compiled out 200
1079 Error — rogue #else . 200
1080 Warning — rogue #else in code compiled out 200
1081 Error — rogue operator ’XXX’ in constant integral expression 201
1082 Error — rogue ’#’ . 201
1083 Warning — rogue ’#’ in code compiled out 201
1084 Warning — rogue ’#’ dumped . 201

xvii

1085 Warning — right shift of a signed negative value in #if 201
1086 Error — syntax error in #assert . 201
1087 Error — syntax error for assertion in #if 201
1088 Error — syntax error in #unassert 202
1089 Warning — trigraph ??X encountered 202
1090 Error — truncated comment . 202
1091 Error — truncated constant integral expression 202
1092 Error — truncated macro definition 202
1093 Error — truncated token . 202
1094 Warning — truncated UTF-8 character 202
1095 Error — trying to undef special macro XXX 202
1096 Warning — undefining ’ STDC ’ 203
1097 Error — unfinished #assert . 203
1098 Error — unfinished #ifdef . 203
1099 Error — unfinished #ifndef . 203
1100 Error — unfinished macro call to macro ’XXX’ 203
1101 Error — unfinished string at end of line 203
1102 Error — unfinished #unassert . 203
1103 Error — unfinished #undef . 203
1104 Error — unknown preprocessor directive ’#XXX’ 204
1105 Error — unmatched #endif . 204
1106 Warning — unterminated // comment 204
1107 Error — unterminated #if construction (depth XXX) 204
1108 Error — void assertion in #assert 204
1109 Error — void condition (after expansion) for a #if/#elif 204
1110 Error — void condition for a #if/#elif 204
1111 Error — void macro argument . 204
1112 Error — void macro name . 205
1113 Error — void assertion in #unassert 205
1114 Warning — wide string for #line . 205
1115 Warning — wide string for #include 205
1116 Warning — #warning XXX . 205
1117 Warning — a C99-style digraph was translated in non-C99 mode . . 205
1118 Error — overflow on division . 205
1119 Error — constant too large for destination type 206
1120 Error — invalid wide character constant: XXX 206
1121 Warning — overflow on XXX . 206
1122 Warning — underflow on XXX . 206
1123 Warning — bitwise XXX yields trap representation 206
1124 Warning — shift count greater than or equal to type width 206
1125 Warning — shift count negative . 206
1126 Warning — right shift of negative value 207
1127 Warning — constant is so large that it is unsigned 207
1130 Warning — last line of file ends without a newline 207
1131 Error — unfinished character literal at end of line 207

xviii

2000 Warning — ANSI C forbids an empty source file 207
2001 Warning — externally visible name ’XXX’ truncated 207
2002 Error — character 0xXXX not in source character set 207
2003 Warning — #pragma warning <text> 208
2004 Error — #pragma error <text> . 208
2008 Warning — #pragma map not supported when –fno-alias-stmts is en-

abled. 208
2009 Warning — control reaches the end of ’function’ without a return. . 208
2010 Warning — expected a return expression for this function 208
2011 Warning — expression has no side effect 208
2012 Warning — unsupported linkage in #pragma linkage — ignored . . 209
2013 Warning — typedef redundant ’typedef’ 209
2014 Warning — type already specifies long long 209
2015 Warning — trailing comma in enumerator list 209
2016 Warning — bit-field size exceeds its type 209
2017 Warning — no declaration. 209
2018 Warning — identifier ’XX’ not in formal list 209
2019 Error — function ’XXX’ already defined in this compilation. 209
2020 Warning — promoted argument #n doesn’t match prototype. 210
2021 Warning — prototype with an ellipse can’t match empty parameter

list. 210
2022 Warning — promoted prototype parameter #n can’t match empty

parameter list. 210
2023 Warning — function ’XXX’ declared ’static’ but never defined . . . 210
2024 Error — missing type for ’XXX’ in new-style function header 210
2025 Warning — pointer to a function used in arithmetic 211
2026 Warning — comparison of different pointer types lacks a cast 211
2027 Warning — increment of a pointer of type ’void *’ 211
2028 Warning — assignment of incompatible pointers 211
2029 Warning — decrement of a pointer of type ’void *’ 211
2030 Warning — address of register variable ’XXX’ requested 211
2031 Warning — pointer of type ’void *’ used in arithmetic 212
2032 Warning — passing argument N converts pointer to integral without

a cast . 212
2033 Warning — passing argument N converts integral to pointer without

a cast . 212
2034 Warning — passing argument N from incompatible pointer type . . 212
2035 Error — incompatible type for argument N of ’XXX’ 212
2036 Warning — incompatible pointer types in conditional expression . . 212
2037 Warning — initialization converts integral to pointer without a cast 213
2038 Warning — initialization converts pointer to integral without a cast 213
2039 Error — sizeof applied to incomplete type 213
2040 Error — alignof applied to incomplete type 213
2041 Warning — sizeof applied to a function type 213
2042 Warning — sizeof applied to a void type 213

xix

2043 Error — sizeof applied to a bit-field 214
2044 Warning — alignof applied to a function type 214
2045 Warning — alignof applied to a void type 214
2046 Error — alignof applied to a bit-field 214
2047 Error — expected a structure type in offsetof 214
2048 Error — structure tag ’XXX’ not defined in offsetof 214
2049 Error — no identifier specified for initialization 214
2050 Error — type mismatch in initialization 215
2051 Warning — assignment from incompatible pointer type 215
2052 Warning — assignment truncates pointer without a cast 215
2053 Warning — passing argument N truncates pointer without a cast . . 215
2054 Warning — dereference truncates pointer 215
2055 Warning — ISO C90 forbids mixed declarations and code 215
2060 Warning — hex escape sequence

xNNN out of range - truncated . 216
2097 Warning — comparison is always true 216
2098 Warning — comparison is always false 216
2099 Warning — comparison between pointer and integer 216
2100 Error — syntax error: XXX . 216
2101 Error — pointer subtraction of different types 216
2102 Error — incorrect operand types for pointer subtraction 216
2103 Error — incorrect operand types for pointer addition 217
2104 Error — invalid operands to binary X 217
2105 Error — incompatible operand types to binary X 217
2106 Error — invalid operands to ==/!= 217
2107 Error — invalid operands to </<=/>/>= 217
2108 Error — invalid operands for <</>> 217
2109 Error — undefined label ’X’ at end of function 217
2110 Error — invalid type for constant conversion to boolean 218
2111 Error — invalid conversion to pointer 218
2112 Error — invalid type for constant conversion to short int 218
2113 Error — invalid type for constant conversion to int 218
2114 Error — invalid type for constant conversion to unsigned short int 218
2115 Error — invalid type for constant conversion to unsigned int . . . 218
2116 Error — invalid type for constant conversion to unsigned long int 219
2118 Error — invalid type for constant conversion to long int 219
2119 Error — invalid type for constant conversion to double 219
2120 Error — invalid type for constant conversion to float 219
2121 Error — invalid type for constant conversion to unsigned char . . . 219
2122 Error — invalid type for constant conversion to signed char 219
2123 Error — invalid type for constant conversion to long long 219
2124 Error — invalid type for constant conversion to unsigned long long 220
2125 Error — invalid conversion to double 220
2126 Error — conversion to a non-scalar type requested 220
2127 Error — conversion specifies array type 220

xx

2128 Error — invalid type specifier . 220
2129 Warning — declaration of ’X’ masks formal parameter 220
2130 Error — redeclaration of extern ’X’ with different types 220
2131 Error — redeclaration of ’X’ . 221
2132 Error — redeclaration of extern ’X’ as a static 221
2133 Error — redeclaration of static ’X’ as an extern 221
2134 Error — redefinition of ’X’ . 221
2135 Error — use of incomplete tag ’X’ in declaration of ’Y’ 221
2136 Warning — implicit declaration of function ’XXX’ 221
2137 Error — redeclaration of enumeration tag ’XXX’ 221
2138 Error — function definition declared ’typedef’ 222
2139 Error — field ’XXX’ already defined in this structure 222
2140 Error — field reference to a non-structure 222
2141 Error — no field ’X’ in structure ’Y’ 222
2142 Error — storage size of ’X’ isn’t known 222
2143 Warning — redefinition of typedef ’X’ 222
2145 Error — field ’XXX’ declared as a function 222
2146 Warning — static function ’XXX’ declared in block scope 223
2147 Warning — no function prototype given for ’XXX’ 223
2148 Warning — struct/union has no members 223
2150 Error — label ’X’ already defined . 223
2151 Error — case label is not an integral constant 223
2152 Error — duplicate case value . 223
2153 Error — duplicate ’default’ label for switch 223
2154 Error — switch value must be of integral type 224
2155 Error — no enclosing for/while/do for continue 224
2156 Error — no enclosing for/while/do for break 224
2157 Error — invalid expression type in return 224
2158 Error — asm size is not an integral constant 224
2159 Warning — function returns void — return value ignored 224
2160 Warning — integer constant out of range 224
2161 Warning — integer constant is so large that it is unsigned 225
2162 Warning — asm line is too long for \c continuation 225
2163 Warning — explicit type is missing, (int) assumed 225
2164 Warning — multi-character character constant 225
2165 Error — character constant too large 225
2166 Error — numeric constant contains digits beyond the radix 225
2167 Error — invalid conversion in cast expression 226
2168 Warning — cast to pointer from integer of different size 226
2169 Warning — cast to integer from pointer of different size 226
2172 Warning — unrecognized –q option 226
2178 Error — invalid –fmargins values ’XXX’ ignored. 226
2173 Warning — unrecognized –f option 226
2174 Error — too many input files . 226
2175 Warning — unknown option: ’XX’ — ignored. 227

xxi

2179 Warning — bad value in –fwchar option ’XX’ — ignored. 227
2180 Error — License validation failed: XXX 227
2181 Warning — License warning . 227
2185 Error — can’t open input file ’X’ . 227
2186 Error — can’t open output file ’X’ 227
2187 Warning — unrecognized –W option 227
2189 Error — all dimensions except the first must be specified for a multi-

dimensional array . 228
2190 Error — invalid array initializer . 228
2191 Error — incorrect character array initializer 228
2192 Error — invalid structure initializer 228
2193 Error — too many initializers for structure 228
2194 Error — invalid initialization to static data 228
2195 Error — can’t initialize a function 228
2196 Error — can’t initialize a typedef . 229
2197 Warning — initializer string is too long, truncated 229
2198 Warning — braces around scalar initializer for ’XXX’ 229
2199 Warning — bit-field initializer value too large, truncated 229
2200 Error — invalid initializer . 229
2201 Error — character array initialized from wide string 229
2202 Warning — initialization from incompatible pointer type 229
2203 Warning — file-scoped declaration of ’XXX’ globally reserves register

#R . 230
2204 Error — register variable ’XXX’ declared extern 230
2205 Warning — ANSI C restricts enumerator values to range of ’int’ . . 230
2206 Error — overflow in enumeration values 230
2207 Error — bit-field ’XXX’ must be of type signed int, unsigned int

or int . 230
2208 Warning — bit-field ’XXX’ type invalid. Type ’unsigned int’ assumed.230
2209 Warning — bit-field ’XXX’ type invalid in ANSI C 231
2210 Error — invalid type specifier . 231
2211 Error — both short & long in type specifier 231
2212 Error — both signed and unsigned in type specifier 231
2213 Error — enumerator value for ’X’ not an integral constant 231
2214 Error — structure or union tag used in enumeration specifier 231
2215 Warning — use of incomplete enumeration tag ’XXX’ 231
2216 Error — bit-field width not an integer constant 232
2217 Error — bit-field size of 0 for ’X’ . 232
2218 Error — invalid type for bit-field . 232
2219 Error — enumeration tag used in struct/union specifier 232
2220 Error — redefinition of struct/union ’X’ 232
2221 Error — use of incomplete structure tag ’X’ 232
2222 Error — register specification is not an integral constant 232
2223 Error — parameter name missing . 233
2224 Error — incorrect type for based identifier 233

xxii

2225 Error — undefined identifier ’X’ for based 233
2226 Error — based constants must be of integral type 233
2227 Error — duplicate identifiers in function declaration 233
2228 Error — array size for ’XXX’ not an integral constant 233
2229 Error — redeclaration of ’XXX’ in parameter declaration list 233
2230 Error — lvalue expected . 234
2231 Error — assignment to a void typed lvalue 234
2232 Error — can’t assign to a function 234
2233 Error — invalid pointer assignment 234
2234 Error — assigning to ’XXX’ from incompatible type ’XXX’ 234
2235 Warning — assigning to a const datum 234
2236 Warning — assignment converts pointer to integral without a cast . 234
2237 Warning — assignment converts integral to pointer without a cast . 235
2240 Error — undefined identifier ’X’ . 235
2241 Error — too many arguments for call to function ’X’ 235
2242 Error — too few arguments for call to function X 235
2243 Error — invalid use of void expression as a parameter 235
2244 Error — dangling comma in argument list 235
2245 Error — invalid or missing parameter 235
2246 Error — array subscript not of integral type 236
2247 Error — subscripted value is neither array nor pointer 236
2248 Error — call is not to a function or via a function pointer 236
2249 Error — invalid argument type for -> 236
2250 Error — expected identifier after ’->’ 236
2251 Error — postfix ++/-- not allowed in constant expressions 236
2252 Error — lvalue required for postfix ’++/--’ 236
2253 Error — expected a value after a cast expression 237
2254 Error — prefix ++/-- not allowed in constant expressions 237
2255 Error — lvalue required for prefix ’++/--’ 237
2256 Error — operands to ’&’ must have integral type 237
2257 Error — operands to ’^’ must have integral type 237
2258 Error — operands to ’|’ must have integral type 237
2259 Error — operands to ’&&’ must be scalar 237
2260 Error — operands to ’||’ must be scalar 237
2261 Error — test value for conditional expression is not scalar 238
2262 Error — type mismatch in conditional expression 238
2263 Error — incorrect operand to unary ’&’ 238
2264 Error — missing operand to unary ’*’ 238
2265 Error — operand to unary ’*’ must have pointer type 238
2266 Error — operand of unary ’+’ must have arithmetic type 238
2267 Error — operand of unary ’+’ must have arithmetic type 238
2268 Error — operand of unary ’ ’ must have scalar type 239
2269 Error — operand of unary ’!’ must have scalar type 239
2270 Error — lvalue needed for assignment with binary operator 239
2271 Error — missing left parenthesis after dsect tag 239

xxiii

2272 Error — missing string in dsect tag() 239
2273 Error — missing right parenthesis in dsect tag() 239
2274 Error — attempt to take address of bitfield structure member 239
2275 Error — expected expression before multiplicative ’*’ 240
2276 Error — expected expression after multiplicative ’*’ 240
2277 Error — expected expression before division operator ’/’ 240
2278 Error — expected expression after division operator ‘/’ 240
2279 Error — expected expression before modulus operator ’%’ 240
2280 Error — expected expression after modulus operator ’%’ 240
2281 Error — request for member ’XXX’ in something that is not a struc-

ture or union . 241
2282 Warning — assignment discards ’const’ from pointer target type . . 241
2283 Warning — assignment discards ’volatile’ from pointer target type. 241
2284 Warning — passing of argument N discards ’const’ from pointer type 241
2285 Warning — passing of argument N discards ’volatile’ from pointer

type . 241
2286 Warning — division by zero . 242
2287 Warning — initialization discards ’const’ from pointer target type . 242
2288 Warning — initialization discards ’volatile’ from pointer target type.242
2290 Error — size specifier in asmval must be an integral constant . . . 242
2291 Error — size specifier in asmval must be between 1 and 4, or 8 . . 242
2295 Error — redeclaration of formal parameter ’XXX’ 242
2296 Warning — unary negation applied to an unsigned type 243
2300 Error — size specification in Decimal specifier must be of integral

type . 243
2301 Error — size specification in Decimal must be constant 243
2302 Error — size value in Decimal must be in the range 1 to 31 243
2303 Error — precision specification in Decimal specifier must be of in-

tegral type . 243
2304 Error — precision specification in Decimal specifier must be constant243
2305 Error — precision value in Decimal must be in the range 0 to 31 . 244
2306 Error — precision value must be less than or equal to size in Decimal244
2307 Warning — digits may have been lost in the whole-number part . . . 244
2310 Error — digitsof() must be applied to a Decimal type 244
2311 Error — precisionof() must be applied to a Decimal type 244
2315 Warning — non-zero digits lost in Decimal constant 244
2318 Warning — #pragma options must be specified before the first C

statement . 245
2316 Warning — Decimal multiplication truncates digits 245
2319 Warning — unrecognized option ”XXX” in #pragma options 245
2320 Error — only one #pragma csect ıKIND allowed per program . . . 245
2321 Warning — #pragma prolkey for ’XXX’ replaced 245
2322 Warning — extraneous text after #pragma ignored 245
2324 Warning — #pragma map for symbol ’XXX’ already specified, this

one ignored . 246

xxiv

2325 Warning — unrecognized #pragma XXX ignored 246
2324 Warning — redundant #pragma map for symbol ’XXX’ ignored . . . 246
2330 Error — operands to ’<<’/’>>’ must have integral type 246
2331 Warning — ’XXX’ initialized and declared ’extern’ 246
2332 Error — ’XXX’ is both ’extern’ and initialized 246
2333 Error — ’XXX’ already initialized 247
2334 Warning — left shift count >= width of type 247
2335 Warning — right shift count >= width of type. 247
2336 Warning — left shift count negative 247
2337 Warning — right shift count negative 247
2338 Error — flexible array member not at end of struct 247
2339 Error — array size missing in ’XXX’ 247
2340 Error — array size missing in field ’XXX’ 248
2341 Warning — ANSI C forbids zero-sized array field ’XXX’ 248
2342 Error — use of incomplete structure in field ’XXX’ 248
2343 Error — use of incomplete union in field ’XXX’ 248
2344 Warning — initialization of flexible array member 248
2345 Error — declaration of ’XXX’ as array of voids 248
2346 Error — declaration of field ’XXX’ as array of voids 248
2347 Error — structure tag ’XXX’ used in union specifier 249
2348 Error — union tag ’XXX’ used in structure specifier 249
2350 Error — controlling expression of an if-statement must have scalar type249
2351 Error — controlling expression of a while-statement must have scalar

type . 249
2352 Error — controlling expression of a do-statement must have scalar type249
2353 Error — controlling expression of a for-statement must have scalar

type . 249
2354 Error — nested initialization of flexible length array 249
2356 Warning — condition is always false 250
2357 Warning — condition is always true 250
2358 Warning —- enumeration values not handled in switch... 250
2359 Warning — case value not in enumerated type ’XXX’ 250
2360 Warning — dereferencing ’void *’ pointer 250
2361 Warning — index operator applied to ’void *’ pointer 250
2362 Warning — case label value is less/greater than minimum/maximum

value for type . 251
2363 Warning — case label not in enumerated type ’XXX’ 251
2365 Error — array ’XXX’ is too large to fit in the address spa ce 251
2366 Warning — ANSI C forbids zero-sized array 251
2367 Warning — subscript out of range 251
2368 Error — variable length array may not be initialized 251
2369 Error — array size expression for ’XXX’ not an integral type 252
2370 Error — size of array ’XXX’ is negative 252
2371 Warning — return type of ’main’ is not ’int’ 252
2375 Warning — return converts integral to pointer without a cast 252

xxv

2376 Warning — return converts pointer to integral without a cast 252
2377 Warning — return discards ’const’ from pointer target type 252
2378 Warning — return discards ’volatile’ from pointer target type . . 253
2379 Warning — incompatible pointer type in return 253
2380 Error — increment of a pointer to an unknown structure 253
2381 Error — decrement of a pointer to an unknown structure 253
2382 Error — arithmetic on pointer to an incomplete type 253
2383 Warning — unnamed struct/union that defines no data 253
2384 Warning — floating constant out of range 254
2385 Warning — assignment converts a floating point type to one with less

precision . 254
2386 Warning — passing argument N converts a floating point type to one

with less precision . 254
2387 Warning — return converts a floating point type to one with less

precision . 254
2388 Warning — initialization converts a floating point type to one with

less precision . 254
2389 Warning — floating point operation result is out of range 255
2390 Warning — assignment converts far pointer to local pointer without

a cast . 255
2391 Warning — passing argument N converts far pointer to local pointer

without a cast . 255
2392 Warning — return converts far pointer to local pointer without a

cast . 255
2393 Warning — initialization converts far pointer to local pointer with-

out a cast . 255
2395 Error — argument to aletof() is not a far pointer 256
2399 Warning — non-constant member-designator in offsetof 256
2400 Warning — use of bit-field member in offsetof() is undefined . . . 256
2401 Error — initializer element is not computable at load time 256
2402 Error — array index in initialization designator exceeds bounds . . . 256
2403 Error — array index value not constant in initializer 256
2404 Warning — extra elements in initializer 257
2405 Warning — ANSI C forbids an empty initializer list 257
2406 Warning — anonymous structure/union members are a C11 language

extension . 257
2412 Error — invalid enumeration size . 257
2413 Error — the enum cannot be packed to the requested size 257
2415 Warning — unrecognized #pragma STDC 257
2416 Warning — invalid switch to #pragma STDC FENV ACCESS ignored . 258
2429 Error — invalid size for register variable ’x’ 258
2430 Error — address of register variable 258
2431 Error — type of register variable ’x’ is not integral or pointer . . 258
2441 Error — compound expression only allowed within a function 258
2450 Warning — ANSI C forbids conditional expression with only one void

side . 258

xxvi

2451 Warning — ANSI C requires second operand in conditional expres-
sion, assuming test value . 259

2461 Warning — declaration of long double ’XXX’ treated as double . . . 259
2470 Warning — use of FUNCTION outside of function scope 259
2473 Error — ’XXX’ is unavailable . 259
2474 Warning — ’XXX’ is deprecated . 259
2475 Warning — ’XXX’ attribute directive ignored 259
2476 Error — unable to emulate mode ’XX’ 260
2477 Error — invalid pointer mode ’XX’ 260
2480 Warning — unused label ’XX’ . 260
2481 Warning — unused variable ’XX’ . 260
2482 Warning — unused parameter ’XX’ 260
2483 Warning — unused function ’XX’ . 260
2500 Warning — #pragma linkage(...,fetchable) must appear only once . 261
2504 Error — z/Architecture is required when –fllgrande is specified . . . 261
2508 Warning — ’XXX’ declared in parameter list; its scope may not be

what you expect . 261
2509 Warning — #pragma for ’xxx’ ignored 261
2510 Error — The decimal-floating-point-facility (–march=z6 or -mdecimal-

floating-point-facility) is required when –fdfp is specified 261
2514 Warning — static and non-static on same symbol 262
2515 Error — cannot initialize non-reentrant data with the address of

reentrant data . 262
2525 Warning — signed bit field of length 1 262
2601 Error — can’t mix decimal floating point operands and other float

types . 262
2602 Warning — decimal floating point constant out of range 262
2603 Warning — assignment converts a floating point type to one with less

precision . 263
2604 Warning — passing argument N converts a floating point type to one

with less precision . 263
2605 Warning — return converts a floating point type to one with less

precision . 263
2606 Warning — initialization converts a floating point type to one with

less precision . 263
2607 Warning — floating point operation result is out of range 263
2610 Warning — ANSI C forbids conversion between function pointers and

object pointers . 264
2615 Error — invalid argument in builtin stdarg evaluation 264
2616 Warning — use of a type that undergoes default argument promotions

in ’va start/va arg’ is undefined . 264
2617 Error — ’va start’ used in function with non-variable arguments . . 264
2620 Warning — function declared ’noreturn’ has a ’return’ statement . . 264
2621 Error — type qualifiers or the ’static’ keyword are invalid unless they

are in the outermost array index of a parameter 265

xxvii

2625 Warning — assignment expression used as condition 265
2630 Warning — bit field declaration . 265
2631 Warning — function returns (long long) without a grande or regpair

modifier, defaults to xxxx . 265
2640 Error — invalid constant in builtin fp classify() 265
2641 Error — expression in builtin fp classify is not a floating point value 266
2650 Error — type-name in Atomic specifier must not contain array, func-

tion, atomic or qualified type . 266
2651 Error — Atomic qualifier cannot be applied to an array or function

type . 266
2662 Error — An identifier may not begin with a universal character rep-

resenting a digit . 266
2663 Error — XXX is not a valid universal character for an identifier . . . 266
2667 Error — invalid type for argument to builtin isdigit 267
2668 Error — invalid type for conversion to Decimal 267
2670 Error — invalid call to atomic builtin 267
2671 Error — ’void’ must be the first and only parameter if specified . . . 267
2672 Error — ’XXX’ cannot be declared as type (void) 267
2673 Error — field ’XXX’ cannot be declared as type (void) 267
2675 Error — value in Alignas must be a type or an integer constant

expression . 267
2676 Error — invalid value in alignment specifier 268
2677 Error — alignment specifier not allowed in typedef 268
2678 Error — alignment specifier not allowed for bitfields 268
2679 Error — alignment specifier not allowed in parameter types 268
2680 Error — attribute sequence not allowed in this context 268
2681 Error — size value in BitInt must be in the range 1 to XXX 268
2700 Error — static assert failed . 269
2701 Error — static assert expression is not an integral constant 269
2703 Error — label ’x’ referenced outside of any function 269
2710 Error — variable length array ’x’ at file scope 269
2711 Error — field ’x’ declared as a variable length array 269
2712 Error — ’x’ declared as function returning a function 269
2750 Error — bad option(s) . 269
2998 Error — maximum error count exceeded — compilation halted. . . . 270
2999 Error — compilation halted due to previous errors 270
4010 Warning — CSECT name ’XXX’ is too long, truncated to ’YYY’ . . 270
4011 Note — CSECT mapped to XXX avoid conflicts 270
4012 Error — CSECT name must have at least one alphabetic character. 270
4013 Error — invalid code base register 270
4014 Error — invalid frame base register 271
4015 Error — –fc370=ver is required when –fxplink is specified 271
4016 Error — –fhlasm is not allowed in combination with other options . 271
4017 Error — –fno-alias-stmts is not allowed in combination with other

options . 271

xxviii

4018 Error — bad option(s) . 271
4020 Error — invalid call to built-in ’XXX’ 271
4030 Error — can’t open output ASM code file ”XXX” 272
4031 Error — can’t write output assembly source. 272
4050 Warning — register(XXX) variable conflicts with reserved register 272
4060 Error — invalid asm operand . 272
4061 Error — invalid alias cycle in symbol ’XXX’ 272
5000 Warning — parameter mismatch when attempting to inline call to

’XX’ from ’XX’ . 272
5010 Warning — possible use of uninitialized variable ’variable’ 273
9999 Error — internal error XXXXX . 273

ASCII/EBCDIC Translation Table 275

xxix

xxx

How To Use This Book

This book describes the Systems/C compiler, DCC. DCC is used to compile C
source code, producing assembly language source. This book describes how to run
DCC, how to assemble the generated output and the special language features
DCC provides.

To learn more about the run-time environment, refer to the Systems/C C Library
manual.

Systems/C also includes several utility programs used to manage the process of
building OS/390 and z/OS programs. For more information regarding these utilities,
see the Systems/C Utilities manual.

For further information, contact Dignus, LLC at (919) 676-0847, or visit
http://www.dignus.com.

Systems/C 1

The Systems/C C Compiler

DCC

2 Systems/C

Systems/C Overview

Systems/C is a C language compiler for the 390 and zSeries architectures. It is
unique in that its output is 390 assembly source code. Because of this, it provides
features not typically found in C compilers for the mainframe.

Some of its features include:

• ANSI C compliant compiler, ANSI C99 preprocessor

• Support for z/Architecture 64-bit data and AMODE using the new z/Architecture
(“grande”) instructions

• Direct inline assembly source, with the ability to reference assembly constants,
such as EQU values and DSECT member offsets

• IBM C compatibility mode when used with the Systems/ASM, DASM, as-
sembler

• C language extensions, including:

– Support for 128-bit (int128) and 64-bit arithmetic (long long)

– AR-mode support (far and based pointers)

– Support for remote function pointers and the (local and remote
function pointer type qualifiers)

– Built-in implementations for common C library functions

• Systems/C C library

• GCC compatibility features, including attribute and typeof , label
addresses, local labels, binary constants and other extensions

• Support for generating programs for MVS, z/OS, CMS, z/VSE, Linux/390,
z/Linux, TPF 4.1 or z/TPF.

DCC, the C compiler component of Systems/C, can generate assembly language
ready to assemble on the mainframe, for OS/390, z/OS, Linux/390, z/Linux, CMS,
TPF 4.1, z/TPF or VSE. When used in conjunction with Systems/ASM, this

Systems/C 3

presents a powerful programming environment for creating 390 or z/Architecture
programs.

Systems/C also supports cross-hosted development, where the compilation of C
source occurs on a non-mainframe platform. The resulting assembly language source
can be transferred to the mainframe ready for assembly. Or Systems/C can take
advantage of a cross-hosted assembler, such as the Systems/ASM assembler. When
combined with Systems/ASM, the Systems/C compiler, DCC, can generate objects
that are then transferred to the mainframe for final linking.

Moreover, in this cross-hosted environment, the PLINK utility can perform the
final linking for z/OS and MVS programs.

4 Systems/C

Implementation Definitions

Implementation limits

The Systems/C compiler, DCC, exceeds ANSI C requirements for implementation
limits. All of the limitations on line length, string constant length, and similar items
are fixed only by the available memory at compile time. That is, they can virtually
be considered unlimited.

However, while the compiler has an unlimited length for identifiers, the assembler
used to create an object may not. HLASM has an effective identifier limit of 1024
bytes, the Systems/ASM, DASM assembler has an identifier limit of 4096 bytes.
Furthermore, certain compiler options can limit the length of identifiers presented
to the assembler. In these cases, the assembler may impose an 8-character limit on
external identifiers.

The Linux assembler, as, has no limit on the length of external identifiers.

In general, as dictated by the C standard, external identifiers are case-specific. How-
ever, certain options can be used to cause the compiler to generate assembler source
which will not be considered case-specific.

EBCDIC character set

On EBCDIC platforms, the compiler assumes the input source is encoded in a mod-
ified IBM-1047 character set, the same one used by default by IBM’s Unix System
Services environment. However, the compiler will also recognize the characters from
the IBM-037 character set, allowing either encoding to be used.

If the –fcodepage500 option is specified, the compiler performs character translations
to support the IBM-500 character set. Also, the #pragma filetag option can be
used to alter the compiler’s character set assumptions on an individual source file
basis.

See the –fcodepage500 option description for more information about IBM-500 sup-
port.

Systems/C 5

Basic Data Types and Alignments

The default signedness for char is unsigned, making char equivalent to unsigned
char. The –fsigned-char and –funsigned-char options can change this default.

The type char, either signed or unsigned, is 8 bits long, and aligned on 8 bit, or
1 byte, boundaries.

The type short, either signed or unsigned, is 16 bits long, and aligned on 16 bit,
or 2 byte, boundaries.

The type int, either signed or unsigned, is 32 bits long and aligned on 32 bit, or
fullword, boundaries.

If –mlp64 is specified, the type long, either signed or unsigned, is 64 bits long and
aligned on 64 bit, or doubleword, boundaries. If –milp32 is specified, long variables
are 32 bits long and aligned on 32 bit, or fullword, boundaries.

The type long long, either signed or unsigned, is 64 bits long. If –mlp64 is
specifed, long long is treated the same as long and is aligned on 64 bit, or double-
word, boundaries. If –milp32 is specified, long long is aligned on 32 bit fullword
bounaries.

The type float is 32 bits long and aligned on 32 bit, or fullword boundaries.

The type double is 64 bits long and aligned on 64 bit, or doubleword, boundaries,
except in a formal parameter list, where double is aligned on 32 bit boundaries
for MVS, z/OS, IBM compatibility -mode, CMS and VSE. Linux/390, z/Linux and
z/TPF alignments follow the rules of the appropriate Application Binary Interface.
If the –mlp64 option is specified, double parameters, as other parameters, will be
64 bit aligned.

The type long double is 128 bits long and aligned on 64 bit, or doubleword, bound-
aries. The —flong-double-64 option can be specified, in which case the long double
type is treated the same as the double type. The type float128 is a long
double type that is guaranteed to be 128-bits long regardless of the setting of the
–flong-double-64 option.

If the –fieee option is enabled, floating point constants and values are in IEEE binary
format, otherwise they are in IBM hexadecimal format.

The ISO/IEC TS 18661-3:2015 standard extended and interchange types Float32,
Float32x, Float64, Float64x, and Float128 types are supported. They are
always IEEE binary format and operations on them are performed using IEEE
arithmetic, regardless of the setting of the –fieee option.

Bitfields are allocated left-to-right within the field, and may be unsigned or signed.
By default, a bitfield is considered unsigned unless explicitly declared signed. If the

6 Systems/C

–flinux or –fztpf options are specified, bitfields are considered signed by default. The
–funsigned-bitfields and –fsigned-bitfields option can change this default.

Bitfields may cross storage boundaries. The –fansi-bitfield-packing option can alter
the packing of bitfields.

By default, enumerations have the type signed int. The –fenum=size, –fshort-enums
and –fc370=version options can alter this behavior to taylor enumeration sizes.

If –mlp64 is specified, pointers are 64 bits long and aligned on 64 bit, or doubleword,
boundaries. If –milp32 is specified, pointers are 32 bits long and aligned on 32 bit,
or fullword, boundaries. Pointers are assumed to be ”clean”, in the sense that any
unused high-order bits are assumed to be zero. far pointers are 64 bits long and
aligned on 32 bit, or fullword, boundaries, unless the –ffar-align option is enabled.
If –ffar-align is enabled, far pointers are aligned on 64 bit boundaries. based
pointers are 32 bits long and aligned on 32 bit, or fullword, boundaries.

Return values

When returning values in code compiled for z/TPF or Linux (the –fztpf or –flinux
option was specified), the compiler follows the Linux (either 64-bit or 32-bit) con-
ventions defined in the appropriate Linux Elf Applications Binary Interface (ABI).
When returning values in code compiled in IBM Compatibility mode, the compiler
follows the Language Environment return conventions.

The following describes the return conventions for the default mode of operation
in the compiler, which are also the conventions used in the Systems/C runtime
environment.

Integral values are returned in register 15 (R15.) When –mlp64 is not specified
registers 15 and 0 (R15+R0) are used for the 64 bit long long data type, with the
most significant bits placed in register 15.

far pointer values are returned in access register 15 (AR15) in combination with
register 15 (AR15/R15.)

Note that when returning integral values smaller than 32 bits, the values are pro-
moted to the full 32-bit value to completely fill the register. The upper bits of
register 15 will be appropriately set based on the signedness of the return type. If
–mlp64 is specified, the value in register 15 will be appropriately expanded to fill
the full 64-bit register.

Float, double and long double floating point values are returned in floating point
register 0 (FP0) or the register pair 0,2 (FP0,FP2) for long double values. If –fieee
is not specified, the float type is promoted to double when returned. If –fieee is
specified, a float return type is returned as a 32-bit IEEE value in floating pointer

Systems/C 7

register 0 (FP0). A Float32 value is also returned as a 32-bit IEEE value in floating
point register 0 (FP0).

Structure values are returned via a pointer parameter inserted at the beginning of
the parameter list. This parameter points to space allocated by the calling function.

8 Systems/C

Compiling, Linking and
Running Programs

This section describes how to invoke the Systems/C C compiler, DCC, how to
assemble the resulting assembly language source, how to link modules to build an
executable and how to run the resulting program. It is not intended to be a complete
description of compilers or the C language; for that, other texts should be consulted.

DCC translates C source code into native IBM 390 or z/Architecture assembly
source, either in HLASM format or GNU GAS format. This source is ready to be
assembled into object decks for linking on the mainframe. The HLASM format is
used for generating programs for traditional mainframe operating systems. GAS
format is used for Linux and z/TPF programs.

This chapter explains how to run the DCC compiler, what options are available on
DCC, how to assemble the generated assembly source and how to link the resulting
objects.

Running the compiler, DCC

The DCC command is used to compile programs and generate assembly source
code.

In OS/390 or z/OS

In an OS/390 or z/OS environment, the compiler is executed by invoking the DCC
member of the Systems/C installation PDS, as installed. The options are specified
in the PARM statement. Each option is separated by a comma, and preceded with
a dash. The first option that does not contain a dash names the input file to be
compiled. An option which begins with the commercial at-sign (@), specifies a DDN
from which to read other options.

For example, the following EXEC card will execute the compiler, directing the gener-
ated assembly source to the DD named ASM, as specified by the -oASM value in the
PARM statement, as well as producing a compile listing on the DD named LIST.

Systems/C 9

//COMP EXEC PGM=DCC,PARM=’-oASM,-flisting=LIST’

The compiler reads from the DD STDIN if no other file is specified as the input file.
Note that a comma is required to separate the arguments.

Another way to specify the same command using the –@ redirection option would
be:

//COMP EXEC PGM=DCC,PARM=’-@PARMS’
//PARMS DD *
-oASM,-flisting=LIST
/*

In this example, the -oASM,-flisting=LIST options are specified in the file named
//DDN:PARMS from the PARM option to the compiler. Using this technique allows for
arbitrarily long command line options.

In Windows

In the Windows operating systems, the compiler is named dcc and may be found
in the installation directory. The command line is

dcc [options] input-file.c

Options, if any, are preceded with a dash, -.

Unless otherwise specified, the generated assembly source is written to a default file.
On OS/390 and z/OS, the default output assembler file is named //DDN:ASMOUT, on
all other systems it is named asm.out.

The Windows version of DCC supports the –@filename option. –@filename causes
the compiler to read the file filename and insert its contents in the command line.
This provides a mechanism for supporting arbitrarily long command line parameter
lists.

In the UNIX environment

In the UNIX environment, the compiler is named dcc, and can be found in the
installation directory. The command line is

dcc [options] input-file.c

Options, if any, are preceded with a dash, -.

Unless otherwise specified, the generated assembly source is written to the file named
asm.out.

10 Systems/C

Include File Processing

In OS/390 and z/OS

In OS/390 and z/OS, the C preprocessor follows typical rules when searching for
#included files. First, for names specified with double quotes, unless –fno-searchlocal
is specified, an attempt is made to open the included file in the same “location” as
the including file. If that fails, any include search list, specified with the –I or –S
options, is examined, in the order it was specified. If the file was #included with
angle-brackets, the system include location is then examined.

#include names are mapped so as to make the typical UNIX-style include names
operate in a reasonable fashion on OS/390 and z/OS. First, if the name to be in-
cluded begins with a style-prefix (i.e. //DSN, //DDN, ...) then no other processing
is performed and the preprocessor attempts to open the specified file. If no style-
prefix is specified, then the name is searched for UNIX-style directory delimiters (the
forward-slash.) The last component of the file name is translated into a member
name. The remaining forward-slash characters are translated into a single period.
Then, the search location is prefixed on the result to form the file name the prepro-
cessor will attempt to open.

If the resulting prefix is //DSN or //DDN, any underscore characters () are then
translated into pound-signs (#).

The resulting member name is further processed. All letters are transformed to
upper-case, any period is transformed to the commercial at-sign (@). The name is
truncated to 8 characters.

For example, if the systems #include directory (specified during installation) was
set to //DSN:SYSC.SYSINC, then the line:

#include <machine/ansi.h>

would attempt to open

//DSN:SYSC.SYSINC.MACHINE(ANSI@H)

Systems/C 11

In UNIX and Windows

In UNIX and Windows, the C preprocessor follows typical UNIX rules when search-
ing for #included files. First, for names specified with double quotes, unless
–fno-searchlocal is specified, an attempt is made to open the included file in the
same directory as the including file. If that fails, the directory search list is exam-
ined, in the order it was specified on the command line with the –I or –S options.
Then any system include directories are searched.

For system includes (#include <...>), directories are searched in the following
order:

1. The directories specified by any –I or –S options, in the order listed on the
command line.

2. Any directories specified by –isystem.

3. The system include directory directory specified by System Include in the
dignus.inf license file.

4. Any directories specified by –idirafter.

For local includes (#include "..."), the following directories are searched first:

1. The directory containing the current source.

2. Any directories specified by –iquote.

Then the search continues as if it was a system include file.

Header filename mapping ($$HDRMAP)

Header filename mapping is a facility which can map #include names specified in
the original source file to other names, without changing the original source. This
facility can be useful when moving source from mainframe to cross environments, or
vice-versa. When the compiler first begins execution, it looks for mapping files in
the #include search list named $$HDRMAP, which are used to specify this translation.
$$HDRMAP processing occurs before any other host-specific mappings are applied.

DCC maintains two separate mappings, one for system headers and another for
user headers. The system header mapping consists of all of the $$HDRMAP files (not
just the first one) that would be found if #include <$$HDRMAP> was encountered,
and is used for resolving any headers included with #include <...>. The user
header mapping consists of all of the $$HDRMAP files that would be found if #include

12 Systems/C

"$$HDRMAP" was encountered, and is used for resolving any headers included with
#include "...".

Note that even though DCC maintains two separate mappings, by default the
–fuser-sys-hdrmap option is in effect, causing the user header map to be applied to
all #includes, even system ones. If –fno-user-sys-hdrmap is specified, then only the
system header map will be applied to system include directives.

Every name specified in a #include statement is searched for in the appropriate
$$HDRMAP file. If the name is located in a $$HDRMAP file, the specified alternative
filename will be used instead of the original name from the source.

In a $$HDRMAP file, any line that begins with a pound sign (#), will be considered a
comment line and ignored. Other lines specify the source and destination mapping
and are of the form:

source destination

The specified source and destination are delimited by white space, and can optionally
be enclosed within double quote characters. When enclosed within double quote
characters, the names are treated as string literals.

Special lines specifying directory mappings are of the form:

DIR source destination

“DIR” is a keyword to indicate that this mapping applies to directories. Directory
mappings apply to all of the text up to the last forward slash (“/”), allowing you
to remap all files from one directory into another directory. Useful on systems like
CMS where there is no nested directory heirarchy. Directory mappings are applied
after any normal mappings.

For example, consider the following $$HDRMAP file, placed in the current working
directory on a UNIX host:

redirect header files to their UNIX filenames
DIR special very_special
SPEC#HDR special/header.h
LONGNAME "special/long name.h"

Then, if the original source contains

#include "SPEC#HDR"

Systems/C 13

the compiler will behave as though the source had contained:

#include "very_special/header.h"

First it will map “SPEC#HDR” to “special/header.h”, then it will convert that to
“very special/header.h” according to the DIR rule.

14 Systems/C

Description of options

The options available to DCC are summarized in the following table:

–Dname[=value] Add name to the list of C preprocessor defini-
tions, optionally assigning it a value.

–Idir Add dir to the list of directories to examine
for include files.

–iquote dir Add dir to the list of directories to examine
for local include files.

–isystem dir Add dir to the list of system include directo-
ries.

–idirafter dir Add dir to the list of directories to search after
the system include directories.

–Sdir Add dir to the list of directories to examine
for include files, honoring IBM’s SEARCH se-
mantics.

–nodiginc Disable “System Include” processing.

–ofile Write the generated assembly language source
to file.

–E Perform only the preprocessing step of compi-
lation.

–femitdefs Include #define values in preprocessor (–E)
output.

–M[=filename] Generate a source dependence list.

–MM[=filename] Generate a source dependence list ignoring
system includes.

–MT target] Specify the target name in dependence list.

–MF filename Specify the name of the file for dependence list.

–fdep[=filename] Generate a source dependence list during reg-
ular compilation.

–g Generate debuggable code and provide extra
debugging information.

–g0 Disable debuggable code and debugging infor-
mation

–gdwarf,–gdwarf-N Generate DWARF debugging information

Systems/C 15

–gstabs Generate STABS debugging information

–gisd Generate ISD debugging information

–fansi-bitfield-packing
–fno-ansi-bitfield-packing

Follow ANSI rules for bitfield allocation in
structures.

–fno-nint-bitfield
–fno-nonint-bitfield

Allow any integral type in a bitfield declara-
tion.

–fanonstruct Allow Microsoft’s anonymous structure exten-
sion.

–fep=name Specify a name that will be placed on the gen-
erated END card to denote a program entry
point.

–fframe-base=N Specify a register to use as the base register
for automatic data.

–ffreestanding A synonym for the –fno-hosted option.

–fcode-base=N Specify a register to use as the base register
for executable code.

–freserve-reg=N Instruct the compiler that register N is re-
served.

–fcxx-comments
–fno-cxx-comments

Enable or disable recognition of C++/C99
style comments.

–fprol=macro Specify an alternate name for the function pro-
logue macro.

–fprv=macro Specify an alternate name for the macro which
supplies the address of the Pseudo-Register
vector.

–fepil=macro Specify an alternate name for the function epi-
logue macro.

–lnameaddr
–fno-lnameaddr

Enable or disable generation of Logical Name
Address info.

–fopts=macro Request interesting options noted at top of
generated assembly.

–fendmacro=macro Specify text to appear before the END state-
ment.

–rsa=size Specify the amount of space the compiler re-
serves for the Register Save Area.

–fhlasm Generated assembly source is to be assembled
with HLASM instead of DASM.

–fhosted/–fno-hosted Indicate the target is a hosted or freestanding
environment.

16 Systems/C

–finstrument-functions Request function beginning/ending instru-
mentation.

–fc370=version Compile in IBM compatibility mode.

–fxplink Use eXtra Performance Linkage.

–fdll In IBM compatibility mode, compile for DLL
support

–fexportall In IBM compatibility mode, export all
data/functions

–fwarn-disable=N[,N,N-M,...] Disable particular warnings.

–fwarn-enable=N[,N,N-M,...] Re-enable particular warnings.

–fwarn-promote=N[,N,N-M,...] Promote a warning to an error.

–ftrim Remove trailing blanks from input.

–faddh Add “.h” to #include file names.

–flowerh Lower-case characters in #include file names.

–ffilencase Ignore case in all input file names.

–fno-searchlocal Specify that “local” searches for #include files
should not be performed.

–fpreinclude=filename #include the named file before compiling the
C source file.

–flisting[=filename] Generate a listing of the compilation.

–fno-listing Don’t generate a listing of the compilation.

–trigraphs
–fno-trigraphs

Enable/disable recognition of trigraph se-
quences in input

–fpagesize=n Set the listing page size to n lines.

–fshowinc
–fno-showinc

Enable/disable including source files from
#include files in the listing.

–fstructmap
–fno-structmap

Enable/disable including struct layout infor-
mation in the listing.

–fstructmaphex
–fno-structmaphex

Structure layout information should/shouldn’t
be displayed in hex.

–frent Generate re-entrant code.

–fno-rent Generate non-re-entrant code.

–fmaxerrcount Limit the number of reported errors.

Systems/C 17

–fundef Undefine predefined #define macros.

–fincstripdir Remove directory components from #include
names.

–fincstripsuf Conditionally remove suffixes from #include
names.

–fincrepsuf Conditionally replace suffixes from #include
names.

–fmargins[=m,n] Specify margins for source lines.

–fmesg=style Specify message style.

–fasciiout
–fno-asciiout

String and character constants will be in
ASCII instead of EBCDIC.

–fno-alias-stmts The generated assembler source will not con-
tain ALIAS statements.

–fshort-names Truncate long names.

–fignore-case
–fno-ignore-case

Ignore case differences when generating assem-
bly names.

–fdollar Allow the dollar-sign character ($) in identi-
fiers.

–fatid Allow the commercial-at character () in iden-
tifiers.

–fwchar=n Specify the size of wchar t.

–fwchar-ucs Indicate that wide character constants are
UCS-2 or UCS-4.

–fmrc
–fno-mrc

mainframe-style or UNIX-style return codes
from DCC.

–fsname=name Explicitly set the section name of the compi-
lation.

–fno-sname Allow PLINK to choose unique section names
for this compilation.

–fsnameprefix=char Explicitly set the section name prefix.

–fllgrande long long (64-bit) data in ”grande” (64-bit)
registers

–fieee Floating point values, operations and con-
stants are in binary (IEEE) format.

–fsyntax-only Only do syntax and other diagnostic checking,
do not generate assembly.

–fdfp Enable support for decimal floating point val-
ues.

18 Systems/C

–ffar=ao
–ffar=oa

Specify the order of the two components of
far pointers.

–ffar-align Align far pointers on 8-byte boundaries.

–fpatch
–fno-patch

Specify if a patch area should be generated.

–fpatchmul=n Alter the size of any generated patch area.

–flinux Enable Linux/390 or z/Linux code generation.

–fvisibility=setting Set ELF object symbol visibility.

–version Print the compiler version number on STD-
OUT.

–famode=val Specify the runtime addressing mode.

–fc99 Enable ANSI C99 language features.

–fc11 Enable ANSI C11 language features.

–fc23 Enable ANSI C23 language features.

–march=esa390,–march=esa390z Enable ESA/390 compilation.

–march=zN Enable use of the edition N z/Architecture in-
structions.

–mlp64 Enable 64-bit compilation, implies -march=z0.

–milp32 Enable 32-bit compilation.

–mafp
–mno-afp

Enable/disable use of extended FP registers.

–mlong-double-128
–mlong-double-64

Enable/disable 128-bit long double type.

–mmvcle
–mno-mvcle

Enable/disable use of the MVCLE/CLCLE in-
structions.

–mextended-immediate
–mno-extended-immediate

Enable/disable use of extended-immediate fa-
cility instructions.

–mdistinct-operands
–mno-distinct-operands

Enable/disable use of distinct-operands facil-
ity instructions.

–mload-store-on-condition
–mno-load-store-on-condition

Enable/disable use of load/store-on-condition
facility instructions.

–mhfp-multiply-add
–mno-hfp-multiply-add

Enable/disable use of HFP multiply-and-add
facility instructions.

Systems/C 19

–mlong-displacement
–mno-long-displacement

Enable/disable use of long-displacement facil-
ity instructions.

–mgeneral-instructions-extension
–mno-general-instructions-extension

Enable/disable use of general-instructions-
extension facility instructions.

–mhigh-word-facility
–mno-high-word-facility

Enable/disable use of high-word facility in-
structions.

–mhfp-extensions
–mno-hfp-extensions

Enable/disable use of HFP extensions facility
instructions.

–fgnu89-inline
–fno-gnu89-inline

Control use of legacy gcc inlining rules.

–finline[=x[:y:z]]
–fno-inline

Control inlining optimization.

–O[n] Set optimization level

–fasmcomm=mode Control the comments in the assembly output.

–fasmlnno
–fno-asmlnno

Include line numbers in C source comments in
generated assembly.

–fcodepage500
–fno-codepage500

Primary source is in EBCDIC IBM-500 encod-
ing.

–fsascdigraphs
–fno-sascdigraphs

Support alternate digraphs combinations in in-
put source.

–fat
–fno-at

Support @-operator in expressions.

–fmin-lm-reg=val Set the minimum number of registers in one
LM instruction.

–fmin-stm-reg=val Set the minimum number of registers in one
STM instruction.

–fflex Enable FLEX/ES-specific optimizations.

–fpack=val Specify a default maximum structure align-
ment.

–fpic Generate position independent code, small
GOT.

–fPIC Generate position independent code for Linux
& z/TPF, large GOT.

–ffpremote
–ffplocal

Function pointers are remote/local

–fuser-sys-hdrmap
–fno-user-sys-hdrmap

Use user $$HDRMAP for system #includes

20 Systems/C

–fevents=filename Emit an IBM-compatible events listing

–fenum=val Specify a default enumeration size.

–fshort-enums Specify a smallest enumeration size.

–ftest[=name] Enable a separate test csect.

–fprolkey=key Append a global prologue key.

–fcommon
–fno-common

Enable/disable common linkage for uninitial-
ized globals.

–fdfe
–fno-dfe

Enable/disable dead function elimination.

–fmapat
–fno-mapat

Enable/disable mapping ’@’ to ’ ’ in external
symbol names.

–fctrlz-is-eof
–fno-ctrlz-is-eof

Enable/disable treating control-Z as an EOF
character.

–fextended-variadic-macros
–fno-extended-variadic-macros

Enable or disable support for GCC-style vari-
adic macros

–ffnio
–fno-fnio

Enable/disable function names in objects for
debugging

–fhide-skipped
–fshow-skipped

Enable/disable omission of preprocessor-
skipped lines in listing.

–fsigned-bitfields
–funsigned-bitfields

Set default signedness of bitfields with bare
types.

–fwrapv
–fno-wrapv

Control optimizer wrapping assumptions re-
garding signed integer arithmetic.

–fwrapv-pointer
–fno-wrapv-pointer

Control optimizer wrapping assumptions re-
garding pointer arithmetic.

–fstrict-aliasing
–fno-strict-aliasing

Assume pointers to different types are different
addresses.

–v Print version information.

–fsched-inst
–fsched-inst2
–fno-sched-inst

Control the behavior of the instruction sched-
uler.

–fxref
–fno-xref

Enable/disable cross-reference listing

–fsigned-char
–funsigned-char

Control if char is signed or unsigned by default

–fsave-dsa-over-call
–fno-save-dsa-over-call

Control if DSA bytes are saved and restored
over alternate linkage call

Systems/C 21

–flinkageospromote
–fno-linkageospromote

Control promotion of integral parameters
smaller than int for linkage-OS

–fsource-enc=utf8
–fsource-enc=ascii

Select source character encoding

–fdwarf-extern
–fno-dwarf-extern

Enable/disable generation of DWARF data for
extern variables

–fgcc-version=ver Set a specific GCC version compatibility tar-
get

–Wswitch-outside-range
–Wno-switch-outside-range

Check the value of a case label is within range
of the switch

–Wswitch
–Wno-switch

Verify all instances of a switch of an enumer-
ated type appear in case labels

–Wswitch-enum
–Wno-switch-enum

Verify all instances of a switch of an enumer-
ated type appear in case labels, ignoring de-
fault

–Wlabel-unused
–Wno-label-unused

Generate a warning if a label is defined by not
used

–Wunused-parameter
–Wno-unused-parameter

Generate a warning if a parameter is not used
in a function

–Wunused-variable
–Wno-unused-variable

Generate a warning if a variable is not used in
a scope

–Wunused-function
–Wno-unused-function

Generate a warning if a defined static function
is not used

–Wincompatible-pointer-types
–Wno-incompatible-pointer-types

Generate a warning for conversion of pointers
with incompatible types

–Wdiv-by-zero
–Wno-div-by-zero

Generate a warning for compile-time division
by zero

22 Systems/C

Detailed description of the options

The –D option (define a macro)

The –D option defines a symbol in the same way as a #define preprocessor directive
in C source code. It’s usage is:

dcc -Dmacro[=text]

For example:

dcc -DMAXLEN=1024 prog.c

is equivalent to inserting the following C source line at the beginning of the program
prog.c:

#define MAXLEN 1024

Because the –D option causes a C preprocessor symbol to be defined for the com-
pilation, it can be used in conjunction with other preprocessor directives, such as
#ifdef or #if defined() to implement conditional compilation. A common exam-
ple of conditional compilation is:

#ifdef DEBUG
printf("Entered function func()\n");

#endif

This debugging code would be included in the compiled object by adding -DDEBUG
on the DCC command line.

The –I option (Specify additional locations to look for included files)

The –I option adds a specified location (a directory on UNIX and Windows) to
the search list examined when source is #included. The name of the directory
immediately follows the –I, with no intervening spaces.

For example, to add the directory mydir to the include search path on UNIX sys-
tems, the command line would appear as:

dcc -Imydir ...

Systems/C 23

Similarly, to add the PDS MY.PDS to the search path on OS/390 and z/OS, the JCL
would appear as:

//COMP EXEC PGM=DCC,PARMS=’-I//DSN:MY.PDS’

See the section on include file processing on page 11 for more details.

The –iquote dir option (Add dir to the list of directories to examine
for local include files)

The –iquote dir option provides a local include search path, which is searched just
for directives specified with a double quote character (#include "...").

The –isystem dir option (Add dir to the list of system include di-
rectories)

The –isystem dir option provides a system search path, which is searched for any
#include directives which are still not resolved after looking in the –Idir paths.

The –idirafter dir option (Add dir to the list of directories to search
after the system include directories)

The –idirafter dir option provides an “after-system search path”, which is searched
for any #include directives which are still not resolved after looking in the –isystem dir
paths or in the System Include path specified in the license file.

The –Sdir option (Add dir to the list of directories to examine for
include files, honoring IBM’s SEARCH semantics)

The –Sdir option is provided for compatibility with IBM’s SEARCH parameter, and is
useful for looking up headers in PDS-style datasets, especially when they have been
transfered to a PC. The –S paths are searched in the order they were specified, just
like –I paths.

When searching for a #include filename in a –S path, first the #include filename
is uppercased and any underscores () are converted into at-signs (@). Then the
filename is split into directory, member, and extension. Then the member name is
truncated to 8 characters. Finally, the filename components are combined with the
–S path in one of three ways, depending on how the –S is specified. If “.*” is used
as a suffix, then the member and extension names are appended to it as if it was a
DSN. If “.+” is the suffix, then directory and extension are appended to the DSN

24 Systems/C

and the member name is treated as a member name. If there is no special suffix,
then the member name is used as a member name, and the directory and extension
are ignored.

For example, if #include <dir/longfilename.ext> is encountered, then here are
some possible searches:

-Spath.* Searches path.EXT.LONGFILE.
-Spath.+ Searches path.DIR.EXT/LONGFILE (or path.DIR.EXT(LONGFILE)

on MVS).
-Spath Searches path/LONGFILE (or path(LONGFILE) on

MVS).

The –nodiginc option (Disable “System Include” processing)

By default, the compiler examines the license key file searching for a line of the form
“System Include=name” for specifying the value of the system include directory.

If the –nodiginc option is specified, any “System Include” line is ignored and the
compiler only uses system include files specified with the –isystem option (if any.)

The –ofile option (Specify the name of the generated output file)

The –ofile option specifies the name of the generated assembly output file. If the file
cannot be opened for writing, the compiler writes the generated assembly output to
stdout. The usage of –o is as follows:

dcc -ofilename prog.c

For example:

dcc -omyfile.asm myfile.c

will compile the C source file myfile.c placing the generated assembly language source
in the file myfile.asm.

If file is the single dash character (-), then the output is written to stdout.

The –E option (preprocess only)

The –E option instructs the compiler to execute the preprocessing phase of compi-
lation only. No attempt is made to generate code. The output of the preprocessor
is written to stdout.

Systems/C 25

The –femitdefs option (include #define values in preprocessor out-
put)

The –femitdefs option causes the compiler to generate #define lines in the prepro-
cessor output for every defined macro.

This can be utilized in complex configurations to determine where a #define was
processed, and how it was defined. It can also be helpful in determining which
macros were predefined or defined on the command line.

If the –E option isn’t specified, –femitdefs is ignored.

The –M[=filename] option (generate a source dependence list)

The –M option causes the compiler to perform the preprocessing step only, and
generate a dependency list suitable for including in a “makefile” on UNIX platforms.

The compiler will generate lines of the form:

target: source

where target is generated from the source file name (replacing any extension with .o).
The source is the any source file the compiler read while performing the preprocessing
step.

If the optional filename is provided, then the dependency list will be output to that
file, otherwise it will be output to stdout.

Compilation stops after the completion of the preprocessing step.

The –MM[=filename] option (generate a source dependence list)

The –MM option is similar to the –M option. It causes the generation of the de-
pendency list that –M does, except that files found from system include directories
(either those specified in the license key file, or from the –isystem option) are not
included in the output.

The –MT target] option (specify the target for the dependence list)

The –MT option can be used to specify the target name for the dependence list.
This is used in conjunction with either the –fdep, –M or the –MM options.

The value for target in the –MT option specifies exactly what the target will be.

26 Systems/C

The –MF filename option (specify the name of the file for depen-
dence list)

The –MF option names the file for writing dependence information. It is used in
conjunction with either the –M, –fdep or –MM options.

It is equivalent to specifying the =filename value on either the –M or –fdep options.

The –fdep[=filename] option (generate a source dependence list dur-
ing regular compilation)

The –fdep option has the same effect as –M, except that the compiler also performs
compilation as normal. Using –fdep, it is possible to generate the dependency list
with every compilation, instead of as a separate step.

The –g option (debuggable code)

The –g option instructs the compiler to generate more information in the generated
assembly language file. This extra information is generally helpful when debugging
the generated code.

When –flinux or –fztpf is also specified, this option causes the compiler to generate
DWARF version 3 debugging information suitable for use with the Linux debugger,
gdb.

When –fc370 is also specified, this causes the compiler to generate ISD format
debugging information (referenced from PPA3/PPA4) for IBM compatibility.

Otherwise, DWARF version 3 debug information will be generated for processing
by PLINK. Run PLINK with –dbg=filename to specify the side file that will be
loaded by DDBG.

By default, when –g is specified, some optimizations (such as inlining) are disabled.
However, debugging information may still be generated on optimized output. For
this to happen, you must ensure that –g comes before –O (or em–finline) on the
command line, or the –O will be ignored.

The –g0 option (Disable debuggable code and debugging informa-
tion)

The –g0 option disables generation of debugging information, and re-enables inlin-
ing, as if the –g option had not been specified.

Systems/C 27

The –gdwarf and –gdwarf-N options (generate DWARF debugging
information)

The –gdwarf option is used to instruct the compiler to generate debugging informa-
tion using the DWARF format instead of the STABS or ISD formats.

When –flinux is also enabled, the information is embedded within the object file.

When –fc370 is also used, the DWARF information is placed in a side file. The
filename defaults to the source file name with the extension replaced with “.dbg”.
The name of the side file may be manually specified with –gdwarf=filename.dbg.
The name provided here is the name that the debugger will ultimately use to find
the side file, so it may be necessary to manually specify a filename with a path that
is valid on your debugging host. The side file is actually created by DASM, so If
you want the side file to be placed in a different intermediate location on your build
host than on your debugging host, you can specify a separate –fdwarf=filename.dbg
on the DASM commandline to override the name used by DCC.

Otherwise, the DWARF information is encoded in a special CSECT in each com-
pilation unit which PLINK will put in a side file specified by its –dbg=filename
option.

Note that –gdwarf, like –g must occur before any –O or –finline options which occur
on the commandline in order to generate debugging information for optimized code.

The –gdwarf-N version of the option can be used to specify a particular version N
of the generated DWARF debugging info. Supported versions are 2 and 3.

The –gstabs option (generate STABS debugging information)

The –gstabs option is used to instruct the compiler to output legacy STABS debug-
ging information.

The –gisd option (generate ISD debugging information)

The –gisd option is used to instruct the compiler to output legacy ISD debugging
information, only for use in LE mode (–fc370) for compatibility with IBM tools.

The –fansi-bitfield-packing option (ANSI rules for bitfield alloca-
tion)

The –fansi-bitfield-packing option instructs the compiler to allocate bitfields in struc-
tures according to ANSI rules. This typically results in smaller structures, as it
allows the compiler to pack bitfields as tightly as possible. When this option isn’t

28 Systems/C

enabled, the compiler will follow more traditional bitfield allocation rules. Enabling
this option causes the compiler to allocate bitfields as IBM does when the LAN-
GLVL is set to ANSI. When the option is not enabled, the compiler will allocate
bitfields in a manner compatible with IBM C/C++ when the LANGLVL is set to
COMMONC.

When –fno-ansi-bitifield-packing is specified (the default), the compiler will pad
structures to the bitfield type alignment requirements if the bitfield is the last ele-
ment of the structure.

When –fansi-bitfield-packing is enabled, structures are not padded. The structure
size is packed to a byte boundary sufficient to contain the number of bits specified
by the bitfield.

The deprecated –fansi-bitfield option enables –fansi-bitfield-packing and disables
–nonint-bitfield.

The –nonint-bitfield option (Allow any integral in bitfield declara-
tion

The ANSI standard only allows the types int, signed int, unsigned int, and
bool to be used in a bitfield declaration. However, because of extensions in other
compilers, programmers frequently use other types (e.g. char) to declare bitfields.

The –nonint-bitfield option (the default) allows any integral type to be used in the
declaration of a bitfield member.

The –no-nonint-bitfield option restricts bitfield types to the ANSI standard.

The –fanonstruct option (Allow Microsoft’s anonymous structure
extension)

The –fanonstruct option enables support for Microsoft’s anonymous structure ex-
tension.

Anonymous structures allow for unnamed inner structures or unions within an outer
structure or union. The elements of the inner structure are then directly accessible
as if they were elements of the outer structure.

Anonymous structures can also be enabled or disabled using the #pragma anonstruct
pragma.

See the discussion of anonymous structures in the C extensions section for more
information.

Systems/C 29

The –fc370=version option (Specify IBM C compatibility)

The –fc370 option specifies that the generated assembly language source is to be
compatible with IBM C objects. In this mode, the compiler will generate function
prologue and epilogues, data offsets, alignments and initializers that inter-operate
with IBM C. Note that the generated assembly source must be processed by the
Systems/ASM assembler to produce a correct object file. For more information, see
the chapter on IBM C compatibility mode.

The value of version is used to indicate which version of IBM C is desired. Cur-
rent supported version specifications are v1r3, v2r4, v2r6 and z1r2 thru z1r11.
When v1r3 is specified, a prologue/epilogue compatible with IBM C V1R3 will be
generated. When v2r4 is specified, a prologue/epilogue compatible with IBM C
V2R4 will be generated. When v2r6 is specified, a prologue/epilogue compatible
with IBM C V2R6 will be generated. When one of z1r2 thru z1r11 is specified, the
z/OS prologue/epilogues will be generated.

Furthermore, the compiler provides definitions of predefined macros which are used
by the IBM header files. These macros convey specific versions numbers which can
enable or disable features available to particular revisions of the IBM LE runtime.

Note that the –fc370 option does not imply the –frent option.

The –fxplink option (Use eXtra Performance Linkage)

The –fxplink option instructs the compiler to use IBM’s eXtra Performance Link-
age (XPLINK). The compiler generates appropriate re-entrant DLL references to
XPLINK variables and code. It also uses the optimized XPLINK function calling
conventions.

Note that –fxplink is only effective when –fc370 is also applied. The –fxplink option
does imply –fdll and –frent.

The –fdll option (In IBM compatibility mode, compile for DLL sup-
port)

The –fdll option causes DCC to compile in IBM DLL mode. This allows the
generated object to be used in an IBM DLL.

In DLL mode, the compiler will make appropriate DLL references to external data
and functions, and will provide the appropriate code to define data and functions
in a DLL fashion.

Note that –fdll is only meaningful when –fc370 is also applied.

30 Systems/C

By default, –fdll is equivalent to IBM’s DLL(NOCALLBACKANY), which may be explic-
itly specified with –fdll=nocba. If DLL(CALLBACKANY) support is desired, –fdll=cba
can be used instead. In that case, function pointer calls will go through a special run-
time call (@@FXCLBK) which will automatically detect whether the function pointer
is a DLL function pointer (entry point and PRV) or a regular function pointer (just
entry point). This is necessary if any function pointers are initialized in modules
which were not compiled with –fdll and then used in a module which was compiled
with –fdll.

The –fexportall option (In IBM compatibility mode, export all de-
fined data and functions)

The –fexportall option causes the compiler to provide DLL definitions for all defined
data and functions in the compilation in IBM compatibility mode.

Typically, to cause a datum or function to be visible to other code that uses an IBM
DLL, the #pragma export pragma must be employed.

The –fexportall option removes the need for that, making all defined data and
functions visible.

The –fexportall option is only meaningful when the –fc370 and –fdll options are also
enabled.

The –fcxx-comments and –fno-cxx-comments options (Enable and
disable recognition of C++-style // comments)

The –fcxx-comments and –fno-cxx-comments options are used to enable and disable
recognition of C++/C99-style ”//” comments. By default, the compiler recognizes
C++/C99-style comments.

The –fep=name option (Specify entry point)

The –fep=name option provides a symbol that will be placed on the END statement
in generated assembly language source. It is used to specify the entry point of a
module.

The –fprol=macro option (Specify alternate prologue macro)

The –fprol=macro option specifies an assembly language macro that will be issued
at the start of each function in this compilation, instead of the default DCCPRLG
macro. This option is not valid in combination with the –fc370 (IBM compatibility)

Systems/C 31

option, or the –flinux (Linux/390 and z/Linux mode.) The macro is responsible for
function startup, stack management, saving registers, etc. The prologue macro is
passed several parameters:

ARCH=ZARCH Added to the prologue parm when the –mlp64 op-
tion is specified on the compiler command line.

BASER=n The register number used as the base register for
this function. If the value of n is 0, then this func-
tion does not require a base register. In this case,
the function prologue does not need to set up a base
register or worry about code addressibility.

CINDEX=n The unique function number for this function.

ENTRY=[YES|NO] Whether an ENTRY statement should be gener-
ated for this function.

FRAME=n The size of the automatic data required by this func-
tion. The prologue macro must allocate this many
bytes. Note that if SAVEAREA=NO is specified, the
function prologue is not required to allocate these
bytes. A reasonable size will still be specified when
SAVEAREA=NO is present for backwards compatibil-
ity.

FRAMER=n The register number used as the automatic storage
area base register for this function. If the value of n
is 0, then this function does not use any automatic
storage, and the functio prologue need not allocate
any.

IEEEFP=[YES|NO] Indicates the function was compiled with IEEE
floating point or not (HFP.)

LNAMEADDR=label Prior to each function, the compiler generates
a function name block that contains the “logical”
name for the function. This block is a 4-byte length,
followed by a NUL-terminated string. The compiler
passes the label for this block to the prologue macro
for any use there. The name specified in the func-
tion descriptor block is the “C” name of the func-
tion, and does not reflect any application of a #pragma
map or other compiler-assigned value.
This function name block label is also passed to the
DCCENTR and DCCEXIT macros generated when the
–finstrument-functions option is enabled.

SAVEAREA=NO If SAVEAREA=NO is specified on the prologue macro,
the prologue expansion does not need to create lo-
cal save area for this function. This indicates that
the function is a “leaf” function (it doesn’t invoke

32 Systems/C

any other functions) and did not reference any local
memory.

Note that the compiler assumes the registers are
saved/restored by the prologue and epilogue; but
that saving and restoring is typically accomplished
in the register save-area of the calling function.

Note that no bytes need to be allocated for the func-
tion is SAVEAREA=NO is specified, even though the
FRAME= option may have a value.

SP=n Specifies the storage subpool for Systems/C library
dynamically allocate storage used for stack and heap
memory.

SP can only be meaningfully be specified on entry
point functions or the main() function.

KEY=val Specifies the runtime protection key. Val can be
either the numeric key value, or the keyword ENTRY.

KEY can only be meaningfully be specified on entry
point functions or the main() function. On other
functions, it is ignored.

At library start-up, when KEY is specified, the Sys-
tems/C runtime will switch into the specified key
before invoking the entry point or main() function.
At library termination, the key will be restored to
its original value.

ISTK=val The Systems/C runtime allocates storage used for
local function variables, the runtime “stack.” The
size of the initial storage allocation can be specified
via the ISTK value.

ISTK can only be meaningfully be specified on entry
point functions, for example DCALL=YES, DCALL=ALLOCATE)
or the main() function. On other functions, it is ig-
nored.

ESTK=val As a program runs, the runtime memory allocated
for local function variables may need to expand.
The size of the memory allocated for this expan-
sion can be specified with the ESTK parameter.

ESTK can be specified larger to avoid thrashing around
small stack allocations, which can improve runtime
performance.

The name of the function is provided as the name on the macro invocation. Also
note that use of #pragma prolkey can add arguments to the macro invocation.

Systems/C 33

The –fgnu89-inline and –fno-gnu89-inline options (Control use of
legacy gcc inlining rules)

By default, DCC uses the C99 rules for the inline keyword, but if –fgnu89-inline
is specified then it uses the legacy gcc-compatible rules instead. Versions of gcc
before version 4.3 used the legacy rules, while newer versions of gcc default to the
C99 rules.

Under the C99 standard rules, the inline keyword only has effect if all of the
declarations of a function have inline and do not have extern or static. In
that case, the function is an “inline function”, and its definition is only used if the
optimizer decides to inline a call to it. Otherwise, an external reference is generated
to satisfy a function call. An external definition is never provided for an inline
function. If a declaration with extern is seen, then that forces a definition of the
function to be emitted. If a function does not meet the rules for an inline function,
then the inline keyword has no effect (it will be either externally visible or static).

Under the gnu legacy rules, the inline keyword has no effect unless extern is
combined with it, in which case the function is considered an “inline function”
as above. That is, an external definition is never provided for an extern inline
function

The C99 and gnu rules are essentially backwards on the meaning of extern inline
vs. inline. Under C99 rules, extern inline will always generate an external def-
inition. Under gnu rules, extern inline will never generate an external definition.

In C99 mode, the gnu legacy behavior can be forced on a per-function basis by
adding attribute ((gnu inline)) to your function’s definition.

The –finline[=x[:y:z]] and –fno-inline options (Control inlining op-
timization)

DCC features an inliner which can optimize the output code by expanding a func-
tion “inline” at its call point. Inlining operates by replacing a call to a function
with the operations contained in the function itself. For small functions this can
decrease the execution time required by eliminating the function call linkage code.
It can also allow optimizations to be performed inside of the inlined function that
are aware of the context from which it was called. Inlined functions can actually
generate significantly larger code, though, as more than one copy of a function may
be generated for all the contexts it is called from.

The –finline[=x[:y:z]] option enables inlining. The value x specifies the inlining
mode. The value y specifies a maximum size (approximately number of opcodes)
for a function to be a candidate for inlining. The value z specifies a maximum stack
size for a function to be a candidate for inlining. In mode 0, the inliner is disabled.
In mode 1, all functions that are marked inline (with the inline keyword, or the
C99 inline keyword) and are smaller than y:z are candidates for inlining. In mode

34 Systems/C

2, all functions that are smaller than y:z are candidates for inlining (whether they
are explicitly marked or not). For values of x greater than 2, extra passes of the
inliner are performed, essentially providing greater inlining depth, but this is not
recommended.

The inliner now proceeds in a different way than in past versions. It starts with the
smallest function and inlines all candidate calls from that function. It then proceeds
to larger functions, up until it reaches functions that are larger than y:z. It then
starts over at the smallest function and continues to repeat this process until either
all candidate calls from small functions are inlined, or until there are no more small
functions left (because they have all been made big). In this way, anything which
is advantageous to inline (a call to a small function from a small function) will be
inlined regardless of its depth in the call tree. Then once it is done with small
functions, the inliner performs a global pass (or several passes, in the case where x
is greater than 2) where it visits every single function call and inlines it if the called
function is a candidate for inlining.

The default behavior is now -finline=1:128:256, which means to inline any func-
tion which is marked inline and is smaller than approximately 128 opcodes long and
uses less than 256 bytes of stack space.

The –O[n] option (Set optimization level)

The –O[n] sets the optimization level. The default setting is to do a minimal level
of optimization and inlining, with the intent to produce acceptable code while still
having fast compiles. –O0 disables even these basic optimizations. –O1 enables a
slightly larger set of optimizations, including block-local versions of common subex-
pression elimination, constant propagation, and dead code elimination. –O without
an explicit level indicator is the same as –O2, and adds more aggressive inlining as
well as global versions of common subexpression elimination and constant propaga-
tion. The highest setting, –O3, enables even more inlining, permits an unlimited
number of passes of all of the optimizations, and causes instruction scheduling to
reduce latency even at the expense of generating more instructions. For large com-
pilation units, –O3 could potentially cause the compiler to take a very long time to
execute.

Note that the –g option (enable debugging information) disables certain optimiza-
tions, especially inlining. To override this default (to reenable optimizations), make
sure that –O occurs after –g on the commandline. Also, –finline may be specified
after –O to override the inliner settings, as some code bases perform best with a
specific inliner configuration.

The –fprv=macro option (Specify alternate PRV address macro)

The –fprv=macro option specifies an assembly language macro that will be issued
to acquire the base address of the Pseudo-Register Vector (PRV), instead of the

Systems/C 35

default DCCPRV. The compiler will specify one argument on the macro:

REG=nn Specify the register which should contain the ad-
dress of the PRV at the end of the macro.

The macro will be generated once for each function that needs to reference data
in the Pseudo-Register Vector. The compiler will then save the returned address
locally in the function’s stack frame for future reference.

The –fepil=macro option (Specify alternate epilogue macro)

The –fepil=macro option specifies an assembly language macro that will be issued
at the end of each function in this compilation, instead of the default DCCEPIL
macro. This option is not valid in combination with the –fc370 (IBM compatibility)
option. The macro is responsible for function termination, stack management and
return to the calling function.

The –lnameaddr and –fno-lnameaddr macros (Enable or disable gen-
eration of Logical Name Address info)

Normally, the compiler generates a Logical Name Address block for each function.
This block of memory contains the logical (C) name for each function. The ad-
dress of this memory is passed on the generated prologue macro as the &LNAMEADDR
parameter.

If –fno-lnameaddr is specified, the compiler will not generate the Logical Name
Address block, and will not provide a &LNAMEADDR parameter.

The –flnameaddr option is enabled by default.

The –fopts[=macro] option (Request interesting options noted at
top of generated assembly)

The –fopts[=macro] option causes the compiler to invoke the DCCOPTS (or other
specified macro) at the top of the generated assembly language source. Parameters
to the macro will describe some of the code-generation options specified on the DCC
command line.

The purpose of this macro is to provide a mechanism to direct any macro-generated
source based on DCC compiler options. This can be used to alter the expansion
of other macros. For example, the prolog macro could expand differently if –fieee
were specified on the DCC command line. Or, various runtime flags could be set
as appropriate.

36 Systems/C

If –fieee is specified on the command line, then FP=IEEE will be added to the DCCOPTS
invocation.

If –fasciiout is specified on the command line, then CHARSET=ASCII will be added
to the DCCOPTS invocation.

The –fopts option may not be used if the –flinux or –fc370 option is also used.

The –fendmacro[=text] option (Specify text to appear before the
END statement)

The –fendmacro[=text] option cause the compiler to invoke the DCCEND (or other
specified text) just before the END statement in the the generated assembly language
source. The compiler will not add any arguments to the invocation of the macro.
Thus, the text could be any valid assembly language text.

Any valid assembly language text can be specified.

The –fendmacro option may not be used if the –flinux or –fc370 option is also used.

The –frsa[=size] option (Specify the amount of space the compiler
reserves for the Register Save Area)

The –frsa=size option causes the compiler to reserve the specified size bytes at the
beginning of each per-function local stack area as the “Register Save Area” size.

This option is useful when using custom prologue/epilogue macros that may want to
apply different techniques for saving/restoring the register values at function entry
and exit.

In Systems/C mode (–flinux and –fc370 not specified), the compiler reserves 80
bytes of space for 31-bit programs and when –mlp64 option is enabled (in 64-bit
mode), the compiler reserves 168 bytes. This space is used by the default
tt DCCPRLG and DCCEPIL macros to save and restore register values.

The –rsa=size option can specify any positive value for the register-save-area size,
including zero. If it is specified as some value other than the default, then the default
DCCPRLG and DCCEPIL macros should not be used.

The size parameter is automatically adjusted to a multiple of 8 bytes, to enforce C
memory allocation requirements.

This option should not be used in conjunction with the –fc370 or –flinux options, as
the register save area in those situations is architected by the runtime environment.

Systems/C 37

The –fhlasm option (Generated assembly source is to be assembled
with HLASM instead of DASM)

The Systems/ASM assembler (DASM) is the preferred assembler when building
non-Linux or non-z/TPF programs. The –fhlasm option allows for creating assembly
source that can be assembled with IBM’s HLASM assembler.

When –fhlasm is specified, the compiler will not generate instructions that take
advantage of Systems/ASM extensions.

Because of this, some facilities, such as IBM compatibility mode and debugging
information embedded in the generated object, are not supported when –fhlasm is
specified.

The –finstrument-functions option (Request function beginning/ending
instrumentation)

The –finstrument-functions option causes the compiler to generate instrumentation
code that denotes the start and end of a function.

When the –flinux option is enabled, –finstrument-functions causes the compiler to
generate the appropiate code for use with Linux profiling tools.

When –flinux is not specified, the compiler generates references to the DCCENTR and
DCCEXIT macros. DCCENTR and DCCEXIT are invoked with two parameters ADDR=reg
and LNAMEADDR=label. The ADDR parm is a register that contains the starting
address of the current function. The LNAMEADDR parm is a label for a name structure
generated by the compiler. The name structure is a 4-byte length, followed by a NUL-
terminated string containing the function’s name. The name will be the “logical” C
name for the function similar to how appears in the C source, and does not reflect
any application of #pragma map or any other compiler-assigned name.

The compiler saves and restores registers R0, R1, R14 and R15 across invocations of
these macros, so they can be used in the macro. Furthermore, with
–finstrument-functions, the compiler guarantees a register save area for the current
function will be requested. That is, when –finstrument-functions is enabled the
SAVEAREA=NO parameter will not be specified on the prologue macro, ensuring a
register save area will be available in the function.

Although example DCCENTR and DCCEXIT macros are provided with the Systems/C
library, these are essentially empty and will need to be altered for use. The following
example assumes the presence of a function named TRACE, which accepts a pointer
to the function’s entry point.

macro
DCCENTR &ADDR=none,&LNAMEADDR=none

38 Systems/C

L 1,=A(&LNAMEADDR)
LA 0,4(0,1) R0 points to NUL-terminated name
LR 1,&ADDR R1 points to function address
L 15,=V(TRACE) Call "TRACE"
BALR 14,15
B *+8
LTORG
mend

The compiler allocates up to 128 bytes for the expansion of the DCCENTR and DCCEXIT
macros. If the macro expansion results in more than 128 bytes, the generated code
may encounter addressability errors.

Note that the function instrumentation is not the same as the function prologue
and epilogue. Because of the possibility of inlined functions, the instrumentation
can actually appear anywhere in the code. The compiler will note the entry to and
exit from an “inlined” function by generating the instrumentation at the proper
location.

The –fframe-base=N option (Specify register to use for addressing
automatic data)

The –fframe-base=N option specifies a different register to use for addressing auto-
matic data. The default frame base register is R13. Automatic data is allocated
for each function on a dynamic basis during program execution. N is an integer, in
the range 2 to 13. That is, one may not specify registers 0, 1. 14 or 15 may not
be specified as the frame base register. The default prologue and epilogue macros
assume register 13 is the frame base register. Prologue and epilogue macros must be
provided if a value other than 13 is specified in the –fframe-base option. If register
13 is specified as the code-base register, then a different register must be specified
as the frame-base register.

The –hosted option (Indicate a hosted verses no-hosted environ-
ment)

The –fhosted option indicates the target environment is ”hosted”, meaning all stan-
dard features are available in the target environment.

The –fno-hosted option indiates the target environment is ”freestanding” (not hosted),
where it is assumed the target environment does not have all the C standard features.

For –fc99 or –fc11 options are specified, the –fno-hosted options affects the defini-
tion of the standard STDC HOSTED macro. If –ffreestanding option is specified
STDC HOSTED will have the value 0, otherwise it will have the value 1.

The –ffreestanding option is a synonym for –fno-hosted option.

Systems/C 39

The –fcode-base=N option (Specify register to use for addressing
for executable code)

The –fcode-base=N option specifies a different register to use for addressing exe-
cutable code. The default code base register is R12. The code base register points
at the beginning of the current 4K block of executable code and can be used for
addressing branch targets and literals used within that 4K region. When –fcode-base
is specified, the BASER=N option is provided to the prologue macro (such as DCCPRLG)
so that it knows which register to set up with the initial code base.

The –freserve-reg=N option (Reserve register #B)

The –freserve-reg=N option instructs the compiler that register #N is reserved and
should not be used in code generation. The compiler will reserve that register for
the entire compilation and not generate code that alters the register. This can be
useful for particular in-line assembly sequences, or when using a prologue/epilogue
sequence that assumes a register remains unaltered throughout execution.

The –fwarn-disable=N[,N,N-M,...] option (Disable emission of warn-
ing(s))

The –fwarn-disable=N[,N,N-M,...] option disables emission of the named warn-
ing(s). A range of warnings can be specified separated by the hyphen character.
More than one warning may be specified, separated by commas or colons. The
option may appear multiple times.

A disabled warning may be re-enabled with the –fwarn-enable option.

The –fwarn-enable=N[,N,N-M,...] option (Reenable disabled warn-
ing(s))

The –fwarn-enable=N[,N,N-M,...] option enables emission of the named warning(s).
A range of warnings can be specified separated by the hyphen character. More than
one warning may be specified, separated by commas or colons. The option may
appear multiple times.

An enabled warning may be disabled with the –fwarn-disable option.

The –fwarn-promote=N[,N,N-M,...] option (Promote warning(s) to
error status)

The –fwarn-promote=N[,N,N-M,...] option promotes emission of the named warn-
ing(s). A range of warnings can be specified separated by the hyphen character.

40 Systems/C

More than one warning may be specified, separated by commas or colons. The op-
tion may appear multiple times. Once a warning has been promoted, it remains an
error.

The –ftrim option (Remove trailing blanks from source)

The –ftrim option removes trailing blanks from input source lines. This can be
useful on cross-platform hosts if the source has been copied from a mainframe fixed
record length data set. When copying such a file to a cross-platform host, the record
length is typically preserved, causing extra blanks to be appended. These blanks
can cause problems if they occur after a backslash (\). Using –ftrim will remove
these trailing blanks, allowing the source to be compiled on the cross-platform host
as it was on the mainframe.

The –faddh option (add “.h” to #include names)

The –faddh option causes the compiler to examine each #include name from the
source file. If the specified string does not end in “.h”, a “.h” will be added.
This option can be useful when moving program source from an OS/390 or z/OS
environment where PDS names sometimes don’t include “.h”.

The –flowerh option (convert #include names to lower case)

The –flowerh option causes the compiler to convert characters in #include file
names to lower case. This conversion is applied before any other modifications are
made to the file names. This option can help in a multi-OS environment, where
sources are shared between file systems which are case-sensitive (i.e. UNIX) and
not case-sensitive (I.e. Windows.) On the case-sensitive system, convert all the file
names to lower case in the file system, and use the –flowerh option to ensure the
compiler uses all lower-case names for #include file lookup.

The –ffilencase option (ignore case in all input file names)

The –ffilencase option causes all input file names (#include files as well as the pri-
mary source file) to be treated as if the lookup was performed on a case-insensitive
filesystem. It is only meaningful for files stored in Unix-style case-sensitive filesys-
tems.

The way –ffilencase is implemented, the directory is found in the usual (case-
sensitive, depending on the OS) fashion. Once a directory is seen, the list of files
in it is read. Then that list is used to enable case-insensitive searches. The list is
cached, so the overhead is minimal for subsequent searches.

Systems/C 41

The –fno-searchlocal option (don’t look in “local” directories)

The –fno-searchlocal option causes the compiler to not examine “local” directories
when doing #include lookup for file names that start with a double quote.

The –fpreinclude=filename option (#include the named file before
compiling the C source file)

The –fpreinclude=filename option causes the compiler to behave as if you had

#include "filename"

as the first line in the C source file. That is, the compiler will look for the named
file on the #include list, if found, it will be processed before the primary C source
file.

More than one –fpreinclude option may be specified. The named files will be pro-
cessed in the order they appear on the command line.

The –trigraphs option (recognize trigraphs)

The –trigraphs option enables recognition and replacement of the C trigraph se-
quences during input processing of the source. This can be disabled using the
–no-trigraphs option.

ANSI C23 removed support for trigraphs from the C language, when –fc23 is speci-
fied, trigraphs are disabled. They can be enabled again with the –trigraphs option,
specified after the –fc23 option.

The –flisting[=filename] option (generate a listing)

The –flisting[=filename] option will cause the compiler to produce a listing of the
compilation. The listing shows such items as the source line, the file name table,
C preprocessor expanded lines, and the structure map. If the –fshowinc option is
enabled, source lines which originate in #include will be included in the listing.
Otherwise, only the source from the primary file will be listed.

A filename for the listing my be optionally specified. If no filename is specified, the
listing is written to stdout.

This option can be disabled with the –fno-listing option.

42 Systems/C

The –fpagesize=n option (set the listing page size to n lines)

By default, the number of lines listed on each page of the listing is sixty (60) lines
per page. The –fpagesize=n option can reduce or increase that as needed. The value
of n should not be less than twenty (20).

The –fshowinc and –fno-showinc options (enable/disable including
source from #include files in listing)

If a listing of the compilation is requested, the –fshowinc option may be used to
request that source lines from #include files be included in the listing.

–fshowinc is the default.

–fno-showinc can be used to reduce the size of the listing file by not including source
from #include files.

The –fstructmap and –fno-structmap options (enable/disable includ-
ing struct layout information in the listing)

If a listing of the compilation is requested, the –fstructmap option may be used to
request that a “structure map” appear at the end of the listing. This structure
map will contain information regarding the layout of the structures defined in the
program source, including field offsets and lengths.

–fstructmap is the default.

–fno-structmap can be used to reduce the size of the listing file by not producing
the structure map.

The –fstructmaphex and –fno-structmaphex options (structure lay-
out information should/shouldn’t be displayed in hex)

If the –fstructmap option is in effect, –fstructmaphex will cause the offsets to be
displayed using hexadecimal values instead of decimal ones. –fno-structmaphex in-
dicates the values should be displayed in decimal.

The –frent option (generate re-entrant code)

The –frent option instructs the compiler to generate re-entrant code. When –frent
is enabled, file-scoped external and static variables will be rent by default.

rent variables are placed in the Pseudo Register Vector (the PRV) and are ref-
erenced via Q-CON references in the generated code.

Systems/C 43

The –fno-rent option (generate non-re-entrant code)

The –fno-rent option instructs the compiler to generate non-re-entrant code. When
–fno-rent is specified, file scope external and static variables will be norent by
default.

The –fmaxerrcount=N option (limit the number of reported errors)

The –fmaxerrcount=N option places a limit on the number of errors the compiler will
report. When the specified number of errors have been encountered, compilation
stops.

The –fundef option (undefined predefined #define values)

DCC predefines the following values as well as the standard ANSI ones (note that
each of these begins with two underscores and ends with two underscores):

Macro Name Replacement Value
370 1
BFP Defined if –fieee is enabled

COUNTER A unique value at each reference, begining with 0
CHAR UNSIGNED Defined if the default signedness of char is unsigned

DFP Defined if –fdfp is enabled
I390 1

LONGDOUBLE128 Defined if –mlongdouble128 is enabled
LONGDOUBLE64 Defined if –mlongdouble64 is enabled

LP64 Defined if –mlp64 enabled
LP64 Defined if –mlp64 enabled

NO INLINE Defined if inlining optimizations are disabled
OPTIMIZE Defined if –O specified and the optimization level is non-zero

OPTIMIZE SIZE Defined if –O specified and the optimization level is non-zero
SYSC 1

SYSC ASCIIOUT Defined if –fasciiout enabled
SYSC ANSI BITFIELD PACKING Defined if –fansi-bitfield-packing enabled

SYSC ILP32 Defined if the –mlp64 option is not enabled
SYSC LP64 Defined if –mlp64 enabled
SYSC VER Compiler version number

If –fundef is specified once, these predefined macros are removed. Specifying the
–fundef option more than once will remove all predefined macros.

44 Systems/C

The –fincstripdir option (remove directory components from #in-
clude names)

The –fincstripdir option will cause the compiler to remove any directory components
from a #include file name before any other processing occurs. This option is useful
for compiling source with Systems/C and other compilers which act similarly. For
example, if the source contains:

#include <sys/parm.h>

and the –fincstripdir option is enabled, the result would be same as if the source
contained

#include <parm.h>

The –fincstripsuf option (conditionally remove suffixes from #in-
clude names)

The –fincstripsuf option causes the compiler to retry failed open attempts for #include
files. As the compiler is searching for a #include file, it will first try to open the
file with the given suffix. If –fincstripsuf is specified, the compiler will then remove
any suffix and try again to open that file. This option is helpful on OS/390 or z/OS
when moving from other C compilers to Systems/C.

The –fincrepsuf option (conditionally replace suffixes from #include
names)

The –fincrepsuf option is similar to the –fincstripsuf option in that it causes the
compiler to first try to locate #include files using the given suffix. If this attempt
fails, it is replaced with “.h”, as if –faddh were specified.

The –fmargins[=m,n] option (specify margins for source lines).

The –fmargins option specifies columns from the input file which are examined for
input to the compiler. The compiler ignores text that does not fall in the specified
range.

The –fno-margins options is the default option, and specifies that each entire source
line is to be considered as input.

The –fmargins option, with no arguments, is equivalent to -fmargins=1,72.

Systems/C 45

The –fmargins=m,n form of the option specifies the starting and ending column to
be considered as input. m must be greater than 0 and less than 32761. If ,n is
specified, n must be greater than m and less than 32761. If ,n is not specified, the
compiler uses the remainder of the input line.

–fmargins can be useful when copying source from a mainframe environment where
sequence numbers are preserved in the input lines.

–fmargins does not alter the listing format.

The –fmesg=style option (Specify message style)

The –fmesg=style option is used to indicate which style of message format the com-
piler should employ. Currently, two message styles are supported, microsoft and
sysc.

If the microsoft style is specified, as in -fmesg=microsoft, the messages produced
by the compiler will look similar to those produced by the Microsoft VC++ com-
piler and are suitable for using with Microsoft’s DevStudio integrated development
environment. This is the default style on Windows hosts.

If the sysc style is specified, the message format will be the Systems/C message
format. This is the default format on UNIX, OS/390 and z/OS hosts.

The –fasciiout option (char and string constants are ASCII)

Normally, when the –flinux is not used, the character set employed for character and
string constants is EBCDIC. Specifying the –fasciiout option causes the compiler
to use ASCII values for character and string constants. Note that the Systems/C
library doesn’t support ASCII values for character-specific functions. Also, the
–fasciiout option does not affect character or string constants specified in the C
preprocessor or #pragma statements.

If –fasciiout is specified, the C preprocessor will predefine the SYSC ASCIIOUT
macro to the value 1. Otherwise, SYSC ASCIIOUT will not be defined.

If –fno-asciiout is present after –flinux on the commandline then DCC will generate
EBCDIC string constants on Linux.

The –fno-alias-stmts option (generated ASM has no ALIAS state-
ments)

DCC takes advantage of the assembler ALIAS statement to generate labels that are
longer than 8 characters or contain lower-case letters. Some older assemblers either
don’t support this statement, or have problems in the implementation.

46 Systems/C

When –fno-alias-stmts is employed, the generated assembler source will not contain
ALIAS statements. There are several restrictions imposed when –fno-alias-stmts is
enabled:

1. IBM compatibility mode is not supported.

2. Only non-reentrant code is support — –frent may not be enabled.

3. External names will be truncated by the assembler, also the assembler will
map lower-case letters to upper-case.

4. The Systems/C library may not be used because it assumes lower-case names.

5. #pragma map and #pragma weakalias will not operate as they depends on
ALIAS statements for their implementation.

Even with these restrictions, –fno-alias-stmts can be useful for generating assembler
source that is to be linked with an existing program, particularly when used in
conjunction with the –fshort-names option.

The –fshort-names option (truncate long names)

The –fshort-names option causes the compiler to examine each external identifier. If
the identifier is too long, it will be truncated in the generated assembler source. This
option is typically used in conjunction with the –fno-alias-stmts option to generate
assembler source which can be easily linked with a previously existing program.

In order to differentiate lower and upper-case letters in the generated assembler
source, DCC prefixes upper-case letters with a dollar-sign ($). Thus, the truncation
to 8 characters in the assembler source may not use all of the letters from the C
identifier.

When –fshort-names is enabled, the compiler will generate a warning when an ex-
ternally visible long name is encountered. Note that names which are not externally
visible are not truncated.

–fshort-names is not value with –flinux is specified.

The –fignore-case and –fno-ignore-case options (ignore/don’t ignore
case differences when generating assembly names)

HLASM assembler source is a case-insentive language. Thus, in order to differentiate
lower and upper-case letters in the generated assembler source, DCC prefixes upper-
case letters with a dollar-sign ($). For example, the C function named MyFunc
would appear in the generated assembly source as MyFunc. This symbol would

Systems/C 47

also have an associated ALIAS statement that caused the actual object to contain
the characters MyFunc without the dollar signs.

The –fignore-case option causes the compiler to ignore upper-case letters when gen-
erating assembly labels, and not decorate the assembly label with dollar signs.

When –fignore-case is specified, the generated assembly labels appear as they do
in the C source. Because of this, when –fignore-case is specified the compiler may
generate invalid assembly source if two C symbols only differ in case. For this reason,
the C programmer has to ensure that symbols are unique, regardless of case, when
–fignore-case is specified.

–fignore-case is not valid with –flinux is specified.

–fno-ignore-case can be used to disable –fignore-case.

–fno-ignore-case is the default.

The –fdollar option (allow dollar sign character in identifiers)

According to ANSI standard C, the dollar sign character ($) is not allowed in C
identifiers or preprocessor macro identifiers. When the –fdollar option is specified
DCC will allow the dollar sign character in identifiers and macros.

Use –fno-dollar to disable this option.

The –fatid option (allow commericial-at character in identifiers)

According to ANSI standard C, the commercial-at character () is not allowed in
C identifiers. When the –fatid option is specified DCC will allow the commercial-
at sign character in identifiers, after the first character. The commercial-at is not
allowed as the first character in identifiers to avoid conflicts with the ‘@’ operator.

Use –nofatid to disable this option.

The –fwchar-ucs option (indicate that wide character constants are
UCS-2 or UCS-4.)

The –fwchar-ucs option indicates that wide character string and character constants
are to be generated in the UCS (Universal Character Set) encoding rather than the
target ASCII or EBCDIC encoding.

The UCS-2 character set is used when the –fwchar=2 option is specified, UCS-4 will
be used when –fwchar=4 is specified.

48 Systems/C

–fwchar-ucs is enabled by default when the –fztpf option is specified. On the z/TPF
platform, normal character strings are EBCDIC, but wide character strings are
UCS-4.

–fwchar-ucs can be disabled using the –fno-wchar-ucs option.

The –fwchar=n option (specify the size of wchar t)

The –fwchar=n option specifies the size, in bytes, of the wide character type,
wchar t. By default, the size of wchar t is assumed to be 4 bytes. Allowed values
for n are 2 and 4 (for unsigned short or unsigned long declarations of wchar t.)

The Systems/C library uses a size of 4 for whar t. If another size is selected, the
wide character related functions in the Systems/C library may not operate correctly.

The –fsname=name option (specify section names)

Each compilation requires section names for the various code and data sections the
compiler will produce. These names must be unique for the load module in which
the generated object will participate. By default, the various section names are
taken from the source file name; which can produce duplicate section names in some
circumstances.

The –fsname=name option is used to specify what the section name should be,
allowing for the unique specification of section names and avoiding duplicates. Name
must begin with an alphabetic letter. If the –fshort-name option is used, name must
be 7 characters or less, otherwise name must be 1023 characters or less.

If the specified name is too long, the compiler will truncate it.

The compiler generates both upper- and lower-case versions of the name for various
CSECTs, so the name should not be considered case-specific.

The –fsname option is ignored for linux and z/TPF compilations.

The –fno-sname option (allow PLINK to choose unique section names)

When the –fno-sname option is specified, the compiler produces assembler source
that uses names PLINK later recognizes at pre-link time. In this case, PLINK
maps these names to a name that is unique for the load module. In this way,
individual compilations need not be concerned over the choice of section name.
PLINK guarantees this compilation will have a unique name in the resulting load
module.

Systems/C 49

Using –fno-sname requires the use of PLINK before final linking of the load module
to properly map the various section names.

–fno-sname is enabled if the compiler is reading from standard input (I.e., if no
source file name was specified on the command line.)

The –fno-sname option is ignored for linux and z/TPF compilations.

The –fsnameprefix=char option (specify section name prefix)

When section names are generated, a prefix character is added. The default prefix
character is “@”, so that the code CSECT for a source named “test.c” will be
“@TEST”. Using the –fsnameprefix=char option, you can specify an alternative prefix
character. If no character is provided (i.e., –fsnameprefix=) then the section names
are generated without a prefix.

The –fllgrande option (long long (64-bit) data in ”grande” (64-bit)
registers)

The –fllgrande option is used in 32-bit environments to indicate that operations
involving long long should be accomplished using the 64-bit ”grande” registers
instead of two 32-bit registers.

This is only applicable to 32-bit environments. When the –mlp64 option is enabled,
the compiler naturally uses the 64-bit registers for 64-bit operations.

In 32-bit environments, the compiler assumes that the high order word of 64-bit
registers is not preserved across a function call. Thus any values in a 64-bit register
will be saved and restored across the call.

The –fllgrande option requires the z/Architecture hardware instruction set.

The –fieee option (binary format floating point values and constants)

The –fieee option instructs the compiler to use the Binary Floating Point (BFP)
format for floating point constants and use the binary floating point instructions for
floating point arithmetic calculations. Binary Floating Point format is equivalent
to the IEEE floating point format used in many other hardware implementations.

When the –fieee option is enabled, DCC will convert floating point constant values
into their IEEE format for emission in the generated assembler source. Also, DCC
will use IEEE arithmetic operations for any floating point operations performed
by the compiler at compile time. DCC will also generate binary floating point
instructions for any arithmetic performed at run time.

50 Systems/C

The Hexadec type modifier can be used to provide for floating point values that
are in the IBM hexadecimal floating point format. Such values will be converted to
binary for any operations. Similarly, the Ieee type modifier can be used to provide
binary floating point values if the –fieee option is not enabled.

If –fieee is enabled, DCC will define the macro BFP to "1". C programs may
test for the use of IEEE instructions and constants by testing for the BFP macro.

When –fieee is enabled the IEEEFP=YES parameter will be specified on the DCC
prologue macro to indicate that the runtime default for the compilation is IEEE.

Note that the types Float32, Float32x, Float64, Float64x, Float128 are
always IEEE format values, regardless of the setting of the –fieee option.

The –flinux option enables –fieee.

The –fsyntax-only option (do not generate assembly code)

When the –fsyntax-only option is enabled, the compilation process proceeds through
the optimization phase and then stops. No assembly code is generated, but all
diagnostics up through the optimization phase will be emitted.

This can be useful for ”syntax checking” builds for quick development cycles.

The –fdfp option (Enable support for decimal floating point values)

The –fdfp option enables support for the decimal floating types as defined in the
N1176 draft of ISO/IEC WDTR24732.

The decimal floating point type are Decimal32, Decimal64 and Decimal128.
Unlike HFP and BFP floating point values, decimal floating point types use a base
radix of 10 instead of 16 (HFP) or 2 (BFP).

When –fdfp is specified, the DFP macro will be predefined by the compiler.

For more information, see the section on the decimal floating point types in the
DCC Advanced Features and C Extensions portion of this manual.

The –fmrc and –fno-mrc options (Mainframe or UNIX-style return
codes)

The –fmrc and –fno-mrc options alter the return code returned by DCC.

Normally, on cross-platform (UNIX and Windows) hosts, DCC returns a typical
UNIX-style return code, 0 for success or warnings, 1 for errors. And, on OS/390

Systems/C 51

or z/OS, DCC returns a mainframe-style return code, 0 for no warnings, 4 for
warnings, 8 for errors and 12 for catastrophic failure.

These defaults can be altered by using the –fmrc and –fno-mrc option. When –fmrc
is enabled, DCC will return mainframe-style return codes; allowing for the use of
mainframe-style return codes on a cross-platform host. When –fno-mrc is enabled,
DCC will return UNIX-style return codes, allowing for the use of UNIX-style return
codes on OS/390 or z/OS.

The –ffar=ao and –ffar=oa options (Specify the component order of
far pointers)

far pointers are comprised of two components, the ALET and OFFSET com-
ponents. The –ffar=ao and –ffar=oa options provide for altering the order the
compiler uses for these components The ability to use either order can be helpful
when interfacing to existing programs that assume a different order.

When –ffar=ao is enabled, the compiler uses the [ALET,OFFSET] order.

When –ffar=oa is enabled, the compiler uses [OFFSET, ALET] order.

The default order is –ffar=ao.

The –ffar-align option (align far pointers on doubleword bound-
aries)

Normally, far pointers are aligned on fullword, or 32-bit boundaries. The –ffar-align
option causes the compiler to align far pointers on doubleword, or 64-bit bound-
aries.

The –fpatch and –fno-patch options (generate a patch area)

The –fpatch and –fno-patch options control the generation of a per-compilation
patch area. If –fpatch is enabled, the compiler will generate a patch area named
@@PATCH AREA, which appears at the end of the CODE section. Each 4K region of
text in the generated assembler code will contain an A-CON reference to the patch
area, so it can be readily addressed. Typically, it will appear with other constant
definitions, and will look similar to:

DC A(@@PATCH_AREA)

The size of the generated patch is area determined by computing a percentage of
the size of the generated code, with a minimum size of 32 bytes and a maximum size
of 4096 bytes. The default percentage is 10%, but can be altered by the –fpatchmul
option.

52 Systems/C

The –fpatchmul=n option (alter the size of the patch area)

The –fpatchmul=n option changes the percentage multiplier used in the computation
of the size of a generated patch area. The size of the generated patch area is
computed as a percentage of the size of the generated code. The default percentage
is 10%. To increase the size of the generated patch area, increase the –fpatchmul
value, to decrease it, decrease the –fpatchmul value. Note that the minimum size
for a patch area is 32 bytes, and the maximum is 4096 bytes. The –fpatchmul=n
option implies the –fpatch option.

The –flinux option (enable Linux/390 or z/Linux code generation)

The –flinux option instructs DCC to generate assembler source suitable for use on
Linux/390 or z/Linux . The assembler source will be generated and formatted to be
assembled by the Linux/390 or z/Linux assembler as. Furthermore, some HLASM-
specific features and related options will be disabled and may produce warnings if
used.

This option operates on any host supported by Systems/C, thus, it it possible to gen-
erate Linux/390 or z/Linux assembler source on any supported platform, including
z/OS and OS/390.

The –flinux option implies the –fieee option. On Linux/390 and z/Linux floating
point values and constants are in binary floating point (IEEE) format.

If the –mlp64 option is specified, the generated assembler source should be assembled
using the z/Linux version of as, creating a 64-bit ELF object. Otherwise, it should
be assembled with the Linux/390 version of as, creating a 32-bit ELF object.

The –fvisibility=setting option (set ELF object symbol visibility)

When generating code for either Linux, z/Linux or z/TPF; the compiler produces
assembly source assembled with the GNU GAS assembler. That assembler, in turn,
produces ELF object files.

An ELF object file contain symbols that have a visibility attribute. This attribute
controls the visibility of the symbols during linking. For example, a symbol can
be ”hidden” which means that it is internal to the object and can’t be referenced
during linking.

There are four valid values for the visibility, default, internal, hidden and protected.

This feature should be employed for building shared objects, to manage the symbols
exported by the shared objects avoiding symbol clashes.

Systems/C 53

Unless otherwise specified in the source, the value of the –fvisibility setting applies to
all the symbols in a compilation. The attribute ((visibility ("setting")))
attribute can be used to specifically set a symbol’s visibility.

The default visibility indicates that the symbol is visible to other modules.

The hidden visibility indicates the symbol is ”hidden” within a shared object. Two
symbols of the same name with ”hidden” visibility refer to the same data if they
are linked into the same shared object.

The internal visibility is similar to hidden, but in some ELF environments can
have other special meaning, as afforded by the hardware processor. internal also
indicates that a function can never be invoked from ”outside” a shared object, which
allows the compiler some flexibility in optimizations.

The protected visibility indicates that references to a symbol will only be resolved
within the defining module. The declared symbol cannot be overridden by a same-
named symbol in another module.

The –version option (print the compiler version number on STD-
OUT)

The –version option causes DCC to print the compiler version number on the STD-
OUT output stream. After this is done, the compiler exits, and no other processing
occurs.

The –famode=val option (specify runtime addressing mode)

The –famode option is used to indicate to the compiler what the runtime addressing
mode (AMODE) environment will be. Valid options for val are 24, 31, any and 64.

This option is most meaningful when –mlp64 is also specified. When –mlp64 is spec-
ified, by default, the compiler generates code which assumes the runtime AMODE
will be 64. Thus, the compiler can safely employ the LOAD-ADDRESS (LA) in-
struction to evaluate pointer arithmetic.

If –famode is set to anything other than 64, the compiler will not use LOAD-
ADDRESS for pointer arithmetic when –mlp64 is enabled. This allows the compiler
to generate z/Architecture code which can be executed in any runtime environment.

Also - when –mlp64 is specified for Systems/C compiles, the compiler decorates the
prologue macro for the main() function to indicate to the Systems/C runtime library
that the program should run in an AMODE=64 environment. If –famode specifies
an val other than 64, the compiler will not indicate that the program should be run
in an AMODE=64 environment.

54 Systems/C

The –fc99 option (enable ANSI C99 language features)

The –fc99 option enables new language features found in the 1999 ANSI C standard.

By default, Systems/C is compliant with the 1989 version of the ANSI C stan-
dard. However, Systems/C does support many of the ANSI C 99 standard lan-
guage features when the –fc99 option is enabled. These include support for the
Bool data type, recognition of the ANSI C 99 keywords, support for #pragma
STDC FENV ACCESS, declarations inter-mixed with statements in a block, support
for declaration-clause in for statements, extended initializer designators, compound
literals, flexible array members, and variable length arrays, variadic preprocessor
macros, Pragma, the C99 inline keyword, and further ANSI C99 required diag-
nostics

If –fc99 is specified, the compiler will also pre-define the STDC VERSION macro
as outlined by the ANSI C 99 standard.

Systems/C continues to allow implicit int declarations even when –fc99 is specified.

The –fc11 option (enable ANSI C11 language features)

The –fc11 option enables new language features found in the 2011 ANSI C standard.

When –fc11 is enabled, the compiler supports static asserts, type-generic expres-
sions, and no-return functions.

The –fc23 option (enable ANSI C23 language features)

The –fc23 option enables new language features found in the 2023 ANSI C standard.

When –fc23 is enabled, the compiler will generate warnings when a function is
prototyped or declared with ”old style” headers, some C23 attribute specifiers will
be accepted, ’0b’ constants are supported, the single-quote separator can be used
in integral and floating point constants, ’W’ bit-precise constants are supported as
well as bit-precise data.

The –march=zN option (enable z/Architecture compilation)

The –march=zn allows the compiler to generate code that employs instructions
available on edition N of the z/Architecture hardware architecture.

Values for N are 0 through 13.

The –march=z0 option is implied when –mlp64 or –fztpf is specified.

Systems/C 55

However, for situations where –milp32 is specified, this option allows the compiler
to take advantage of the architecture improvements provided in the z/Architecture
specifications for 32-bit programs. These include all of the improvements made avail-
able in ESA/390 architectures as well as those provided in the specified z/Archtecture
definition.

The –march=zN option should not be specified if your program is intended to operate
on older (pre-z/Architecture) hardware.

For given –march=zN settings, the following table shows which facilities will be
enabled:

z0 –msquare-root
–mhfp-extensions
–mfp-support-extension
–mfp16

z3 –mhfp-multiply-add
–mlong-displacement

z5 –mextended-immediate

z6 –mdecimal-floating-point-facility
–mpfpo-facility
–mfloating-point-support-sign-handling-facility
–mfpr-gr-transfer-facility

z7 –mgeneral-instructions-extension

z9 –mload-store-on-condition
–mdistinct-operands
–mhigh-word-facility
–mfp-extensions

z10 –mmisc-instruction-extensions-facility-1
–mtransaction-facility

z11 –mdecimal-floating-point-packed-conversion-facility

z12 –mmisc-instruction-extensions-facility-2

z13 –mmisc-instruction-extensions-facility-3

The –march=esa390 and –march=esa390z options (enable ESA/390
compilation)

The –march=esa390 allows the compiler to generate code that employs instructions
available on ESA/390 architectures.

If no other –march option is specified, the compiler generates code suitable for a
370-class machine.

56 Systems/C

When the –march=esa390 option is specified, the compiler will generate code that
makes use of the immediate operand instructions and the string-assist instructions.
It will also assume there are 16 floating-point registers available.

The –march=esa390z option enables supprot of ”ESA/390 mode under z/Architecture”
instructions. These instructions were added to the ESA/390 specification when op-
erating in ”ESA/390 mode” on z/Architecture hardware. This includes support for
the MULTIPLY LOGICAL, DIVIDE LOGICAL, ADD LOGICAL WITH CARRY
and SUBTRACT LOGICAL WITH CARRY as well as other instructions.

Depending on your runtime architecture environment, specifying –march=esa390
may allow your programs to execute faster.

The –march=esa390 option should not be specified if your program is intended to
operate on older (pre-ESA/390) hardware.

The –milp32 option (32-bit compilation)

When –milp32 is specified, the compiler treats int, long and pointer data types as
32-bit data types, the ILP32 compilation model.

This is the default, and is historically the compilation model used in mainframe
environments.

The –mlp64 option (64-bit compilation)

When –mlp64 is specified, the compiler treats long and pointer data types as 64-bit
data types, the LP64 compilation model.

For the Systems/C prologue macro, the compiler will add the ARCH=ZARCH option
to the prologue macro invocation, indicating the generated prologue and epilogue
should assume z/Architecture instructions and 64-bit values. If the main() function
is compiled with the –mlp64 option enabled, and no other –famode is specified, the
Systems/C runtime environment will enable a 64-bit AMODE.

The code generated when –mlp64 is specified can be altered using the –famode op-
tion. If –famode=any, –famode=31 or –famode=24 is specified along with –mlp64,
the compiler will not use the LOAD-ADDRESS (LA) instruction for pointer arith-
metic. The LA instruction is dependent on the AMODE at runtime, and thus can’t
be used to perform 64-bit addressing calculations. If any of these –famode options
is specified, the compiler will use 64-bit logical arithmetic instructions to perform
addressing arithmetic. This allows the resulting code to operate in any runtime
environment.

If –flinux is specified, the assembler source produced by the compiler should be
assembled with the 64-bit z/Linux version of the as assembler.

Systems/C 57

When –mlp64 is enabled, the SYSC LP64 preprocessing symbol will be defined.

The chapter on z/Architecture programming contains more detailed information
about the compiler’s z/Architecture support.

The –mafp option (enable/disable use of extended FP registers)

The –mafp option indicates the availability of the extended floating-point registers.
When –mafp is used, FP registers numbered 0 to 15 are assumed to be available.
When –mno-afp is used, only FP registers 0, 2, 4, and 6 will be used. –mno-afp
is the default, but many of the settings such as –mlp64 and –march=z options will
automatically set –mafp because the platform can be assumed to support these op-
tions. To override this setting, the –mno-afp must occur after any other architecture
specifications on the commandline.

The –mfp4 option is a synonym for –mno-afp.

The –mfp16 option is a synonym for –mafp.

The –mlong-double-128 and –mlong-double-64 options (enable/disable
128-bit long double characteristics)

When –mlong-double-128 is specified, the compiler treats a long double data type
as 128 bits in size with the characteristics associated with the extended floating
point data type.

When –mlong-double-64 is specified, the compiler treats the long double data type
as 64 bits, with the same characteristics as the double data type.

The –mlong-double-128 option is the default mode of operating.

The –fztpf option enables –mlong-double-64 to match the configuration of the envi-
ronment there.

If –mlong-double-128 is specified, the compiler predefines the LONGDOUBLE128 pre-
processor macro. If –mlong-double-64 is specified, LONGDOUBLE64 will be prede-
fined.

Note that the type float128 is always a 128-bit floating point value, which may
be either IEEE or HEXADECIMAL floating point depending on the –fieee option
or any Ieee/ Hexadec type modifiers.

58 Systems/C

The –mmvcle and –mno-mvcle options (enable/disable use of the
MVCLE/CLCLE instruction)

The MVCLE (MOVE LONG EXTENDED) and CLCLE (COMPARE LOGICAL LONG EXTENDED)
instructions where introduced as part of the ”Compare-and-Move-Extended Facil-
ity” for the ESA/390 architecture.

By default, the MVCLE and CLCLE instructions are not used, instead a loop of MVC
or CLC instructions is generated. Enabling the –mmvcle option indicates that the
compiler can use the MVCLE and CLCLE instructions in generated code.

The –mextended-immediate and –mno-extended-immediate options
(enable/disable use of extended-immediate facility instructions)

The 5th edition of the z/Architecture hardware architecture introduced the extended-
immediate facility which provides several instructions to improve the use of imme-
diate operand values.

The –extended-immediate option enables the use of these instructions.

The –mno-extended-immediate option can be used to disable the use of these in-
structions.

The –mdistinct-operands and –mno-distinct-operands options (en-
able/disable use of distinct-operands facility instructions)

The 9th edition of the z/Architecture architecture introduced the distinct-operands
facility instructions. These instructions typically have 3 operands, a target and two
source operands.

Because of the flexibility this format provides, the compiler can generate better code
if it can take advantage of these instructions.

The –mdistinct-operands option allows the compiler to use the instructions from the
distinct-operands facilty.

The –mload-store-on-condition and –mno-load-store-on-condition op-
tions (enable/disable use of load-store-on-condition facility instruc-
tions)

The 9th edition of the z/Architecture architecture introduced the load-store-on-
condition facility instructions, which are LOCR, LOCGR, LOC, LOCG, STOC, STOCG.

If –mload-store-on-condition is enabled, the compiler will take advantage of those
instructions where it can.

Systems/C 59

The –mhfp-multiply-add and –mno-hfp-multiply-add options (en-
able/disable use of HFP multiply-and-add facility instructions)

The –mhfp-multiply-add option tells DCC it can use the instructions in the HFP
multiply-and-add/subtract facility, which was added to the 3rd edition of z/Architecture.
These instructions are also enabled by –march=z3 and above, and can be disabled
by –mno-hfp-multiply-add.

The –mlong-displacement and –mno-long-displacement options (en-
able/disable use of long-displacement facility instructions)

The –mlong-displacement option tells DCC it can use the instructions in the long-
displacement facility, which was added to the 3rd edition of z/Architecture. These
instructions are also enabled by –march=z3 and above, and can be disabled by
–no-long-displacement.

The –mgeneral-instructions-extension and –mno-general-instructions-extension
options (enable/disable use of general-instructions-extension facility
instructions)

The –mgeneral-instructions-extension option tells DCC it can use the instructions
in the general-instructions-extension facility, which was added to the 7th edition of
z/Architecture. These instructions are also enabled by –march=z7 and above, and
can be disabled by –mno-general-instructions-extension.

The –mhigh-word-facility and –mno-high-word-facility options (en-
able/disable use of high-word facility instructions)

The –mhigh-word-facility option tells DCC it can use the instructions in the high-
word facility, which was added to the 9th edition of z/Architecture. These instruc-
tions are also enabled by –march=z9 and above, and can be disabled by
–mno-high-word-facility.

The –mhfp-extensions and –mno-hfp-extensions options (enable/disable
use of HFP extensions facility instructions)

The –mhfp-extensions option tells DCC it can use the instructions in the HFP ex-
tensions facility, which was added to ESA/390. These instructions are also enabled
by any z/Architecture setting, and can be disabled by –mno-hfp-extensions.

60 Systems/C

The –fasmcomm=mode option (control the comments in the assem-
bly output)

The –fasmcomm=mode option controls the output of comments in the assembly
source which represent lines from the C source code. mode can be one of none,
source, expanded, or both. If it is none then no comments are generated for C
source lines. If mode is source then comments are generated which reflect the
unprocessed C source code, prefixed with “---”. When expanded is specified com-
ments are generated which reflect the preprocessed (macro expanded) source lines,
prefixed with “***”. If both is specified then the unprocessed C source lines are
present prefixed with “---” and the processed source (when it is different) is present
prefixed with “+++”. The default is -fasmcomm=expanded.

The –fasmlnno option (Include line numbers in C source comments
in generated assembly)

The –fasmlnno option causes the compiler to include line numbers in the C source
comments in the generated assembly.

The default is –fno-asmlnno.

The –fcodepage500 option (Primary source is in EBCDIC IBM-500
encoding)

On EBCDIC-based platforms, the compiler assumes that the primary input source is
encoded in the IBM-1047 or IBM-037 code pages. However, some localities prefer to
use the IBM-500 code pages by default. When the –fcodepage500 option is enabled,
the compiler assumes the input is encoded in the IBM-500 code page. Each input
file is assumed to be in the IBM-500 code page unless a #pragma filetag in the file
specifies otherwise.

The Systems/C include files are provided in the IBM-1047 codepage, and are pro-
tected by ??=pragma filetag("IBM-1047") statements at the beginning of each
file. Thus, source encoded in the IBM-500 code page can safely use the Systems/C
include files, the compiler adjusts appropriately.

When the compiler processes a source file from the IBM-500 codepage, it simply
maps the following bytes to the C characters:

Byte Character
0x4a [
0x4f !
0x5a]
0xbb |
0xba ^

Systems/C 61

This mapping does not apply to bytes in character or string constants.

The –fcodepage500 option is only available on EBCDIC host platforms.

The –fsascdigraphs option (Support alternate digraphs combinations
in input source)

The SAS/CTMcompiler supports an alternate set of digraph character combinations
to replace special characters that may not be available in some EBCDIC environ-
ments. That is, some of the typical characters used in the C character set may not
appear on some EBCDIC terminal keyboards.

The ANSI standard approach to this issue is to employ ANSI standard tri-graph
character sequences; which are fully supported by Systems/C.

However, for aiding in the transition from a SAS/C environment to a Systems/C
environment, the compiler supports compiling sources that contain SAS/C digraphs.

When the –fsascdigraphs option is enabled, the compiler recognizes the following
sequences of digraphs as equivalent to the typical ANSI C characters.

C Character SAS/C digraph
[(left bracket) (|
] (right bracket) |)
{ (left brace) \(or (<
} (right brace) \) or >)
| (inclusive or) \!
~ (tilde) \^

The –fat option (Support @-operator in expressions)

The @ operator is an extension provided by DCC to assist in passing arguments
by-reference to assembly language functions.

The @ operator is similar to the & operator in standard C, in that it produces the
address of the following expression, but can be used on rvalue expressions as well as
lvalue expressions.

See the section on the @ operator for more information about the use of @ in the
DCC Advanced Features and C Extensions portion of this manual.

The default is –fno-at.

62 Systems/C

The –fmin-lm-reg=val option (Set the minimum number of registers
in one LM instruction)

The –fmin-lm-reg=val option determines the minimum number of consecutive load
instructions which will be collected into a single LM or LMG instruction by the com-
piler’s peephole optimizer. The default value is 2.

The –fmin-stm-reg=val option (Set the minimum number of regis-
ters in one STM instruction)

The –fmin-stm-reg=val option determines the minimum number of consecutive store
instructions which will be collected into a single STM or STMG instruction by the
compiler’s peephole optimizer. The default value is 2.

The –fflex option (Enable FLEX/ES-specific optimizations)

The –fflex option tells the compiler it is targetting a FLEX/ES platform and should
make the appropriate optimizations. Currently this option has the same effect as
-fmin-lm-reg=4 -fmin-stm-reg=8.

The –fpack=val option (Specify a default maximum structure align-
ment)

The –fpack=val provides a default maximum structure alignment. Specifying this
parameter is functionally equivalent to specifying #pragma pack(val).

The –fpic option (Generate position independent code, small GOT)

When –flinux or –fztpf options are specified, the –fpic option can be used to cause
the compiler to generate position independent code. The resulting object can then
become part of a Linux or z/TPF shared library. The –fpic option causes the
compiler to generate code assuming a small Global Offset Table (GOT), where it
uses 12 bits of displacement to index into the table. If the GOT grows too large at
link time, then the –fPIC option can be used to indicate that the generated code
should assume a large GOT.

When building for use with the Systems/C runtime, –fpic causes the creation of
code suitable for linking into a shared library. It also enables –frent and –ffpremote,
so that each library can have its own PRV. External symbols will be encoded to
use an extra level of indirection. A reference to external symbol “foo” generates a
Q-con named “&foo”, which will be filled in by the dynamic linker with the address
of the variable, whereever it is resolved from. Likewise, a definition of the symbol

Systems/C 63

causes a definition of the “&foo” Q-con as well. Special reentrant initializer scripts
are emitted so that PLINK and the runtime know what to do with these indirect
symbols.

The –fPIC option (Generate position independent code for Linux &
z/TPF, large GOT)

When –flinux or –fztpf options are specified, the –fPIC option can be used to cause
the compiler to generate position independent code.

The resulting object can then become part of a Linux or z/TPF shared library.

The –fPIC option causes the compiler to use complete displacements into the Global
Offset Table (GOT), allowing for the largest program to be built as a shared library.

The –fuser-sys-hdrmap option (Use user $$HDRMAP for system #includes)

When a #include directive is processed, the file name may be altered depending
on rules in $$HDRMAP files. The system $$HDRMAP files are found as if a #include
<$$HDRMAP> was processed, and the user ones are found as if #include "$$HDRMAP"
was used instead. When –fuser-sys-hdrmap is specified, DCC searches for sys-
tem headers using the rules from both the user and system $$HDRMAP files. When
–fno-user-sys-hdrmap is specified, searches for system headers use only the rules
from the system $$HDRMAP files. In either case, searches for user headers use just
the user $$HDRMAP rules.

–fuser-sys-hdrmap is the default.

The –ffpremote/–ffplocal options (function pointers are remote/local)

By default, function pointers are local. If –ffpremote is specified, then they will be
remote. A remote function pointer contains the PRV to be used for the function,
and it is often needed for shared library situations (where more than one PRV may
be in play at a time). See the section on remote function pointers on page 144 for
more details.

The –fevents=filename option (Emit an IBM-compatible events list-
ing)

The –fevents=filename option causes DCC to generate an event listing in the named
file. Several IBM products use event listings of this format to communicate error
message information between compilers and user interfaces. Using this option, you
may generate an events file for use with any products that share this format.

64 Systems/C

The events file contains 3 types of single-line records:

ERROR 0 A 0 0 B 0 0 0 DCCD E F G H

A The number of the file where the error occurred.

B The line number at which the error occurred.

D The error code.

E A severity, one of I for information, W for warnings, E for errors, or U for
unrecoverable errors.

F The mainframe return code for the error.

G The length of the error message.

H The error message.

FILEID 0 A B C D

A The number of the file that is beginning.

B The line number of the #include that caused this file to be listed.

C The length of the file name.

D The file name for the file that is beginning.

FILEEND 0 A B

A The number of the file that is ending.

B The number of lines processed in that file.

The –fenum=val option (Specify default enumeration size)

The –fenum=val specifies the default enumeration size.

Specifying this parameter is functionally equivalent to specifying pragma enum(val).

The value val can be specified as SMALL, INT, 1, 2 or 4.

Systems/C 65

The –fshort-enums option (Specify smallest enumeration size)

The –fshort-enums option indicates the compiler should choose the smallest possible
type that will contain the range of the enumeration’s values. This is equivalent to
the —fenum=SMALL option.

The –fno-short-enums option specifies enumerations use the type int (4 byte integer)
which conforms to the C standard and is the usually the default unless the target
environment specifies otherwise (e.g. LE environments.)

The –fno-short-enums option is equivalent to –fenum=INT option.

The enumeration size setting can be altered via the pragma enum(val)pragma in
the source.

The –ftest[=name] option (Enable a separate test csect)

The –ftest option enables the creation of a separate CSECT for test (debugging
data). It only has an effect when combined with the –fc370 and –g options (LE370
ISD debugging). The name of the section must be specified either as an argument
to –ftest or with a #pragma csect(test, "name") statement. Most ISD-related
debugging information is put in the test CSECT.

The –fprolkey=key option (Append a global prologue key)

The –fprolkey=key option causes DCC to append key to all DCCPRLG invocations,
as if it had been specified on each function using #pragma prolkey. If #pragma
prolkey and –fprolkey are both specified, they are concatenated.

The –fcommon and –fno-common options (Enable/disable common
linkage for uninitialized globals)

In Linux/390, z/Linux, and z/TPF modes, all defined global data is by default
placed in .data, which is the behavior when –fno-common is specified. However, if
–fcommon is specified then any uninitialized global data is placed in .bss instead.
Definitions in .bss take up less space in the object files and, more importantly, do
not generate linker messages for duplicate definitions.

The –fdfe and –fno-dfe options (Enable/disable dead function elim-
ination.)

Normally the compiler does not generate code for unreferenced static functions. If
the function is declared static but not invoked, or referenced via its address, then
it cannot be reached and thus does not need to be present in the resulting code.

66 Systems/C

This optimization is called ”dead function elimination”.

The –fno-dfe option defeats dead function elimination, so that those functions will
appear in the generated code.

The default if –fdfe. If the –g option is enabled, requesting debuggable code, then
–fno-def will be enabled in case the user wishes to reference such functions during a
debug sessions. –fdfe can be used to re-enable it.

The –fmapat and –fno-mapat options (Enable/disable mapping ’@’
to ’ ’ in external symbol names)

If –fmapat is specified then any at signs (’@’) in #pragma map directives will be
replaced with underscores (’ ’). This option is especially useful in Linux or z/TPF
modes where at signs are not valid in symbol names.

The –fctrlz-is-eof and –fno-ctrlz-is-eof options (Enable/disable treat-
ing control-Z as an EOF character)

On Windows hosts, the character associated with control-Z (0x1A) has traditionally
(since DOS) been used to indicate the end of file. So on Windows hosts we default
to –fctrlz-is-eof so that any files with a control-Z in them will be terminated at
that point. Contents of the file after the control-Z will then be ignored. On all
non-Windows hosts the default is –fno-ctrlz-is-eof, meaning that control-Z will be
treated like any other character in the source code. Note that the C language assigns
no meaning to control-Z so if it occurs outside of a comment it may still generate a
language-level error message.

The –fextended-variadic-macros/–fno-extended-variadic-macros op-
tions (enable/disable GCC variadic macros)

The –fextended-variadic-macros and –fno-extended-variadic-macros options control
support for special GCC extensions to variadic macros. GCC accepts “args...”
to specify that args is the name of the variadic argument, rather than VA ARGS .
GCC also accepts an empty variadic macro argument (the standard requires at least
one element in its list). In addition, they have an extension to the paste operator
(##) if it occurs between a comma and a variadic argument, then the comma will
be elided if the variadic argument is empty. So the macro in the following example
will emit proper syntax even if called with only one argument:

#define FOO(x, ...) bar(x, ## __VA_ARGS__)

Note that GCC variadic macros are enabled by default if –flinux or –fztpf is specified.

Systems/C 67

The –ffnio/–fno-fnio options (enable/disable function names in ob-
jects for debugging)

Often it is necessary to be able to determine which function you are looking at
when reading a memory dump. Some linkages (such as the DCCPRLG macro) provide
this information by default, and others provide it via indirect pointers to debug
information. But if neither of those options is convenient, use –ffnio (function name
in object) to guarantee that a string containing the name of the function will be
present in memory just before the entry point of the function. The default behavior
is to not emit the string, corresponding to –fno-fnio.

The –fhide-skipped/–fshow-skipped options (enable/disable omis-
sion of preprocessor-skipped lines in listing)

The preprocessor will skip certain source lines, due to constructs like #if 0. By
default (–fshow-skipped), these skipped lines will be output in the compiler listing.
However, if –fhide-skipped is specified then they will be omitted from the listing. In
some situations this can make a much more readable –flisting output. These options
only affect the informational listing, and not the generated code.

The –fsigned-bitfields and –funsigned-bitfields options (set default
signedness of bitfields with bare types)

If a bitfield declaration does not specify an explicit signed or unsigned keyword
and –fsigned-bitfields is specified then the compiler will use the signedness inherent
in the type. For example int is a signed type, so int x:1 will define a 1-bit signed
bitfield.

However, if –funsigned-bitfields is specified then DCC will use an unsigned type for
bitfields unless the signed keyword is explicitly specified in the declaration.

If –fztpf or –flinux is specified then –fsigned-bitfields is the default, for compatibil-
ity with gcc. Otherwise, –funsigned-bitfields is the default, as is typical for other
mainframe compilers.

The –fwrapv and –fno-wrapv options (control optimizer wrapping
assumptions regarding signed integer arithmetic)

The C standard indicates that signed integer arithmetic which overflows is undefined
behavior. The compiler can take advantage of that to optimize expressions involving
signed integer arithmetic with the assumption that an overflow cannot occur.

The –fwrapv option indicates that the compiler allows for overflow, and does not ap-
ply those optimizations. The –fno-wrapv option indicates that the compiler assumes
any such overflow is invalid and thus can take advantage of such optimizations.

68 Systems/C

For example, if –fno-wrapv is enabled, then the compiler can replace an expression
like (s + 10 > s) with the expression (1) if s is a signed integer. In this case, the
compiler assumes that (s+10) does not “wrap around.”

If instead –fwrapv is enabled, then (s+10) might wrap around to produce a value
which would compare to less-then s and thus (s + 10 > s) might no longer be
true.

Many implementations assume –fno-wrapv as it is indicated in the langauge stan-
dard, however this can cause difficulty with old non-conforming code that uses that
assumption to determine if an arithmetic operation had overflowed.

Currently –fwrapv is the default.

Enabling –fno-wrapv may provide opportunities for improved optimization at the
cost of breaking older non-conforming code.

The –fwrapv-pointer and –fno-wrapv-pointer options (control opti-
mizer assumptions regarding pointer arithmetic)

Pointer arithmetic is normally assumed to not “wrap around” the address space
as pointer arithmetic overflow is undefined accoring to the standard. With this
assumption, the optimizer can perform some optimizations such as replace (ptr +
10 > ptr) with the value 1.

The –fwrapv-pointer option indicates this assumption cannot be made, that pointer
arithmetic does meaningfully ”wrap around” and is therefore computed modulo the
size of the pointer (32-bits or 64-bits.) In this situation, the assumption that allows
the above optimization cannot be made.

Some older C code uses the “wrap around” assumption to determine if a pointer
arithmetic computation has overflowed the size of a pointer, but the C standard
indicates such an assumption is undefined behavior and such C code is invalid.

The default is –fno-wrapv-pointer, allowing for the best optimizations.

Setting –fwrapv-pointer defeats optimizations that assume pointer arithmetic doesn’t
“wrap around.”

The –fstrict-aliasing option (assume pointers to different types point
to different addresses)

The –fstrict-aliasing option controls assumptions made when dereferencing pointers.
By default, the optimizer and code-generator assumes that any pointer dereference
can potentially alter any aliased values in memory.

Systems/C 69

When –fstrict-aliasing is enabled, the optimizer and code-generator can narrow that
assumption to only being aliased memory that has, approximately, the same type
as the dereferenced pointer.

The aliasing rules assume that types of ’char’ (unsigned or signed) can alias any-
thing, and that unsigned and signed variants of integral types can alias each other.
Otherwise, if the type isn’t the same then it is not aliased. For example, a derefer-
ence of a pointer to ’float’ does not affect a dereference of a pointer to ’int’.

–fno-strict-aliasing is the default.

The –v option (print version information)

The –v option causes DCC to print the version information on the STDERR stream
and exit with a return code of 0.

The –fsched-inst, –fsched-inst2 and –fno-sched-inst options (control
the behavior of the instruction scheduler)

DCC has an instruction scheduler which will attempt to reorganize the instruction
sequence so that any instruction which reads a value in a register is separated
from the instruction which initializes that register. On modern architectures such
as z/Series, this can cause a substantial performance improvement by minimizing
pipeline stalls. The reordered code can be hard to debug, because the point where
one expression ends and another begins is effectively blurred.

By default the compiler uses the setting of –fsched-inst, meaning a single pass of
scheduling is completed just before the compiler is done. In this case, the exact same
instructions are generated as without scheduling, but their order may be changed.

If –fno-sched-inst option disables instruction scheduling, to produce more readable
code. It is the default if –g is specified.

The –fsched-inst2 option causes the compiler to perform an additional pass of
scheduling before register allocation and peephole optimization. This way, schedul-
ing can have a more substantial impact on the generated code. It has the general
effect of making register contention higher, as each register is in use over a longer
span of time. Thus it may result in slightly larger code with more spilled registers.
Because of the high cost of a pipeline stall, it is often faster even so. If you specify
–O3 then that will imply –fsched-inst2.

The –fxref and –fno-xref options (enable/disable cross-reference list-
ing

If –fxref is specified, then the DCC listing will contain an extra section with cross
reference information, indicating where each symbol is read or modified.

70 Systems/C

The –fno-xref option is the default.

The –fsigned-char/–funsigned-char options (Control if char is signed
or unsigned by default)

The –fsigned-char option instructs the compiler to treat the char data type as
signed (range −128 to 127) unless the keyword unsigned is explicitly specified.
The –funsigned-char option instructs the compiler to treat the char data type as
unsigned (range 0 to 255) unless the keyword signed is explicitly specified. The
default is –funsigned-char.

The –fsave-dsa-over-call/–fno-save-dsa-over-call options (Control if
DSA bytes are saved and restored over alternate linkage call)

The –fsave-dsa-over-call option indictes that, for Systems/C mode, the save-chain
area of the DSA should be saved and restored across linkage-OS and linkage-ASM
function calls. These areas are used in the Dignus runtime and can be overwritten
by linkage-OS and linkage-ASM functions.

By default the linkage areas are saved and restored across calls to these alternative
linkage functions.

This option is only meaningful for Systems/C mode, and not applied when the
–flinux or –fc370 options are specified.

The –flinkageospromote/–fno-linkageospromote options (Control pro-
motion of integral parameters smaller than int for linkage-OS)

The –flinkageospromote option controls the promotion of integral-typed formal pa-
rameters the are smaller than int for calls to linkage-OS style functions.

By default, if a prototype declares an integral formal parameter with a size smaller
than sizeof(int) to a function declared with OS linkage, the value will promoted
to an int and a pointer to the int will be passed. This is also the behavior of many
other C compilers in the mainframe environemnt.

If –fno-linkageospromote is specified, this promotion will not be performed, and the
parameter will be a pointer directly to the type specified in the prototype.

Note that for calls that have no prototype in scope, or for parameters involved in
variable parameter lists, the default promotions will occur in which case integral
values with sizes smaller than int will be promoted to int.

Systems/C 71

The –fsource-enc=utf8 and –fsource-enc=ascii options (Select source
character encoding)

The –fsource-enc=utf8 option causes DCC to treat the source input files as UTF-8.
Multi-byte characters will be decoded to the appropriate unicode code point. This
allows unicode to be used in string literals such as u’...’ and u"...". The default
is –fsource-enc=ascii, which treats each byte as a single code point.

These options are only available on ASCII hosts. EBCDIC hosts always use an 8-bit
character encoding.

The –fdwarf-extern and –fno-dwarf-extern options (enable/disable
generation of DWARF data for extern variables)

The –fdwarf-extern option enables the generation of full DWARF location info for
extern variables. The default (–fno-dwarf-extern) is to only generate location info
for locally-defined variables. Note that non-referenced variables will still not have
any debug information generated for them.

The –fgcc-version=ver option (Set a specific GCC version compati-
bility target)

In Linux (–flinux) and z/TPF (–fztpf) modes, DCXX is mostly compatible with
gcc, so that it can use the system headers and libraries. Use –fgcc-version=x.y.z to
specify compatibility with a specific version of gcc. The default compatibility level
is –fgcc-version=4.1.2.

The only version-specific difference supported by DCC is bitfield packing of char
types improved at gcc version 4.4.0.

The –Wswitch-outside-range and –Wno-switch-outside-range options
(check case label range)

When –Wswitch-outside-range is enabled, the compiler will generate a warning if the
constant on a case label is outside of the range allowed by the type of the enclosing
switch-statement.

The compiler determines the allowed range before default integral promotions are
performed on the controlling expression for the switch. A range can be expanded
by adding an explicit cast to a larger type, for example, explicitly casting a (char)
expression to an (int) would indicate the range is that of an (int).

The check can be disabled with –Wno-switch-outside-range, –Wswitch-outside-range
is the default.

72 Systems/C

The optWswitch and Wno-switch options (check enumerations in
switch)

When –Wswitch is enabled, and the controlling controlling expression of a switch
statement is an enumerated type, the compiler will verify that all the enumeration
values appear as case labels in the switch block.

If any are missing and there is no default: label, the compiler will generate a
warning.

The –Wno-switch option will disable this check, and will also disable the –Wswitch-enum
check as if –Wno-switch-enum had been specified.

The –Wswitch-enum and –Wno-switch-enum options (check enu-
merations in switch)

The –Wswitch-enum option is similar to the –Wswitch option, except that the pres-
ence of a default: label does not alter the check.

When –Wswitch-enum is enabled, and the controlling controlling expression of a
switch statement is an enumerated type, the compiler will verify that all the enu-
meration values appear as case labels in the switch block.

If any are missing the compiler will generate a warning, regardless of the presence
of a default: label.

The –Wno-switch-enum option will disable this check, and will also disable the
–Wswitch check as if –Wno-switch had been specified.

The –Wlabel-unused and –Wno-label-unused options (check for un-
used statement labels)

When –Wlabel-unused is enabled, the compiler generates a warning if a label is
defined but not used by the end of the scope.

This option is enabled by default.

The –Wunused-parameter and –Wno-unused-parameter options (check
for unused function parameters)

When –Wunused-paramater is enabled, the compiler generates a warning if a func-
tion defines a parameter, but the parameter is not used within the body of the
function.

This option is disabled by default.

Systems/C 73

The –Wunused-variable and –Wno-unused-variable options (check
for unused variables)

When –Wunused-variable is enabled, the compiler generates a warning if a declared
variable is not used within the body of its scope.

This option is disabled by default.

This option is also enabled by the –Wall option.

The –Wunused-function and –Wno-unused-function options (check
for unused static functions)

When –Wunused-function is enabled, the compiler generates a warning if a static
function is defined, but is not used in the compilation.

This option is disabled by default.

This option is also enabled by the –Wall option.

The –Wincompatible-pointer-types and –Wno-incompatible-pointer-types
options (pointer conversion to incompatible types warning)

The –Wincompatible-pointer-types causes the compiler to generate warnings for con-
versions between pointers to incompatible types. These warnings can be disabled
with –Wno-incompatible-pointer-types.

This option is enabled by default, and can also be enabled by the –Wall option.

The –Wdiv-by-zero and –Wno-div-by-zero options (generate divi-
sion by zero warning)

The –Wdiv-by-zero option enables compile-time warnings for division by zero. A
warning is only generated by integral divisions and Hexadecimal floating point di-
visions by zero. Divisions by zero for IEEE and Decimal floating point are valid
approaches to generating a NaN value and do not produce the warning.

The is option is enabled by default.

74 Systems/C

Assembling the output

For traditional mainframe operating systems (MVS, z/OS, etc...) DCC generates
HLASM-style assembly code which is assembled with either IBM’s HLASM program,
or the Dignus DASM program.

For Linux, z/Linux and z/TPF, the compiler generates output in the GNU GAS
style, and the GAS assembler is used. For information about how to use GAS to
create object files, see the chapter ”Compiling for Linux/390, z/Linux and z/TPF”.

This section describes the programs for building programs for traditional mainframe
operating systems.

Using HLASM

If the intended assembler is IBM’s HLASM assembler, then the –fhlasm option
should be added to the DCC command line. The –fhlasm option causes the compiler
to generate only statements accepted by the IBM HLASM assembler and use none
of the Dignus DASM extensions. Some features of DCC can not be used if the
IBM HLASM assembler is employed to assemble the compiler-generated assembly
source.

To use HLASM to assemble the generated source, the XOBJECT option can be
added to the HLASM parameters. XOBJECT will cause HLASM to generate a
GOFF-format object file that can handle the long names typical of C programs. If
your source contains no long names, and no defined file-scoped variables you may
omit this option and produce OMF-style objects.

Note, to use HLASM maintenance must be up to PTF #UQ72970. If this mainte-
nance is not applied, HLASM will incorrectly indicate errors in ALIAS statements,
or produce incorrect output.

The following is an example of a typical JCL deck for an HLASM jobstep:

//ASM JOB
//ASM EXEC PGM=ASMA90,
// REGION=2M,PARM=’XOBJECT,LIST(133)’
//STEPLIB DD DSN=Systems/ASM load library,DISP=SHR
//SYSLIB DD DSN=CEE.SCEEMAC,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,
// SPACE=(4096,(120,120),,,ROUND),UNIT=O,
// DCB=BUFNO=1
//SYSPUNCH DD SYSOUT=B
//SYSPRINT DD SYSOUT=*
//SYSIN DD DSN=INPUT.SOURCE(MEMBER),DISP=SHR

Systems/C 75

//SYSLIN DD DSN=OUTPUT.OBJECT(MEMBER),DISP=OLD,
// DCB=(BLKSIZE=3120,LRECL=80,RECFM=FB)

Note that if HLASM is invoked with the XOBJECT option enabled, the resulting
object will be in IBM’s GOFF format and cannot be used with the IBM pre-linker.
Unless the Systems/C pre-linker is used, the IBM BINDER will be required to link
the resulting object. Furthermore, if the object contains any external identifiers
which are inappropriate for a PDS, the BINDER will issue a message and always
end with a return code of 8. In this case, the result of the BINDER step should
be written to a PDSE or the HFS. Alternatively, the LET option can be added to
the BINDER, which will allow the object to be written to a PDS, but it will not
affect the return code and will require inspection of the BINDER output to ensure
all references have been correctly resolved.

Another approach is to use the Systems/C PLINK pre-linker’s –p option to process
the generated file, shortening the names. When –p is used with PLINK, all GOFF
and XSD names longer than 8 characters will be reassigned unique shorter names.

Using Systems/ASM

The Systems/ASM assembler (DASM) can be used on cross-platform hosts or
natively on OS/390 and z/OS. The Systems/ASM assembler will generate either
OMF, GOFF or Extended C/370 object files. Extended C/370 object files use XSD
cards instead of ESD cards allowing for external identifiers longer than 8 characters.
GOFF format files also allow for external identifiers longer than 8 characters.

The IBM pre-linker and binder examine the IDR information on END cards to
determine the version of the C compiler which generated the object. The section on
IBM C compatibility in this document describes those requirements in more detail.
The compiler-generated code will properly set the IDR value.

A typical DASM command line on UNIX as shown below.

dasm -o my.obj myfile

Systems/ASM can also be used on OS/390 or z/OS to assemble compiler-generated
assembler source.

For more information, consult the Systems/ASM manual.

Linking Assembled objects on OS/390 or z/OS

For traditional operating system targets, the assembled object decks can be linked
into an executable load module.

76 Systems/C

On cross-platform hosts, where the Systems/ASM assembler is used to produce
objects, the Systems/C pre-linker, PLINK, can create a TSO TRANSMIT file
containing the resulting load module. Or, the objects can be transferred to OS/390
or z/OS via FTP or some other binary-mode transfer mechanism.

To learn more about using PLINK to produce load modules on cross-platform
hosts, consult the Systems/C Utilities manual.

Systems/C contains two versions of the Systems/C library — the RENT version
for generating re-entrant programs and the non-rent version for generating non-re-
entrant programs.

If the source were compiled with the –frent option, the RENT library should be em-
ployed to produce a re-entrant load module. This will require using the Systems/C
pre-linker PLINK during the link step.

If no source was compiled with the –frent option, then the non-rent library should
be used. In that case, it is not necessary to use the Systems/C pre-linker, PLINK.

A note on re-entrant (RENT) programs

Re-entrant (RENT) programs are programs which can safely be linked with the
RENT option applied to the IBM LINKER, and can be placed in the OS/390 or
z/OS LINKLST, etc. They are, generally speaking, programs which do not modify
their own loaded sections, but instead allocate memory to contain program variables
at program start-up.

When a C source file is compiled with the –frent option, the compiler will place all
of the extern and static variables in the pseudo-register vector, the PRV. These
variables are referred to by Q-CON references in the generated assembly source.

The IBM linker gathers all of the Q-CON references together allocating an entry for
each in the PRV. The PLINK utility will also perform this function, which is useful
on older platforms using the older IBM linker (e.g. VSE, VM/ESA and MVS 3.8.)
The older IBM linker does not process Q-CON references correctly, and PLINK will
be required.

At start-up, the Systems/C library allocates the appropriate space for the PRV,
and retains a pointer to the PRV at a known location.

At run-time, a reference to a variable in the PRV uses the PRV pointer and the
value the linker has substituted for the Q-CON, adding them together to produce the
run-time offset for the variable.

An issue arises because of variable initialization allowed by the ANSI C standard.
For example, the address of a variable in the PRV isn’t known until run-time, when
the PRV is allocated, but is a valid file-scoped initialization value.

Systems/C 77

Because of this, the Systems/C compiler, DCC, produces run-time initialization
scripts which the Systems/C library processes at program start up, after the PRV
has been allocated. It is the job of the Systems/C pre-linker, PLINK, to locate the
start of these scripts in each object and gather them together. PLINK then places
a list of these at the end of the resulting object, in a known section. The run-time
library walks the list, interpreting the scripts it finds.

Thus, RENT programs must be processed with the Systems/C pre-linker, PLINK,
to ensure proper run-time initialization of variables located in the PRV.

Using PLINK

PLINK gathers the input objects together, performing AUTOCALL resolution
where appropriate, producing a single file which can then be processed by the IBM
BINDER or older IEWL linker.

As PLINK gathers objects, it examines the defined symbols, looking for a Sys-
tems/C initialization script section and other object file processing that may need
to be performed.

The output of PLINK can then processed by the IBM LINKER or BINDER to
produce the executable load module. On cross-platform hosts, PLINK can also
perform this step, to produce a TSO TRANSMIT file which can be RECIEVE’d on
the mainframe host.

For detailed information on PLINK, see the PLINK section in the Systems/C
Utilities manual.

On cross-hosted platforms (Windows and UNIX), PLINK is typically executed
with the object files listed on the command line; and a –S option or library names
to locate any required library objects.

For example, on a Windows platform the command:

plink "-SC:\sysc\lib\objs_rent\&M" prog.obj

will read the initial input file, prog.obj and examine the C:\sysc\lib\objs rent
directory for any AUTOCALL references. Because no –o option was specified, the
resulting object file is written to the file p.out.

This command, on UNIX platforms:

plink t1.obj t2.obj libone.a -L../mylibs -ltwo

78 Systems/C

will read the two primary input objects t1.obj and t2.obj. It will try and resolve
references from the DAR archive libone.a and then the second DAR archive
../mylibs/libtwo.a

On OS/390 and z/OS, under TSO or batch JCL, PLINK operates similar to the
IBM pre-linker. The resulting gathered object is written to the file //DDN:SYSMOD
unless otherwise specified. PLINK has a default library template of -S//DDN:SYSLIB(%M)
which causes it to look in the SYSLIB PDS for autocall references. Other input ob-
jects, –S library templates or DAR archives may be added in the PARMS option on
the PLINK step. PLINK reads the file //DDN:SYSIN as the initial input file. Typi-
cally, this file contains INCLUDE cards to include the primary objects for the program.
Other primary input files may be included in the PARMS for PLINK. For example,
the following JCL reads the object INDD(PROG) and uses DIGNUS.LIBCR.OBJ as the
autocall library:

//PLINK EXEC PGM=PLINK
//STEPLIB DD DSN=Systems/C load library,DISP=SHR
//STDERR DD SYSOUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCR.OBJ,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
//SYSMOD DD DSN=myoutput.obj,DISP=NEW

Note that the STDERR and STDOUT DDs were specified for PLINK’s message output.
Also, the ARLIBRARY control card could have been used to add additional DAR
archive files for resolving external references.

Systems/C programs can also be pre-linked and linked for the OpenEdition shell.
Under the OpenEdition shell, PLINK operates as it would under any other UNIX
platform. After pre-linking, the final link can be accomplished using the

cc -e // -oprogram plinked-file

command. Where program is the resulting load-module and plinked-file is the pre-
vious PLINK output.

For more detailed information regarding PLINK and the other Systems/C utilities,
see the Systems/C Utilities manual.

For information about running Systems/C programs under the OpenEdition shell,
see the Systems/C C Library manual.

Systems/C 79

Other useful utilities

Systems/C provides other useful utilities. More details and examples of their use
can be found in the Systems/C Utilities manual.

DAR — the Systems/C Archive utility

The Systems/C archive utility, DAR, creates and maintains groups of files combined
into an archive. Once an archive has been created, new files can be added and
existing files can be extracted, deleted or replaced. Files gathered together with
DAR can be used to resolve AUTOCALLed references from PLINK.

DRANLIB — the Systems/C Archive index utility

DRANLIB is used to index a Systems/C archive to allow for AUTOCALL refer-
ences to longer names, or to names which are not dependent on the archive member
name. DRANLIB will create a SYMDEF member in the Systems/C archive which
PLINK will consult when looking for symbolic resolutions.

DPDSLIB — the Systems/C PDS library utility

DPDSLIB is used to index a PDS library on OS/390 or z/OS to allow for AU-
TOCALL references to longer names, or to names which are not dependent on the
PDS member names. DPDSLIB will create a ##SYMDEF member in the PDS which
PLINK will consult when looking for symbolic references.

DCCPC — Dignus CICS Command Processor

DCCPC takes as input C source code containing EXEC CICS commands and gen-
erates pure C source that interfaces with the CICS run-time.

80 Systems/C

Linking programs on OS/390 or z/OS

Before execution, programs must be prepared, optionally using the Systems/C pre-
linker, PLINK, then the IBM BINDER.

Systems/C provides two versions of the Systems/C C library, one for RENT pro-
grams and one for non-RENT programs. If you are using the Systems/C library,
it is important to link with the appropriate version. If any source programs refer-
ence variables found in the Systems/C library (e.g. errno) and that program was
compiled with the –frent option, then the re-entrant version of the Systems/C li-
brary should be used. Using the incorrect version of the library will cause strange
run-time errors. The installation instructions for your particular host platform will
detail where to find the correct Systems/C library. Normally the Systems/C library
is specified as the last library to use for AUTOCALL resolution in the PLINK
step. Furthermore, PLINK must be used for re-entrant programs that use the Sys-
tems/C library or to take advantage of DAR archive libraries for external reference
resolution.

In the following example JCL, there are three objects to link together to form the
resulting executable, MAIN, SUB1, and SUB2, representing a main module and two
supporting sub-modules. These are found in the PDS MY.PDS.OBJ. The resulting
executable is written to MY.PDS.LOAD(MYPROG).

//LINK JOB
//PLINK EXEC PGM=PLINK,REGION=2048K
//STEPLIB DD DSN=Systems/C load library,DISP=SHR
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSLIB DD DSN=DIGNUS.LIBCR.OBJ,DISP=SHR
//SYSMOD DD DSN=&&PLKDD,UNIT=VIO,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//INDD DD DSN=MY.PDS.OBJ,DISP=SHR
//SYSIN DD *
INCLUDE INDD(MAIN)
INCLUDE INDD(SUB1)
INCLUDE INDD(SUB2)

//STDIN DD *
//LINK EXEC PGM=IEWL,REGION=2M,PARM=(’LIST’,
// ’MAP,XREF,LET’,
// ’ALIASES=NO,UPCASE=NO,MSGLEVEL=4,EDIT=YES’)
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLIN DD DSN=*.PLINK.SYSMOD,DISP=(OLD,DELETE)
//SYSLMOD DD DSN=MY.PDS.LOAD(MYPROG)

Systems/C 81

First, the Systems/C pre-linker, PLINK is invoked, specifying the inclusion of the
three object modules and the Systems/C C reentrant library. This step could have
been performed on a cross-platform host, running PLINK there. Then the IBM
BINDER is invoked for final linking and generation of the resulting load module.

82 Systems/C

Running programs

Once a program has been successfully linked, it is a typical OS/390 or z/OS load
module and may be executed via JCL or the TSO CALL command as any other
load module.

The Systems/C library contains no modules that are loaded during program execu-
tion, meaning it is “all-resident.” As such, there are no run-time library concerns,
and no particular modules which must be present in a STEPLIB DD.

The I/O portion of the Systems/C C library reserves file descriptors #0, #1 and
#2 for association with //DDN:STDIN, //DDN:STDOUT and //DDN:STDERR. Thus, the
DD-names STDIN, STDOUT and STDERR must be properly allocated. The Systems/C
C Library manual contains more information regarding file descriptors and I/O.

For more information about the Systems/C run-time environment, consult the Sys-
tems/C C Library manual.

Systems/C 83

84 Systems/C

DCC Advanced Features and C
Extensions

The Systems/C compiler, DCC provides many advanced features. These features
combine to produce a programming environment which is perfectly suited for many
systems programming tasks.

Predefined macros

The Systems/C compiler defines the mandatory macros defined by the C standards.
These are:

DATE The date of the compilation as a string literal in the form
"Mmm dd yyyy".

FILE The name of the current source file as a character string.

LINE The current line number within the current source file.

STDC The integer constant 1.

STDC HOSTED Defined it the –fc99 or –fc11 options are enabled. If –ffreestanding
is enabled, its value will be the integer constant 0, otherwise it
will be the integer constant 1.

STDC HOSTED The integer constant 1 if –fc99 or –fc11 options are set.

STDC VERSION The integer constant 199901L if –fc99 or –fc11 options are set.

TIME The time of the compilation, as a string literal of the form
"hh:mm:ss".

The following predefined macros are defined by the Systems/C compiler.

BFP BFP is defined to 1 if the –fieee option was specified. This
indicates that IEEE floating point values will be generated.

Systems/C 85

DFP DFP is defined to 1 if the –fdfp option was specified. This
indicates that decimal floating point values are supported.

CHAR UNSIGNED CHAR UNSIGNED is defined to 1 if the char data type is un-
signed by default. This is the typical mode of compilation.

COUNTER COUNTER is initially defined to 0 and incremented each time
it is referenced. COUNTER can be useful to create unique
variable names, or within inline assembly language macros.

SYSC SYSC is always defined to the value 1, indicating the source
is being compiled with the Systems/C compiler.

I390 I390 is always defined to the value 1.

SYSC VER SYSC VER is defined to a string containing the Systems/C
compiler version number.

SYSC ASCIIOUT SYSC ASCIIOUT is defined to 1 if the –fasciiout option was
enabled. This indicates that character and string constants will
be generated as ASCII values.

SYSC ANSI BITFIELD SYSC ANSI BITFIELD is defined to 1 if the
–fansi-bitfield-packing option was specified.

SYSC LP64 SYSC LP64 is defined to the value 1 if the –mlp64 option was
specified. This indicates that the compilation is targetted for
the 64-bit z/Architecture.

LP64 LP64 is defined to the value 1 when the –mlp64 option is en-
abled. This indicates that pointers and the long data type are
64-bits wide.

LP64 LP64 is defined to the value 1 when the –mlp64 option is
enabled. This indicates that pointers and the long data type
are 64-bits wide.

SYSC ILP32 SYSC IPL32 is defined to the value 1 when the –mlp64 option
is not enabled. (The –milp32 option turns –mlp64 off.) This
indicates that pointers and the types, int and long are 32-bits
wide.

ILP32 IPL32 is defined to the value 1 when the –mlp64 option is not
enabled. This indicates that pointers and the types, int and
long are 32-bits wide.

ptr31 ptr31 is defined to be ptr32 which is recognized as equiv-
alent to the Systems/C ptr31 keyword.

PTR31 PTR31 is defined to the value 1, indicating this compiler rec-
ognizes the ptr31 and ptr64 keywords.

PTR32 PTR32 is defined whenever PTR31 is defined.

86 Systems/C

int8, int16, int32, int64

DCC supports the int8, int16, int32 and int64 builtin data types similar
to that offered by the Microsoft C compiler. These can be used to declare integers
of 8-bits, 16-bits, 32-bits and 64-bits respectively.

These types are synonyms for types that have the same size. The int8 type is the
same as char, the int16 type is the same as short, int32 is the same as int
and int64 is the same as the long long type. When –mlp64 is specified , int64
is the same as long.

Note that by default, char is unsigned, and thus int8 is unsigned, while the
other types are signed, unless otherwise qualified.

These types are provided for compatibility with Microsoft. The ANSI C standard
declares more appropriate types in the <inttypes.h> header.

grande and regpair long long type modifiers

DCC provides support for operating on long long (64-bit) data in either 64-bit
”grande” registers or two 32-bit registers.

These modifiers are particularly useful for 32-bit environments where it is desirable
to use the 64-bit registers for 64-bit operations instead of the default 32-bit registers.

When –mlp64 is enabled, long long data will use 64-bit registers for all operations
and function return values, unless the regpair modifier is applied.

For 32-bit environments, the compiler assumes that the high-order-word of 64-bit
registers is not maintained across function calls, thus any value retained in a long
long grande variable will be saved before the function call and restored after-
wards.

long long 64-bit operations are performed in the default mode, which is controlled
by the –fllgrande option.

If –fllgrande is enabled, then any long long repair values will be converted to
long long grande values for the operation. Similarly, if –fllgrande is not en-
abled any long long grande values will be converted to long long regpair
to perform the operation.

For conditional expressions, if both the 2nd and 3rd operand are the same type, the
result is that type, otherwise the operands are converted to the default type.

The grande and regpair modifiers only apply to long long data types.

long long grande data requires z/Architecture hardware support.

Systems/C 87

ISO/IEC TS 18661-3:2015 floating point interchange and
extended types

DCC supports the types described in the ISO/IEC TS 18661-3:2015 document, the
floating point interchange types Float32, Float64 and Float128 as well as the
extended Float32x and Float64x types. DCC also supports the constant suffixes
”F32”, ”F32X”, ”f32”, ”f32x”, ”F64”, ”F64X”, ”f64”, ”f64x”, ”F128”, ”f128” to
indicate constants of the various types.

These are always IEEE values.

Operations involving those values will be accomplished using IEEE floating point
instructions. And, conversions follow the rules described in the ISO/IEC TS 18661-
3:2015 document.

DCC does not yet support the Decimal versions of the extended types.

For more information, consult ISO/IEC TS18661-3:2015.

Ieee and Hexadec type modifiers

DCC provides support for both IBM hexadecimal and IEEE binary floating point
numbers in the same compilation. A specific floating point type can be described
using the Ieee or Hexadec type modifiers.

For example:

double _Ieee ivar;

declares ivar to be an 8-byte binary floating point variable.

Similarly,

float _Hexadec fvar;

declares fvar to be an 4-byte hexadecimal floating point variable.

The –fieee option controls the default type used for floating point operations and
default promotions.

If –fieee is enabled then binary floating point arithmetic will be used and any hex-
adecimal values will be converted to binary values of the same size to accomplish
the operation. Similarly, if –fieee is not enabled, then hexadecimal floating point

88 Systems/C

arithmetic will be used, and any binary values will be converted to hexadecimal
values of the same size to accomplish the operation.

The –fieee also controls the type used for default promotions, which are used when
invoking a function where no prototype is in scope, or a function with a variable
argument list. If –fieee is enabled, then hexadecimal value arguments will be con-
verted to binary values. If –fieee is not enabled, then binary value arguments will
be converted to hexadecimal values.

For conditional expressions, if the types of the 2nd and 3rd operands are not the
same, then the –fieee option controls the result type. For example, in this expression:

int i;
double _Ieee b1, b2;
double _Hexadec h;
...
h = i ? b1 : b2;

b1 and b2 are of the same time, so the type of result of the conditional expression is
double Ieee. This result would then be converted to a hexadecimal floating point
value for assignment to h1. But, in this example:

int i;
double _Ieee b1;
double _Hexadec h1;
double d;
...
d = i ? h1 : b1;

the 2nd and 3rd operand types do not match. If the –fieee option is enabled, then
h1 will be converted to a binary double. If the –fieee option is not enabled, then b1
will be converted to a hexadecimal double.

The Ieee and Hexadec type modifiers only apply to the floating point types,
float, double, long double and float128.

float128 floating point type

DCC supports the tt float128 type which is a 128-bit floating point value. It is
always 128 bits regardless of the setting –flong-double-64 compiler option.

The type may be IEEE or Hexadecimal depending on the setting of the –fieee option,
or the Ieee and Hexadecimal modifiers can be used at the declaration to indicate
a preference.

Systems/C 89

attribute

DCC supports the attribute extension found in the gcc compiler. This ex-
tension is used to provide attributes on declarations outside of the scope of the C
standard. Attribute-clauses may be placed at the end of structure/union defini-
tions, within structure member lists, after variable declarations and within function
declarations, or anywhere a type qualifier/specifier can be used.

An attribute-clause has the form:

__attribute__((value))

notice that two parenthesis are required.

Unrecognized attribute clauses are silently ignored.

alias attribute

attribute ((alias("name"))) applies to declarations of symbols, and provides
the name of another symbol which will provide the actual definition. For example:

void foo(void) { }
void __attribute__((alias("foo"))) bar(void);

In this example, foo would be defined as a regular function, and then the declaration
of bar would produce a new symbol bar which would just refer to the same defined
function foo.

Note that on many platforms there is no way to make an alias of a reentrant symbol.

aligned attribute

The attribute ((aligned(n))) applies to a variable, a structure field member,
or a type.

When applied to a variable, it specifies the minimum alignment requested for the
variable and similarly for a structure field member.

For example:

struct aligned_struct int x[2] __attribute__((aligned(8))); ;

90 Systems/C

causes the array x to request 8-byte alignment. Furthermore, as that field is 8-byte
aligned, the entire structure will be 8-byte aligned.

The aligned attribute can also apply to types, as in:

struct S short f[3]; __attribute__((aligned(8)));

In this situation, the array structure member f would require 6 bytes, as each short
requires 3 bytes. But the entire struct S structure type would require an 8-byte
alignment.

The aligned attribute can only be used to increase the alignment, never reduce it.
The Packed, #pragma pack, or the pack attribute can be used to reduce alignments.

constructor/destructor attributes

attribute ((constructor)) applies to function definitions, and indicates that
the given function is a constructor-type function and should be executed when C++
constructors are executed, prior to the invocation of the main function.

attribute ((destructor)) applies to function definitions, and indicates that
the given function is a destructor-type function and should be executed when C++
destructors are executed, after the main function has returned or exit has been
called.

For example, the following source declares two functions, construct and destruct,
which will be executed along with C++ constructors and destructors appropriately:

void __attribute__((__constructor__)) construct(void)
{

printf("I am executed along with C++ constructors\n");
}

void __attribute__((__destructor__)) destruct(void)
{

printf("I am executed along with C++ destructors\n");
}

deprecated attribute

The attribute ((deprecated)) attribute can appear after a declaration of a
function, variable or typedef. Subsequent uses of the declared symbol will cause
the compiler to generate a warning message, indicating the symbol is deprecated. If

Systems/C 91

possible, the message will also contain the file name and line number of where the
symbol is declared so the user can refer to the declaration for more information.

An optional constant string message may also be specified, in which case the syntax
is attribute ((deprecated(msg))). If the msg is specified it will be included
in any generated warning message.

unavailable attribute

The attribute ((unavailable)) attribute can appear after a declaration of a
function, variable or typedef. Subsequent uses of the declared symbol will cause
the compiler to generate a error message, indicating the symbol is not availble. If
possible, the message will also contain the file name and line number of where the
symbol is declared so the user can refer to the declaration for more information.

This can be useful when a previously support, or deprecated interface is no longer
supported.

An optional constant string message may also be specified, in which case the syntax
is attribute ((unavailable(msg))). If the msg is specified it will be included
in any generated warning message.

mode attribute

The attribute ((unavailable)) attribute can

attribute ((mode(value)) can apply to any numeric or pointer type, and serves
to force a specific size on a type, irrelevant of the underlying type. Supported modes:

Mode Bits
byte 8
word 32 or 64 depending on pointer mode

pointer 32 or 64 depending on pointer mode
QI 8
HI 16
SI 32
DI 64

The IBM-provided headers for z/TPF use modes SI and DI as alternatives to the
ptr31 and ptr64 keywords to specify a pointer size. For example:

void *__attribute__((mode(SI))) voidptr32;
void *__attribute__((mode(DI))) voidptr64;

92 Systems/C

noinline attribute

The noinline attribute applies to function definitions and indicates the function
should not be inlined when compiling with optimization enabled.

noreturn attribute

The noreturn attribute applies to function declarations and indicates the given
function does not return to its caller. For example, several standard C library
functions, such as abort and exit do not return to their caller.

The noreturn attribute allows the compiler to assume that code after the function
call is unreachable. This can improve optimizations and messages.

The noreturn attribute does not affect the exceptional path when it applies, a
function marked with noreturn may still return from the caller by throwing an
exception or calling longjmp.

It does not make sense for a noreturn function to have a return type other than
void.

packed attribute

attribute ((packed)) applies to struct and/or union definitions. If
attribute ((packed)) appears after the structure or union definition, it indi-

cates that the elements within the structure should be allocated without regard for
their alignment requirements. Thus, the elements in the structure are ”packed”
together without any alignment bytes. Consider, for example, this structure

struct unpacked {
char c;
int i;

};

The sizeof operator applied to struct unpacked would result in a value of 8,
because the alignment of int data requires that it be allocated on a 4-byte boundary.
Thus, there are 3 extra bytes of padding between the fields ‘c’ and ‘i’.

However, if the attribute ((packed)) attribute is applied, as in this example:

struct packed {
char c;
int i;

} __attribute__((packed));

Systems/C 93

then sizeof applied to struct packed would result in a value of 5, 1 byte for
the field ‘c’ and 4 bytes for the field ‘i’. The fields in the structure are allocated
without regard for their alignment requirements, and are ”packed” together as close
as possible.

used attribute

attribute ((used)) applies to function definitions, and indicates that the given
function is used and should not be elided by the compiler, even though it may not
appear to be referenced.

This is helpful for a static functions that are referenced from in-line assembly code.

weak attribute

A symbol may be modified with attribute ((weak)) to indicate that it should
use weak linking. For a defined symbol, weak linking indicates that multiple defi-
nitions of the same symbol are to be silently ignored. For an undefined (extern)
symbol, weak linking indicates that there should be no linker error message if the
symbol has no definition. Function and variable symbols can both be weak. Weak
linking is very dependent upon the linker used. On some platforms, a missing weak
symbol can be detected by comparing the address of the symbol to 0. Example:

extern int __attribute__((weak)) weakvar;
int is_weak_defined(void) {

if (&weakvar == (int *)0) {
return 0; /* not defined */

} else {
return 1; /* is defined by another comp unit */

}
}

visibility attribute

ELF linkage attributes can be controlled with attribute ((visibility("mode"))).
The valid visibility modes are default, hidden, protected, and internal. Their
meaning is defined by the linker. Note that they only have an effect when –flinux
or –fztpf is in effect, as other platforms do not use ELF.

For shared libraries, it may be useful to have symbols default to hidden except
for a few which are explicitly exported. This can be accomplished by putting
–fvisibility=hidden on the command line and then marking individual definitions:

int this_is_hidden;
int __attribute__((visibility("default"))) not_hidden;

94 Systems/C

FUNCTION

DCC supports a “predefined” identifier named FUNCTION . FUNCTION is sim-
ilar to the C pre-processor identifier LINE except that it is processed during the
compilation-phase instead of the preprocessing-phase.

During compilation, FUNCTION is replaced by a string constant that contains the
name of the current function.

If FUNCTION identifier occurs outside of function scope, it is replaced with the
empty string, "", and a warning is issued.

FUNCTION is different from the ANSI-defined func identifier. func is de-
fined to be a single instance within a function of locally declared array of characters
which is initialized to the string constant. Thus, every occurrence of func is
guaranteed to address the same array within the function. Since FUNCTION is
simply directly replaced with a string constant, each occurrence could potentially
address different versions of the string.

Packed Qualifier

The Packed qualifier may appear on structure or union definitions. It specifies
that data elements within a structure/union be aligned on 1 bit boundaries instead
of their normal alignment. That is, no inter-element padding will be introduced
between data elements, the elements will be packed together. All structure/union
elements will be on byte-aligned boundaries. Although Packed may appear in any
type, it is only effective on structure or union definitions. Packed applied to a
structure declaration has no effect.

This not only alters the inter-element alignment, but affects the size of the entire
structure/union. In C, structures have an alignment which is the maximum align-
ment required of any data element. The Packed keyword causes the maximum
alignment to be 1 bit, thus making the entire structure alignment 1 bit.

Because structure data elements in a packed structure do not fall on their usual
aligned boundaries, access to these elements via . and -> may be slower.

Packed affects only the first-level data elements of a structure. Structure and unions
within a structure are not affected.

For example, in the following structure definition:

_Packed struct packed_tag {
short two_byte_integer;
double eight_byte_double;

} packed_struct;

Systems/C 95

The field two byte integer in the variable packed struct will begin at offset 0 in
the structure, and the field eight byte double will begin at byte offset 2, instead
of its normal, aligned offset of 8. Furthermore, the size of this structure will be 10
bytes, instead of its normal aligned size of 16.

The Packed qualifier applies to the definition of a structure or union, not the
declaration. Thus, the same structure type may be access with or without the
Packed qualifier. Packed and non-packed versions of the structure will have different
storage layouts.

The Packed qualifier is meaningful for parameter types and structure or union
assignments. Parameters must match in terms of the Packed qualifier when a
prototype for the function is in scope. Also, Packed and non-packed versions of the
same structure may not be assigned to each other.

Packed will only alter alignment when used on structure or union definitions.

Anonymous Structures

Anonymous structures are an extension present in the Microsoft C compiler. Anony-
mous structures are not part of the ANSI C standard.

Anonymous structures are disabled by default, but can be enabled with the –fanonstruct
compiler option, or using the #pragma anonstruct pragma.

When anonymous structures are enabled, a structure or union variable can be de-
clared within another structure or union without giving it a name. The members
of the inner structure or union can be directly accessed as if they were members of
the outer structure or union.

For example:

/* Example of an anonymous structure */
struct phone
{
int areacode;
long number;

}

struct person
{
char name[30];
char sex;
int age;
int weight;
struct phone; /* Anonymous structure, no name needed */

96 Systems/C

} Jim;

Jim.number = 1234567;

type-generic expressions

When the –fc11 option is enabled, the compiler supports the ANSI C11 type-generic
expression facility.

A type-generic expression is not a C expression that involves data, but rather it
involves the types of data. The keyword Generic is used to indicate a type-generic
expression. In general, these are similar to a ”switch-statement” for types. The
syntax is:

generic-selection: Generic (assignment-expression , generic-assoc-list)

generic-assoc-list: generic-association
generic-assoc-list , generic-association

generic-association: type-name : assignment-expression
default : assignment-expression

The first assignment-expression is called the ”controlling expression”, it is not
evaluated. Rather it’s type is compared with the types in each of the generic-
associations. If the type is compatible, then the given assignment-expression is
evaluated.

For example, a type-generic cbrt macro might be written as:

#define cbrt(X) _Generic((X), \
long double: cbrtl, \
default: cbrt, \
float: cbrtf \
)(X)

If the type of X is long double then cbrtl would be invoked, if it is float then
cbrtf would be invoked, otherwise cbrt is invoked. All are passed the argument X.

static assertions

When the –fc11 option is enabled, the compiler supports the ANSI C11 Static assert
declaration. This declaration is used to accomplish a compile-time assertion, that if
false, causes an error message.

Systems/C 97

A Static assert declaration has the syntax:

Static assert (constant-expression , string-literal) ;

Where constant-expression is a compile-time integral constant expression, and string-
literal is a compile-time string literal.

The compiler will evaluate the constant-expression, if it has the value 0 then an
error message is produced that includes the text from string-literal.

For example:

_Static_assert(sizeof(int) == 4, "sizeof(int) must be 4");

will produce a compile-time error diagnostic if the size of int is not 4.

The rent and norent qualifiers

extern or static storage class variables my be qualified with either the rent
and norent keyword. This allows for fine control over the location of any specific
variables, regardless of the –frent or –fno-rent option settings.

When –frent is enabled, all extern and static variables will be placed in the Pseudo
Register Vector, the PRV, and could require a costly run-time initialization. If a
variable is const and the initialization is appropriate, the variable need not reside in
the PRV and the initialization can occur at compile time, saving run-time startup
costs.

For example, the following declares an array of integers that are never written to,
and thus can be initialized at compile-time instead of run-time. Application of the
norent keyword will ensure this array is not allocated in the PRV:

__norent const int array[10] = { 1, 2, 3, 4, 5, 6 };

Note that if an element of the array is modified at run-time, the program will no
longer be re-entrant. Because of the const keyword; the compiler will emit a warning
message if it discovers a potential modification of the array.

The inline keyword

When the inline keyword is specified for a function, it instructs the compiler that
this function is a candidate for inlining. The –finline option can be used to fine tune
function inlining, including instructing the compiler to attempt to inline functions
without the inline keyword.

98 Systems/C

The @ operator

The @ operator is a C language extension that produces the address of its operand
expression, similar to the normal C language & operator.

However, while & only operates on lvalue expressions, @ can operate on any expres-
sion.

In the contexts where & is valid, @ is the same as &.

If the expression operand to @ is an rvalue expression, @ will copy the expression to
an automatic-storage temporary and use the address of the temporary.

Furthermore, if the operand to @ is an array, the result is different than &. & applied
to an array produces the address of the first element of the array. However, @
applied to an array produces the address of an automatic temporary which contains
the address of the array. Note that C string constants are arrays, so that @"STRING"
does not produce the address of the string constant, but the address of a temporary
which points to the string constant.

The @ operator can be used anywhere within the body of a function. Because it
creates an automatic temporary in some situations, the @ operator cannot be used
at file scope (e.g. cannot be used in file-scope or static initializations.)

The @ operator can be employed to assist in parameter passing when invoking non-C
language functions (e.g. assembly functions) that expect pass-by-reference parame-
ters instead of the typical C pass-by-value parmeters.

Statement Expressions

Statement expressions are a gcc extension supported by Systems/C. A statement
expression allows for the general semantic power of a compound statement to be
used within an expression. This can be especially powerful when combined with
DCC’s in-line assembly feature.

A statement expression is a compound statement enclosed in parentheses and may
appear anywhere an expression may be used. The compound statement within a
statement-expression may contain loops, switchs, local variables.

The value of a statement expression is the value of the last expression within the
compound statement.

For example, the max macro is typically defined

#define max(a,b) ((a) > (b) ? (a) : (b))

Systems/C 99

This macro evaluates the macro arguments a and b more than once. If these ex-
pressions contain side effects, then unexpected results may occur.

Using statement expressions, an int version of this macro could be defined that
evaluated its operands only once:

#define maxint(a,b) \
({int _a = (a), _b = (b); _a > _b ? _a : _b; })

(Note that the variable names a and b were used to avoid conflicts with any
potential user-defined identifiers.)

The value of this statement expression would be the value of the last expression,
which in this example is the conditional expression comparing a and b.

typeof operator

The syntax of typeof is similar to sizeof. The the result of typeof is a
type that can be used anywhere a typedef’d type could be used.

The operand of typeof can be either a type or an expression.

For example, this declares y to be the type that x points to:

__typeof__ (*x) y;

typeof can be useful in constructing macros that operate regardless of the type
of their parameters.

bit sizeof and bit offsetof operators

DCC supports two operators to determine the bit size and offset of structure fields:

__bit_sizeof expr
__bit_offsetof(type, field)

They are meant to be used on bit fields, but work on regular fields as well. The
expr must be a structure field reference, either the . or -> operator. The result of
bit offsetof is measured from the beginning of the structure. The result can be

used in constant contexts, for example to define enum values or array dimensions.

Example usage:

int bits = __bit_sizeof ((struct foo *)0)->field;
int offset = __bit_offsetof(struct foo, field);

100 Systems/C

Binary constants with the ‘0b’ prefix

Integer constants can be expressed in binary form, a sequence of 0 and 1 values
when the 0b or 0B prefix is used.

For example:

i = 0b101010;

places the value 42 (decimal) into the variable i.

A binary constant is of (unsigned int) type unless it’s type is explicitly specified
by the optional L, LL, U, UL and ULL suffixes.

Omitted operand in conditional expressions

DCC supports omitting the second operand of a conditional expression. If the
second operand (the ”true” expression) is omitted, then the first operand (the ”test”
expression) is used.

For example, the expression:

a ? : b

has the value of ‘a’ if ‘a’ is non-zero. The expression has the value of ‘b if ‘a is zero.

This is equivalent to:

(t = (a)) ? t : b

Note that ‘a’ is only evaluated once, and a temporary placeholder is used for the
”true” expression. This can be very useful in writting macro definitions where
multiple evaluations of a macro operand must be avoided. Or, when side-effects
need to be considered. The test operand’s value is not recomputed, but saved in a
temporary.

Systems/C 101

Local labels

Local lables provide a mechanism for defining a label with a local lexical scope. The
C standard defines labels as having function scope, thus two labels cannot have the
same name. Using local labels, the same label name can be used in an inner lexical
scope without conflict. The name is only valid until the end of the scope.

This facility can be very useful in writing macros that need to generate labels.

Local labels are declared using the label statement. A label statement can
only appear at the start of a lexical scope, before any declarations or statements.

A label statement begins with the label keyword followed by a comma-
separated list of label identifiers and an ending semicolon. For example:

__label__ a, b;

In the following example, two local labels of the same name are declared in two
distinct inner blocks:

void func(void)
{

{
__label__ x;
goto x;
x:;

}
{
__label__ x;
goto x;
x:;

}
}

Using local labels can be helpful in macros where a label may be needed but can’t
conflict with a label in the function; or if the same macro is intended to be invoked
many times in a given function.

asm (“name”) qualifier on function declarations

The GNU extension asm ("name") can be applied to function declarations to
alter the name used in the generated object file.

The specification appears after the parameter section of a function declaration. For
example:

102 Systems/C

extern int func() __asm__("FUNC");

will cause the name FUNC to be used when the func function is referenced or defined.

This is equivalent to the #pragma map facility for mapping function names.

builtin macros and functions

The C compiler supports several builtin preprocessor macros and builtin functions.

has builtin (ıoperand)

has builtin is a predefined C preprocessor macro that determines if the C com-
piler recognizes ıoperand as a builtin function or identifier. If it is recognized, it
evaluates to a constant one, otherwise it is zero. It is a predefined macro, and can
be used in preprocessor expressions, and its availability can be determined with #if
defined(has builtin) .

builtin alloca

void builtin alloca(size t) Used to invoke allocate additional stack space.

builtin bswap16

uint16 t builtin bswap16(uint16 t) Performs byte swapping on a 2-byte value.
This will use machine instructions when allowed.

builtin bswap32

uint32 t builtin bswap32(uint32 t) Performs byte swapping on a 4-byte value.
This will use machine instructions when allowed.

builtin bswap64

uint64 t builtin bswap64(uint64 t) Performs byte swapping on a 8-byte value.
This will use machine instructions when allowed.

Systems/C 103

builtin isdigit

void builtin isdigit(int) Implements the isdigit() function directly. Note
that the C standard requires that the digit characters be consecutive starting at
the ’0’ character, and that they are not affected by the locale setting. Thus,
builtin isdigit can safely be expanded by the compiler.

If the argument value is constant, this produces a constant result.

builtin memcpy

void * builtin memcpy(void *dest, const void *src, size t len) Implements
the C standard memcpy function.

builtin mempcpy

void * builtin mempcpy(void *dest, const void *src, size t len) Imple-
ments the POSIX standard mempcpy function.

builtin memset

void * builtin memset(void *dest, int val, size t len) Implements the C
standard memset function.

builtin memcmp

int builtin memcmp(const void *src1, const void *src2, size t len) Im-
plements the C standard memcmp function.

builtin prefetch

void builtin prefetch(const void *addr, ...) Indicates the given address
will be referenced to reduce cache latency. When the architecture level supports
prefetch instructions they will be generated to indicate the data should be made
available for a subsequent reference.

ıaddr provides the address of the memory.

builtin prefetch also accepts two optional arguments, a compile-time constant
integer ırw that indicates read or write access, and compile-time constant integer

104 Systems/C

ılocality that indicates temporal locality. ırw can be the value 0 to indicate prepara-
tion for read access, 1 for write access. The default is 0. ılocality can be the value 0,
1, 2 or 3. A value of 3 indicates the memory has a high degree of temporal locality
(will be referenced soon) and should be kept in all levels of the cache.

Data prefetching does not cause a fault if the specified ıaddr is invalid; but the
expression itself must be valid to be evaluated.

If the target architecture level does not support the prefetch instructions, the ıaddr
expression is still evaluated to handle any potential side effects.

builtin frame address

builtin frame address returns the address of the frame for the current function.

builtin frame address accepts one integer argument, which specifies the frame
to examine. A value of 0 indicates the current frame, a value of 1 indicates the
previous frame, etc...

Calling the function with a non-zero argument is not supported, because the com-
piler can’t ensure that the caller has the required frame environment for walking
back. Thus, the function is limited to only returning the frame for the current
function.

builtin return address

builtin return address returns the return address of the current function, or
one of its callers. builtin return address accepts one integer argument, which
indicates the number of frames to scan backward looking for a return address.

In LINUX mode, builtin return address can only provide the return address
of the current function, and will only accept a constant zero as its argument.

In other modes, builtin return address assumes standard system linkage (R13
addresses either a 31-bit or 64-bit standard save area) when walking back the pre-
scribed number of frames.

Invoking builtin return address with anything other than a nonzero argument
can have unpredictable results, depending on how the current function was invoked.

builtin extract return address

builtin extract return address is used to ”clean up” the value returned from
builtin return address. builtin extract return address accepts a void *

parameter and returns void *.

Systems/C 105

On some architectures and environments, the value from builtin return address
can contain extra information. For instance, in AMODE 31 on the z/Architecture,
the AMODE bit will be set. builtin extract return address will clear that bit
to provide an absolute address; only for 31-bit compilations.

In all other situations builtin extract return address simply returns the un-
altered pointer parameter.

builtin stpcpy

int builtin stpcpy(char *dest, const void *src) Implements the POSIX
standard stpcpy function.

builtin strcpy

int builtin strcpy(char *dest, const void *src) Implements the C stan-
dard strcpy function.

builtin strlen

size t builtin strlen(const char *src) Implements the C standard strlen
function.

builtin strcmp

int builtin strcmp(const char *src1, const char *src2) Implements the
C standard strcmp function.

builtin strcat

char * builtin strcat(char *src1, const char *src2) Implements the C stan-
dard strcat function.

builtin strchr

char * builtin strchr(const char *src, int val) Implements the C stan-
dard strchr function.

106 Systems/C

builtin strrchr

char * builtin strrchr(const char *src, int val) Implements the C stan-
dard strrchr function.

builtin strncat

char * builtin strncat(char *dest, const char *src, size t len) Imple-
ments the C standard strncat function.

builtin strncmp

char * builtin strncmp(const char *src1, const char *src2, size t len)
Implements the C standard strncmp function.

builtin stpncpy

char * builtin strncpy(char *dest, const char *src, size t len) Imple-
ments the POSIX standard stpncmp function.

builtin strncpy

char * builtin strncpy(char *dest, const char *src, size t len) Imple-
ments the C standard strncmp function.

builtin strpbrk

char * builtin strpbrk(const char *str, const char *src) Implements the
C standard strpbrk function.

builtin fabs

double builtin fabs(double) Implements the C standard fabs function.

builtin fabsf

float builtin fabs(float) Implements the C standard fabsf function.

Systems/C 107

builtin fabsl

long double builtin fabsl(long double) Implements the C standard fabsl
function.

builtin abs

int builtin abs(int) Implements the C standard abs function.

builtin labs

long builtin labs(long) Implements the C standard labs function.

builtin popcount

int builtin popcount(unsigned int) Returns the number of 1-bits in the pa-
rameter.

builtin popcountl

int builtin popcountl(unsigned long) Returns the number of 1-bits in the
parameter.

builtin popcountll

int builtin popcountll(unsigned long long) Returns the number of 1-bits
in the parameter.

builtin clz

int builtin clz(unsigned int) Returns the count of leading zero bits in the
parameter. Returns the parameter size (in bits) if all bits are zero.

builtin clzl

int builtin clzl(unsigned long) Returns the count of leading zero bits in the
parameter. Returns the parameter size (in bits) if all bits are zero.

108 Systems/C

builtin clzll

int builtin clzll(unsigned long long) Returns the count of leading zero bits
in the parameter. Returns the parameter size (in bits) if all bits are zero.

builtin ctz

int builtin ctz(unsigned int) Returns the count of trailing zero bits in the
parameter. Returns the parameter size (in bits) if all bits are zero.

builtin ctzl

int builtin ctzl(unsigned long) Returns the count of trailing zero bits in the
parameter. Returns the parameter size (in bits) if all bits are zero.

builtin ctzll

int builtin ctzll(unsigned long long) Returns the count of trailing zero bits
in the parameter. Returns the parameter size (in bits) if all bits are zero.

builtin ffs

int builtin ffs(int) Finds the first bit set (beginning with the least significant
bit) in the parameter and returns the index of that bit. Returns 0 if no bits are set.

builtin ffsl

int builtin ffsl(long) Finds the first bit set (beginning with the least signif-
icant bit) in the parameter and returns the index of that bit. Returns 0 if no bits
are set.

builtin ffsll

int builtin ffsll(long long) Finds the first bit set (beginning with the least
significant bit) in the parameter and returns the index of that bit. Returns 0 if no
bits are set.

Systems/C 109

builtin frexp

double builtin frexp(double val, int *exp) Implements the C standard fr-
exp function.

builtin frexpf

float builtin frexpf(float val, int *exp) Implements the C standard fr-
expf function.

builtin frexpl

long double builtin frexpl(long double val, int *exp) Implements the C
standard frexpl function.

builtin huge val

double builtin huge val(void) For BFP values, when –fieee is specified, this
returns a positive IEEE Infinity. Otherwise, this returns the maximum HFP value.

builtin huge valf

float builtin huge valf(void) Similar to builtin huge valf() but returns
a float value.

builtin huge vall

long double builtin huge vall(void) Similar to builtin huge valf() but
returns a long double value.

builtin inf

double builtin inf(void) builtin inf() returns an IEEE +Inf value when
the –fieee options is enabled. For HFP it returns the largest positive HFP value.

builtin inff

float builtin inff(void) Similar to builtin inf() but returns a float value.

110 Systems/C

builtin infl

long double builtin infl(void) Similar to builtin inf() but returns a long
double value.

builtin infd32

Decimal32 builtin infd32(void) Similar to builtin inf() but returns a
Decimal32 +Inf value.

builtin infd64

Decimal64 builtin infd64(void) Similar to builtin infd32() but returns
a Decima64 value.

builtin infd128

Decimal128 builtin infd128(void) Similar to builtin infd32() but returns
a Decima128 value.

builtin nan

double builtin nan(const char *) This is an implementation of the ISO C99
function nan.

When the –fieee option is enabled, this returns an IEEE quiet NaN value. The
character string can be used to represent a payload incorporated int the mantissa. In
order for this to be a compile-time constant, the character string must be a compile-
time constant. The character string is evaluated with the strtoul function, and
thus the base of the character string can be specified by a leading 0 or leading 0x.
The value is truncated to fit into the IEEE mantissa.

For HFP values, builtin nan returns 0.0.

builtin nanf

float builtin nanf(const char *) Similar to builtin nan() but returns a
float value.

Systems/C 111

builtin nanl

long double builtin nanl(const char *) Similar to builtin nan() but re-
turns a long double value.

builtin nand32

Decimal32 builtin nand32(const char *) Similar to builtin nan() but re-
turns a Decimal32 value.

builtin nand64

Decimal64 builtin nand64(const char *) Similar to builtin nan() but re-
turns a Decimal64 value.

builtin nand128

Decimal128 builtin nand128(const char *) Similar to builtin nan() but
returns a Decimal128 value.

builtin nans

double builtin nans(const char *) Similar to builtin nan, except that an
IEEE mantissa is made a signaling NaN. The nans function is proposed by WG14
N965.

builtin nansf

float builtin nansf(const char *) Similar to builtin nans() but returns
a float value.

builtin nansl

long double builtin nansl(const char *) Similar to builtin nans() but
returns a long double value.

112 Systems/C

builtin abort

Noreturn void builtin abort(void) The builtin abort() builtin invokes
the abort() function. It is declared with the Noreturn function specifier to indicate
that the abort() function does not return to the caller.

builtin unreachable

Noreturn void builtin unreachable(void) The builtin unreachable() builtin
indicates that the section of code cannot be reached during program execution.

builtin trap

Noreturn void builtin trap(void) The builtin trap() builtin either gen-
erates an instruction that causes a program exception during execution, or it invokes
the abort() function.

integer overflow builtins

As well as the specific builtins previously listed, the C compiler supports the GNU
integer builtin overflow functions.

These functions perform integer operations while indicating if the operation over-
flowed when computing the result.

The basic overflow checking builtin functions are:
bool builtin sadd overflow(int, int, int *);
bool builtin saddl overflow(long, long, long *);
bool builtin saddll overflow(long long, long long, long long *);
bool builtin uadd overflow(unsigned int, unsigned int, unsigned int *);
bool builtin uaddl overflow(unsigned long, unsigned long, unsigned long
*);
bool builtin uaddll overflow(unsigned long long, unsigned long long, unsigned
long long *);
bool builtin ssub overflow(int, int, int *);
bool builtin ssubl overflow(long, long, long *);
bool builtin ssubll overflow(long long, long long, long long *);
bool builtin usub overflow(unsigned int, unsigned int, unsigned int *);
bool builtin usubl overflow(unsigned long, unsigned long, unsigned long
*);
bool builtin usubll overflow(unsigned long long, unsigned long long, unsigned
long long *);
bool builtin smul overflow(int, int, int *);

Systems/C 113

bool builtin smull overflow(long, long, long *);
bool builtin smulll overflow(long long, long long, long long *);
bool builtin umul overflow(unsigned int, unsigned int, unsigned int *);
bool builtin umull overflow(unsigned long, unsigned long, unsigned long
*);
bool builtin umulll overflow(unsigned long long, unsigned long long, unsigned
long long *);

Along with these, the compiler supports the generic functions:
bool builtin add overflow(type1, type2, type3 *);
bool builtin sub overflow(type1, type2, type3 *);
bool builtin mul overflow(type1, type2, type3 *);
where type1, type2 and type3 can be any signed or unsigned integral types, including
int128 types and types smaller than int.

For determing if an operation would overflow, while discarding the result, the com-
piler also supports these predicate builtins:
bool builtin add overflow p(type1 a, type2 b, type3 c);
bool builtin sub overflow p(type1 a, type2 b, type3 c);
bool builtin mul overflow p(type1 a, type2 b, type3 c);
where the type of the expression c, type3, is used to determine if the operation over-
flows, but the value of c is not computed. c is simply an expression used to specify
the result type.

For the generic functions, the operation is computed as if it were performed with
infinite precision and then stored in the result type.

atomic functions

The C compiler supports the same atomic builtin functions as gcc does. These
functions provide atomic access to shared memory, so that no intervening operations
in other threads or tasks can produce an unpredictable result.

These functions take a memorder parameter, which indicates whether there should
be a scheduling barrier (and inter-CPU serialization point) before loads and after
stores. For read operations (atomic load) and write operations (atomic store,
atomic clear), DCC will emit the barriers so long as the memorder is not
ATOMIC RELAXED. For read-modify-write operations, the strictest memory ordering

(ATOMIC SEQ CST) is assumed because they are implemented with the underlying
COMPARE SWAP CS instruction, which is always serialized.

The atomic functions are type-generic, one function name is used for all types.
The variants with the suffix n use or return the value directly, and must operate
on regular integer or pointer types. The variants without the suffix work by pointer
and can work on any types, including structs. When the underlying data is not an

114 Systems/C

integer or pointer, a call to a run-time function of the same name will be generated.
The run-time functions are provided in our C library with the prefix @@atmc. They
use a global lock, so they are not as efficient as the atomic operations that are
supported by the underlying hardware (1/2/4/8 byte operations).

atomic load n

type atomic load n(type *src, int memorder)

Returns *src (read of *src is atomic).

atomic load

void atomic load(type *src, type *dst, int memorder)

Assigns *dst = *src (read of *src is atomic).

atomic store n

void atomic store n(type *dst, type src, int memorder)

Assigns *dst = src (write of *dst is atomic).

atomic store

void atomic store(type *dst, type *src, int memorder)

Assigns *dst = *src (write of *dst is atomic).

atomic exchange n

type atomic exchange n(type *dst, type src, int memorder)

Assigns *dst = src, and returns the original value of *dst (read and write of *dst
is atomic).

Systems/C 115

atomic exchange

void atomic exchange(type *dst, type *src, type *ret, int memorder)

Assigns *ret = *dst then *dst = *src, as a single atomic operation (read and
write of *dst is atomic).

atomic compare exchange n

bool atomic compare exchange n(type *dst, type *expected, type desired,
bool weak, int success memorder, int failure memorder)

Evaluates if (*dst == *expected) *dst = desired as a single atomic operation,
returning 1 if the assignment was performed (read and write of *dst is atomic). weak
is ignored, but would indicate that the operation is allowed to intermittently fail
(return 0 and not perform the assignment) even if the comparison is true.

atomic compare exchange

bool atomic compare exchange(type *dst, type *expected, type *desired,
bool weak, int success memorder, int failure memorder)

Evaluates if (*dst == *expected) *dst = *desired as a single atomic opera-
tion, returning 1 if the assignment was performed (read and write of *dst is atomic).
weak is ignored, but would indicate that the operation is allowed to intermittently
fail (return 0 and not perform the assignment) even if the comparison is true.

atomic OP fetch

type atomic add fetch(type *dst, type val, int memorder)
type atomic sub fetch(type *dst, type val, int memorder)
type atomic and fetch(type *dst, type val, int memorder)
type atomic xor fetch(type *dst, type val, int memorder)
type atomic or fetch(type *dst, type val, int memorder)
type atomic nand fetch(type *dst, type val, int memorder)

Evaluates *dst = *dst OP val, and then returns the result (read and write of *dst
is atomic).

116 Systems/C

atomic fetch OP

type atomic fetch add(type *dst, type val, int memorder)
type atomic fetch sub(type *dst, type val, int memorder)
type atomic fetch and(type *dst, type val, int memorder)
type atomic fetch xor(type *dst, type val, int memorder)
type atomic fetch or(type *dst, type val, int memorder)
type atomic fetch nand(type *dst, type val, int memorder)

Evaluates *dst = *dst OP val, and returns the original value in *dst from before
the operation (read and write of *dst is atomic).

atomic test and set

bool atomic test and set(void *dst, int memorder)

Sets the byte at *dst to a non-zero value, and returns 1 if and only if the original
value of *dst was already non-zero (read and write of *dst is atomic). This is
less efficient than atomic exchange n operating on a 32-bit integer, because the
instruction set does not provide an atomic compare-and-swap instruction for 8-bit
values.

atomic clear

void atomic clear(bool *dst, int memorder)

Assigns the byte at *dst to zero (write of *dst is atomic). This is less efficient than
atomic store n operating on a 32-bit integer, because the instruction set does not

provide an atomic compare-and-swap instruction for 8-bit values.

atomic ... fence

void atomic thread fence(int memorder)
void atomic signal fence(int memorder)

These functions are identical and provide a barrier and synchronization.

Systems/C 117

atomic ... lock free

bool atomic always lock free(size t size, void *ptr)
bool atomic is lock free(size t size, void *ptr)

These return 1 if atomic operations on types of the given size can be performed
efficiently without locks, using hardware instructions. They always return 1 for
sizes of 1/2/4/8 bytes. Returns 0 for other sizes, which use a global lock. The ptr
argument is ignored.

64-bit integral arithmetic — long long

DCC supports both the long long and unsigned long long data types. When
–mlp64 is not specified, long long and unsigned long long are 64 bits (8 bytes),
with a 4-byte, or fullword alignment. When –mlp64 is specified, long long and
unsigned long long are equivalent to long and unsigned long respecitively, and
are 64-bits in size, with 8-byte or doubleword alignment. All of the integral opera-
tions are supported on these 64-bit data types. The long long and unsigned long
long data types are not present in the ANSI C89 standard, but were defined in the
ANSI C99 standard.

When –milp32 is specified, the compiler typically uses two registers to implement
the various arithmetic operations. Functions that return a long long or unsigned
long long datum return the value in register 15 and register 0. The most significant
bits of the value are in register 15.

When –mlp64 is specified, long long data is implemented identically to long data,
typically in one 64-bit register, and functions that return long long data do so in
register 15.

If the –fc99 option is not enabled, long long and unsigned long long are consid-
ered an extension to the ANSI C89 standard, and are treated as extended integral
types. Arithmetic promotions apply in the fashion dictated by the ANSI C89 stan-
dard. For example, if either the left hand side or the right hand side of an arithmetic
operation is one of these types, the other side is converted to that type. Note that
this applies to the shift operations as well. Per ANSI C89 rules, both sides of the
shift operation participate in promotions. So, the value to shift as well as how much
to shift, will be promoted to a long long or unsigned long long.

If the –fc99 option is enabled, the long long data types follow the rules defined in
the ANSI C99 standard.

DCC also supports extended long long integral constants. These can be specified
with the ULL and LL suffixes. While the ULL and LL suffixes are defined in the newer
ANSI C99 standard, they are considered ANSI C89 extensions if the –fc99 option

118 Systems/C

is not enabled. To maintain compatibility with the ANSI C89 standard, when the
–fc99 option is not specified, DCC will issue a diagnostic if the value of the constant
is too large to be contained in an ANSI C89 defined data types. DCC will then
use the appropriate long long data type for the value. Adding the ULL or LL suffix
will eliminate this warning. For example:

0x7fffffffffffffff

will generate a diagnostic, while

0x7fffffffffffffffLL

will not. In either case, the type of the constant will be long long.

If the –fc99 option is specified, long long and unsigned long long constant types
are supported as defined in the ANSI C99 standard. Furthermore, the promotion
rules follow the newer ANSI C99 standard. Thus, if –fc99 is specified, the code
above will not generate a warning with or without the LL suffix.

128-bit integral arithmetic — int128

DCC supports both the int128 and unsigned int128 data type extension.
These are 128-bit integral values, which are supported for conversion, arithmetic,
etc... In the 32-bit environment, significant code can be generated when using these
types.

There is no support for 128-bit integral constants, so generation of a complete 64-bit
constant requires shifting, for example:

unsigned __int128 x = (((unsigned __int128)0xffffffffffffffff) << 64) |
0xffffffffffffffff;

initializes the 128-bit value ’x’ to all 0xff bytes.

Decimal floating point types

When the –fdfp option is specified, DCC supports the decimal floating point types as
defined in the N1176 draft of ISO/IEC WDTR24732.

Systems/C 119

The decimal floating types are Decimal32, Decimal64 and Decimal128. Unlike
hexadecimal or binary floating point values, these values use a radix of 10 instead
of 16 (hexadecimal) or 2 (binary).

The compiler supports the arithmetic operations of add, subtract, multiply and
divide; the unary arithmetic operators, relational operations and conversions to and
from integral and floating point types.

Decimal32, Decimal64 and Decimal128 values are treated similar to float,
double and long double for the purposes of parameter passing and returned values.

To specify a decimal floating point constant, use the suffixes df or DF for Decimal32,
dd or DD for Decimal64, or dl or DL for Decimal128 values. Note that the case of
both letters must be the same, either both lower case or both upper case.

For example:

_Decimal32 d32;

d32 = 1.0df;

DCC doesn’t completely support the draft technical report. In particular:

• The translation time data type (TTDT) is not supported.

• When converting a decimal floating point value to an integer type, if the
decimal value cannot be represented the result is undefined. The draft and
the IBM xlc compiler have different behavior, the GNU GCC compiler and
the Dignus compiler have the same behavior.

ANSI C99 features

If the –fc99 option is enabled, DCC supports several new language features de-
fined in the ANSI C99 standard. The ANSI C99 standard describes these language
features in more detail.

Currently, Systems/C supports a subset of the C99 standard, including the following
features.

func identifier

The func identifier expands into a reference to a local variable which is initialized
with a string containing the current function’s name.

Unlike the FUNCTION extension, each reference to func is guaranteed to point
to the same address.

120 Systems/C

Bool data type

The Bool data type is fully supported when –fc99 is enabled. The Systems/C
library also includes the <stdbool.h> standard header file.

Mixed statements and declarations

In the 1989 version of the ANSI C standard, data declarations within inner blocks
had to appear before statements, this restriction was removed in the 1999 version of
the C standard. If –fc99 is enabled, declarations may appear anywhere a statement
may occur.

For example:

{
int i; // declare i;
i = 10;
int j; // declare j;
j = i + 10;

}

Declaration in for statements

In the 1989 version of the C standard, the initialization section of a for statement
is defined as any normal assignment expression.

The 1999 version of the C standard allows for a declaration clause to appear in the
initialization section.

For example, this is valid if the –fc99 option is enabled:

int j;
j = 20;
/* declare ‘i’ in the for-loop */

for(int i = 10; i<j; i++) {
printf("i is %d\bs n", i);

}

The scope of any declarations in for statements continues through the end of the
entire for body.

#pragma STDC FENV ACCESS

The #pragma STDC FENV ACCESS pragma is recognized and fully supported.

Systems/C 121

//-style comments

Systems/C recognizes the //-style comment by default.

long long data types

Systems/C supports the ANSI C99 long long data types and the ULL and LL con-
stant suffixes.

If –fc99 is enabled, Systems/C follows the C99 rules for evaluating integral constants,
which allow for automatic promotion to the long long types.

If –fc99 is not enabled, Systems/C follows the 1989 standard, and the long long
data types are considered an extension. In this case, the compiler will produce
warnings when a constant does not fit in the 1989 defined data types.

C99 preprocessor

The Systems/C preprocessor is fully comformant with the ANSI C99 definition,
regardless of the –fc99 option.

Some of the new extensions supported by the C preprocessor include:

• Variadic macros

Systems/C supports the new variadic macro syntax, allowing multiple argu-
ments to #defined macros.

• Pragma operator

Systems/C supports the Pragma C preprocessor operator, allowing for macros
that expand into #pragma statements.

• ANSI C99 digraphs

As well as the C89 tri-graph characters, Systems/C fully supports the new
C99 digraph characters

• 64-bit constants in #if expressions

Integral evaluations of expressions in #if preprocessor commands are eval-
uated in terms of intmax t, which is 64-bits.

122 Systems/C

Inline assembly language support

DCC supports a robust in-line assembly language feature. This feature may be
used within a function, or in external file scope. It specifies assembly source that
will be copied, verbatim, to the generated assembly source deck.

In support of this feature, DCC also provides register-based automatic variables:

A register-based variable is a variable of integral or pointer type, with the
register() keyword added to its type declaration. The register() keyword is

treated as a storage class by the compiler.

register(nn) — Type specifier.

Specifies that the datum is to be located specifically in register #nn.

References to the datum will use the specified register.

If this specifier occurs at file scope, the register is reserved for all functions which fol-
low. This causes the compiler to reserve the register and not use it for the remaining
functions. References to the declared datum will use the associated register.

The extern specifier may not be used on a register declaration.

In function scope, within the scope of the datum’s declaration, the register is not
available for use by the compiler. Care must be taken to not use registers normally
used by the compiler. These registers include registers 0, 1, 12, 13, 14 and 15, or
the registers specified in the –fframe-base or –fcode-base options. The compiler does
not examine the in-lined assembly source for uses of these registers. The compiler
does not flag register declarations using these registers.

For example, the following section of code declares a void * pointer which is asso-
ciated with register #5:

{
__register (5) void *r5;
r5 = 0; /* Put a 0 in register #5 */
...

}
/* r5 is now available for use again by the compiler. */

asm [n] {...} — Inline assembly source

__asm [n] {
Any text

}

Systems/C 123

The asm keyword, optionally followed by an integral constant, defines the be-
ginning of assembly language text which will be copied verbatim to the generated
assembly language source. This statement may appear within a function, or in file
scope. Note that the text must follow the ANSI C preprocessor tokenizing rules,
otherwise, there are no restrictions on what the text contains. The text may be any
number of lines. To use asm statements effectively in #define macros and other
instances involving the C preprocessor, the compiler searches the specified text for
escape sequences, and replaces them with certain characters. An escape sequence
begins with a single backslash character, “\”. The recognized sequences are:

Escape sequence Replacement
\c continuation
\n new-line
\p pound sign
\s space
\C section name
\q single-quote
\Q double-quote
\# unique decimal value
\d unique decimal value

Any character following the backslash which is not recognized is copied directly. So,
to produce the backslash character, one would use \ in the assembly source.

\c, \C, \# and bs d are special cases, in that the character isn’t directly replaced.
\c causes spaces to be added to the source line up to column 72, where a “*” will
be placed. That is, \c is used to indicate this is an assembly continuation line. \C
expands into the current code section name for this compilation. \# expands into a
unique decimal value for each asm block. \# and \d operate identically and can be
very helpful in generating unique labels for branch targets. \d is provided for those
situations where \# is cumbersome to use in a C macro environment. \d and \# are
interchangeable.

The optional integral constant declares how many bytes the in-line assembly source
will generate. The compiler uses the value to determine if the code will fit into an
existing 4K code region, or if it should be moved to a subsequent region. If the value
isn’t specified, the compiler counts the number of source lines and multiplies that
by 4 to arrive at a reasonable heuristic. The value doesn’t need to be exact; but if
addressability problems become apparent during assembly of the generated source,
this value should be increased appropriately.

Combined with the register() keyword, asm provides a powerful mechanism
for generating direct assembly language code and interfacing with C variables.

For example, to invoke the GETMAIN macro to acquire main memory storage,
you could use the following block of C code:

void *getmain_result;

124 Systems/C

unsigned long size;

size = nnn; /* Size of the desired allocation */

{
__register(1) unsigned long r1;
__register(2) unsigned long r2;

/* Need to declare R0 because GETMAIN uses it */
/* We don’t want the compiler to grab it */
__register(0) unsigned long r0;

r1 = 0xf0000000; /* Put X’F0000000’ in R1 */
r2 = size; /* Store desired size in R2 */

/* Call GETMAIN - the macro expands to ASM code */
/* that is 8 bytes long. */
__asm 8 {

GETMAIN RU,LV=(2),LOC=BELOW
}

/* Put the result of GETMAIN into the C variable */
/* ’getmain_result’ */
getmain_result = (void *)r1;

}

The following example demonstrates use of the escape sequences within a #define
macro. The macro defines a fast strcpy()-like macro which takes advantage of
the string instructions available on some processors. The escape sequences \s and
\n are required because the C preprocessor considers this one rather long source
line. Thus, \n is used to add new-lines where appropriate in the assembly language
source. Furthermore, the C preprocessor will remove unneeded white space (blanks
or tabs) per the C syntax rules. Thus, \s is used to ensure that each line begins with
a blank. If \s wasn’t used, the assembler would consider the instruction opcodes to
be labels, which is not the intent.

Systems/C 125

#define fast_strcpy(dest, src) { \
__register(0) r0; \
__register(2) void *r2 = dest; \
__register(3) void *r3 = src; \
__asm 12 { \

\s SR 0,0\n\
\s MVST 2,3\n\
\s BO *-4\n\

} }

In this example, we use the # sequence to generate a unique label for every instance
of the macro, in combination with the block-expression extension to return the value:

#define pound \#

#define here(x) \
(({ \
__register(x) void *reg; \
__asm {\

&hctr seta pound \n\
LA x,@l&hctr \n\

@l&hctr DS 0h\n\
} \
reg; \

}))

The here() macro in a code snippet as:

void *ptr;
...

ptr = here(1); /* get the current address */
/* using R1 as the temp reg*/

where the compiler-generated code would be:

* inline ASM source (4 bytes)
&hctr seta 1
LA 1,@l&hctr
@l&hctr DS 0h

each instance of the here() macro would place a new value in the &hctr assembler
counter.

126 Systems/C

asm(“...”:output:input:clobber) — GCC-style inline assembly source

As of version 2.0, DCC supports GCC-style inline assembly. If the asm keyword
is followed by a parenthesis, then DCC recognizes the GCC-style syntax instead of
the ”classic” syntax.

__asm("asm code"
: output operands
: input operands
: clobber list);

The comma-separated operand and clobber lists are optional.

In the asm code, the same backslash (“\”) escape codes are honored as in a regular
asm { ... } block. In addition, codes of the form “%n” are substituted with the

corresponding operand. n is an input or output operand number, starting at “%0”.
To put a “%” in your asm code, use two of them (“%%”).

Each input or output operand uses the following syntax:

"constraint string" (expression)

The constraint specifies how the “%n” string will be substituted, and what semantic
effect that will have on the expression. The expression provides the value that will
be given to the assembly code, or an lvalue for where an output operand will be
stored.

DCC supports the following constraint strings:

r General Purpose Register number

d data (general purpose) register number, same as “r”

a addressing register number (non-zero GPR)

dp data regpair (even numbered GPR)

f Floating Point Register number

fp float regpair (the number of the first FPR in the pair)

m memory address of the form “ofs(index,base)”

Q memory address with no index reg, of the form “ofs(base)”

I unsigned 8-bit integer literal

J unsigned 12-bit integer literal

Systems/C 127

K signed 16-bit integer literal

i signed 32-bit integer literal

0 ... 9 matching constraint — use same register as corresponding operand

The constraint string for an output operand may also have some prefix characters:

= write-only output operand

+ read-write output operand

& early clobber output operand

The default is as if “=” were specified, in which case the value of the register is copied
into the destination after the asm code is executed. For a read-write operand, the
value is copied into the register before the asm code is executed, and then copied
from the register to the destination afterwards, so that code can modify the value
in a register.

Early clobber (“&”) means that this output operand may be written within asm
code before all of the input operands have been read. Without “&”, DCC may
chose to use the same register for one of the input operands as for a write-only
output operand, but “&” indicates they must use two separate registers.

The clobber list is a comma-separated list of strings indicating resources that are
modified by the asm code, and which DCC needs to be aware of. The values may
be:

memory asm code writes to memory (this is assumed if one of the output operands
has the constraint “m” or “Q”

cc asm code modifies the condition code in the PSW register

rn asm code modifies GPR n

fn asm code modifies FPR n

Clobbered registers may also have the prefix “&”, which means they are clobbered
before all of the input operands are read. Otherwise, DCC may use a clobbered
register for an input operand.

For example, the following code modifies a variable using a pointer:

int i = 1;
__asm(" ST %1,0(%0)" : : "a"(&i),"r"(123) : "memory");
printf("i is %d", i); /* prints "i is 123" */

128 Systems/C

Note that the %0 operand is an input operand, because from DCC’s perspective, it
is just providing a value to the asm code, that value just happens to be an address
that will be written to. Without the “memory” clobber string, the compiler might
use a cached value for i in the printf call, instead of reading the value from memory
again.

To accomplish the same thing using “m” (memory) output operand:

int i = 1;
__asm(" ST %1,%0" : "m"(i) : "r"(123));
printf("i is %d", i); /* prints "i is 123" */

You can specify specific registers in your clobber list as an alternative to reserving
them with register(n) variables, so that the compiler knows it can’t count on
the value being the same after asm code. For example:

__asm(" invocation of macro that uses R3"::"r3");

Is roughly the same as:

{ __register(3) int r3; /* reserve R3 */
__asm {

invocation of macro that uses R3
}

}

Note that if you clobber a register which is reserved by the compiler (such as the
code base or frame base register), the execution will fail because the compiler will
still use the reserved register — DCC relies on the reserved registers holding their
assigned values.

A matching constraint is typically used on an input operand to match an output
operand. The input operand then provides a specific value to be placed in the output
operand’s register before the asm code is executed. For example, this contrived code
adds i and a constant 11, then stores the result in j:

int i,j;
/* ... */
__asm(" LA %0,%2" : "=r"(j) : "0"(i),"J"(11));

Note that the input operand for i has its own operand number (%1), even though it
uses the same register as %0. That is why the constant literal integer 11 is identified
as %2.

Systems/C 129

The GETMAIN example above could be expressed more simply using GCC-style inline
assembler:

void *getmain_result;
unsigned long size;

size = nnn; /* Size of the desired allocation */

__asm(" LR 1,%1\ n\
GETMAIN RU,LV=(%2),LOC=BELOW\ n\
LR %0,1"

: "=r"(getmain_result)
: "r"(0xf0000000) /* the value to put in R1 */
: "r0", "&r1", "cc");

Direct references to ASM values

DCC provides a mechanism for directly accessing assembly language values in C
code, the asmref macro and the asmval built-in constant. Using these, a pro-
gram may reference assembly language EQUs or fields within a DSECT.

asmref(base,asm-string,type) — Reference a DSECT field

asmref may be used to reference a field in a DSECT. Its three arguments spec-
ify the base address of the storage onto which the DSECT is to be mapped, the
assembly-language expression that produces the offset in the DSECT of the field,
and the C type that represents the field type.

To use asmref you must #include the system header file <machine/asmref.h>.

The base value is any C value that can be used as a character pointer. Thus, constant
expressions or any address or pointer expression is valid.

Typically, the asm-string value is an assembly expression subtracting the start of
the DSECT from the field name.

The type field should be a C type, without surrounding parenthesis. Any C type
that can be used in a cast expression is valid.

For example, if you have a DSECT named MYDSECT which is defined in the following
via an in-line asm directive:

__asm {
MYDSECT DSECT

130 Systems/C

FIELD1 DS 1F
FIELD2 DS 1F

}

and, furthermore, there is a C variable named mydsect base which is a pointer to
the base of the storage associated with the DSECT, then the expression

__asmref(mydsect_base, "FIELD2-MYDSECT", int)

references the FIELD2 field in MYDSECT. This expression is an lvalue so the value
in FIELD2 may either be retrieved or stored. That is, the statement:

__asmref(mydsect_base, "FIELD2-MYDSECT", int) = 5;

stores the integer value 5 into the FIELD2 field. The statement

i = __asmref(mydsect_base, "FIELD2-MYDSECT", int);

retrieves FIELD2 and places its value in the variable i.

Because asmref is a run-time value, the compiler cannot determine at compile
time the particulars of the asm-string. Thus an asmref value cannot be used to
initialize static data.

asmval(size,asm-string) — reference an ASM-defined constant

asmval is used to reference a value defined in assembly language source included in
the generated source file, such as EQU values or any assembly language expression
which produces an absolute value. An asmval is treated as an unknown constant
value by the compiler. It is an rvalue, and thus cannot be assigned to or have
its address taken. Furthermore, since the value isn’t known by the compiler, an
asvmal may not participate in a static initialization. Other than those restrictions,
asmval values may appear wherever an integral constant is allowed. asmval

values are of type unsigned long.

The first parameter is the expected size in bytes of the value, either 1, 2, 3, 4 or 8.

The second parameter is a string which contains the ASM expression defining the
value.

The result type of an asmval expression is unsigned long unless the size value is
8 and the –milp32 option is specified. If size is 8, and –mlp64 is not specified, then
the type of the asmval is unsigned long long (64-bits.)

Systems/C 131

When –mlp64 is specified, the unsigned long type is 64-bits and can accomodate
any sized asmval.

For example, if the following EQU was defined in assembly language source:

MYVAL EQU 100

then that value may be retrieved by the compiler with the following asmval ex-
pression:

__asmval(1,"MYVAL")

The statement:

i = __asmval(1,"MYVAL") + 20;

retrieves the value of MYVAL at run-time, adds 20 to it and stores the result in the
variable i.

#pragma compiler directives

DCC supports several #pragma directives:

#pragma anonstruct (switch)

#pragma anonstruct is used to enable or disable support for the Microsoft anony-
mous structures extension.

Anonymous structures allow for unnamed inner structures or unions within an outer
structure or union. The elements of the inner structure are then directly accessible
as if they were elements of the outer structure.

The value of switch is one of on, off or pop. on enables recognition of anonymous
structures, off disables it, and pop restores the previous setting.

Each use of #pragma anonstruct pushes the previous setting and sets the new value.
A #pragma anonstruct pop can be used to restore the previous value.

A #pragma anonstruct pop used when no previous #pragma anonstruct was used
resets the value to off.

For example:

132 Systems/C

/* Enable anonymous structures */
#pragma anonstruct(on)
struct anon {

struct {
int i;
int k;

};
} ;

/* Restore the previous setting of anonymous structures */
#pragma anonstruct(pop)

struct anon A;

A.i = 10;

#pragma csect (section, “name”)

Specifies the name to use for a particular section. The types of allowed sections are
CODE, STATIC, and TEST.

When compiling in IBM compatibility mode (–fc370 is enabled), this pragma op-
erates identically to the IBM C #pragma csect pragma. Otherwise, this pragma
can be used to set the section name value similarly to the –fname compiler option.
Setting the CODE section name to name is equivalent to specifying –fsname=name
on the compiler command line.

This pragma is useful for specifying the section name directly in the source file
instead of via JCL or some other mechanism.

Only one #pragma csect can be specified for a particular section. A #pragma csect
specification overrides any –fsname option specified on the compiler command line.

Note that #pragma csect(TEST, "name") is only meaningful when compiling in
IBM compatibility mode (when the –fc370 is specified.)

#pragma enum(enum size)

#pragma enum defines the amount of storage enumeration values consume in IBM
compatibility mode.

The enum size value can be one of SMALL, INT, 1, 2, 4, pop or reset.

Enumeration size settings are stacked. The enumeration size can be restored to its
previous value using the pop or reset option.

Systems/C 133

SMALL is the default enumeration packing rules supported in the IBM compiler.
That is, enumeration values are packed to the smallest amount of storage that can
contain the range of the enumeration values.

INT indicates that the size of the enumeration will be 4 bytes.

1, 2 and 4 indicate that the size of the enumeration will be the number of bytes
specified.

If the range of enumeration values cannot fit into the number of bytes specified, the
compiler will generate an error message.

#pragma enum is only useful if the –fc370 option is specified. It is silently ignored
if –fc370 is not specified.

#pragma epilkey(identifier, “key”)

#pragma epilkey specifies that the string key is to be appended to the keyword
list for the epilogue macro associated with the entry point named identifier. The
string key will be copied verbatim and placed on the epilogue macro invocation for
the entry point.

Using #pragma epilkey allows the user to tailor certain function epilogues by
adding additional macro arguments.

The #pragma epilkey directive must appear before the function definition.

#pragma error “text”

#pragma error "text" causes the compiler to generate an error message. The error
message will include the specified text.

#pragma export(identifier)

This pragma is only meaningful in IBM C compatibility mode, when –fc370 is
specified.

This option causes the named function or data identifier to be exported from a DLL.

When the –fc370 option is specified, this option is identical to the IBM option of
the same name.

134 Systems/C

#pragma filetag(“codepage”)

The #pragma filetag pragma describes the source code character set on EBCDIC
platforms. On ASCII platforms, it is silently ignored.

If the value of codepage is IBM-500, then the codepage 500 translations will be
applied. See the –fcodepage500 option for a descrition of those translations.

Any other value for codepage will revert the compiler to its normal behavior.

#pragma linkage(identifier, type)

Specifies that function, or function typedef named identifier is to be invoked with
the given linkage type, either OS, PLI, or ALIGN4.

#pragma linkage(identifier,OS) and #pragma linkage(identifier,PLI) ap-
ply to external function declarations. #pragma linkage(identifier,ALIGN4) may
be specified for function definitions as well as external declarations.

Parameters to functions specified with OS linkage that are not pointers are passed
as addresses to temporary copies of the actual arguments. Pointer-type parameters
are passed directly to the function. If the parameter is not a pointer, and the type
of the parameter is less than 4 bytes in size; it is promoted to an int type before
making the copy. The last parameter will have the “VL-bit” set. This is the basic
linkage convention used by the operating system. The compiler assumes that the
function’s return value will be in register 15. Register 0 will be set to zero before
the function call. Before calling a function specified with OS linkage, the first 12
bytes of the local save area are saved, and are restored on return.

Parameters to functions specified with PLI linkage that are not pointers are passed
as addresses to temporary copies of the actual parameter. If the parameter is not a
pointer, and the type of the parameter is less than 4 bytes in size; it is promoted to
an int type before making the copy. Pointer-type parameters are passed directly to
the function. The last parameter will have the “VL-bit” set. An extra parameter is
appended to the list which contains a pointer to any returned data. PLI designates
an entry point as a PL/I linkage entry point.

When setting the “VL-bit” for PLI and OS linkage, the pointer value is logically
OR’d with 0x80000000.

ALIGN4 linkage is useful for programs compiled with with the –mlp64 option.
Normally, when compiling in z/Architecture mode (–mlp64 enabled), parameters are
aligned on 8-byte boundaries. However, the #pragma linkage (identifier,ALIGN4)
pragma can be used to indicate the specified function’s parameters should be aligned
on 4-byte boundaries. Thus, the function can be invoked from a non-z/Architecture
program. This is particularly useful for Direct CALL (DCALL) entry points com-
piled with the –mlp64 that are intended to be invoked from a non-z/Architecture

Systems/C 135

environment. Also, as well as defining functions that can be called from non-z/Arch-
itecture environments ALIGN4 linkage can be used to ensure that the outgoing
parameter area for external functions is 4-byte aligned when –mlp64 is enabled.
When DCC invokes a function with ALIGN4 linkage, it will ensure the outgoing
parameters are 4-byte aligned. Note that in defined functions with ALIGN4 link-
age compiled with the –mlp64 option enabled, variable argument list support will
not operate, as the variable argument list macros defined in <stdarg.h> depend
on 8-byte alignment when –mlp64 is enabled. If –mlp64 is not enabled, ALIGN4
linkage has no effect.

#pragma linkage directives may be applied to function names or typedef names
where the typedef is for a function. Also, the directive must appear before the first
use of the function or typedef name.

For example, to define a pointer to a #pragma linkage OS function, a typedef can
be employed, as in:

typedef osfunc_type();
#pragma linkage(osfunc_type, OS)

osfunc_type *function_ptr;

which defines function ptr as a pointer to a function that is to be invoked with OS
linkage.

#pragma map(identifier, “name”)

#pragma map specifies that external references to functions or data named identifier
are to be replaced with the string name. The name value becomes the value for any
ALIAS statements emitted in the generated assembly language source.

The #pragma map directive may appear anywhere in the compilation.

Note that if the –fno-alias-stmts is enabled, #pragma map is not supported.

#pragma weakalias(identifier, “name”)

#pragma weakalias specifies that a weak definition of a symbol named name should
be generated which has the same value as the variable identified by identifier.

The #pragma weakalias directive may appear anywhere in the compilation.

Note that if the –fno-alias-stmts is enabled, #pragma weakalias is not supported.

136 Systems/C

#pragma weakalias works on most platforms for both global functions and global
variables. However, for re-entrant data based off of the PRV, it is impossible to
make a weak alias. This is due to limitations in the object formats’ treatment of
DXD definitions – it is impossible to make two DXD definitions with different names
but the same address.

#pragma noinline(name)

Tells the optimizer not to inline the named function even if other heuristics suggest
that it could be inlined. This can be useful for certain constructs — such as asm
blocks — which are not amenable to being copied.

#pragma options(name[,name]...)

Specifies compile-time options in the C source code. A #pragma options must
appear before any C source.

Options specified in the #pragma options are not reflected in the compiler listing.
The listing displays the default and command-line option values.

If a #pragma options value conflicts with the option value specified on the command
line, the compiler uses the command-line specified value.

Currently only #pragma options(RENT) and #pragma options(NORENT) are sup-
ported.

#pragma pack(n)

#pragma pack specifies the maximum structure element alignment for structure
type declarations. The Packed qualifier can be used to alter the alignment on
particular definitions of particular data; while #pragma pack applies to the general
type declaration of a structure.

Normally, the C compiler aligns elements in a structure based on their natural
alignment. #pragma pack can be used to impose a maximum alignment, so that no
element of a structure will have an alignment greater than the one specified in the
#pragma pack. Elements which have natural alignments smaller than specified in a
#pragma pack continue to be aligned on their natural boundary.

#pragma pack can specify, 1, 2, 4, 8 and 16 byte maximum alignment values.

The values specified via #pragma pack are stacked, a #pragma pack (reset) can
be used to restore the previous value. When the –fc370 option is not specified, DCC
also recognizes #pragma pack (pop) as equivalent to #pragma pack (reset).

Systems/C 137

There are alternate keywords which can be employed instead of numeric values.
#pragma pack (full) is equivalent to #pragma pack(8) if –mlp64 or #pragma
pack(4) if if –milp32 is in effect. #pragma pack (twobyte) is equivalent to #pragma
pack(2) and #pragma pack(packed) is equivalent to #pragma pack(1).

Specifying no parameter in a #pragma pack is equivalent to #pragma pack(full).

If –fztpf or –flinux was specified on the commandline then the structures produced
by DCC are compatible with gcc for all of the #pragma pack settings. If –fc370 is
specified then the structure layout is compatible with IBM’s compilers for Language
Environment. An additional setting of #pragma pack(le) is available which causes
structures to be laid out to be compatible with Language Environment, even if
compiling for a different platform, such as z/TPF.

For further compatibility with IBM’s compilers, there is a command line option
–fansi-bitfield-packing, which causes packing of bitfields within structures to be com-
patible with IBM’s LANGLVL(COMMONC) or LANGLVL(ANSI) options. This behavior
can be controlled with #pragma pack(ansi) and #pragma pack(noansi), so that
individual source or header files can override the commandline settings.

#pragma prolkey(identifier, “key”)

Using #pragma prolkey allows the user to tailor certain function entry points by
adding additional macro arguments. #program prolkey specifies that the string
key is to be appended to the keyword list for the prologue macro associated with
the entry point named identifier. The string key will be copied verbatim and added
to the end of the typical macro arguments for the entry point.

The #pragma prolkey directive must appear before the function definition.

#pragma STDC FENV ACCESS switch

When the –fc99 option is enabled, Systems/C will respect the #pragma STDC FENV ACCESS
switch pragma. This pragma is particularly useful with the –fieee option is also
enabled. If the –fc99 option is not enabled, Systems/C will silently ignore #pragma
STDC FENV ACCESS.

The switch value can be ON, OFF, or DEFAULT. The default mode is OFF.

When #pragma STDC FENV ACCESS is ON, floating point operations that could raise
floating point exceptions (i.e. inexact, or division by zero) are not optimized away
and also do not participate in constant folding, unless they are part of a static
initialization. The ANSI C99 standard describes this operation in further detail.

The effect of #pragma STDC FENV ACCESS ON is that such operations will be deferred
until execution time, allowing the programmer to reset any exception or rounding

138 Systems/C

mode and taking different action at runtime. Furthermore, any floating point con-
stant folding, common subexpression substitution, or other optimizations, will be
negated while #pragma STDC FENV ACCESS is ON.

When #pragma STDC FENV ACCESS is specified at file scope, the setting remains
as specified until a subsequent #pragma STDC FENV ACCESS is encountered at file
scope. When it is encountered within an inner scope, the previous value is restored
at the end of that scope.

#pragma warning “text”

#pragma warning "text" causes the compiler to generate a warning message. The
warning message will include the specified text.

#pragma weak(identifier)

#pragma weak indicates that the identifier is either a weak reference, or when –flinux
is specified, a weak definition.

For Systems/C (–flinux not specified) programs, only weak references are supported.
Weak references apply to either functions, or non-reentrant data. A #pragma weak
applied to reentrant data has no effect. A weak reference generates a WXTRN reference
in the resulting assembly source, instead of the default EXTRN reference. For example,
the following code declares weak func() as being a weak external function. It then
tests to see if weak func() is defined before calling it:

#pragma weak(weak_func)

void weak_func(void);

main() {
/* If weak_func is defined, call it. */
if(weak_func)

weak_func();
}

When –flinux is specified, a #pragma weak may apply to either functions or data,
and may be applicable to either references or definitions. The Linux linker will allow
multiple “weak definitions” of the same function or data without complaint.

#pragma eject

#pragma eject causes the listing to move to a new page.

Systems/C 139

#pragma page(n)

#pragma page(n) causes the listing to move forward n pages. n is optional, and if
not provided causes the compiler to move forward one page.

#pragma pagesize(n)

#pragma pagesize(n) sets the number of lines on subsequent pages in the listing
to n. n should not be less than 20.

#pragma showinc

#pragma showinc causes the compiler to include source lines from #include files in
the listing. This can be used to selectively add some #include source lines in the
listing while leaving out others. Use #pragma noshowinc to cause source lines from
#include files to be skipped in the listing.

#pragma noshowinc

#pragma noshowinc causes the compiler to not include source lines from #include
files in the generated listing. This can be used to selectively skip some #include
source lines. Use #pragma showinc to re-enable listing of #include source lines.

#pragma ident “str”

#pragma ident "str" instructs the compiler to add str to the generated object as
data. It will not necessarily be loaded into memory at run time, but it will be in the
object. This feature is commonly used for versioning and copyright information. It
is an alternative to the construct

static const char ident[] = "@(#)$Id: prog.c,v 1.42 $";

but it is guaranteed to never elide the string as unreferenced.

#pragma comment(user, “str”)

#pragma comment(user, "str") is equivalent to #pragma ident "str".

140 Systems/C

C preprocessor extensions

DCC supports several common C preprocessor extensions.

#warning

A #warning preprocessor control line causes a warning message to be generated.
Any text following the #warning is provided in the generated message.

For example the following #warning control lines:

#warning "This is a warning"
#warning
#warning a string

will cause the following diagnostics to be generated:

cpp: file line #: Warning #1116: #warning "this is a warning"
cpp: file line #: Warning #1116: #warning
cpp: file line #: Warning #1116: #warning a string

#error

A #error preprocessor control causes an error message to be generated. Any text
following the #error is provided in the generated message.

For example, the following #error control lines:

#error "This is an error"
#error
#error a string

will cause the following diagnostics to be generated:

cpp: file line #:Error #1016: #error "This is an error"
cpp: file line #:Error #1016: #error
cpp: file line #:Error #1016: #error a string

Systems/C 141

#include next

#include next is intended to “skip” in the –I search list when searching for #include
files. #include next indicates that the search for a #include file should begin at
the next element in the –I search list from wherever the current file was located.

If the current file was specified using an absolute path name, then #include next is
treated as #include. If the current source is the primary source file, #include next
is treated as #include and a warning diagnostic is generated.

#ident

#ident "str" is simply a shorter form of #pragma ident "str". It is used to put a
comment in the generated object code, such as a version or copyright message.

Extensions for AR-mode support: far, based(), alet
and aletof()

DCC provides extensions to the C language that allow programs to readily access
data in access register mode. Data that is appropriately declared will be accessed
with a base/access register pair. The compiler automatically tracks access registers
associated with the access, and automatically enters AR-mode for the access.

Syntax:

type far * identifier;
type based(alet-identifier) * identifier;
alet identifier
aletof(far pointer expression)

Description:

type far * identifier
far pointers are 8 bytes large, and have no disassociated ALET value.

The first four bytes of a far pointer contain the ALET; the next four
bytes contain the pointer.

type based(alet-identifier) *identifier
based() pointers may have either an integral constant or an identifier of

type alet for their base. If they use an alet identifier, the identifier
must be visible at the time of declaration.

based() pointers are 4 bytes long, containing only the pointer portion
of an AR-mode reference. When the value they address is referenced, the
appropriate access register is initialized from the alet identifier.

142 Systems/C

alet identifier
alet provides a new data type which is a place-holder for ALET values.

alet declared identifiers may be assigned to and directly compared for
equality using the == and != comparison operators. In assignment or com-
parison they are considered to have the type unsigned int.

aletof(far pointer expression)
aletof() is a Systems/C built-in operator used to extract the ALET

portion of a far pointer expression. aletof() produces an unsigned
int value which is the ALET portion derived from the far pointer ex-
pression. aletof() produces an rvalue expression and thus, cannot be
used to alter the ALET of a far pointer. based() pointers are the rec-
ommended approach for situations which require modification of ALETs.

There are several issues to be aware of in properly using far and based() point-
ers:

• based() pointers may be freely converted to far pointers, which simply as-
signs the ALET value from the based() pointer’s alet-identifier to the ALET
portion of the far pointer, and assigns the pointer value of the based()
to the pointer portion of the far pointer.

• far and based() pointers may be converted to non-AR mode pointers.
Such a conversion simply drops the ALET specification, assigning the pointer
portion to the non-AR mode pointer.

• far pointers may be converted to based() pointers but only the pointer
portion is converted. Assigning to a based() pointer from a far pointer
does not alter the alet identifier associated with the based() pointer.
Further data references via the based() pointer will appropriately set the
access register using the ALET defined by the alet-identifier.

• Any value of integral type may also be converted to a far pointer. The
resulting far pointer will be given an ALET value of zero.

• Passing based() pointers as a parameter only passes the 4-byte pointer
portion. Passing far pointers passes the 8-byte ALET-offset pair. alet
identifiers may be passed to functions as well.

• Functions may return far or based() pointers. If a function returns a
based() pointer, only the pointer portion is returned. A function that re-

turns a far pointer returns the pointer portion in register 15, and the asso-
ciated ALET portion in access register 15.

• There are no far or based() pointer address constants and thus, no
NULL definition specific to far or based() pointers. However, far and
based() pointers may be compared to the NULL constant. Only the pointer

portion will be compared.

Systems/C 143

• Pointer arithmetic and comparison on far and based() pointers is valid.
Only the pointer component will be used. If a far or based() pointer
exceeds the defined data space size, the value does not “wrap around” to the
beginning of the data space. Note that comparison of two far or based
pointers only compares the pointer components. For based pointers, the
ALETs can be compared by referring to the alet expressions. For far point-
ers, the aletof() operator can be used to compare the ALET portions of
the pointers.

• Conversions of far and based pointers to the long long type will only
use the pointer component.

Remote function pointers

DCC provides a remote function pointer facility, that can be used to build programs
that invoke functions in other (dynamically loaded) load modules on z/OS.

When the –ffpremote option is enabled, a function call that is accomplished through
a (remote) function pointer saves the current PRV base in the local frame, loads a
new PRV value from the function pointer, then loads the actual function address
from the function pointer and branches to the function.

Thus, a remote function address is actually a pointer to a container that contains
the new PRV base, and the actual function address. It is not actually the address
of the code to branch to.

A remote function pointer container is generated when the address of a function is
taken, or when a function pointer value is converted to a remote function pointer.

The compiler generated assembly code employs the DCCSTPRV macro to indicate
that the PRV value should be saved at the specified location. There is a DCCSTPRV
macro that is provided for use with the Systems/C runtime, and it can be altered to
accomodate any particular runtime environment. The –fstprv=NAME option can
be used to cause the compiler to invoke a different macro.

When –ffpremote is not enabled, the remote keyword can indicate a remote func-
tion pointer. Similarly, the local keyword can indicate that the give function
pointer is ”direct”, that it is local to the load module of the caller and does not
need a unique PRV. Example usage of remote and local keywords:

typedef void __remote (*remote_fp)(void);
typedef void __local (*local_fp)(void);

Note that, while a remote function pointer can be converted to a local function
pointer, it is not advisable. Invoking that function pointer would not switch the

144 Systems/C

PRVs to the remote load module’s PRV, and the invoked function would likely fail
mysteriously (or catastrophically) as a result. The compiler generates a warning for
this situation.

Also, the conversion from a local function pointer to a remote function pointer
can only be accomplished for the direct reference to the address of a function. An
expression that has a local function pointer, or any generic pointer type, cannot be
converted to a remote function pointer. The semantics of remote function pointer
do not provide a location or scope to allocate the space needed for the container
holding the PRV and the function address. If the container were allocated in static
scope, then subsequent execution of the conversion would overwrite any previous
value, potentially invalidating existing pointers to the container. If the container
were allocated in automatic scope, then pointers to that container are invalid when
the scope ends. If the container is allocated dynamically then there is no opportunity
to deallocate it, and thus the program ”leaks” memory.

Thus, the only valid conversion of a local function pointer value to a remote
function pointer is the direct address of a function within the same load module, in
which case the compiler can safely allocate the container within the static scope of
the current compilation unit.

For example, this is valid when compiled without the –ffpremote option:

extern void function(void);
__remote void (*remote_fp)(void); /* __remote function ptr */

...

remote_fp = &function; /* compiler can allocate the container */

But, this would be invalid:

extern void function1(void);
extern void function2(void);
__local void (*local_fp)(void); /* __local function ptr */
__remote void (*remote_fp)(void); /* __remote function ptr */

...
local_fp = &function2; /* or any other address */

...
remote_fp = local_fp; /* invalid because the source */

/* is not a direct function address */

Special “built-in” implementations for common C library
functions.

DCC provides built-in implementations for some of the more common C library

Systems/C 145

functions. Built-in functions are used when the <string.h> system header file is
included. Invoking these functions does not generate a call to an externally linked
function, instead the compiler will provide an “in-line” definition of the function
semantics. Also, give the right arguments, the compiler can frequently exand many
of these functions to one or two assembly instructions, greatly improving run-time
performance.

These list of “built-in” functions includes:

memcpy()
memset()
memcmp()
memchr()
stpcpy()
strcpy()
strlen()
strcmp()
strcat()
strchr()
strncat()
strncmp()
strncpy()
strrchr()
strpbrk()

#include <string.h> to take advantage of the built-in versions of these functions.

Furthermore, when in IBM compatibility mode (–fc370 is specified), the compiler
supports all of the documented IBM built-in functions. Consult the IBM C compiler
documentation for a description of these.

146 Systems/C

Programming for
z/Architecture

Systems/C supports programming for the new z/Architecture machines, supporting
the new z/Architecture instructions and 64-bit addressing mode.

The compiler can take advantage of z/Architecture instructions when either 32-bit
or 64-bit code generation is selected, using the –march=z option. The specification
of –mlp64 implies –march=z.

When z/Architecture mode is enabled, Systems/C will generate z/Architecture in-
structions.

z/Architecture instructions

When the –march=z option is enabled, Systems/C uses the newer z/Architecture
instructions. This provides for 64-bit programming when –mlp64 is specified and
offers other improvements for 32-bit programs when –milp32 is specified.

When –mlp64 is specified, values retained in registers typically use the complete
64-bit register. This allows for a seamless translation between the int and pointer
types, supporting existing, although not recommended, C practice.

64-bit z/Architecture programming model

When the –mlp64 option is enabled, Systems/C generates z/Architecture instruc-
tions, enabling 64-bit addressing. In this mode, long and pointer data is 64-bits
wide, and are aligned on a 64-bit boundary, the natural alignment for these types
on the z/Architecture.

This size and alignment for long and pointer data is also known as the “LP64”
programming model. The LP64 programming model is currently used on the most
popular UNIX, and Linux 64-bit implementations, maximizing portability with these
platforms.

Systems/C 147

For example, the following structure would be 16 bytes in size, and would be aligned
on a 8 byte boundary:

struct big_struct {
long long_field; /* 8 bytes long */
void *ptr_field; /* 8 bytes long */

}

In non-z/Architecture mode, this structure would only be 8 bytes long, and aligned
on a 4-byte boundary.

It is important to note that the long long data types are simply treated as equiv-
alent to the long data types. Thus, in z/Architecture mode, the long long data
types are also aligned on 8-byte boundaries.

Parameter passing and return values.

When –mlp64 is specified, and –flinux or –fc370 is not specified, Systems/C continues
to use a parameter passing linkage similar to the typical OS/390 linkage. That is,
register R1 points to the parameter block.

In 64-bit mode (–mlp64 is specified), Systems/C aligns parameters on natural regis-
ter boundaries. That is, parameters are aligned on 8 byte (double word) boundaries.
Integral values which are smaller than 8 bytes are right-justified in the 8-byte field.

For example, in calling the function with this prototype:

void func(char a, int b, void *c);

The value for the first parameter, a, would be at offset 7, bytes 0-7 would be cleared.
The value for b, would be at offset 12, with bytes 8-11 cleared. And, the value for
the parameter c would be at offset 16, using a full 8 bytes.

The ALIGN4 linkage pragma can be applied to either function definitions or decla-
rations to alter this default 8-byte alignment. If a #pragma linkage ALIGN4 applies
to a function then calls to the function will assume parameters are aligned on 4-
byte (fullword) boundaries. Note that ALIGN4 linkage does not affect the size of the
paramaters, a long or pointer value will continue to be 8 bytes in size. It will simply
be aligned on a 4-byte boundary instead of an 8-byte boundary.

Return values from functions are also affected by the –mlp64 option. When returning
values smaller than a 64-bit register, the value will be promoted to completely fill
the register. Thus, functions that are undeclared, but return pointer values will
continue to work as expected. Although, this is certainly not recommended for
portable programs. For example, the following code will operate correctly:

148 Systems/C

/* note - this function does not define a return type, */
/* and thus is assumed by the compiler to return */
/* ‘int’ */
undeclared_pointer_return()
{
static char array[20];
return array;

}

void call_func(void)
{

char *ptr_value;

/* The compiler will generate a warning on this */
/* statement, regarding the conversion of the */
/* ‘int’ integral type to a pointer, but the */
/* correct pointer value will be assigned. */

ptr_value = undeclared_pointer_return();
}

This approach allows older C code to remain compatible with the newer z/Architecture
system.

AMODE and address calculations

It is important to recognize that the LP64 model does not require a 64-bit addressing
mode. It simply indicates that pointers and long data can contain 64-bit values.
Systems/C supports these values even when the AMODE is not 64-bits. This allows
64-bit addresses/data to be manipulated by 31-bit programs.

Normally, when –mlp64 is specified, Systems/C assumes the AMODE is 64. With this
assumption, Systems/C can generate LOAD-ADDRESS instructions for address calcu-
lations. However, if the –famode=any option is specified, Systems/C will generate
z/Architecture code that can be used in any AMODE. When –famode=any is specified,
Systems/C will not use a LOAD-ADDRESS instruction to perform address calculations,
instead using arithmetic instructions to perform these calculation. This allows the
code to properly execute, and retain complete 64-bit addresses in any AMODE.

Also when –milp32 is specified, pointer arithmetic on ptr64 qualifier pointers will
not use the LOAD-ADDRESS instruction, instead using other instructions to perform
the necessary operation. This allows pointer arithmetic on ptr64 qualified pointers
to properly operate in any environment.

Systems/C 149

ptr64 qualifier

A pointer may be qualified with the ptr64 qualifier, which indicates the pointer
contains a 64-bit address. The ptr64 qualifier follows the pointer designation (*),
as this qualifier applies to the pointer, not the value being pointed-to.

This is most useful when –milp32 is specified, as when –mlp64 is specified, normal
pointers contain 64-bit addresses. ptr64 qualified pointers are 8 bytes long, and
aligned on 8-byte boundaries. These pointers can be manipulated and used even
when –milp32 is specified.

z/Architecture instructions will be used for loading, storing and manipulating ptr64-
qualified pointers, regardless of the –mlp64/–milp32 setting.

When –mlp64 is specified, pointer arithmetic performed on ptr64 qualified point-
ers is calculated using z/Architecture arithmetic instructions. When –mlp64 is spec-
ified, ptr64 qualified pointers are treated as normal pointers.

ptr64 qualified pointers can be used in 31-bit code to retain and manipulate values
passed to/from 64-bit routines.

For example, in the following routine, the variable big pointer is acquired from
another function (possibly an assembler function) and then incremented. This could
appear in any Systems/C function, regardless of the –mlp64 or –milp32 setting:

/* acquire_ptr() returns a 64-bit address */
extern char * __ptr64 acquire_ptr();

char * __ptr64 big_pointer;

big_pointer = acquire_ptr();
big_pointer += 10; /* increment pointer by 10 bytes */

When –milp32 is specified, dereferencing a ptr64 qualified pointer will cause the
compiler to generate a warning, indicating that a potential 64-bit address is being
deferenced when the AMODE could be something other than 64-bits.

Also, the ptr64 qualifier can be used in parameter passing, when invoking a 64-bit
module from 31-bit code.

In the following example, BIG is passed a 64-bit long long value for the size of a
data area, and a 64-bit pointer. When calling from 31-bit code, the compiler will
automatically promote the values appropriately:

void BIG(long long, char * __ptr64);

150 Systems/C

func31()
{

int size;
char *ptr;

size = 100;
ptr = malloc(size); /* allocate 100 bytes */

/* Invoke the z/Architecture "big_func" */
/* function passing the size and a pointer */
/* to the allocated space. */
BIG(size, ptr);

}

The source for BIG, compiled with the –mlp64 option enabled might look similar to
this:

#pragma prolkey(BIG,"DCALL=YES")
void BIG(long long size, char * __ptr64 ptr)
{
long i;
for(i=0;i<size;i++) {

*ptr = 0;
}

}

Note that it is declared to be a Systems/C Direct-CALL (DCALL) function, to be
properly invoked from a 31-bit environment.

ptr31 qualifier

As with the ptr64 qualifier, pointers may be qualified with the ptr31 qualifier.
Such pointers are 4 bytes long and aligned on 4-byte boundaries.

This allows for defining and referencing 31-bit addresses, even when the AMODE is
64.

For example, the following structure defines an integer, followed by a 31-bit address:

struct example31 {
int integer_field;
char * __ptr31 pointer_field;

};

Systems/C 151

This can be quite useful for accessing 31-bit data structures when –mlp64 is specified.

When –mlp64 is specified Systems/C will automatically convert ptr31 qualified
addesses into 64-bit addresses when the pointer is dereferenced.

Similarly, any 64-bit addresses will be truncated when stored into ptr31 qualified
pointers.

The ptr31 qualifier can also be useful when invoking z/Architecture code from
ESA code, and passing 31-bit pointers. For example, in the following, the function
ENTRY is a Systems/C DCALL function, which is compiled with the –mlp64 option
enabled:

#pragma prolkey(ENTRY,"DCALL=YES")
#pragma linkage(ENTRY,ALIGN4)
void
ENTRY(int size, void * __ptr31 starting_address)
{
int i;

/* zero-out ’size’ bytes */
for(i=0;i<size;i++) {

*starting_address = 0;
}

}

The parameter starting address is passed as a 31-bit pointer and can be readily
used by the z/Architecture function. The compiler will automatically promote the
31-bit pointer to its complete 64-bit value when it is dereferenced. Note also that
ALIGN4 linkage was applied to ENTRY so that it could be invoked from a 31-bit
environment.

Systems/C z/Architecture library

When neither –flinux, –fztpf nor –fc370 are specified, the resulting program is in-
tended to be linked with the Systems/C z/Architecture library. The Systems/C
z/Architecture library completly supports running programs in z/Architecture mode,
with all data, including stack, heap and re-entrant data, being loaded above the 4-
gigabyte “bar.”

For more particular details regarding the Systems/C z/Architecture library, see the
Systems/C Library manual.

Linking with the Systems/C z/Architecture library is only slightly different from
the normal link process. All that needs to be done is specification of the alternate
library.

152 Systems/C

Systems/C now provides reentrant and non-reentrant z/Architecture libraries. On
cross-platform hosts, these objects are in the objs rent z and objs norent z di-
rectories. On OS/390 and z/OS, these are in the LIBCRZ and LIBCNZ PDSes. To
use the Systems/C z/Architecture library, simply specify these directories/PDSs in
place of the non-zArchitecture versions.

For example, JCL to execute the PLINK pre-linker with the Systems/C z/Architecture
reentrant library would be similar to the following:

...
//PLINK EXEC PGM=PLINK
//STEPLIB DD DSN=Systems/C load library,DISP=SHR
//STDERR DD SYSOUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCRZ.OBJ,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
//SYSMOD DD DSN=myoutput.obj,DISP=NEW

The same command on a UNIX or Windows platform might be:

plink -omyoutput.obj prog.obj "-SC:\sysc\objs_rent_z\&M"

assuming Systems/C was installed in the C:\sysc directory.

Systems/C 153

154 Systems/C

Programming for OpenEdition

Systems/C supports creating OpenEdition programs which are executed from the
Hiearchical File System (HFS.) This includes 31-bit and 64-bit programs.

The Systems/C C Library manual contains detailed information about how to pro-
duce OpenEdition programs and the runtime environment supported under OpenEdi-
tion.

Systems/C 155

156 Systems/C

Programming for MVS 3.8

Systems/C supports creating programs for the MVS 3.8 operating system. Gen-
erally, the full support of the Systems/C library is available, with the restrictions
inherent in the MVS 3.8 environment.

The Systems/C C Library manual contains detailed information about how to pro-
duce MVS 3.8 programs.

Systems/C 157

158 Systems/C

Programming for CMS

Systems/C offers support for basic CMS programs using the OSRUN facilities of
CMS to emulate an OS/390 environment.

The Systems/C C Library manual contains detailed information about how to pro-
duce CMS programs.

Systems/C 159

160 Systems/C

IBM Compatibility Mode

The Systems/C compiler, DCC, can produce assembly language source that —
when assembled with the Systems/ASM DASM assembler — is object compatible
with IBM’s C product.

This facility allows DCC to be used as an IBM C compatible cross-hosted compiler,
or natively on OS/390 and z/OS. Thus, you can generate IBM C/C++ compatible
objects on any of the supported by Systems/C and the Systems/ASM assembler for
eventual linking in an IBM C environment.

The Systems/C pre-linker PLINK automatically recognizes input IBM compatible
objects and enables its IBM compatibility mode. So IBM compatible objects can
be pre-linked with PLINK.

Requirements

Using DCC to compile in IBM C compatibility mode requires the availability of the
IBM C system include files. If you are running version 2.4 or later of OS/390, you
may find these in /usr/include in your HFS file system. Or, they can be found in
the appropriate PDSs (e.g. CEE.SCEEH.H and CEE.SCEEH.SYS.H.)

Using IBM’s NFS server facilities, you can make these available to your cross-
platform host for use by DCC.

Also, to link the eventual objects into an executable program, you will need the
IBM C libraries installed on your mainframe. The IBM C documentation describes
the procedures used for linking IBM C programs.

Compiling in IBM compatibility mode under JCL

When running DCC via batch JCL in IBM compatibility mode, the compiler will
need to reference the IBM header files.

These header files are disributed for use by the IBM C compiler, and assume the
IBM C compiler’s #include look-up rules.

Systems/C 161

To mimic the function of the IBM compiler, you should add the –fincstripsuf and
–fincstripdir options. This will cause Systems/C to remove any suffixes and direc-
tories from the names found in #include files.

Also - you should add the appropriate –I options to specify the IBM include file
PDSs, -I//DSN:CEE.SCEE.H and -I//DSN:CEE.SCEEH.SYS.H.

For example, the following JCL fragment will appropriately execute Systems/C for
compatibility with IBM z/OS 1.2 objects:

//CC EXEC PGM=DCC,PARM=’-@PARMS’
//STEPLIB DD dignus.load.pds
//PARMS DD *
-fc370=z1r2
-fincstripsuf
-fincstripdir
-I//DSN:CEE.SCEE.H
-I//DSN:CEE.SCEEH.SYS.H
//
.
.

How Systems/C differs from IBM C

Although, when the –fc370 option is used, DCC is very compatible with IBM C
object code, there are some differences that need to be noted.

There are some different requirements for #pragma directives, described in the sec-
tion on #pragmas. Normally, these are not an issue.

DCC fully supports IBM’s Decimal type.

As with IBM C, when in IBM C compatibility mode (the –fc370 option is en-
abled), enumerations may have the type char, short or int and be either signed
or unsigned, depending on the range of enumerations values specified in the enu-
meration type. Normally, the type of an enumeration is signed int.

Differences from Systems/C

The objects generated in Systems/C mode can be linked into an IBM C program.
However, care must be taken as there are some differences. In Systems/C mode, the

162 Systems/C

parameter alignment and return conventions are different that IBM C. Also, the Sys-
tems/C default prologue and epilogue make assumptions regarding the supporting
library that are incorrect when linking with IBM C run-time libraries.

An appropriate approach is to use the –fprol= and –fepil= options to cause Sys-
tems/C to generate correct prologue and epilogue macros, and then treat the Sys-
tems/C generated assembly source as you would any assembly function when linking
with IBM C.

Alternatively, the Systems/C Direct-CALL (DCALL) feature can be employed to
create a Systems/C environment when the Systems/C functions are invoked. Note
that the Systems/C functions should not invoke or use any of the IBM C library
functions, as the IBM C library functions will be called outside of an IBM C run-time
context.

Consult the IBM C documentation for the appropriate information on how to invoke
assembler language functions from IBM C.

The –fansi-bitfield-packing option

IBM C bitfield sizes and allocation vary based on the value of the LANGLVL
option specified on the IBM C compile step. When running under TSO or BATCH,
or with the c89 compiler driver, IBM C will default to LANGLVL=ANSI. When run
with the cc compiler driver, IBM C defaults to LANGLVL=COMMONC.

When LANGLVL=ANSI, IBM C will allocate bitfields and align structures containing
bitfields so that the fewest bytes are used. DCC will follow the same algorithm
when the –fansi-bitfield-packing option is enabled on the DCC command line.

When LANGLVL=COMMONC, IBM C will pad structures that end in bitfields to ac-
count for the remaining bits declared in the bitfield type, as many C compilers do.
When –fansi-bitfield-packing is not specified on the command line, DCC follows this
algorithm.

Thus, DCC provides complete structure and bitfield compatibility with IBM C. If
the structure sizes or member offsets vary from IBM C, examine the value of the
LANGLVL option in the IBM C listing and set –fansi-bitfield-packing appropriately.

In versions of DCC compiler before 1.91, there was a similar option called –fansi-bitfield.
The older option had the side effect of also disabling the use of types other than
int (such as char) for bitfields. The newer DCC separates this functionality out
into an independent –fno-nonint-bitfield option. So –fansi-bitfield is equivalent to
specifying both –fansi-bitfield-packing and –fno-nonint-bitfield.

Systems/C 163

Assembling with the Systems/ASM assembler

Assembling the output of DCC in IBM C compatibility mode requires the use of
the Systems/ASM assembler, DASM. used for the The compiler generates DASM-
supported extensions in the assembly source which are not recognized by the IBM
HLASM assembler. DASM is also capable of creating an IBM Extended Object
Module, which will be properly recognized by the Systems/C pre-linker (PLINK),
IBM binder, or the IBM pre-linker as IBM C objects. Using the DASM, IBM C
compatible objects can be generated on any of the supported platforms, including
OS/390, z/OS and the cross-platform hosts.

For versions 1.95 and later of the DCC compiler, the compiler generates *PROCESS
lines to provide the correct options to the Systems/ASM assembler. This support
is only available in Systems/ASM. For versions of the DCC compiler prior to 1.95,
the proper options must be specified in the Systems/ASM assembler.

There are three important DASM options to consider when assembling the compiler-
generated assembler source in IBM C compatibility mode, the –batch option, the
–idr option and the –fdupalias option.

The –batch option is enabled by default and should not be disabled. Systems/C
typically generates several virtual “sources” that should be assembled together when
invoking Systems/ASM.

The –idr option is used to provide specific information in the IDR section of END
cards generated by the assembler. The IBM C pre-linker and IBM binder examine
the IDR information to verify that the object deck was properly generated and
that the object format is supported by this particular version of the pre-linker
and/or binder. For compatibility with IBM C V1R3, the IDR value should be
’5645001 1300’. For V2R4 compatibility, the IDR should be ’5647A01 2400’.
Note that there are three spaces between the two parts of each of these IDR values.

The –fdupalias option is required because the compiler generates complicated ALIAS
statements for IBM compatibility mode which are normally flagged as errors and
warnings. The –fdupalias option instructs DASM to allow these constructs and
operate on the appropriately.

A typical Systems/ASM assembler command line on a UNIX platform, when as-
sembling sources compiled with the -fc370=v2r4 option would be:

dasm -fdupalias -idr "5647A01 2400" -o object ... file.asm

For version 1.95 and later, the DCC compiler will place *PROCESS lines in the gen-
erated assembly source that cause the –fdupalias and –idr values to be appropriately
set. Thus, for version 1.95 of DCC and later the –batch, –fdupalias and –idr options
are not required on the Systems/ASM (DASM) assembler command line.

Consult the Systems/ASM documentation for more information about these options
and how to use the Systems/ASM assembler on your system.

164 Systems/C

Pre-Linking

The Systems/C pre-linker (PLINK) is capable of performing all of the pre-linking
tasks needed for IBM C objects. When an IBM Extended Object Module is dis-
covered in the input objects, PLINK switches to “IBM mode,” and operates in a
fashion compatible with the IBM pre-linker.

Alternatively, the IBM pre-linker (EDCPRLK) can be employed to pre-link IBM Ex-
tended Object Module objects. Or, on newer systems, the IBM binder can directly
process these objects.

Consult the Systems/C Utilities manual for more information about using PLINK
to pre-link IBM Extended Object Modules.

Linking

To perform the final link of IBM Extended Object Modules, the IBM linker can be
employed. For cross-platform hosts, the pre-linked object can be transferred to the
mainframe host for use by the mainframe linker.

Alternatively, for cross-platform hosts, PLINK can be employed to create a TSO
TRANSMIT module, which can then be RECEIVE’d on the mainframe platform.

To learn more about how to use PLINK to produce load modules on cross-platform
hosts, consult the Systems/C Utilities manual.

eXtra Performance Linkage

If XPLINK is used, the building and linking process is altered somewhat. DASM
must be used with the –goff option to create a GOFF object deck. XPLINK also
requires –fdupalias and –xthread options on the DASM invocation. The –fdupalias
option instructs DASM to allow sophisticated ALIAS definitions to set special
XPLINK flags. The –xthread option tells DASM that each section begins at offset
0, which is the norm for XPLINK (rather than beginning at the end of the previous
section).

The actual DASM command line will look something like:

dasm -goff -fdupalias -xthread -idr "5694A01 0105" -o object ... file.asm

XPLINK GOFF objects must be pre-linked and linked with IBM’s tools on the
mainframe. PLINK does not currently support all aspects of these objects.

Systems/C 165

Example

In the following example, we are compiling the two sources, file1.c and file2.c in
IBM compatibility mode, targetting OS/390 2.6. Then, we perform the pre-linking
operation on the cross-platform host, resulting in an object suitable for final linking
on the mainframe host.

It is assumed that the IBM system include files have been made available in the
IBM-include-directory, via some network or other mechanism (e.g. NFS.)

First, compile and assemble each of the files:

dcc -fc370=v2r6 -IIBM-include-directory file1.c
dasm -fdupalias -idr "5647A01 2600" -o file1.o file1.s

dcc -fc370=v2r6 -IIBM-include-directory file2.c
dasm -fdupalias -idr "5647A01 2600" -o file2.o file2.s

Then, we use PLINK on the cross-platform host to pre-link the two files. Also,
in this step, we assume the IBM object files are available in a DAR archive, pre-
pared from the appropriate PDS on the mainframe. Again, this could be via a
network mechanism from the mainframe. In this example, the DAR archive is
named libsceeobj.a and resides in the directory ibmlibs. The resulting output
file is written to prog.obj

plink -oprog.obj file1.o file2.o -Libmlibs -lsceeobj

At this point, prog.obj is the pre-linker output file and is ready to transmit to the
mainframe for final linking.

166 Systems/C

Customizing DCC-generated
Assembly Source

The assembly source generated by DCC can be customized in several ways to assist
in development, particularly within an existing run-time environment.

Note that significant alteration of the generated assembly source will prevent the
use of the Systems/C library. Furthermore, re-entrant variables (–frent) should be
used with caution. Any existing run-time library will need to properly allocate the
PRV and initialize re-entrant variables.

Specifying alternate Entry/Exit macros

By default, DCC generates invocations of the Systems/C prologue and epilogue
macros, DCCPRLG and DCCEPIL. These macros will suffice in many situa-
tions. However, when producing assembly code that will become part of an existing
program, it may not be appropriate to include all of the function provided by the
Systems/C environment. Typically, in an existing program, there are existing pro-
logue and epilogue macros already in use. DCC can be instructed to use those
macros instead of the Systems/C macros, generating assembly source that can be
assembled and linked into your existing program.

The assembly code generated by DCC makes several assumptions that you must
ensure are preserved by your own prologue and epilogue macros:

The prologue macro is responsible for saving the previous values of the
registers in the caller’s register save area.

The prologue and epilogue are responsible for maintaining the run-time
stack. The size of local stack space required for a function will be named
as the FRAME argument to the macro invocation. The generated code
assumes that the frame register is completely updated at completion of
the epilogue code. By default, the frame register is R13, but it can be
changed via the –fframe-base= option. If the size of the local data is
greater than 4096, then a literal, @FRAMESIZE nnn, will also be allocated

Systems/C 167

which is guaranteed to be addressable in the first 4K region to contain
the frame size. nnn denotes the current function’s CINDEX value.

The base register is set up correctly to point to the entry point of the
function. The entry point has another label named REGION nnn 1 which
the compiler can reference. The prologue macro is responsible for es-
tablishing this label. The value of nnn is the function’s index number,
which is provided as the CINDEX argument to the prologue macro. This
number is unique for all functions in a compilation. Also, the base regis-
ter is named by the compiler in the value of the BASER argument to the
prologue macro.

The prologue macro is responsible for declaring the function as externally
visible if needed. The value of the ENTRY argument to the macro will be
YES if the function should be externally visible, and an ENTRY statement
should be generated.

The epilogue macro is responsible for deallocating the local stack space,
restoring the register contents to their previous values and returning to
the caller.

If the function was compiled with –mlp64 specified, then ZARCH=YES will
be added to the prologue parameters. In this case, the compiler assumes
that the prologue and epilogue saves and restores the full 64-bit values
of the registers. If the ZARCH=YES option is not specified, the compiler
only assumes that the 32-bit values in registers are saved and restored.

For re-entrant programs, DCC also generates an invocation of the DC-
CPRV macro to acquire the address of the Pseudo-Register Vector
(PRV). DCCPRV accepts one argument, REG=nn, which specifies which
register should contain the address of the PRV when the macro has been
expanded. DCC will invoke the macro at the start of each function that
needs to address data in the PRV and will save the resulting value at a
location in the local stack frame. The supplied DCCPRV macro works
in conjunction with the Systems/C stack and the supplied DCCPRLG
macro. If an alternate prologue is used, DCCPRV must be adjusted
appropriately to build re-entrant programs.

In general, it is not possible to mix functions assembled with an alternate pro-
logue/epilogue with the objects from the Systems/C library.

An alternate prologue macro can be specified by using the option –fprol=XXX on
the DCC command line. An alternate epilogue may be specify using –fepil=XXX.
An alternate PRV address macro may be specified using –fprv=XXX.

Adding keywords to prologue/epilogue macros

In some instances, with slight modification, an existing prologue or epilogue can
function in a new manner. For example, any existing prologue/epilogue may be

168 Systems/C

adequate for all situations except program start-up, where a slight change is needed.
To facility this, the Systems/C compiler can add extra arguments to the prologue
and epilogue macros on a per-function basis, via the #pragma prolkey and #pragma
epilkey directives.

#pragma prolkey(name, “key-string”)

Directs the compiler to add the string key-string to the arguments presented to the
prologue macro for the function named name. The key-string may be any C string
constant, and thus can comprise several arguments separated by commas. A leading
comma will be provided by the compiler if needed.

#pragma epilkey(name, “key-string”)

Directs the compiler to add the string key-string to the arguments presented to the
epilogue macro for the function named name. The key-string may be any C string
constant, and thus can comprise several arguments separated by commas. A leading
comma will be provided by the compiler if needed.

Specifying an alternate base register

DCC assumes that register 12 is the code base register for functions. However, you
can specify an alternate register for this purpose, to improve integration of DCC-
generated assembly source into an existing program structure. The alternate base
register can be specified using the –fcode-base=nn option.

The specified base register is also passed to the prologue macro in the value of the
BASER argument.

The code base register can be any register except the frame base register.

In normal operation, the compiler will use registers 0, 1, 14 and 15 for function calls.
Use of registers 0, 1, 14 or 15 as the code base should be carefully employed.

Specifying an alternate frame register

DCC assumes that register 13 will be used for addressing automatic data, local to
the function. That is, register 13 is the frame base register.

However, for better interaction in existing runtime environments, it may be prefer-
able to choose another register as the frame register.

Systems/C 169

The –fframe-base=nn option may be used to specify a different frame register for
addressing automatic data. The default Systems/C prologue and epilogue macros do
not support using an alternate frame register. Thus, proper use of the –fframe-base=nn
option requires that prologue and epilogue macro implementations which support
the named frame base register be provided.

In normal operation, the compiler will use registers 0, 1, 14 and 15 for function calls.
Use of these registers as the frame base register should be avoided.

Specifying a block tag for automatic variables

At the end of each function, DCC generates a DSECT that describes the automatic
variables allocated in the function. This DSECT, and the fields in it can be refer-
enced in asm code to gain direct access to the variables local to a function. The
names of the fields in the sect follow the template:

FunctionName#VariableName#blocktag

where blocktag is normally a counter associated with each C block in the function.

Unfortunately, using the simple counter to locate automatic variables is cumbersome
and problematic for the user. The blocks have to be counted by-hand and a change
which introduces new blocks will alter this count, requiring a change to any asm
code in the program.

DCC provides a mechanism for associating a symbolic name with a block. That
name will be used in the DSECT field names for the blocktag:

dsect tag("block-tag-name")

block-tag-name is any string of characters that constitutes a valid assembly language
identifier, ’#’ and ’@’ should be avoided as they may conflict with other compiler-
generated names. This string becomes the blocktag value in the DSECT field name.
dsect tag() appears immediately following the opening brace of a new C code

block. It can appear nowhere else.

Specifying a particular dsect tag() can be valuable when debugging the applica-
tion. If the debugged supports references to the symbolic names found in the block
tag DSECT, then judicious use of the dsect tag() specification can improve de-
bugging.

Furthermore, if in-line assembly source requires direct references to automatic vari-
ables, specifying a particular dsect tag() allows for these references.

170 Systems/C

Note that the compiler may choose to place certain C variables wholly in registers.
Thus, the DSECT supplied with the block will not be accurate. If the –g option is
specified, the compiler will not place variables in registers, and the DSECT will be
completely accurate.

Systems/C 171

172 Systems/C

Using the Systems/C
Direct-CALL Interface

The Systems/C library is implemented using the Systems/C entry and exit macros
which assume a Systems/C environment is extent at run time.

The Systems/C environment includes items such as the local stack frame used for
automatic variables in your C code, the Systems/C run-time heap, I/O data blocks
etc.

Thus, in order to call a Systems/C function which uses the Systems/C entry and
exit linkage macros, this environment must be established and accessible.

For typical Systems/C programs, where your initial function is a C main() function;
the Systems/C library handles creation of this environment.

However, there are circumstances where there is no Systems/C main() function.
For example, calling Systems/C routines from COBOL or directly from assembler
source in a system exit.

For this situation, Systems/C provides the Direct-CALL (DCALL) interface, where
a Systems/C function can be directly called from any environment. This interface
can be employed to either automatically create and destroy a Systems/C environ-
ment, or to create and re-use, then destroy a Systems/C environment.

For more detailed information on the Systems/C Direct-CALL run-time environ-
ment, consult the Systems/C C Library manual.

Systems/C 173

174 Systems/C

Debugging Systems/C
Programs

Because the output of the Systems/C compiler is formatted assembly source, the
debugging approaches you are familiar with for debugging assembly programs are
applicable.

The IBM dbx or C/370 Debug debuggers can debug DCC-generated files in IBM
compatibility mode. In IBM compatibility mode, the compiler can generate “ISD”
debugging information or the newer DWARF debugging information, compatible
with the information generated by the IBM compilers.

When using the Dignus runtime library or other modes, the Systems/DBG debugger
DDBG can be used to debug programs. To learn more about the DDBG debugger,
consult the Systems/DBG manual.

To request that the compiler generate debugging information, add the –g option.

Accessing symbols in a debugging session

For most mainframe debuggers, external symbols are usually readily accessible as
they have associated ESD information in the object deck and load module. Al-
though, no C type information is provided.

For automatic variables, the compiler on a per-function basis generates an @AUTO
DSECT which describes the variables. The @AUTO DSECT is provided at the end of
each function, and contains a description of the automatic variables allocated in the
function. By USING the frame base register, typically register 13, you can reference
this DSECT to examine or change automatic variables in your debugging session.

Note that the values in the @AUTO DSECT may not be consistent with the state of
automatic variables during expression evaluation and other situations. The value of
a variable may not be stored back into memory, or in optimized code, the variable
may be completely eliminated.

Systems/C 175

If you wish to ensure the value of the variable is kept in memory at the location spec-
ified in the @AUTO DSECT, then the variable must be declared using the volatile
specification.

The format of the @AUTO DSECT is:

@AUTO#funname DSECT
funname#varname#blocktag DS variable-description
funname#varname#blocktag DS variable-description

.

.

.

Each automatic variable has one entry in the DSECT. The entries in the DSECT
are made unique from any other @AUTO DSECTs by prefixing the function’s name,
followed by a pound character (#).

Furthermore, each entry is made unique from other entries in the same @AUTO
DSECT by appending a pound character (#) and a blocktag. Typically, the blocktag
is a counter value associated with the block within the C function. However, us-
ing dsect tag(), you can associate any name with a particular C function block.
That name will be used for the value of blocktag for the automatic variables declared
in the block.

The variable-description following the DS includes the size of the automatic variable,
along with some basic type information. When the C type can be represented by
an assembly-language DS-specification, that will be used. For those C types that
aren’t representable, the X’nn’ DS-specification will be used. The basic types in
the C language have equivalent DS specifications, and will be represented. More
complex types, such as structures don’t have equivalent DS specifications and will
appear as X’nn’.

Forcing a dump

The ready support of direct, inline assembly makes forcing a dump a nice, quick
approach to program debugging. Simply place specific values in a register (using
register() declarations) and force an 0C1 dump. The register trace back will

contain the value you are interested in.

Note that TRAP=ON should not be specified. If signal traps are enabled, then the
signal handling code will intercept the normal dump mechanisms and a SIGILL
signal will be raised. For more information about the TRAP runtime setting, see the
Systems/C C Library documentation.

In the following example, the macro OhC1 is defined to generate assembly code that
will force the dump. Then, after loading the value of errno into register 2, the
macro is invoked.

176 Systems/C

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

/* Define a macro that generates in-line */
/* assembly code to force an 0C1. */
#define OhC1(label,ax) __asm 2 {label dc x’00’,ax }

func()
{

if (open("MYDD",O_RDONLY,0)<0) {
__register(2) int r2;
/* Place the value of ’errno’ in */
/* register #2. */
r2=errno;

/* Force an OC1 - the value of errno */
/* will be in R2 in the register dump. */
OhC1(labeli,x’00’);

}
}

Systems/C 177

178 Systems/C

Compiling for z/Linux and
z/TPF

The Systems/C compiler, DCC, supports compiling source for assembly and ex-
ecution under Linux running on 390 hardware, Linux/390, or for 64-bit z/Series
machines, z/Linux and z/TPF. This allows the programmer to use the same com-
piler for both OS/390, z/OS, TPF 4.1, z/Linux and z/TPF with little change.

When compiling for z/Linux or z/TPF, Systems/C produces assembler source suit-
able for assembling with the GNU GAS assembler, as. Because it produces assem-
bler source, many of the same features available when generating HLASM source
are available, e.g. asm, register, etc. As the generated assembler source is
targeted at the z/Linux or z/TPF assembler, any inline assembler source inside of
asm blocks similarly needs to take this into account.

However, the prologue and epilogue for functions, as well as the calling linkage
convention are different from those used with OS/390 and z/OS. Therefore the Sys-
tems/C extensions related to prologue/epilogue function do not apply when com-
piling in this environment.

In general, to generate a program for z/Linux, DCC is executed with the –flinux
option, enabling generation of as-style assembler source. For z/TPF, the –fztpf
options is used. This source is then assembled, producing an object file in ELF
format. That file can then be linked with any other z/Linux objects to produce the
program.

If the –mlp64 option is specified, the resulting assembly language is targeted as 64-
bit z/Linux, and should be assembled with the z/Linux version of the as assembler.
The –mlp64 and –march=z options are enabled by default for z/TPF.

The –flinux option

The –flinux option causes the compiler to generate source suitable for assembly by
the z/Linux GNU assembler, as. This assembler source is very similar to HLASM
source, except that as does not support some of the more advanced features of

Systems/C 179

HLASM. For example, there is no USING statement, no macro preprocessor, etc.
Thus, the generated assembler source is a more direct representation. For more
information about the input accepted by as, see the GNU info file for as.

The –flinux option also disables those features which are not supported because of
this different assembler syntax. Using any disabled features will typically produce
a warning message and the feature will be ignored.

If the –mlp64 or –fztpf options are specified, the generated assembler source should be
assembled with the z/Linux version of as, creating a 64-bit ELF object. Otherwise,
it should be assembled with the Linux/390 version of as, creating a 32-bit ELF
object.

The –flinux and –fztpf options enable the –fieee option, causing IEEE constants and
IEEE floating point instructions to be used for floating point arithmetic.

Using z/Linux system #include files

The #include files provided with z/Linux take advantage of many GNU extensions,
and assume the presence of several pre-defined macros. Furthermore, the system
header files are tailored to each release of the GNU C compiler, gcc.

Many of these extensions have been added to DCC to support the z/Linux header
files. The z/Linux system include files expect pre-defined macros, which Systems/C++
provides automatically when –flinux is specified. The –I search list should include
the GNU C compiler headers in the proper order.

To determine what should be added to the DCC command line, run gcc with the
–v flag, where it produces the options it uses for the GNU compiler. For example:

gcc -v t.c

produces:

Reading specs from /usr/lib/gcc-lib/s390-ibm-linux/2.95.2/specs
gcc version 2.95.2 19991024 (release)
/usr/lib/gcc-lib/s390-ibm-linux/2.95.2/cpp -lang-c -v
-D__GNUC__=2 -D__GNUC_MINOR__=95 -Dlinux -D__s390__ -Dunix
-D__ELF__ -D__linux__ -D__s390__ -D__unix__ -D__ELF__
-D__linux -D__unix -Asystem(linux) -Acpu(s390)
-Amachine(s390) -Asystem(unix) -D__CHAR_UNSIGNED__ t.c
/tmp/ccy98GUC.i
GNU CPP version 2.95.2 19991024 (release) (Linux for
S/390)

180 Systems/C

#include "..." search starts here:
#include <...> search starts here:
/usr/include
/usr/lib/gcc-lib/s390-ibm-linux/2.95.2/../../../../s3
90-ibm-linux/include
/usr/lib/gcc-lib/s390-ibm-linux/2.95.2/include
/usr/include
End of search list.

The –I and –D options used under normal Linux compiles become clear.

The equivalent DCC command line under Linux/390 would be:

dcc -flinux \
’-D__WCHAR_TYPE__=long int’ -Dlinux -D__s390__ \
-Dunix -D__ELF__ -D__linux__ -D__s390__ -D__unix__ \
-D__ELF__ -D__linux -D__unix -D__CHAR_UNSIGNED__ \
-D__signed=signed \
-I/usr/lib/gcc-lib/s390-ibm-linux/2.95.2/../../../../s390-ibm-linux/include \
-I/usr/lib/gcc-lib/s390-ibm-linux/2.95.2/include \
-I/usr/include \
t.c

Placing this command in a UNIX shell script, or other scripting language will make
process easier.

Furthermore, note that the z/Linux system include files can be copied to any of
the Systems/C++ supported platforms. Doing so enables Systems/C++ to cross-
compile for z/Linux on other platforms.

Using z/TPF #include files

For z/TPF builds, IBM has modified the include files to be automatically processed
with DCC. No changes are required.

Assembling z/Linux or z/TPF assembler source

Systems/C generated assembler source may be assembled directly with the z/Linux
versions of as as appropriate. The source can also be passed to the gcc compiler
driver for assembly. The gcc compiler driver will invoke as to accomplish the assem-
bly.

Systems/C 181

Using the z/Linux as command

When DCC is executed with the –flinux or –fztpf options, the generated assembler
source is formatted to be assembled with the z/Linux assembler, as. For detailed
information regarding the as assembler; refer to the manual page on the z/Linux
system.

Note that if the –mlp64 or –fzpf option is specified, the 64-bit z/Linux version of as
should be used.

Some helpful options are:

–a Turn on assembly listings. Adding l enables an assembly listing, adding
s enables a symbol listing. Adding =filename will direct the listing to a
particular filename.

–o file Direct the assembler to write the object to file.

–v Announce the assembler version.

For example, if the generated output from DCC was in the file myprog.s, then the
following command on z/Linux will assemble the file, place a listing in myprog.lst
and produce the object file myprog.o:

as -als=myprog.lst -o myprog.o myprog.s

Using the gcc driver to assemble

As an alternative to directly invoking the assembler, the GNU compiler driver,
gcc, can be used to assemble DCC-generated assembler source. If the generated
assembler source file ends in “.s”, gcc will invoke the assembler for this file to
create a “.o” object file. For example, the myprog.s assembler source could be
assembled with:

gcc -c myprog.s

The –c option indicates that linking should not be performed. This will execute the
assembler and produce the file myprog.o.

182 Systems/C

Linking on z/Linux

Once the DCC-generated assembler source has been assembled, it can be linked as
any other object is linked on z/Linux. This is typically accomplished with the gcc
compiler driver. The gcc compiler driver will invoke the z/Linux linker, ld, passing
the name of the object file, along with any library files which may be needed.

For more information regarding the ld linker or the gcc compiler driver, consult the
z/Linux on-line manual pages with the commands:

man ld

man gcc

For example, if the DCC-generated assembler source myprog.s had been assembled
into myprog.o, then linking this on z/Linux to produce myprog is simply:

gcc -o myprog myprog.o

At this point, myprog is ready to run.

Systems/C 183

Example Linux/390 compile and link

By way of example, consider the following simple C source. For this example, we
do not include any Linux/390 system headers, which simplifies the DCC command
line:

main()
{

printf("Hi from Linux/390!\n");
}

If this C source is in the file ./mytest.c on a Linux/390 host, then the following
commands will compile, assemble and link the program, producing the executable
mytest:

dcc -flinux -omytest.s mytest.c
as -al=mytest.lst -o mytest.o mytest.s
gcc -o mytest mytest.o

Notice also that on the as step, a listing file was specified — mytest.lst. If no
assembler listing is needed, then the as step can be incorporated into the linking
step, and the commands simply become:

dcc -flinux -omytest.s mytest.c
gcc -o mytest mytest.s

Using DCC for z/TPF

The Systems/C compiler can be used to write programs for z/TPF, by specifying
the –fztpf option.

When –fztpf is specified, the compiler generates as-style assembly source and should
be assembled with the GNU GAS assembler for 64-bit Linux.

The resulting object file is an ELF object file that can be linked as normal in a
z/TPF environment.

The normal extensions available in Systems/C are also available in a z/TPF envi-
ronment; including in-line assembly, support for the Decimal data type, various
#pragmas and other language features that offer improved compatibility with TPF
4.1 compiles.

184 Systems/C

Systems/C can also produce a compiler listing similar to the one used in a TPF 4.1
environment.

As of PUT 07, the IBM maketpf utility supports the use of DCC for z/TPF, no
changes to maketpf should be required. Furthermore, the maketpf utility invokes
the tpf-dcxx script to accomplish the compile and link, so no direct invocation of
as is needed. DCC is fully integrated into maketpf and its use is supported by
IBM.

Consult the IBM z/TPF documentation for more information on maketpf and on
using DCC to build programs for z/TPF.

Using DCC for Linux on other hosts

DCC is supported on many different platforms. On each of these, the compiler
can be employed to generate z/Linux or z/TPF assembler source by including the
–flinux or –fztpf options.

To do so, the z/Linux or z/TPF system include files need to be available to the host
platform for reference there, either via network access or a copy. Once the system
include files are available, DCC can be employed just as it would be on a native
z/Linux host.

Furthermore, it is possible to construct a version of the GNU assembler, as, which
can assemble the DCC-generated assembler source on many UNIX platforms. Or,
the GNU assembler can be invoked natively on a z/Linux platform by using network
facilities such as rexec.

For example, it would be possible to generate z/Linux assembler source on an
OS/390 host, then use the OS/390 REXEC program to invoke the z/Linux assem-
bler to assemble the source.

Similarly, it is possible to construct a version of the GNU linker, ld, which will
execute on many UNIX platforms to link the objects to produce an executable.

For more information regarding the GNU as and ld tools, and how to configure
and build them on alternative hosts, refer to your z/Linux documentation, or see
http://www.gnu.org.

Systems/C 185

186 Systems/C

Systems/C C Library

The Systems/C library provides the ANSI standard functions, as well as several
extensions which aide in the porting of other programs to the mainframe.

For detailed information on the run-time environment, consult the Systems/C C
Library manual.

Systems/C 187

188 Systems/C

License Information File

DCC consults the license information file each time it is executed. Information
in the file includes the licensee name, expiration, license key, and other pertinent
information.

This file must be accessible or the compiler will not execute.

On UNIX and Windows host platforms, the file is named dignus.inf and is found
in the same directory as the dcc executable. The dignus.inf file is a text file which
can be edited by any text editor. However, changing the expiration date, licensee,
options or host platform definitions will invalidate your license.

On OS/390 and z/OS, the license information file is named DIGNUS and is found
in the same load module PDS as the DCC executable module. DIGNUS is in load
module format, and is generated from assembly language source. To make changes
in the license information, the assembly language source must be change, assembled
and link-edited to produce the the DIGNUS load module. However, changing the
expiration date, licensee, options or host platform definitions will invalidate the
license.

As well as license information, the file can also specify the location of the System/C
system include files. These are the files which are specified in angle brackets in C
preprocessor #include directive, e.g:

#include <stdio.h>

The “System Include” statement is used to specify the location of the System/C
library header files. If the –nodiginc option is specified the “System Include” state-
ment is ignored.

On UNIX and Windows host platforms, this is typically the include subdirectory of
the Systems/C installation, e.g.:

System Include=sysc directory/include

On OS/390 and z/OS, this is base name of the PDSs which constitute the Systems/C
library header files. This can be specified in the dignus.asm file as:

Systems/C 189

DC C’System Include=//DSN:sysc prefix.INCLUDE’
DC X’15’
DC X’0’

The special keyword “LICENSE” at the beginning of the path is expanded to the
path in which DCC found the license file itself. For example, if the license file is in
C:\DIGNUS\BIN, and you had the following line in your license file:

System Include=LICENSE\ ..\ include

then DCC would look in C:\DIGNUS\INCLUDE for the headers.

Your dignus.inf, or dignus.asm assembly language source to create DIGNUS, is
provided separately from the installation materials. Editing this file is part of the
installation process, and is described further there.

If you have more than one licensed product from Dignus, LLC, the license texts can
be concatenated into one dignus.asm or dignus.inf file.

190 Systems/C

Compiler Error and Warning
Messages

The following list describes the messages produced by DCC. Each entry contains
the message number, the type of message and a typical message string, followed by
a brief description.

Generally, messages produced by the C preprocessor are in the range 1000-1999.
Messages produced by the C parser are in the range 2000-2999 and messages pro-
duced by the code generator are in the range 4000-4999.

1010 Warning — ISO C forbids evaluated comma oper-
ators in #if expressions

A comma operator was encountered within a #if expression, but it is a non-standard
construct that should be avoided.

1011 Warning — comment in the middle of a preproces-
sor directive

A comment was found inside of a preprocessor directive, likely as the result of a
typographical error.

1012 Error — too many levels of conditional inclusion
(max 63)

There were too many nested #if, #ifdef or #ifndef preprocessor directives.

Systems/C 191

1013 Error — division by 0

Evaluating a preprocessor directive resulted in division by zero, which has no defined
value.

1014 Error — duplicate macro argument

A macro has more than one argument with the same name. Only one of the argu-
ments with this name can be accessed.

1015 Error — empty character constant

The character constant ’’ was encountered. Perhaps ’\’’ was intended?

1016 Error — #error XXX

A #error directive was encountered.

1017 Warning — file ’XXX’ not found

While processing a #include or #include next directive an attempt was made to
open a file that does not exist or is inaccessible.

1018 Warning — unexpected characters in #assert

A #assert directive included unexpected characters which were ignored.

1019 Warning — unexpected characters in preprocessing
directive

Unexpected characters in a miscellaneous preprocessing directive were ignored.

192 Systems/C

1020 Warning — unexpected characters in #ifdef

Unexpected characters in a #ifdef directive were ignored.

1021 Warning — unexpected characters in #ifndef

Unexpected characters in a #ifndef directive were ignored.

1022 Warning — unexpected characters in #include

Unexpected characters in a #include directive were ignored.

1023 Error — unexpected characters in constant integral
expression

Unexpected characters in a number were ignored.

1024 Warning — unexpected characters in #line

Unexpected characters in a #line directive were ignored.

1025 Warning — unexpected characters in #unassert

Unexpected characters in a #unassert directive were ignored.

1026 Warning — unexpected characters in #undef

Unexpected characters in a #undef directive were ignored.

1027 Warning — identifier not followed by whitespace in
#define

The name of the macro was not followed by a left parenthesis or whitespace, the
unexpected characters are ignored.

Systems/C 193

1030 Error — illegal assertion name for #assert

The #assert directive was followed by a token that is not a valid preprocessor name.

1031 Error — illegal character ’X’

The specified character was found in the source code but is not in the character set
accepted by Systems/C.

1032 Error — illegal macro name for #ifdef

The #ifdef directive was followed by a token that is not a valid preprocessor name.

1033 Error — illegal macro name for #ifndef

The #ifndef directive was followed by a token that is not a valid preprocessor name.

1034 Error — illegal assertion name for #unassert

The #unassert directive was followed by a token that is not a valid preprocessor
name.

1035 Error — illegal macro name for #undef

The #undef directive was followed by a token that is not a valid preprocessor name.

1036 Error — not enough arguments to macro

A preprocessor macro was invoked with fewer arguments than it was #defined with.

1037 Error — invalid escape sequence ’\X’

The specified escape sequence was encountered but could not be evaluated.

194 Systems/C

1038 Error — macro expansion did not produce a valid
filename for #include

The #include directive used macros to build up the file name, but the result of
evaluating the macros was not a valid filename.

1039 Error — not a valid filename for #line

The #line directive was encountered with an invalid filename.

1040 Error — invalid ’#include’

A #include directive was malformed in some way. For example an opening angle-
bracket (<) may have been found without a closing angle-bracket (>).

1041 Error — invalid integer constant ’XXX’

The specified string could not be converted to an integer.

1042 Error — invalid token in constant integral expres-
sion

An unknown token was encountered in an integral expression.

1043 Error — not a valid number for #line

The #line directive was encountered without a valid line number.

1044 Error — invalid macro argument

An invalid token was used as an argument in a macro call.

Systems/C 195

1045 Warning — operator ’##’ produced the invalid to-
ken ’XXX’

The ## operator, which merges two tokens, produced a combined token which was
invalid.

1046 Error — invalid argument to Pragma

Pragma() was used with an invalid argument.

1047 Warning — input line too large

An input line was encountered that was larger than the preprocessor could handle.

1048 Error — macro XXX already defined

Redefining macros is not allowed.

1049 Warning — malformed identifier with UCN: ’XXX’

A malformed identifier with the indicated Universal Character Name was encoun-
tered.

1050 Error — malformed UCN in XXX

The indicated Universal Character Name was encountered but not recognized.

1051 Error — too many arguments to macro ’XXX’

The macro named XXX is invoked with more arguments than specified in is def-
inition. The line number provided in the error message indicates the start of the
macro invocation.

196 Systems/C

1052 Warning — more arguments to macro than the ISO
limit (127)

A macro was invoked with more than 127 arguments, which is the limit set by the
ISO standard.

1053 Error — too many arguments in macro definition
(max 253)

A macro was #defined with more than 253 arguments, which is the maximum limit
supported by Systems/C.

1054 Warning — macro call with XXX arguments (ISO
specifies 127 max)

A macro was invoked with more arguments than is allowed in the ISO standard.

1056 Error — Too many include directories

The #include search path holds too many directories.

1057 Error — missing comma in macro argument list

A macro argument list contained extraneous arguments not separated by commas.

1058 Error — missing comma before ’...’

To define a variadic macro the argument list must look like (a, b, ...) rather
than (a, b ...).

1059 Error — missing macro name

An attempt to define an anonymous macro was detected.

Systems/C 197

1060 Warning — multicharacter constant

A suspicious constant such as ’abc’ was used.

1061 Error — a colon was expected

A question mark was encountered and assumed to be part of a ?: operator, but no
matching colon was found.

1062 Error — ’...’ must end the macro argument list

A variadic macro must have “...” at the end of the argument list rather than in
the middle.

1063 Error — a right parenthesis was expected

A left parenthesis was encountered with no matching right parenthesis.

1064 Error — could not flush output (disk full ?)

The preprocessor failed to supply the generated output to the C compiler or –E
listing.

1065 Warning — non-standard line number in #line

The specified line number includes non-numeric characters.

1066 Error — operator ’##’ may neither begin nor end
a macro

The ## operator cannot span macros.

198 Systems/C

1067 Error — ’ VA ARGS ’ is forbidden in macros with
a fixed number of arguments

The VA ARGS symbol is only defined for variadic macros.

1068 Error — output write error (disk full ?)

The preprocessor failed to supply the generated output to the C compiler or –E
listing.

1069 Warning — null preprocessor directive

A line containing just the pound character (#) was encountered.

1070 Error — out-of-bound line number for #line

The line number specified was too large or negative.

1071 Error — operator ’#’ not followed by a macro ar-
gument

The # operator was encountered in a macro and should have been applied to an
argument variable.

1072 Error — quad sharp

A ## operator was followed by another ## operator with no intervening tokens to
combine.

1073 Warning — reconstruction of <foo> in #include

The name of the file to be #included was constructed through macro expansion
and the result is of the form <foo>.

Systems/C 199

1074 Warning — macro ’XXX’ redefined unidentically

More than one definition encountered for the specified macro, and they are not
identical.

1075 Error — trying to redefine the special macro XXX

The source code specified a redefinition of a special built-in macro which cannot be
changed.

1076 Warning — ’ STDC ’ redefined

The STDC macro was redefined, it probably should not be.

1077 Error — rogue #elif

The #elif directive was encountered in an improper location (i.e., with no corre-
sponding #if).

1078 Warning — rogue #elif in code compiled out

The #elif directive was encountered in an improper location (i.e., with no corre-
sponding #if), but compilation can continue because the #elif is in code that is
not compiled.

1079 Error — rogue #else

The #else directive was encountered in an improper location (i.e., with no corre-
sponding #if).

1080 Warning — rogue #else in code compiled out

The #else directive was encountered in an improper location (i.e., with no corre-
sponding #if), but compilation can continue because the #else is in code that is
not compiled.

200 Systems/C

1081 Error — rogue operator ’XXX’ in constant integral
expression

An operator which could not be evaluated as an integer was encountered within an
integral expression.

1082 Error — rogue ’#’

A # was encountered in a preprocessor directive and ignored.

1083 Warning — rogue ’#’ in code compiled out

A # was encountered in an unused preprocessor directive and ignored.

1084 Warning — rogue ’#’ dumped

An unexpected # was encountered and passed through to Systems/C.

1085 Warning — right shift of a signed negative value in
#if

A right shift (>>) was applied to a negative value in an expression being evaluated
by the preprocessor. The preprocessor cannot determine if logical shift or arithmetic
shift was intended (assuming logical shift).

1086 Error — syntax error in #assert

A malformed #assert directive was encountered.

1087 Error — syntax error for assertion in #if

A syntax error was encountered in an assertion within a #if directive.

Systems/C 201

1088 Error — syntax error in #unassert

A malformed #unassert directive was encountered.

1089 Warning — trigraph ??X encountered

A trigraph of the form ??X was encountered but not translated.

1090 Error — truncated comment

A /* comment was ended at the end of the file rather than by */.

1091 Error — truncated constant integral expression

A constant integral expression was ended prematurely by newline or end of file. For
example “(1” was encountered without the closing parenthesis.

1092 Error — truncated macro definition

A macro definition was ended prematurely by newline or end of file.

1093 Error — truncated token

A token was ended prematurely by newline or end of file.

1094 Warning — truncated UTF-8 character

A UTF-8 character was in the process of being specified when end of file was en-
countered.

1095 Error — trying to undef special macro XXX

A special built-in macro was undefined with #undef.

202 Systems/C

1096 Warning — undefining ’ STDC ’

The built-in macro STDC is being undefined with #undef.

1097 Error — unfinished #assert

#assert directive ended by newline or end of file before completion.

1098 Error — unfinished #ifdef

#ifdef directive ended by newline or end of file before completion.

1099 Error — unfinished #ifndef

#ifndef directive ended by newline or end of file before completion.

1100 Error — unfinished macro call to macro ’XXX’

An invocation of the macro named XXX ended by a newline or end of file before
completion.

1101 Error — unfinished string at end of line

A macro string constant was ended by newline or end of file before the closing quote
was found.

1102 Error — unfinished #unassert

#unassert directive ended by newline or end of file before completion.

1103 Error — unfinished #undef

#undef directive ended by newline or end of file before completion.

Systems/C 203

1104 Error — unknown preprocessor directive ’#XXX’

A preprocessor directive was encountered that was not recognized.

1105 Error — unmatched #endif

A #endif directive was encountered with no matching #if directive.

1106 Warning — unterminated // comment

A comment beginning with // was terminated by end of file rather than a newline
character.

1107 Error — unterminated #if construction (depth XXX)

A file has ended before all #if directives were matched to #endif directives.

1108 Error — void assertion in #assert

#assert was given an expression with no value.

1109 Error — void condition (after expansion) for a #if/#elif

#if or #elif was given an expression involving macro expansion with no value.

1110 Error — void condition for a #if/#elif

#if or #elif was given a simple expression with no value.

1111 Error — void macro argument

A macro was passed an argument with no value.

204 Systems/C

1112 Error — void macro name

A macro was defined with no name, just arguments.

1113 Error — void assertion in #unassert

#unassert was given an expression with no value.

1114 Warning — wide string for #line

A wide string was used for the filename in a #line directive.

1115 Warning — wide string for #include

A wide string was used for the filename in a #include directive.

1116 Warning — #warning XXX

A #warning directive was encountered.

1117 Warning — a C99-style digraph was translated in
non-C99 mode

A C99-style digraph (such as <:, :>, <%, %>, %:, or %:%:) was encountered and
translated into the corresponding token. However, –fc99 was not specified and the
compiler is not operating in C99 mode.

1118 Error — overflow on division

When evaluating division (for example in a #if conditional), the preprocessor de-
tected an overflow condition.

Systems/C 205

1119 Error — constant too large for destination type

A typed constant was specified that did not fit within the specified type.

1120 Error — invalid wide character constant: XXX

The preprocessor encountered an invalid wide character constant.

1121 Warning — overflow on XXX

When evaluating an integer operation the preprocessor detected an overflow.

1122 Warning — underflow on XXX

When evaluating an integer operation the preprocessor detected an overflow.

1123 Warning — bitwise XXX yields trap representation

Bitwise math was attempted on a negative number within the preprocessor, which
forces the preprocessor to provide an answer dependent upon the underlying repre-
sentation of negative numbers (for example two’s complement).

1124 Warning — shift count greater than or equal to
type width

The value was shifted so far that the operation yields zero regardless of the original
value.

1125 Warning — shift count negative

A negative shift count was used, rather than a positive shift in the other direction.

206 Systems/C

1126 Warning — right shift of negative value

The preprocessor evaluated a right shift of a negative value, an operation which is
dependent upon whether logical or arithmetic shift is used.

1127 Warning — constant is so large that it is unsigned

The preprocessor encountered a constant that was so large that its default type had
to be promoted to unsigned.

1130 Warning — last line of file ends without a newline

The ANSI C standard requires that the last line of a file end in a newline, but
this file does not. The C preprocessor has inserted one to allow the compilation to
continue.

1131 Error — unfinished character literal at end of line

Character literal ended by newline or end of file before closing single-quote found.

2000 Warning — ANSI C forbids an empty source file

The specified source file has no file-scoped declarations (no functions or data), which
is forbidden by ANSI C.

2001 Warning — externally visible name ’XXX’ trun-
cated

When the –fshort-names option is specified, this warning will be produced for any
externally visible declaration that is too long for the generated assembler source.

2002 Error — character 0xXXX not in source character
set

The compiler has discovered a character in the input stream which is not part of the
C source character set. The character’s value is given in the hexadecimal value XXX.

Systems/C 207

This frequently occurs when using FTP to move source from a cross-platform host
(ASCII) to a mainframe (EBCDIC) with invalid ASCII < − > EBCDIC translation
tables.

2003 Warning — #pragma warning <text>

Produced when a #pragma warning "<text>" is encountered in the source.

2004 Error — #pragma error <text>

Produced when a #pragma error "<text>" is encountered in the source.

2008 Warning — #pragma map not supported when –fno-alias-stmts
is enabled.

The #pragma map facility uses the HLASM ALIAS feature. If –fno-alias-stmts is
specified, #pragma map will be ignored.

2009 Warning — control reaches the end of ’function’
without a return.

The control flow in the specified function can reach the end of the function without
an explicit return statement. This warning is disabled by default.

2010 Warning — expected a return expression for this
function

The function ended without explicitly returning a value.

2011 Warning — expression has no side effect

The given expression has no side effect, in that it doesn’t alter the state of the
machine during program execution.

208 Systems/C

2012 Warning — unsupported linkage in #pragma linkage

— ignored

An unrecognized linkage type was discovered in a #pragma linkage statement.

2013 Warning — typedef redundant ’typedef’

The symbol was already a typedefed value.

2014 Warning — type already specifies long long

Another “long” was discovered when the type was already long long.

2015 Warning — trailing comma in enumerator list

A comma with no following enumerator value was discovered.

2016 Warning — bit-field size exceeds its type

The size specified on the bit-field declaration is larger than the bit-field’s type.

2017 Warning — no declaration.

The statement contains only type information, no datum was declared.

2018 Warning — identifier ’XX’ not in formal list

An identifier was discovered in the old-style formal declaration list which did not
appear in the function’s formal argument list.

2019 Error — function ’XXX’ already defined in this
compilation.

The specified function XXX has already been defined in this compilation, this is a
duplicate definition.

Systems/C 209

2020 Warning — promoted argument #n doesn’t match
prototype.

When an old-style function definition is encountered, and a new-style function pro-
totype for the function is visible, the compiler first checks to see if the argument
type from the old-style declaration list matches the type specified in the prototype.
If they don’t match, but the promoted versions do match, this warning is generated.

2021 Warning — prototype with an ellipse can’t match
empty parameter list.

When comparing two function types, one which contains a prototype argument list
and the other with an empty parameter list, that is not associated with a function
definition, the compiler examines the prototype argument list. The ANSI standard
specifies that in this case, the prototype argument list can not contain an ellipse.

2022 Warning — promoted prototype parameter #n can’t
match empty parameter list.

When comparing two function types, one which contains a prototype argument list
and the other with an empty parameter list, that is not associated with a function
definition, the compiler examines the prototype argument list. The ANSI standard
specifies, in this case, that the prototype arguments must be compatible with the
default promoted type.

2023 Warning — function ’XXX’ declared ’static’ but
never defined

The compiler encountered a declaration of the function specified as XXX with the
static storage class, but no definition of the function was found in this compilation.
Calls to the function will be the same as if the static specification was not present
on the declaration.

2024 Error — missing type for ’XXX’ in new-style func-
tion header

The parameter XXX was discovered in a new-style function header without an as-
sociated type.

210 Systems/C

2025 Warning — pointer to a function used in arithmetic

Pointer arithmetic was used on a pointer to a function. This is an undefined oper-
ation. The compiler will use the size 1 as the pointed-to size.

2026 Warning — comparison of different pointer types
lacks a cast

Two pointers of different types were compared.

2027 Warning — increment of a pointer of type ’void *’

Incrementing a pointer variable adds the size of the pointed-to type to the pointer.
As the type (void) has no size, the compiler emits this warning and uses a size of 1
byte.

2028 Warning — assignment of incompatible pointers

A pointer of an incompatible type was assigned to another without a cast.

2029 Warning — decrement of a pointer of type ’void *’

Decrementing a pointer variable subtracts the size of the pointed-to type from the
pointer. As the type (void) has no size, the compiler emits this warning and uses a
size of 1 byte.

2030 Warning — address of register variable ’XXX’ re-
quested

ANSI C forbids applying the address-of operator (&) to an automatic variable with
the register specification. The compiler indicates the variable’s name in XXX.

Systems/C 211

2031 Warning — pointer of type ’void *’ used in arith-
metic

Pointer arithmetic determines the size of the pointed-to type for the arithmetic
operation. As (void) has no size, arithmetic on (void *) pointers is invalid. In this
instance, the compiler produces this warning and uses a size of 1-byte.

2032 Warning — passing argument N converts pointer
to integral without a cast

The actual argument is a pointer value while the formal argument of the function
expects an integral value. The pointer will be converted to an integer and passed.
Note that this message does not appear when the pointer value is the NULL constant.

2033 Warning — passing argument N converts integral
to pointer without a cast

The actual argument is an integral value while the formal argument of the function
expects a pointer value. The integral value will be converted to the appropriate
pointer type and passed to the function. Note that this message does not appear
when the integral value is a constant zero.

2034 Warning — passing argument N from incompatible
pointer type

The formal parameter type specifies a pointer, and while the actual argument is a
pointer, it is not a pointer compatible with the type of the formal argument.

2035 Error — incompatible type for argument N of ’XXX’

Argument number N of the call to the function specified by XXX could not be
converted to the type specified by the function’s prototype.

2036 Warning — incompatible pointer types in condi-
tional expression

The two results of a conditional expression are incompatible pointers.

212 Systems/C

2037 Warning — initialization converts integral to pointer
without a cast

The initialization value was of an integral type, but the type of the datum to be
initialized is a pointer type. The integral value will be converted to the appropriate
pointer type and the initialization will be allowed. Typically, such an initialization
is in error, but the compiler has allowed it with a warning.

2038 Warning — initialization converts pointer to inte-
gral without a cast

The initialization value was of a pointer type, but the type of the datum to be ini-
tialized is of an integral type. The pointer value will be converted to the appropriate
integral type and the initialization will be allowed. Typically, such an initialization
is in error, but the compiler has allowed it with a warning.

2039 Error — sizeof applied to incomplete type

The sizeof operator has been applied to a structure, union or enumeration type
which is not yet defined.

2040 Error — alignof applied to incomplete type

The alignof operator has been applied to a structure, union or enumeration type
which is not yet defined.

2041 Warning — sizeof applied to a function type

The sizeof operator was applied directly to a function type, the value returned is
undefined.

2042 Warning — sizeof applied to a void type

The sizeof operator was applied to the void type, the value returned is undefined.

Systems/C 213

2043 Error — sizeof applied to a bit-field

The sizeof operator was applied to a bit-field member of a structure.

2044 Warning — alignof applied to a function type

The alignof operator was applied directly to a function type, the value returned
is undefined.

2045 Warning — alignof applied to a void type

The alignof operator was applied to the void type, the value returned is unde-
fined.

2046 Error — alignof applied to a bit-field

The alignof operator was applied to a bit-field member of a structure.

2047 Error — expected a structure type in offsetof

The first argument to the offsetof operator must be a structure type.

2048 Error — structure tag ’XXX’ not defined in offsetof

The given structure tag name in the first argument of the offsetof operator was
not defined.

2049 Error — no identifier specified for initialization

A type specifier was followed by an initialization expression, but no identifier was
given for the initializer.

214 Systems/C

2050 Error — type mismatch in initialization

The type of the datum being initialized is not compatible with the value of the
initialization expression.

2051 Warning — assignment from incompatible pointer
type

An assignment was made between two pointers that don’t point to the same target
types.

2052 Warning — assignment truncates pointer without
a cast

An assignment from a 64-bit address was made to a 31/32-bit address without
casting the pointer type.

2053 Warning — passing argument N truncates pointer
without a cast

The given argument passes a 64-bit address, but the parameter was expecting a
31/32 bit address.

2054 Warning — dereference truncates pointer

A dereference operator (* or array subscript) was applied to a 64-bit pointer in 32
bit mode. The 64-bit pointer is converted to 32 bits for the dereference.

2055 Warning — ISO C90 forbids mixed declarations and
code

The C standards prior to C99 did not allow mixing of declarations and statements
in a block. This warning is enabled if -fc90 is specified and can be promoted to an
error. The warning can be helpful for compiling code intended to also be compiled
with pre-C99 compilers.

Systems/C 215

2060 Warning — hex escape sequence
xNNN out of range - truncated

The hex escape sequence appearing within a character or string constant is too large
for the character value and has been appropriately truncated for the character type.

2097 Warning — comparison is always true

The comparison expression always results in a true value, for example, an
tt unsigned int is always great-than or equal to zero.

2098 Warning — comparison is always false

The comparison expression always results in a false value, for example, an unsigned
int never less-than zero.

2099 Warning — comparison between pointer and inte-
ger

A comparison operation was made between an integral value and a pointer. Typi-
cally, such comparisons are invalid, but the compiler has allowed it with this warning.

2100 Error — syntax error: XXX

General syntax error. A more detailed reason will also be given.

2101 Error — pointer subtraction of different types

A subtraction operation of incompatible pointer types was encountered.

2102 Error — incorrect operand types for pointer sub-
traction

One of the two operand types used in a pointer subtraction operation was invalid.

216 Systems/C

2103 Error — incorrect operand types for pointer addi-
tion

One of the two operand types used in a pointer addition operation was invalid.

2104 Error — invalid operands to binary X

One of the operands to addition, subtraction, division, multiplication or modulus
was of the wrong type.

2105 Error — incompatible operand types to binary X

The two operands of addition, subtraction, division, multiplication or modulus are
of incompatible types.

2106 Error — invalid operands to ==/!=

At least one of the operands to an equality operation was invalid.

2107 Error — invalid operands to </<=/>/>=

At least one of the operands to an inequality operation was invalid.

2108 Error — invalid operands for <</>>

At least one of the operands to a shift operation was invalid.

2109 Error — undefined label ’X’ at end of function

The label ’X’ is referenced in a goto statement, but not defined within the body of
the function.

Systems/C 217

2110 Error — invalid type for constant conversion to
boolean

The constant may not be converted to a boolean type. Although there is no
“boolean” type in C, this can occur if there is an attempt to perform boolean
logical operations to constant values of the wrong type.

Note that this does not apply to the ANSI C99 Bool type. This error is produced
when attempting to convert a type to a logical operation, e.g. for use as the test
expression of an if-statement.

2111 Error — invalid conversion to pointer

The type of value cannot be converted to a pointer type.

2112 Error — invalid type for constant conversion to
short int

The constant may not be converted to a short integer.

2113 Error — invalid type for constant conversion to int

The constant may not be converted to an integer.

2114 Error — invalid type for constant conversion to
unsigned short int

The constant may not be converted to an unsigned short integer.

2115 Error — invalid type for constant conversion to
unsigned int

The constant may not be converted to an unsigned integer.

218 Systems/C

2116 Error — invalid type for constant conversion to
unsigned long int

The constant may not be converted to an unsigned long integer.

2118 Error — invalid type for constant conversion to long

int

The constant may not be converted to a long integer.

2119 Error — invalid type for constant conversion to
double

The constant may not be converted to a double.

2120 Error — invalid type for constant conversion to
float

The constant may not be converted to a float.

2121 Error — invalid type for constant conversion to
unsigned char

The constant may not be converted to an unsigned char.

2122 Error — invalid type for constant conversion to
signed char

The constant may not be converted to a signed char.

2123 Error — invalid type for constant conversion to long

long

The constant may not be converted to a long long.

Systems/C 219

2124 Error — invalid type for constant conversion to
unsigned long long

The constant may not be converted to an unsigned long long.

2125 Error — invalid conversion to double

The value may not be converted to a double.

2126 Error — conversion to a non-scalar type requested

The conversion specifies a structure as the destination type.

2127 Error — conversion specifies array type

The conversion specifies an array as the destination type.

2128 Error — invalid type specifier

The type specifier does not follow the ANSI rules for valid type specifies.

2129 Warning — declaration of ’X’ masks formal param-
eter

The variable specified as X was declared in automatic scope — but it also is the
name of a parameter to the current function. References to the parameter will not
be possible within the scope of this declaration.

2130 Error — redeclaration of extern ’X’ with different
types

The external variable specified as X was redeclared with a different type.

220 Systems/C

2131 Error — redeclaration of ’X’

The variable specified as X was already declared in the current scope.

2132 Error — redeclaration of extern ’X’ as a static

A variable specified as X, previously declared with external scope was declared as
static.

2133 Error — redeclaration of static ’X’ as an extern

A variable specified as X, previously declared with static linkage was declared as
external.

2134 Error — redefinition of ’X’

The typedef, struct or enum specified as X was redefined.

2135 Error — use of incomplete tag ’X’ in declaration of
’Y’

The structure or enumeration tag ’X’ was not defined by the type ’Y’ was declared.

2136 Warning — implicit declaration of function ’XXX’

There was no function declaration or prototype in scope when a call to function
’XXX’ was encountered. The function will be implicitly declared to return the type
int.

2137 Error — redeclaration of enumeration tag ’XXX’

The enumeration tag specified as XXX was already declared in the current scope.

Systems/C 221

2138 Error — function definition declared ’typedef’

The “typedef” keyword appeared on the function header for a defined function.

2139 Error — field ’XXX’ already defined in this struc-
ture

The field specified by XXX was previously defined in the structure.

2140 Error — field reference to a non-structure

The field reference (. or ->) operation was applied to a datum which isn’t a structure
or pointer to a structure.

2141 Error — no field ’X’ in structure ’Y’

The field ’X’ doesn’t appear in structure ’Y’.

2142 Error — storage size of ’X’ isn’t known

The compiler cannot determine how much space should be reserved for the symbol
X. This typically occurs when an incomplete structure or union type is used in the
declaration.

2143 Warning — redefinition of typedef ’X’

The named typedef symbol X was already defined as a typedef. Older K&R compil-
ers silently allow such a redefinition if the type was the same. Some other compilers
only produce an error if the type is different; while others always make this an
warning. This message may be promoted or demoted to effect the desired behavior.

2145 Error — field ’XXX’ declared as a function

The named structure field was declared as a function, which is not allowed in struc-
tures.

222 Systems/C

2146 Warning — static function ’XXX’ declared in block
scope

ANSI C does not allow function declarations in inner blocks with the static spec-
ifier.

2147 Warning — no function prototype given for ’XXX’

A function call was detected when no prototype for the function was available. This
warning is disabled by default.

2148 Warning — struct/union has no members

No members were found in processing a structure declaration. ANSI C requires a
member list for structures.

2150 Error — label ’X’ already defined

A label statement was encountered for a label that was already defined elsewhere in
the function.

2151 Error — case label is not an integral constant

Case values must be integral constants.

2152 Error — duplicate case value

A previous case label is already present for this value.

2153 Error — duplicate ’default’ label for switch

A default label is already present for this switch statement.

Systems/C 223

2154 Error — switch value must be of integral type

The value specified in the switch() statement must be of integral type.

2155 Error — no enclosing for/while/do for continue

A continue was encountered outside of any for, while or do scope.

2156 Error — no enclosing for/while/do for break

A break was encountered outside of any for, while or do scope.

2157 Error — invalid expression type in return

The type of the expression used in the return statement is not convertible to the
type specified in the function declaration.

2158 Error — asm size is not an integral constant

The option size argument to inline assembly source must be an integral constant.

2159 Warning — function returns void — return value
ignored

The function was specified as returning the void type, but the return statement
contains an expression value.

2160 Warning — integer constant out of range

The constant was too large to fit in an integer, long or unsigned long.

224 Systems/C

2161 Warning — integer constant is so large that it is
unsigned

The constant was larger than the maximum signed long value. Thus, per the
ANSI standard, it is considered an unsigned value.

If the –fc99 option is specified, the value will be considered an unsigned long long
value.

2162 Warning — asm line is too long for \c continuation

A w̧as specified in a line in an asm block, but the existing line is already longer
than 72 columns. No continuation character will be placed in column 72, essentially
ignoring the \c.

2163 Warning — explicit type is missing, (int) assumed

A type did not provide an explicit type specifier and the specifier of ”int” was
given. This was the defined behavior in the C89 standard, later standards require a
diagnostic.

2164 Warning — multi-character character constant

A character constant containing more than one character was discovered in the
input source file. Although the ANSI standard allows this, primarily for multibyte
character support, it is frequently a programming error.

2165 Error — character constant too large

A multibyte character constant contained too many characters. The length of multi-
byte character constants is limited to the size of a wchar t. The size of wchar t can
be altered with the –fwchar=n option.

2166 Error — numeric constant contains digits beyond
the radix

An octal or hexadecimal numeric constant uses an inappropriate digit.

Systems/C 225

2167 Error — invalid conversion in cast expression

A cast expression specified a target conversion type which isn’t possible.

2168 Warning — cast to pointer from integer of different
size

A cast expression was applied to an integral type, casting that value to a pointer
type. In this situation, the size of the integral value was either larger or smaller
than the size of the target pointer type.

2169 Warning — cast to integer from pointer of different
size

A cast expression was applied to a pointer type, casting that value to a integral
type. In this situation, the size of the pointer value was either larger or smaller than
the size of the target integral type.

2172 Warning — unrecognized –q option

The value specified for the –q option is unknown.

2178 Error — invalid –fmargins values ’XXX’ ignored.

The –fmargins=m,n option specifies invalid values for m and, if specified, n. m must
be greater than 0 and less then 32761, and n must be greater than m and less than
32761.

2173 Warning — unrecognized –f option

The value specified for the –f option is unknown.

2174 Error — too many input files

The compiler can only compile one file at a time.

226 Systems/C

2175 Warning — unknown option: ’XX’ — ignored.

The text specified by XX isn’t an option recognized by the compiler and has been
ignored.

2179 Warning — bad value in –fwchar option ’XX’ —
ignored.

The text specified by XX was not a correct value for the –fwchar option. –fwchar
can be specified as either 2 or 4.

2180 Error — License validation failed: XXX

The license information isn’t valid. A reason is given and the compilation is halted.

2181 Warning — License warning

There are issues with the license information which should be noted; but processing
will continue.

2185 Error — can’t open input file ’X’

The specified input file X cannot be located and/or opened.

2186 Error — can’t open output file ’X’

The specified output file X cannot be located and/or opened.

2187 Warning — unrecognized –W option

The value specified for the –W option is unknown and ignored.

Systems/C 227

2189 Error — all dimensions except the first must be
specified for a multi-dimensional array

For the compiler to properly determine the size of an array, only the first dimension
may be omitted.

2190 Error — invalid array initializer

An initializer was specified for an array datum without the appropriate left brace.

2191 Error — incorrect character array initializer

A string constant was specified for a character array initialization after some of the
previous indices were initialized.

2192 Error — invalid structure initializer

An initializer was specified for a structure datum without the appropriate left brace.

2193 Error — too many initializers for structure

All of the fields in the structure are initialized, with some initialization values re-
maining.

2194 Error — invalid initialization to static data

Static data can only be initialized with constants.

2195 Error — can’t initialize a function

A function cannot be initialized.

228 Systems/C

2196 Error — can’t initialize a typedef

A typedef cannot be initialized.

2197 Warning — initializer string is too long, truncated

The string constant is larger than the character array’s specified size. The string
constant will be truncated at the number of bytes specified by the array declaration.

2198 Warning — braces around scalar initializer for ’XXX’

Extra braces appear around an initializer for the variable XXX.

2199 Warning — bit-field initializer value too large, trun-
cated

The value specified for a bit-field initialization is larger then the bit-field can ac-
commodate. The value is truncated on the left to fit in the field.

2200 Error — invalid initializer

The type of the initialization expression was not compatible with the datum to
initialize.

2201 Error — character array initialized from wide string

A character array cannot be initialized with a wide-string constant.

2202 Warning — initialization from incompatible pointer
type

An initialization expression was encountered where the type of the initializing value
was not compatible with the type of the target datum.

Systems/C 229

2203 Warning — file-scoped declaration of ’XXX’ glob-
ally reserves register #R

A file-scoped datum declared with the register keyword reserves the register for
the remaining functions in this compilation. The named register will be unavailable
for use by the compiler.

2204 Error — register variable ’XXX’ declared extern

Because register is used to associated a particular machine register with a datum,
the class of the datum must not be extern.

2205 Warning — ANSI C restricts enumerator values to
range of ’int’

Enumerator values must be in the range supported by the int data type.

2206 Error — overflow in enumeration values

When the compiler computed an enumerator value by adding one to the previous
value, the expression overflows the range supported by the int data type.

2207 Error — bit-field ’XXX’ must be of type signed int,
unsigned int or int

The named bit-field is not of a valid bit-field type. This error can only occur if one
of the –fansi-bitfield or –fno-nonint-bitfield options is enabled.

2208 Warning — bit-field ’XXX’ type invalid. Type
’unsigned int’ assumed.

This warning can only occur if –fc370 is enabled. The type for the specified bit-field
is integral, but it is not allowed according to the ANSI standard. The compiler has
substitute the type unsigned int as the bit-field’s type.

230 Systems/C

2209 Warning — bit-field ’XXX’ type invalid in ANSI C

The named bit-field specifies an integral type, but this type is not signed int, un-
signed int or int. The compiler allows these types of bit-fields as extension to
the ANSI standard. This warning can only occur if one of the –fansi-bitfield or
–fno-nonint-bitfield options is enabled.

2210 Error — invalid type specifier

A type specification was expected.

2211 Error — both short & long in type specifier

A type specifier contains both the short and long keyword.

2212 Error — both signed and unsigned in type specifier

A type specifier contains both the signed and unsigned keyword.

2213 Error — enumerator value for ’X’ not an integral
constant

Values assigned to enumeration constants must themselves be integral constants. X
provides the name of the enumeration constant.

2214 Error — structure or union tag used in enumeration
specifier

The enum keyword was applied to a structure or union tag.

2215 Warning — use of incomplete enumeration tag ’XXX’

The enumeration tag XXX was used before it was defined.

Systems/C 231

2216 Error — bit-field width not an integer constant

The size specification of a bit-field must be an integer constant.

2217 Error — bit-field size of 0 for ’X’

Bit-field sizes must be larger than zero. X specifies the name of the erroneous field.

2218 Error — invalid type for bit-field

Systems/C bit-fields must be an integral type, i.e. long, int, short, char or their
unsigned variants.

2219 Error — enumeration tag used in struct/union spec-
ifier

The struct keyword was applied to an enumeration tag.

2220 Error — redefinition of struct/union ’X’

The structure “X” is already defined in this scope.

2221 Error — use of incomplete structure tag ’X’

The structure tag X was used before it was completely declared.

2222 Error — register specification is not an integral
constant

The value which specifies a particular register number must be an integral constant.

232 Systems/C

2223 Error — parameter name missing

A parameter of no names was declared in an old-style function argument declaration
list.

2224 Error — incorrect type for based identifier

The type for a based identifier must be alet.

2225 Error — undefined identifier ’X’ for based

The specified identifier X for a based pointer’s alet was undefined.

2226 Error — based constants must be of integral type

If a constant is used for a based pointer, it must be of integral type.

2227 Error — duplicate identifiers in function declaration

This name was already used in an old-style function parameter identifier list.

2228 Error — array size for ’XXX’ not an integral con-
stant

The size specified for an array must be an integral constant. XXX specifies the
name of the array.

2229 Error — redeclaration of ’XXX’ in parameter dec-
laration list

The given name XXX was already declared in an old-style formal parameter list.

Systems/C 233

2230 Error — lvalue expected

A modifiable lvalue was expected as the destination of an assignment.

2231 Error — assignment to a void typed lvalue

A void-type may not be assigned to.

2232 Error — can’t assign to a function

A function may not be assigned to.

2233 Error — invalid pointer assignment

The type of the expression on the source an assignment could not be converted to
the pointer type specified by the destination.

2234 Error — assigning to ’XXX’ from incompatible type
’XXX’

The type of the source of an assignment could not be converted to the type of the
destination.

2235 Warning — assigning to a const datum

The destination of an assignment was specified with a const storage class.

Because this is a warning, the compiler will allow the assignment. However, const
data should not be written to.

2236 Warning — assignment converts pointer to integral
without a cast

The destination of an assignment is of integral type, while the source is a pointer
type. The compiler will convert the pointer to the integral type.

234 Systems/C

2237 Warning — assignment converts integral to pointer
without a cast

The destination of an assignment is of pointer type, while the source is a integral
type. The compiler will convert the pointer to the appropriate pointer type.

2240 Error — undefined identifier ’X’

The named identifier X wasn’t declared in any visible scope.

2241 Error — too many arguments for call to function
’X’

The call to function X doesn’t match the function prototype in number of arguments.

2242 Error — too few arguments for call to function X

The call to function X doesn’t match the function prototype in number of arguments.

2243 Error — invalid use of void expression as a param-
eter

void typed expressions may not be used as actual parameters in function calls.

2244 Error — dangling comma in argument list

A spurious comma was encountered in a function call’s actual parameter list.

2245 Error — invalid or missing parameter

A parameter was expected.

Systems/C 235

2246 Error — array subscript not of integral type

The value specified as the subscript of an array must be of integral type.

2247 Error — subscripted value is neither array nor pointer

The subscript operation must be applied to either arrays or pointers.

2248 Error — call is not to a function or via a function
pointer

The call operation must be applied to function or the value of function pointers.

2249 Error — invalid argument type for ->

The indirect operation must be applied to a pointer to a structure.

2250 Error — expected identifier after ’->’

A field name was expected after an indirection operation.

2251 Error — postfix ++/-- not allowed in constant ex-
pressions

Assignments, which the postfix operators ++ and -- imply, are not allowed in con-
stant expressions.

2252 Error — lvalue required for postfix ’++/--’

Assignments, which the prefix operators ++ and -- imply, are not allowed in constant
expressions.

236 Systems/C

2253 Error — expected a value after a cast expression

Cast operations must be applied to values.

2254 Error — prefix ++/-- not allowed in constant ex-
pressions

Assignments, which the prefix operators ++ and -- imply, are not allowed in constant
expressions.

2255 Error — lvalue required for prefix ’++/--’

The operand to a prefix ++ or -- operation must be an lvalue.

2256 Error — operands to ’&’ must have integral type

Bitwise-AND can only be applied to values of integral type.

2257 Error — operands to ’^’ must have integral type

Bitwise-exclusive OR can only be applied to values of integral type.

2258 Error — operands to ’|’ must have integral type

Bitwise-OR can only be applied to values of integral type.

2259 Error — operands to ’&&’ must be scalar

Logical-AND con only be applied to value of scalar type.

2260 Error — operands to ’||’ must be scalar

Logical-OR can only be applied to value of scalar type.

Systems/C 237

2261 Error — test value for conditional expression is not
scalar

The test value for a conditional expression must be of scalar type.

2262 Error — type mismatch in conditional expression

The two types for the true and false branches of a conditional expression are not
compatible.

2263 Error — incorrect operand to unary ’&’

The address-of operand must be applied to an lvalue or a structure or array.

2264 Error — missing operand to unary ’*’

The pointer operation expected something to point to.

2265 Error — operand to unary ’*’ must have pointer
type

The operand to the pointer operation must be a pointer.

2266 Error — operand of unary ’+’ must have arithmetic
type

Unary plus can only be applied to operands of arithmetic type.

2267 Error — operand of unary ’+’ must have arithmetic
type

Unary minus can only be applied to operands of arithmetic type.

238 Systems/C

2268 Error — operand of unary ’ ’ must have scalar type

Unary complement can only be applied to operands of scalar type.

2269 Error — operand of unary ’!’ must have scalar type

Unary negation can only be applied to operands of scalar type.

2270 Error — lvalue needed for assignment with binary
operator

The binary operator specified expected an lvalue to contain the result of the oper-
ation.

2271 Error — missing left parenthesis after dsect tag

An left parentheses is expected after the dsect tag keyword.

2272 Error — missing string in dsect tag()

A string, specifying the tag value to use for emitting DSECT information for vari-
ables within this scope is missing.

2273 Error — missing right parenthesis in dsect tag()

The dsect tag() specification requires a closing right parenthesis.

2274 Error — attempt to take address of bitfield struc-
ture member

The address-of operation returns a byte address. As such, the address of a bitfield
is not allowed.

Systems/C 239

2275 Error — expected expression before multiplicative
’*’

The compiler expected an rvalue-expression before the “*” token.

2276 Error — expected expression after multiplicative
’*’

The compiler expected an rvalue-expression after the “*” token.

2277 Error — expected expression before division oper-
ator ’/’

The compiler expected an rvalue-expression before the “/” token. This frequently
occurs when a C++ or ANSI C99 //-style comment is encountered and the –fno-cxx-comments
option is enabled.

2278 Error — expected expression after division operator
‘/’

The compiler expected an rvalue-expression after the “/” token. This frequently oc-
curs when a C++ or ANSI C99 //-style comment is encountered and the –fno-cxx-comments
option is enabled.

2279 Error — expected expression before modulus oper-
ator ’%’

The compiler expected an rvalue expression before the “%” token.

2280 Error — expected expression after modulus opera-
tor ’%’

The compiler expected an rvalue expression after the “%” token.

240 Systems/C

2281 Error — request for member ’XXX’ in something
that is not a structure or union

The structure member selection operator (-> or .) specified a source which is not
a structure or union.

2282 Warning — assignment discards ’const’ from pointer
target type

The source pointer has the const qualifier on its pointed-to type, while the target
pointer does not. Thus, indirect references through the destination pointer have the
potential to alter const-qualified data.

2283 Warning — assignment discards ’volatile’ from
pointer target type.

The source pointer has the volatile qualifier on its pointer-to type, while the
destination pointer does not. Thus, indirect references through the destination
pointer will not honor the semantics of volatile-qualified data.

2284 Warning — passing of argument N discards ’const’
from pointer type

Argument #N of the argument list is a pointer which points to const-qualified
data, while the function prototype for function call specifies a pointer which is not
const-qualified. Thus, indirection references within the function have the potential
to alter const-qualified data.

2285 Warning — passing of argument N discards ’volatile’
from pointer type

Argument #N of the argument list is a pointer which points to volatile-qualified
data, while the function prototype for the function call specifies a pointer which is
not volatile-qualified. Thus, indirect references within the function will not honor
the semantics of volatile-qualified data.

Systems/C 241

2286 Warning — division by zero

The compiler has detected a division where the divisor is a constant 0.

This warning is not generated for floating point division because that can be a way
to generate NaN for IEEE and DFP floating point.

2287 Warning — initialization discards ’const’ from pointer
target type

The source pointer has the const qualifier on its pointed-to type, while the target
pointer does not. Thus, indirect references through the destination pointer have the
potential to alter const-qualified data.

2288 Warning — initialization discards ’volatile’ from
pointer target type.

The source pointer has the volatile qualifier on its pointer-to type, while the
destination pointer does not. Thus, indirect references through the destination
pointer will not honor the semantics of volatile-qualified data.

2290 Error — size specifier in asmval must be an inte-
gral constant

The size field of an asmval constant must be a integral constant.

2291 Error — size specifier in asmval must be between
1 and 4, or 8

The size field of an asmval constant must be a constant, integral expression with
the value 1, 2, 3, 4 or 8.

2295 Error — redeclaration of formal parameter ’XXX’

The named parameter has already been declared in the function’s parameter decla-
rations.

242 Systems/C

2296 Warning — unary negation applied to an unsigned
type

The ANSI C standard indicates that the operands of unary negation undergo inte-
gral promotions, and the result of the negation is that type. This may convert an
unsigned operand type into a signed type.

2300 Error — size specification in Decimal specifier must
be of integral type

The size field of a Decimal value must be an integral constant.

2301 Error — size specification in Decimal must be con-
stant

The size field of a Decimal value must be a compile-time constant.

2302 Error — size value in Decimal must be in the range
1 to 31

Decimal values may have between 1 and 31 digits.

2303 Error — precision specification in Decimal specifier
must be of integral type

The precision field of a Decimal value must be an integer constant.

2304 Error — precision specification in Decimal specifier
must be constant

The precision field of a Decimal value must be a compile-time constant.

Systems/C 243

2305 Error — precision value in Decimal must be in the
range 0 to 31

Decimal values may have a precision between 0 and 31 digits.

2306 Error — precision value must be less than or equal
to size in Decimal

The precision field of a Decimal specifier must be less then or equal to the size
field.

2307 Warning — digits may have been lost in the whole-
number part

In a conversion from Decimal to Decimal, the number of non-fractional (whole
number) digits in the target is smaller than the source. This could result in a loss
of values at runtime.

2310 Error — digitsof() must be applied to a Decimal
type

digitsof() cannot be applied to the type specified.

2311 Error — precisionof() must be applied to a Deci-
mal type

precisionof() cannot be applied to the type specified.

2315 Warning — non-zero digits lost in Decimal constant

During constant evaluation, either evaluating constant Decimal arithmetic, or in
converting a constant to a particular size and precision, a left-shift operation shifted
out a non-zero digit.

244 Systems/C

2318 Warning — #pragma options must be specified be-
fore the first C statement

The #pragma options statement must be located in the C source before any other
C statements or declarations.

2316 Warning — Decimal multiplication truncates digits

In a multiplication operation involving Decimal data types, an intermediate value
is potentially too large to calculate (more than 31 decimal digits.) In this case,
the generated decimal multiplication code will truncate lower-precision digits. The
result of such a multiplication may or may not be accurate, depending on the values
of the Decimal types at run time.

2319 Warning — unrecognized option ”XXX” in #pragma

options

A #pragma options statement contained an option statement which the compiler
does not support.

2320 Error — only one #pragma csect ıKIND allowed per
program

Only one #pragma csect CODE, #pragma csect DATA, or #pragma csect TEST is
allowed per program source file.

2321 Warning — #pragma prolkey for ’XXX’ replaced

A #pragma prolkey for the specified function was discovered after one already had
been processed. The new specification replaces the previous one.

2322 Warning — extraneous text after #pragma ignored

Extra text followed a #pragma statement. This text, up to the end of the source
line, is ignored.

Systems/C 245

2324 Warning — #pragma map for symbol ’XXX’ already
specified, this one ignored

2325 Warning — unrecognized #pragma XXX ignored

The compiler did not recognize the specified #pragma. This warning is disabled by
default and can be enabled via the –Wunknown-pragmas option.

A #pragma map statement for the symbol with a different map target was previously
specified in the program. This #pragma map is ignored.

2324 Warning — redundant #pragma map for symbol ’XXX’
ignored

A #pragma map statement mapped the same symbol name to the same text target.
The redundant version is ignored.

2330 Error — operands to ’<<’/’>>’ must have integral
type

One of the operands of a bitwise shift expression was not of integral type. ANSI C
requires these operands to be of integral type.

2331 Warning — ’XXX’ initialized and declared ’extern’

The specified identifier is declared as “extern” and also has an initialization expres-
sion. extern variables may be initialized, but it is undefined if the initialization will
actually occur at run time. This message occurs for variables declared at file scope.

2332 Error — ’XXX’ is both ’extern’ and initialized

The specified identifier is declared as “extern” and also has an initialization ex-
pression, and is declared within an inner block in a function. ANSI C forbids such
declarations.

246 Systems/C

2333 Error — ’XXX’ already initialized

The specified identifier has previously be declared in this compilation, and that
declaration already has an initialization expression.

2334 Warning — left shift count >= width of type

A left-shift operation (<<) was applied where the shift amount was greater than or
equal to the number of bits in the type of the value to be shifted. The result will
be 0.

2335 Warning — right shift count >= width of type.

A right-shift (>>) operation was applied where the shift amount was greater than
or equal to the number of bits in the type of the value to be shifted. The result will
be 0.

2336 Warning — left shift count negative

A negative shift amount was discovered in the left shift operation (<<). The result
will be 0.

2337 Warning — right shift count negative

A negative shift amount was discovered in the right shift operation (>>). The result
will be 0.

2338 Error — flexible array member not at end of struct

ANSI C requires that a flexible array member be the last member of a structure
definition.

2339 Error — array size missing in ’XXX’

The automatic variable XXX was declared as an array, but no array size was speci-
fied.

Systems/C 247

2340 Error — array size missing in field ’XXX’

An array structure field was specified in a structure tag declaration without the
necessary size specification. Note that Systems/C allows as an extension structure
member arrays of size 0.

2341 Warning — ANSI C forbids zero-sized array field
’XXX’

An array structure field was specified with a size of 0. Although ANSI prohibits
this, Systems/C allows it as an extension.

2342 Error — use of incomplete structure in field ’XXX’

A structure field member, which itself is a structure, used a structure tag which is
not defined.

2343 Error — use of incomplete union in field ’XXX’

A structure field member, which itself is a union, used a union tag which is not
defined.

2344 Warning — initialization of flexible array member

According to the ANSI C standard, flexible array member fields may not be ini-
tialized. The compiler supports this as an extension, but generates the warning to
provide the required diagnostic.

2345 Error — declaration of ’XXX’ as array of voids

The symbol XXX was declared to be an array of the (void) data type.

2346 Error — declaration of field ’XXX’ as array of voids

The field within a structure declaration is declared as an array of the (void) data
type.

248 Systems/C

2347 Error — structure tag ’XXX’ used in union specifier

The specified structure tag name was used in combination with the union keyword
as part of a type specification.

2348 Error — union tag ’XXX’ used in structure specifier

The specified union tag name was used in combination with the struct keyword as
part of a type specification.

2350 Error — controlling expression of an if-statement
must have scalar type

The value specified in the test portion of the if statement must be of scalar type.

2351 Error — controlling expression of a while-statement
must have scalar type

The value specified in the test portion of the while statement must be of scalar
type.

2352 Error — controlling expression of a do-statement
must have scalar type

The value specified in the test portion of the do statement must be of scalar type.

2353 Error — controlling expression of a for-statement
must have scalar type

If a value is specified in the test portion of a for statement, it must be of scalar
type.

2354 Error — nested initialization of flexible length array

Flexible length arrays at the end of a struct cannot be nested.

Systems/C 249

2356 Warning — condition is always false

A controlling conditional expression of an if, while, do or for statement evaluates
to a constant which is always false.

2357 Warning — condition is always true

A controlling conditional expression of an if, while, do or for statement evaluates
to a constant which is always true.

2358 Warning —- enumeration values not handled in
switch...

When a controlling expression of a switch statement is an enumerated type, the com-
piler verifies that all the values of the enumeration appear as case labels in the switch.
If any are missing this warning is generated. The –Wswitch and –Wswitch-enum
options control generation of this message.

2359 Warning — case value not in enumerated type ’XXX’

When a controlling expression of a switch statement is an enumerated type, the
compiler checks that the values used in the case labels are one of the values in
the enumerated type. This message includes the name of the enumerated type for
reference.

2360 Warning — dereferencing ’void *’ pointer

A dereference (*) was made through a pointer which points to a (void) data type.

2361 Warning — index operator applied to ’void *’ pointer

The array index operator ([]) was applied to a pointer which points to a (void)
data type.

250 Systems/C

2362 Warning — case label value is less/greater than
minimum/maximum value for type

The constant specified in the case for a switch is outside of the range of values of
the controlling expression for the switch.

The –Wswitch-outside-range option controls generation of this message.

2363 Warning — case label not in enumerated type ’XXX’

If the –Wswitch option is enable, and the controlling expression for a switch is an
enumeration, the compiler checks that a case label value appears in the enumera-
tion’s list. If it doesn’t, this message will be generated.

2365 Error — array ’XXX’ is too large to fit in the ad-
dress spa ce

The declaration of an array, or array field member, produces a data item that has
a size larger than the entire address space of the target machine.

2366 Warning — ANSI C forbids zero-sized array

The ANSI standard explicitly forbids an array that has a zero-constant size dec-
laration. Several compilers accept this as an extension, so this warning can be
suppressed.

2367 Warning — subscript out of range

The value in an array indexing operation was constant, and was larger than the size
of the array.

2368 Error — variable length array may not be initialized

A declaration of a variable length array (one in which the size is determined at
runtime) may not contain an initilizer expression.

Systems/C 251

2369 Error — array size expression for ’XXX’ not an
integral type

The expression denoting the size of an array must be of integral type.

2370 Error — size of array ’XXX’ is negative

Array sizes are not allowed to be less than zero.

2371 Warning — return type of ’main’ is not ’int’

The ANSI C standard requires that the return type of the main() function be int.

2375 Warning — return converts integral to pointer with-
out a cast

The expression specified in a return statement is of integral type, while the func-
tion’s return type is a pointer.

2376 Warning — return converts pointer to integral with-
out a cast

The expression specified in a return statement is of pointer type, while the func-
tion’s return type is integral.

2377 Warning — return discards ’const’ from pointer
target type

The expression specified in a return statement is not a const-qualified pointer,
while the function’s return type is const-qualified.

252 Systems/C

2378 Warning — return discards ’volatile’ from pointer
target type

The expression specified in a return statement is not a volatile-qualified pointer,
while the function’s return type is volatile-qualified.

2379 Warning — incompatible pointer type in return

The type of the pointer expression on a return statement was incompatible with
the declared return (pointer) type of the function.

2380 Error — increment of a pointer to an unknown
structure

Either the prefix or postfix version of the increment operator (++) was applied to a
pointer to an undefined structure.

2381 Error — decrement of a pointer to an unknown
structure

Either the prefix or postfix version of the decrement operator (--) was applied to a
pointer to an undefined structure.

2382 Error — arithmetic on pointer to an incomplete
type

A pointer arithmetic operation was attempted where the target type of the pointer
was not defined.

2383 Warning — unnamed struct/union that defines no
data

An unnamed structure or union tag was defined that had no instances of data.

Systems/C 253

2384 Warning — floating constant out of range

The given floating point constant is too large to represent in the target floating point
format.

2385 Warning — assignment converts a floating point
type to one with less precision

The assignment statement converts a floating point type of one precision to one of
a smaller precision. For example, converting a (double) typed value to a (float),
or a (long double) to a (double).

2386 Warning — passing argument N converts a floating
point type to one with less precision

The parameter expression in a function call statement describes a floating point
type that is larger than the data being initialized. The value will be converted to
the smaller value, possibly loosing precision.

2387 Warning — return converts a floating point type to
one with less precision

The expression in a return statement describes a floating point type that is larger
than the data being initialized. The value will be converted to the smaller value,
possibly loosing precision.

2388 Warning — initialization converts a floating point
type to one with less precision

The initialization expression describes a floating point type that is larger than the
data being initialized. The value will be converted to the smaller value, possibly
loosing precision.

254 Systems/C

2389 Warning — floating point operation result is out of
range

A floating point constant operation result is out of range for the floating point type.
The compiler will not fold the operation, and instead will generate code to calculate
it at runtime.

2390 Warning — assignment converts far pointer to
local pointer without a cast

The assignment statement converts a far pointer to a local pointer, which only
includes the pointer portion of the far pointer. The ALET component of the
far pointer is discarded.

2391 Warning — passing argument N converts far pointer
to local pointer without a cast

Argument #N is a far pointer, while the function prototype specifies a local
pointer. Only the pointer portion of the far pointer will be passed to the function,
the ALET portion of the far pointer is discarded.

2392 Warning — return converts far pointer to local
pointer without a cast

The type of the expression in a return statement is a far pointer, while the
function returns a local pointer. Only the pointer portion of the far pointer
will be returned, the ALET portion of the far pointer is discarded.

2393 Warning — initialization converts far pointer to
local pointer without a cast

The type of the expression in an initialization is a far pointer, while the datum
being initialized is a local pointer. Only the pointer portion of the far pointer
will be stored in the datum, the ALET portion of the far pointer is discarded.

Systems/C 255

2395 Error — argument to aletof() is not a far pointer

The expression argument in an aletof invocation was not a far pointer.

2399 Warning — non-constant member-designator in off-
setof

The ANSI standard requires that the offsetof expression be the same as an address-
constant, which implies that the member-designator portion must be a constant
expression. Many compilers accept non-constant member designators in the off-
setof() expression, as does DCC. This warning is disabled by default, and can be
re-enabled with the –fenable-warning=2399 option. For compatibility with the IBM
C compiler, this warning is re-enabled with when –fc370 is specified.

2400 Warning — use of bit-field member in offsetof() is
undefined

The ANSI standard indicates that using a bitfield structure member in an offsetof()
operation results in undefined behavior. Many compilers will not compile this code
and there is no guarantee regarding the result of the operation.

2401 Error — initializer element is not computable at
load time

The value used to initialize a datum is not constant, and thus could not be used to
initialize static data.

2402 Error — array index in initialization designator ex-
ceeds bounds

An array index designator was found in the initializer for an array that exceeds the
bounds specified for the array.

2403 Error — array index value not constant in initializer

An array index designator was found that uses a non-constant expression, which is
not permitted by the standard.

256 Systems/C

2404 Warning — extra elements in initializer

There are more elements in the initializer than there are in the object being initial-
ized. Extra elements will be ignored.

2405 Warning — ANSI C forbids an empty initializer list

An empty initializer list, consisting only of an open and close brace, was discov-
ered. The ANSI standard syntax requires an initializer expression in this situation,
however, the compiler proceeds as if no initializer was specified.

2406 Warning — anonymous structure/union members
are a C11 language extension

Anonymous structure or unions as members of a structure or union are a language
extension supported by Systems/C and defined in the ANSI C11 standard. This
message can be eliminated by adding the –fanonstruct option, or by specifying the
C11 or later standard using the –fc11 (or later) option.

2412 Error — invalid enumeration size

The value specified on either the –fenum option or #pragma enum pragma is invalid
or not supported.

2413 Error — the enum cannot be packed to the re-
quested size

An enumeration constant value produces a range for an enumeration that doesn’t
fit into the size specified in either the –fenum or #pragma enum settings.

2415 Warning — unrecognized #pragma STDC

A #pragma STDC pragma was discovered where the token following the STDC sym-
bol was not recognized. Currently, the only recognized symbol following STDC is
FENV ACCESS.

Systems/C 257

2416 Warning — invalid switch to #pragma STDC FENV ACCESS

ignored

A token following a #pragma STDC FENV ACCESS pragma was not ON, OFF, or DEFAULT.
The #pragma STDC FENV ACCESS is ignored.

2429 Error — invalid size for register variable ’x’

register variables must be declared with types that completely fit in a register.
In –milp32 (32-bit compilations), these are the 4-byte sized types. When –mlp64,
both 8-byte and 4-byte sizes are supported.

2430 Error — address of register variable

Addresses of register variables are not allowed, as hardware registers have no
address.

2431 Error — type of register variable ’x’ is not inte-
gral or pointer

The register type keyword can only be applied in combination with integral or
pointer types.

2441 Error — compound expression only allowed within
a function

A compound expression, which is a compound statement enclosed in parentheses
that returns a value, can not appear at file scope. Because the compound expression
contains C statements, it can only be used within the body of a function.

2450 Warning — ANSI C forbids conditional expression
with only one void side

The ANSI C standard requires that if either the second or third operand of a condi-
tional expression is void, then both operands must be void. DCC allows only one
operand to be the void type, with this warning. The other, non-void expression
will be converted to void.

258 Systems/C

2451 Warning — ANSI C requires second operand in
conditional expression, assuming test value

The ANSI C standard requires an expression for the second operand of a conditional
expression, the ”true” value expression. DCC allows this expression to be absent,
and will assume the value to use for the ”true” expression is the same as the value
of the test expression.

2461 Warning — declaration of long double ’XXX’ treated
as double

This warning is generated when the –fc370 option is enabled, as DCC treats long
double the same as double, differently from the approach used in the IBM compiler.
The declared datum will be have the same size and properties as a double value.

2470 Warning — use of FUNCTION outside of func-
tion scope

The special pre-defined identifier, FUNCTION was encountered at file scope, out-
side of the scope of any function. The compiler uses the empty string (""), for the
value of FUNCTION and proceeds.

2473 Error — ’XXX’ is unavailable

The symbol specified has been marked with the unavailable attribute . If
possible, the line where the symbol was declared is presented.

2474 Warning — ’XXX’ is deprecated

The symbol specified has been marked with the deprecated attribute . If
possible, the line where the symbol was declared is presented.

2475 Warning — ’XXX’ attribute directive ignored

The given name was present in an attribute directive but is unrecognized. The
directive is ignored.

Systems/C 259

2476 Error — unable to emulate mode ’XX’

An attribute ((mode (...))) declaration modifier was found which DCC
does not support.

2477 Error — invalid pointer mode ’XX’

An attribute ((mode (...))) declaration modifier was encountered which
is incompatible with pointer types.

2480 Warning — unused label ’XX’

The specified label was defined in the scope, but was not directly used in a goto
statement nor addressed.

Can be disabled with the –Wno-label-unused option.

2481 Warning — unused variable ’XX’

The specified variable was not used in the scope.

This warning is disabled by default, and is enabled as part of the –Wall option, or
specifically by the –Wunused-variable option.

2482 Warning — unused parameter ’XX’

The specified parameter was not used in the function.

The warning is disabled by default, and can be enabled with the –Wunused-parameter
option.

2483 Warning — unused function ’XX’

The specified static function is defined in the compilation, but not invoked.

The warning is disabled by default, and can be enabled with the –Wunused-function
and –Wall options.

260 Systems/C

2500 Warning — #pragma linkage(...,fetchable) must ap-
pear only once

Only one function amy be modified with the fetchable linkage attribute per com-
pilation unit.

2504 Error — z/Architecture is required when –fllgrande
is specified

The –fllgrande option indicates that long long (64-bit) data should be kept in a
single 64-bit register instead of two 32-bit register pairs. Thus, the z/Architecture
hardware must be used.

2508 Warning — ’XXX’ declared in parameter list; its
scope may not be what you expect

When a structure name is seen for the first time in a parameter list, it is treated
as a predeclaration inside of the function’s scope. Then if a structure declaration
is seen at file scope, the two declarations are still treated separately. Providing
a predeclaration of the structure at file scope before the function declaration will
generate the desired behavior:

struct foo; /* file scope predeclaration */
void func(struct foo x);

2509 Warning — #pragma for ’xxx’ ignored

A #pragma provided an attribute for the specified symbol. However, at the end of
compilation this symbol was still undefined or defined in a way that was incompatible
with the attribute.

2510 Error — The decimal-floating-point-facility (–march=z6
or -mdecimal-floating-point-facility) is required when –fdfp
is specified

The compiler uses the instructions available in the decimal-floating-point-facility
to generate the code required for the Decimal32, Decimal64 and Decimal128
data types.

Systems/C 261

A –march=z6 or greater option enables the use of those instructions.

2514 Warning — static and non-static on same symbol

A static definition or declaration was found for a symbol that was previously
declared without static. The ambiguous source code may result in a static symbol
with one compiler and a global one with another.

2515 Error — cannot initialize non-reentrant data with
the address of reentrant data

A file-scope or static initialization of a non-reentrant variable referenced the address
of a reentrant variable. There is no way for a non-reentrant initializer to take know
the address of the PRV, so this form of initialization is impossible.

2525 Warning — signed bit field of length 1

When a bit field is declared with a signed type, and has a length one, then if the
bit is set, the value retrieved will be -1 instead of 1 due to sign extension rules.

2601 Error — can’t mix decimal floating point operands
and other float types

The decimal floating point types (Decimal32, Decimal64 and Decimal128) cannot
be used in an expression along with the floating point types (float, double and
long double) as the compiler doesn’t know if the operation is to be performed using
decimal floating arithmetic or floating point arithmetic.

Adding an explicit cast to either a decimal floating point or a floating point type
will address the issue.

2602 Warning — decimal floating point constant out of
range

The constant value was too large for the target decimal floating point type.

262 Systems/C

2603 Warning — assignment converts a floating point
type to one with less precision

The target of the assignment expression was a floating point type with less precision
than the type of the source. The value will be converted to the target size with
possible loss of precision.

2604 Warning — passing argument N converts a floating
point type to one with less precision

The parameter in a function call is a floating point value with a precision larger
than the called function’s prototype specified. The value will be converted to the
smaller precision which may result in a loss of precision.

2605 Warning — return converts a floating point type to
one with less precision

The function’s return type is a floating point type with a smaller precision than the
expression found in the return statement. The value will be converted to one with
smaller precision, possibly resulting in a loss of precision.

2606 Warning — initialization converts a floating point
type to one with less precision

A variable’s initialization expression is of a floating point type that has a larger
precision than the variable being initialized. The expression’s value will be converted
to the smaller precision, which may result in a loss of precision.

2607 Warning — floating point operation result is out of
range

The result of a decimal floating point operation is out of range for the given decimal
floating point type.

Systems/C 263

2610 Warning — ANSI C forbids conversion between
function pointers and object pointers

According to the ANSI C standard, function pointer types may only be converted
to other function pointer types. They cannot be converted to object types (such as
“void *”). However, this is only a warning as DCC does allow the conversion.

2615 Error — invalid argument in builtin stdarg eval-
uation

The value passed to a builtin stdarg evalation was either not a proper lvalue or
was the wrong type.

2616 Warning — use of a type that undergoes default
argument promotions in ’va start/va arg’ is undefined

In variadic functions, arguments under default promotions. Thus, in va arg and
va start, using types that would be promoted is undefined behavior, as the actual
parameter may not match the type.

These include the type float (which would be promoted to double) and any integral
type with a conversion rank lower than int.

2617 Error — ’va start’ used in function with non-variable
arguments

va start can only be used in variadic functions, not functions with fixed argument
lists.

2620 Warning — function declared ’noreturn’ has a ’re-
turn’ statement

A return statement was encountered in a function declared with attribute ((noreturn)).

264 Systems/C

2621 Error — type qualifiers or the ’static’ keyword are
invalid unless they are in the outermost array index of a
parameter

For C99 array declarations, a type qualifier or the keyword ’static’ can only appear
in a declaration of a function parameter with an array type, and then only in the
outermost array type derivation.

2625 Warning — assignment expression used as condition

An assignment statement was encountered in an expression being evaluated for ’true’
or ’false’ (non-zero or zero.) For example, as the control value of an if-statement. It
is possible that ’==’ was intended instead of ’=’.

If the assignment is desired, the warning can be defeated by enclosing the assignment
expression in parenthesis.

2630 Warning — bit field declaration

A bit field member of a structure was declared. This warning is disabled by default.

2631 Warning — function returns (long long) without a
grande or regpair modifier, defaults to xxxx

A function was declared with a long long return type without a grande or
regpair attribute. This warning is disabled by default.

In some environments the mechanism for returning values in grande registers is
different than returning values in register pairs, so the distinction is important.
Enabling this warning can help locate function declarations that need to be adjusted.

2640 Error — invalid constant in builtin fp classify()

The constant presented to the builtin fp classify() expression was not a floating-
point value.

Systems/C 265

2641 Error — expression in builtin fp classify is not a
floating point value

The expression argument for builtin fp classify() is not a floating point value.

2650 Error — type-name in Atomic specifier must not
contain array, function, atomic or qualified type

The C11 standard requires the type-name in an Atomic (...) type specifier not
specify an array, function, atomic-qualified or other qualified type.

2651 Error — Atomic qualifier cannot be applied to an
array or function type

The C11 standard indicates that the Atomic qualifier may not be applied to either
an array or function type.

2662 Error — An identifier may not begin with a univer-
sal character representing a digit

The C11 standard requires that universal character identifiers begin with a non-digit
(character) value.

2663 Error — XXX is not a valid universal character for
an identifier

The C11 standard requires that a universal character names shall not specify a
character whose short identifier is less than 00A0 other than 0024 ($), 0040 (@) or
0060 (
tt ’), nor one in the range D800 through DFFF inclusive.

The disallowed characters are in the basic character set and the code positions
reserved for ISO/IEC 10646 control characters, the DELETE character and the
S-zone (reserved for use by UTF-16).

266 Systems/C

2667 Error — invalid type for argument to builtin isdigit

The argument to builtin isdigit must be an arithmetic type.

2668 Error — invalid type for conversion to Decimal

Only scalars can be converted to Decimal values.

2670 Error — invalid call to atomic builtin

A call to an atomic builtin was malformed, probably because a valid type for the
type-generic parameters could not be determined.

2671 Error — ’void’ must be the first and only parameter
if specified

If a parameter declaration of type (void) is used, it must be the only parameter type
and cannot be used in combination with other types.

2672 Error — ’XXX’ cannot be declared as type (void)

The variable XXX has been invalidly declared with a (void) type.

2673 Error — field ’XXX’ cannot be declared as type
(void)

A member of a structure or union has been invalidly declared with a (void) type.

The variable XXX has been invalidly declared with a (void) type.

2675 Error — value in Alignas must be a type or an
integer constant expression

The argument to the alignment specifier (Alignas()) must be either a type, or a
constant integer expression.

Systems/C 267

2676 Error — invalid value in alignment specifier

The value provided to the alignment specifier (Alignas()) was either negative, not
a power of 2, or otherwise unsupported.

2677 Error — alignment specifier not allowed in typedef

An alignment specifier (Alignas()) may not be specified in a typedef.

2678 Error — alignment specifier not allowed for bitfields

An alignment specifier (Alignas()) may not be specified in bitfield structure mem-
bers.

2679 Error — alignment specifier not allowed in param-
eter types

An alignment specifier (Alignas()) may not be specified in types for function pa-
rameters.

2680 Error — attribute sequence not allowed in this con-
text

The ANSI attribute sequence [[...]] may not be specified in a structure or union type
reference. It is only allowed on a forward tag declaration, or the structure/union
definition.

2681 Error — size value in BitInt must be in the range
1 to XXX

The number of bits for a BitInt type specifier must be in the range supported for
the target. This is typically 64 for most targets.

268 Systems/C

2700 Error — static assert failed

The expression in a static assertion evaluated to a zero, causing a compile-time
message.

2701 Error — static assert expression is not an integral
constant

static assert() argument must evaluate to a numeric constant.

2703 Error — label ’x’ referenced outside of any function

Label addresses can only be referenced within function scope.

2710 Error — variable length array ’x’ at file scope

Variable length arrays may only be locally-scoped (or parameter) variables.

2711 Error — field ’x’ declared as a variable length array

Structures and unions may not contain variable length arrays.

2712 Error — ’x’ declared as function returning a func-
tion

Functions may not be used as a return type. Use a function pointer instead.

2750 Error — bad option(s)

Either a compiler option is invalid, or the options create an invalid combination.
The message will have more details.

Systems/C 269

2998 Error — maximum error count exceeded — compi-
lation halted.

If the –fmaxerrcount=N option is specified, and N errors have been discovered, the
compiler halts compilation and emits this error message.

2999 Error — compilation halted due to previous errors

Previous errors have placed the compiler in a state at which continuing makes no
sense. In this case, the compiler halts with no more output.

4010 Warning — CSECT name ’XXX’ is too long, trun-
cated to ’YYY’

The CSECT name specified, or determined by the compiler is longer than the allowed
7 characters. It will be truncated to 7 characters.

4011 Note — CSECT mapped to XXX avoid conflicts

Certain section names can cause conflicts with the IBM linker. To avoi d those, the
CSECT name has been mapped to the given value.

4012 Error — CSECT name must have at least one al-
phabetic character.

The Systems/C compiler generates two sections, one for CODE and one for DATA,
using the upper-cased CSECT name for the CODE section and the lower-cased
CSECT name for upper case. Thus, to distinguish between these two, there must
be at least one alphabetic character.

4013 Error — invalid code base register

The register specified in the –fcode-base=X option was invalid.

270 Systems/C

4014 Error — invalid frame base register

The register specified in the –fframe-base=X option was invalid.

4015 Error — –fc370=ver is required when –fxplink is
specified

XPLINK compatibility mode is only available if LE370 compatibility mode is also
enabled (specifying a version of LE to be compatible with). Add –fc370=ver to your
command line.

4016 Error — –fhlasm is not allowed in combination with
other options

The –fhlasm option cannot be used in combination with the other options that
require the use of the DASM assembler.

Some of these options include –fc370, –xplink, and debuggable code that requests
debugging information embedded in the generated object file.

4017 Error — –fno-alias-stmts is not allowed in combi-
nation with other options

The –fno-alias-stmts option cannot be used in combination with one or more of
the other options because the generated assembly source requires the use of ALIAS
statements.

4018 Error — bad option(s)

Either a compiler option is invalid, or the options create an invalid combination.
The message will have more details.

4020 Error — invalid call to built-in ’XXX’

The call to the given built-in function XXX is invalid, either the number of argu-
ments were wrong, or the arguments were of the wrong type.

Systems/C 271

4030 Error — can’t open output ASM code file ”XXX”

The compiler cannot open the specified file XXX for writing the assembly source.

4031 Error — can’t write output assembly source.

The compiler has encountered an error when generating the output assembly source.
The message is followed by a message from the operating system indicating the error.

4050 Warning — register(XXX) variable conflicts with
reserved register

A register variable conflicts with a register which is reserved for function linkage.
This means generated code will still use the specified GPR, possibly overwriting the
variable or experiencing undefined behavior if the GPR is overwritten.

4060 Error — invalid asm operand

A asm expression specified an input or output operand that did not match its
constraint, or there was an invalid constraint or clobber constraint.

4061 Error — invalid alias cycle in symbol ’XXX’

A combination of attribute ((alias(...))) and asm (...) has produced
an alias symbol that maps to itself. The assembly output will be .set foo,foo or
FOO EQU FOO.

5000 Warning — parameter mismatch when attempting
to inline call to ’XX’ from ’XX’

The inliner attempted to inline a call and failed because the arguments mismatched.
This could indicate a problem with prototypes or missing parameters and often
indicates a problem present even without inlining. You can disable the inliner with
–fno-inline if necessary.

272 Systems/C

5010 Warning — possible use of uninitialized variable
’variable’

Depending on the program flow, it is possible that the identified use of the variable
occurs before the value has been assigned a value. This indicates that the value of
the variable may be indeterminate at this point.

To avoid the message, ensure that the variable is assigned a value before its use.

9999 Error — internal error XXXXX

An internal consistency check or other error was encountered. Implementation and
problem specific information is provided in the value XXXXX. Contact Dignus, LLC
for assistance.

Systems/C 273

274 Systems/C

ASCII/EBCDIC Translation
Table

The Systems/C compiler and utilities use the following tables to translate characters
between ASCII and EBCDIC. These tables represent the mapping of the IBM Code
Page 1047 to ISO LATIN-1.

However, this is not the official IBM1047 mapping. The official mapping maps
EBCDIC X’15’ to LINEFEED X’85’ and maps EBCDIC X’25’ to NEWLINE X’0A’.
This is reversed from their traditional mappings. Some vendors use the traditional
mapping and some use the official mapping.

The Dignus compilers and utilities use the tradtitional mappings.

ASCII to EBCDIC

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 37 2D 2E 2F 16 05 15 0B 0C 0D 0E 0F

1 10 11 12 13 3C 3D 32 26 18 19 3F 27 1C 1D 1E 1F

2 40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61

3 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F

4 7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6

5 D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 AD E0 BD 5F 6D

6 79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96

7 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 C0 4F D0 A1 07

8 20 21 22 23 24 25 06 17 28 29 2A 2B 2C 09 0A 1B

9 30 31 1A 33 34 35 36 08 38 39 3A 3B 04 14 3E FF

A 41 AA 4A B1 9F B2 6A B5 BB B4 9A 8A B0 CA AF BC

B 90 8F EA FA BE A0 B6 B3 9D DA 9B 8B B7 B8 B9 AB

C 64 65 62 66 63 67 9E 68 74 71 72 73 78 75 76 77

D AC 69 ED EE EB EF EC BF 80 FD FE FB FC BA AE 59

E 44 45 42 46 43 47 9C 48 54 51 52 53 58 55 56 57

F 8C 49 CD CE CB CF CC E1 70 DD DE DB DC 8D 8E DF

Systems/C 275

EBCDIC to ASCII

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 9C 09 86 7F 97 8D 8E 0B 0C 0D 0E 0F

1 10 11 12 13 9D 0A 08 87 18 19 92 8F 1C 1D 1E 1F

2 80 81 82 83 84 85 17 1B 88 89 8A 8B 8C 05 06 07

3 90 91 16 93 94 95 96 04 98 99 9A 9B 14 15 9E 1A

4 20 A0 E2 E4 E0 E1 E3 E5 E7 F1 A2 2E 3C 28 2B 7C

5 26 E9 EA EB E8 ED EE EF EC DF 21 24 2A 29 3B 5E

6 2D 2F C2 C4 C0 C1 C3 C5 C7 D1 A6 2C 25 5F 3E 3F

7 F8 C9 CA CB C8 CD CE CF CC 60 3A 23 40 27 3D 22

8 D8 61 62 63 64 65 66 67 68 69 AB BB F0 FD FE B1

9 B0 6A 6B 6C 6D 6E 6F 70 71 72 AA BA E6 B8 C6 A4

A B5 7E 73 74 75 76 77 78 79 7A A1 BF D0 5B DE AE

B AC A3 A5 B7 A9 A7 B6 BC BD BE DD A8 AF 5D B4 D7

C 7B 41 42 43 44 45 46 47 48 49 AD F4 F6 F2 F3 F5

D 7D 4A 4B 4C 4D 4E 4F 50 51 52 B9 FB FC F9 FA FF

E 5C F7 53 54 55 56 57 58 59 5A B2 D4 D6 D2 D3 D5

F 30 31 32 33 34 35 36 37 38 39 B3 DB DC D9 DA 9F

276 Systems/C

	How To Use This Book
	Systems/C Overview
	Implementation Definitions
	Implementation limits
	EBCDIC character set
	Basic Data Types and Alignments
	Return values

	Compiling, Linking and Running Programs
	Running the compiler, DCC
	In OS/390 or z/OS
	In Windows
	In the UNIX environment

	Include File Processing
	In OS/390 and z/OS
	In UNIX and Windows
	Header filename mapping ($$HDRMAP)

	Description of options
	Detailed description of the options
	The -D option (define a macro)
	The -I option (Specify additional locations to look for included files)
	The -iquote dir option (Add dir to the list of directories to examine for local include files)
	The -isystem dir option (Add dir to the list of system include directories)
	The -idirafter dir option (Add dir to the list of directories to search after the system include directories)
	The -Sdir option (Add dir to the list of directories to examine for include files, honoring IBM's SEARCH semantics)
	The -nodiginc option (Disable ``System Include'' processing)
	The -ofile option (Specify the name of the generated output file)
	The -E option (preprocess only)
	The -femitdefs option (include #define values in preprocessor output)
	The -M[=filename] option (generate a source dependence list)
	The -MM[=filename] option (generate a source dependence list)
	The -MT target] option (specify the target for the dependence list)
	The -MF filename option (specify the name of the file for dependence list)
	The -fdep[=filename] option (generate a source dependence list during regular compilation)
	The -g option (debuggable code)
	The -g0 option (Disable debuggable code and debugging information)
	The -gdwarf and -gdwarf-N options (generate DWARF debugging information)
	The -gstabs option (generate STABS debugging information)
	The -gisd option (generate ISD debugging information)
	The -fansi-bitfield-packing option (ANSI rules for bitfield allocation)
	The -nonint-bitfield option (Allow any integral in bitfield declaration
	The -fanonstruct option (Allow Microsoft's anonymous structure extension)
	The -fc370=version option (Specify IBM C compatibility)
	The -fxplink option (Use eXtra Performance Linkage)
	The -fdll option (In IBM compatibility mode, compile for DLL support)
	The -fexportall option (In IBM compatibility mode, export all defined data and functions)
	The -fcxx-comments and -fno-cxx-comments options (Enable and disable recognition of C++-style // comments)
	The -fep=name option (Specify entry point)
	The -fprol=macro option (Specify alternate prologue macro)
	The -fgnu89-inline and -fno-gnu89-inline options (Control use of legacy gcc inlining rules)
	The -finline[=x[:y:z]] and -fno-inline options (Control inlining optimization)
	The -O[n] option (Set optimization level)
	The -fprv=macro option (Specify alternate PRV address macro)
	The -fepil=macro option (Specify alternate epilogue macro)
	The -lnameaddr and -fno-lnameaddr macros (Enable or disable generation of Logical Name Address info)
	The -fopts[=macro] option (Request interesting options noted at top of generated assembly)
	The -fendmacro[=text] option (Specify text to appear before the END statement)
	The -frsa[=size] option (Specify the amount of space the compiler reserves for the Register Save Area)
	The -fhlasm option (Generated assembly source is to be assembled with HLASM instead of DASM)
	The -finstrument-functions option (Request function beginning/ending instrumentation)
	The -fframe-base=N option (Specify register to use for addressing automatic data)
	The -hosted option (Indicate a hosted verses no-hosted environment)
	The -fcode-base=N option (Specify register to use for addressing for executable code)
	The -freserve-reg=N option (Reserve register #B)
	The -fwarn-disable=N[,N,N-M,...] option (Disable emission of warning(s))
	The -fwarn-enable=N[,N,N-M,...] option (Reenable disabled warning(s))
	The -fwarn-promote=N[,N,N-M,...] option (Promote warning(s) to error status)
	The -ftrim option (Remove trailing blanks from source)
	The -faddh option (add ``.h'' to #include names)
	The -flowerh option (convert #include names to lower case)
	The -ffilencase option (ignore case in all input file names)
	The -fno-searchlocal option (don't look in ``local'' directories)
	The -fpreinclude=filename option (#include the named file before compiling the C source file)
	The -trigraphs option (recognize trigraphs)
	The -flisting[=filename] option (generate a listing)
	The -fpagesize=n option (set the listing page size to n lines)
	The -fshowinc and -fno-showinc options (enable/disable including source from #include files in listing)
	The -fstructmap and -fno-structmap options (enable/disable including struct layout information in the listing)
	The -fstructmaphex and -fno-structmaphex options (structure layout information should/shouldn't be displayed in hex)
	The -frent option (generate re-entrant code)
	The -fno-rent option (generate non-re-entrant code)
	The -fmaxerrcount=N option (limit the number of reported errors)
	The -fundef option (undefined predefined #define values)
	The -fincstripdir option (remove directory components from #include names)
	The -fincstripsuf option (conditionally remove suffixes from #include names)
	The -fincrepsuf option (conditionally replace suffixes from #include names)
	The -fmargins[=m,n] option (specify margins for source lines).
	The -fmesg=style option (Specify message style)
	The -fasciiout option (char and string constants are ASCII)
	The -fno-alias-stmts option (generated ASM has no ALIAS statements)
	The -fshort-names option (truncate long names)
	The -fignore-case and -fno-ignore-case options (ignore/don't ignore case differences when generating assembly names)
	The -fdollar option (allow dollar sign character in identifiers)
	The -fatid option (allow commericial-at character in identifiers)
	The -fwchar-ucs option (indicate that wide character constants are UCS-2 or UCS-4.)
	The -fwchar=n option (specify the size of wchar_t)
	The -fsname=name option (specify section names)
	The -fno-sname option (allow PLINK to choose unique section names)
	The -fsnameprefix=char option (specify section name prefix)
	The -fllgrande option (long long (64-bit) data in "grande" (64-bit) registers)
	The -fieee option (binary format floating point values and constants)
	The -fsyntax-only option (do not generate assembly code)
	The -fdfp option (Enable support for decimal floating point values)
	The -fmrc and -fno-mrc options (Mainframe or UNIX-style return codes)
	The -ffar=ao and -ffar=oa options (Specify the component order of __far pointers)
	The -ffar-align option (align __far pointers on doubleword boundaries)
	The -fpatch and -fno-patch options (generate a patch area)
	The -fpatchmul=n option (alter the size of the patch area)
	The -flinux option (enable Linux/390 or z/Linux code generation)
	The -fvisibility=setting option (set ELF object symbol visibility)
	The -version option (print the compiler version number on STDOUT)
	The -famode=val option (specify runtime addressing mode)
	The -fc99 option (enable ANSI C99 language features)
	The -fc11 option (enable ANSI C11 language features)
	The -fc23 option (enable ANSI C23 language features)
	The -march=zN option (enable z/Architecture compilation)
	The -march=esa390 and -march=esa390z options (enable ESA/390 compilation)
	The -milp32 option (32-bit compilation)
	The -mlp64 option (64-bit compilation)
	The -mafp option (enable/disable use of extended FP registers)
	The -mlong-double-128 and -mlong-double-64 options (enable/disable 128-bit long double characteristics)
	The -mmvcle and -mno-mvcle options (enable/disable use of the MVCLE/CLCLE instruction)
	The -mextended-immediate and -mno-extended-immediate options (enable/disable use of extended-immediate facility instructions)
	The -mdistinct-operands and -mno-distinct-operands options (enable/disable use of distinct-operands facility instructions)
	The -mload-store-on-condition and -mno-load-store-on-condition options (enable/disable use of load-store-on-condition facility instructions)
	The -mhfp-multiply-add and -mno-hfp-multiply-add options (enable/disable use of HFP multiply-and-add facility instructions)
	The -mlong-displacement and -mno-long-displacement options (enable/disable use of long-displacement facility instructions)
	The -mgeneral-instructions-extension and -mno-general-instructions-extension options (enable/disable use of general-instructions-extension facility instructions)
	The -mhigh-word-facility and -mno-high-word-facility options (enable/disable use of high-word facility instructions)
	The -mhfp-extensions and -mno-hfp-extensions options (enable/disable use of HFP extensions facility instructions)
	The -fasmcomm=mode option (control the comments in the assembly output)
	The -fasmlnno option (Include line numbers in C source comments in generated assembly)
	The -fcodepage500 option (Primary source is in EBCDIC IBM-500 encoding)
	The -fsascdigraphs option (Support alternate digraphs combinations in input source)
	The -fat option (Support @-operator in expressions)
	The -fmin-lm-reg=val option (Set the minimum number of registers in one LM instruction)
	The -fmin-stm-reg=val option (Set the minimum number of registers in one STM instruction)
	The -fflex option (Enable FLEX/ES-specific optimizations)
	The -fpack=val option (Specify a default maximum structure alignment)
	The -fpic option (Generate position independent code, small GOT)
	The -fPIC option (Generate position independent code for Linux & z/TPF, large GOT)
	The -fuser-sys-hdrmap option (Use user $$HDRMAP for system #includes)
	The -ffpremote/-ffplocal options (function pointers are remote/local)
	The -fevents=filename option (Emit an IBM-compatible events listing)
	The -fenum=val option (Specify default enumeration size)
	The -fshort-enums option (Specify smallest enumeration size)
	The -ftest[=name] option (Enable a separate test csect)
	The -fprolkey=key option (Append a global prologue key)
	The -fcommon and -fno-common options (Enable/disable common linkage for uninitialized globals)
	The -fdfe and -fno-dfe options (Enable/disable dead function elimination.)
	The -fmapat and -fno-mapat options (Enable/disable mapping '@' to '_' in external symbol names)
	The -fctrlz-is-eof and -fno-ctrlz-is-eof options (Enable/disable treating control-Z as an EOF character)
	The -fextended-variadic-macros/-fno-extended-variadic-macros options (enable/disable GCC variadic macros)
	The -ffnio/-fno-fnio options (enable/disable function names in objects for debugging)
	The -fhide-skipped/-fshow-skipped options (enable/disable omission of preprocessor-skipped lines in listing)
	The -fsigned-bitfields and -funsigned-bitfields options (set default signedness of bitfields with bare types)
	The -fwrapv and -fno-wrapv options (control optimizer wrapping assumptions regarding signed integer arithmetic)
	The -fwrapv-pointer and -fno-wrapv-pointer options (control optimizer assumptions regarding pointer arithmetic)
	The -fstrict-aliasing option (assume pointers to different types point to different addresses)
	The -v option (print version information)
	The -fsched-inst, -fsched-inst2 and -fno-sched-inst options (control the behavior of the instruction scheduler)
	The -fxref and -fno-xref options (enable/disable cross-reference listing
	The -fsigned-char/-funsigned-char options (Control if char is signed or unsigned by default)
	The -fsave-dsa-over-call/-fno-save-dsa-over-call options (Control if DSA bytes are saved and restored over alternate linkage call)
	The -flinkageospromote/-fno-linkageospromote options (Control promotion of integral parameters smaller than int for linkage-OS)
	The -fsource-enc=utf8 and -fsource-enc=ascii options (Select source character encoding)
	The -fdwarf-extern and -fno-dwarf-extern options (enable/disable generation of DWARF data for extern variables)
	The -fgcc-version=ver option (Set a specific GCC version compatibility target)
	The -Wswitch-outside-range and -Wno-switch-outside-range options (check case label range)
	The optWswitch and Wno-switch options (check enumerations in switch)
	The -Wswitch-enum and -Wno-switch-enum options (check enumerations in switch)
	The -Wlabel-unused and -Wno-label-unused options (check for unused statement labels)
	The -Wunused-parameter and -Wno-unused-parameter options (check for unused function parameters)
	The -Wunused-variable and -Wno-unused-variable options (check for unused variables)
	The -Wunused-function and -Wno-unused-function options (check for unused static functions)
	The -Wincompatible-pointer-types and -Wno-incompatible-pointer-types options (pointer conversion to incompatible types warning)
	The -Wdiv-by-zero and -Wno-div-by-zero options (generate division by zero warning)

	Assembling the output
	Using HLASM
	Using Systems/ASM

	Linking Assembled objects on OS/390 or z/OS
	A note on re-entrant (RENT) programs
	Using PLINK
	Other useful utilities
	DPDSLIB -- the Systems/C PDS library utility

	Linking programs on OS/390 or z/OS
	Running programs

	DCC Advanced Features and C Extensions
	Predefined macros
	__int8, __int16, __int32, __int64
	__grande and __regpair long long type modifiers
	ISO/IEC TS 18661-3:2015 floating point interchange and extended types
	_Ieee and _Hexadec type modifiers
	__float128 floating point type
	__attribute__
	alias attribute
	aligned attribute
	constructor/destructor attributes
	deprecated attribute
	unavailable attribute
	mode attribute
	noinline attribute
	noreturn attribute
	packed attribute
	used attribute
	weak attribute
	visibility attribute

	__FUNCTION__
	_Packed Qualifier
	Anonymous Structures
	type-generic expressions
	static assertions
	The __rent and __norent qualifiers
	The __inline keyword
	The @ operator
	Statement Expressions
	__typeof__ operator
	__bit_sizeof and __bit_offsetof operators
	Binary constants with the `0b' prefix
	Omitted operand in conditional expressions
	Local labels
	__asm__(``name'') qualifier on function declarations
	__builtin macros and functions
	__has_builtin (ioperand)
	__builtin_alloca
	__builtin_bswap16
	__builtin_bswap32
	__builtin_bswap64
	__builtin_isdigit
	__builtin_memcpy
	__builtin_mempcpy
	__builtin_memset
	__builtin_memcmp
	__builtin_prefetch
	__builtin_frame_address
	__builtin_return_address
	__builtin_extract_return_address
	__builtin_stpcpy
	__builtin_strcpy
	__builtin_strlen
	__builtin_strcmp
	__builtin_strcat
	__builtin_strchr
	__builtin_strrchr
	__builtin_strncat
	__builtin_strncmp
	__builtin_stpncpy
	__builtin_strncpy
	__builtin_strpbrk
	__builtin_fabs
	__builtin_fabsf
	__builtin_fabsl
	__builtin_abs
	__builtin_labs
	__builtin_popcount
	__builtin_popcountl
	__builtin_popcountll
	__builtin_clz
	__builtin_clzl
	__builtin_clzll
	__builtin_ctz
	__builtin_ctzl
	__builtin_ctzll
	__builtin_ffs
	__builtin_ffsl
	__builtin_ffsll
	__builtin_frexp
	__builtin_frexpf
	__builtin_frexpl
	__builtin_huge_val
	__builtin_huge_valf
	__builtin_huge_vall
	__builtin_inf
	__builtin_inff
	__builtin_infl
	__builtin_infd32
	__builtin_infd64
	__builtin_infd128
	__builtin_nan
	__builtin_nanf
	__builtin_nanl
	__builtin_nand32
	__builtin_nand64
	__builtin_nand128
	__builtin_nans
	__builtin_nansf
	__builtin_nansl
	__builtin_abort
	__builtin_unreachable
	__builtin_trap

	integer overflow builtins
	__atomic functions
	__atomic_load_n
	__atomic_load
	__atomic_store_n
	__atomic_store
	__atomic_exchange_n
	__atomic_exchange
	__atomic_compare_exchange_n
	__atomic_compare_exchange
	__atomic_OP_fetch
	__atomic_fetch_OP
	__atomic_test_and_set
	__atomic_clear
	__atomic_..._fence
	__atomic_..._lock_free

	64-bit integral arithmetic -- long long
	128-bit integral arithmetic -- __int128
	Decimal floating point types
	ANSI C99 features
	__func__ identifier
	_Bool data type
	Mixed statements and declarations
	Declaration in for statements
	#pragma STDC FENV_ACCESS
	//-style comments
	long long data types
	C99 preprocessor

	Inline assembly language support
	__register(nn) -- Type specifier.
	__asm [n] {...} -- Inline assembly source
	__asm(``...'':output:input:clobber) -- GCC-style inline assembly source
	Direct references to ASM values

	#pragma compiler directives
	#pragma anonstruct (switch)
	#pragma csect (section, ``name'')
	#pragma enum(enum_size)
	#pragma epilkey(identifier, ``key'')
	#pragma error ``text''
	#pragma export(identifier)
	#pragma filetag(``codepage'')
	#pragma linkage(identifier, type)
	#pragma map(identifier, ``name'')
	#pragma weakalias(identifier, ``name'')
	#pragma noinline(name)
	#pragma options(name[,name]...)
	#pragma pack(n)
	#pragma prolkey(identifier, ``key'')
	#pragma STDC FENV_ACCESS switch
	#pragma warning ``text''
	#pragma weak(identifier)
	#pragma eject
	#pragma page(n)
	#pragma pagesize(n)
	#pragma showinc
	#pragma noshowinc
	#pragma ident ``str''
	#pragma comment(user, ``str'')

	C preprocessor extensions
	#warning
	#error
	#include_next
	#ident

	Extensions for AR-mode support: __far, __based(), __alet and __aletof()
	Remote function pointers
	Special ``built-in'' implementations for common C library functions.

	Programming for z/Architecture
	z/Architecture instructions
	64-bit z/Architecture programming model
	Parameter passing and return values.
	AMODE and address calculations
	__ptr64 qualifier
	__ptr31 qualifier
	Systems/C z/Architecture library

	Programming for OpenEdition
	Programming for MVS 3.8
	Programming for CMS
	IBM Compatibility Mode
	Requirements
	Compiling in IBM compatibility mode under JCL
	How Systems/C differs from IBM C
	Differences from Systems/C
	The -fansi-bitfield-packing option
	Assembling with the Systems/ASM assembler
	Pre-Linking
	Linking
	eXtra Performance Linkage
	Example

	Customizing DCC-generated Assembly Source
	Specifying alternate Entry/Exit macros
	Adding keywords to prologue/epilogue macros
	#pragma prolkey(name, ``key-string'')
	#pragma epilkey(name, ``key-string'')

	Specifying an alternate base register
	Specifying an alternate frame register
	Specifying a block tag for automatic variables

	Using the Systems/C Direct-CALL Interface
	Debugging Systems/C Programs
	Accessing symbols in a debugging session
	Forcing a dump

	Compiling for z/Linux and z/TPF
	The -flinux option
	Using z/Linux system #include files
	Using z/TPF #include files
	Assembling z/Linux or z/TPF assembler source
	Using the z/Linux as command
	Using the gcc driver to assemble

	Linking on z/Linux
	Example Linux/390 compile and link
	Using DCC for z/TPF
	Using DCC for Linux on other hosts

	Systems/C C Library
	License Information File
	Compiler Error and Warning Messages
	1010 Warning -- ISO C forbids evaluated comma operators in #if expressions
	1011 Warning -- comment in the middle of a preprocessor directive
	1012 Error -- too many levels of conditional inclusion (max 63)
	1013 Error -- division by 0
	1014 Error -- duplicate macro argument
	1015 Error -- empty character constant
	1016 Error -- #error XXX
	1017 Warning -- file 'XXX' not found
	1018 Warning -- unexpected characters in #assert
	1019 Warning -- unexpected characters in preprocessing directive
	1020 Warning -- unexpected characters in #ifdef
	1021 Warning -- unexpected characters in #ifndef
	1022 Warning -- unexpected characters in #include
	1023 Error -- unexpected characters in constant integral expression
	1024 Warning -- unexpected characters in #line
	1025 Warning -- unexpected characters in #unassert
	1026 Warning -- unexpected characters in #undef
	1027 Warning -- identifier not followed by whitespace in #define
	1030 Error -- illegal assertion name for #assert
	1031 Error -- illegal character 'X'
	1032 Error -- illegal macro name for #ifdef
	1033 Error -- illegal macro name for #ifndef
	1034 Error -- illegal assertion name for #unassert
	1035 Error -- illegal macro name for #undef
	1036 Error -- not enough arguments to macro
	1037 Error -- invalid escape sequence '"026E30F X'
	1038 Error -- macro expansion did not produce a valid filename for #include
	1039 Error -- not a valid filename for #line
	1040 Error -- invalid '#include'
	1041 Error -- invalid integer constant 'XXX'
	1042 Error -- invalid token in constant integral expression
	1043 Error -- not a valid number for #line
	1044 Error -- invalid macro argument
	1045 Warning -- operator '##' produced the invalid token 'XXX'
	1046 Error -- invalid argument to _Pragma
	1047 Warning -- input line too large
	1048 Error -- macro XXX already defined
	1049 Warning -- malformed identifier with UCN: 'XXX'
	1050 Error -- malformed UCN in XXX
	1051 Error -- too many arguments to macro 'XXX'
	1052 Warning -- more arguments to macro than the ISO limit (127)
	1053 Error -- too many arguments in macro definition (max 253)
	1054 Warning -- macro call with XXX arguments (ISO specifies 127 max)
	1056 Error -- Too many include directories
	1057 Error -- missing comma in macro argument list
	1058 Error -- missing comma before '...'
	1059 Error -- missing macro name
	1060 Warning -- multicharacter constant
	1061 Error -- a colon was expected
	1062 Error -- '...' must end the macro argument list
	1063 Error -- a right parenthesis was expected
	1064 Error -- could not flush output (disk full ?)
	1065 Warning -- non-standard line number in #line
	1066 Error -- operator '##' may neither begin nor end a macro
	1067 Error -- '__VA_ARGS__' is forbidden in macros with a fixed number of arguments
	1068 Error -- output write error (disk full ?)
	1069 Warning -- null preprocessor directive
	1070 Error -- out-of-bound line number for #line
	1071 Error -- operator '#' not followed by a macro argument
	1072 Error -- quad sharp
	1073 Warning -- reconstruction of <foo> in #include
	1074 Warning -- macro 'XXX' redefined unidentically
	1075 Error -- trying to redefine the special macro XXX
	1076 Warning -- '__STDC__' redefined
	1077 Error -- rogue #elif
	1078 Warning -- rogue #elif in code compiled out
	1079 Error -- rogue #else
	1080 Warning -- rogue #else in code compiled out
	1081 Error -- rogue operator 'XXX' in constant integral expression
	1082 Error -- rogue '#'
	1083 Warning -- rogue '#' in code compiled out
	1084 Warning -- rogue '#' dumped
	1085 Warning -- right shift of a signed negative value in #if
	1086 Error -- syntax error in #assert
	1087 Error -- syntax error for assertion in #if
	1088 Error -- syntax error in #unassert
	1089 Warning -- trigraph ??X encountered
	1090 Error -- truncated comment
	1091 Error -- truncated constant integral expression
	1092 Error -- truncated macro definition
	1093 Error -- truncated token
	1094 Warning -- truncated UTF-8 character
	1095 Error -- trying to undef special macro XXX
	1096 Warning -- undefining '__STDC__'
	1097 Error -- unfinished #assert
	1098 Error -- unfinished #ifdef
	1099 Error -- unfinished #ifndef
	1100 Error -- unfinished macro call to macro 'XXX'
	1101 Error -- unfinished string at end of line
	1102 Error -- unfinished #unassert
	1103 Error -- unfinished #undef
	1104 Error -- unknown preprocessor directive '#XXX'
	1105 Error -- unmatched #endif
	1106 Warning -- unterminated // comment
	1107 Error -- unterminated #if construction (depth XXX)
	1108 Error -- void assertion in #assert
	1109 Error -- void condition (after expansion) for a #if/#elif
	1110 Error -- void condition for a #if/#elif
	1111 Error -- void macro argument
	1112 Error -- void macro name
	1113 Error -- void assertion in #unassert
	1114 Warning -- wide string for #line
	1115 Warning -- wide string for #include
	1116 Warning -- #warning XXX
	1117 Warning -- a C99-style digraph was translated in non-C99 mode
	1118 Error -- overflow on division
	1119 Error -- constant too large for destination type
	1120 Error -- invalid wide character constant: XXX
	1121 Warning -- overflow on XXX
	1122 Warning -- underflow on XXX
	1123 Warning -- bitwise XXX yields trap representation
	1124 Warning -- shift count greater than or equal to type width
	1125 Warning -- shift count negative
	1126 Warning -- right shift of negative value
	1127 Warning -- constant is so large that it is unsigned
	1130 Warning -- last line of file ends without a newline
	1131 Error -- unfinished character literal at end of line
	2000 Warning -- ANSI C forbids an empty source file
	2001 Warning -- externally visible name 'XXX' truncated
	2002 Error -- character 0xXXX not in source character set
	2003 Warning -- #pragma warning <text>
	2004 Error -- #pragma error <text>
	2008 Warning -- #pragma map not supported when -fno-alias-stmts is enabled.
	2009 Warning -- control reaches the end of 'function' without a return.
	2010 Warning -- expected a return expression for this function
	2011 Warning -- expression has no side effect
	2012 Warning -- unsupported linkage in #pragma linkage -- ignored
	2013 Warning -- typedef redundant 'typedef'
	2014 Warning -- type already specifies long long
	2015 Warning -- trailing comma in enumerator list
	2016 Warning -- bit-field size exceeds its type
	2017 Warning -- no declaration.
	2018 Warning -- identifier 'XX' not in formal list
	2019 Error -- function 'XXX' already defined in this compilation.
	2020 Warning -- promoted argument #n doesn't match prototype.
	2021 Warning -- prototype with an ellipse can't match empty parameter list.
	2022 Warning -- promoted prototype parameter #n can't match empty parameter list.
	2023 Warning -- function 'XXX' declared 'static' but never defined
	2024 Error -- missing type for 'XXX' in new-style function header
	2025 Warning -- pointer to a function used in arithmetic
	2026 Warning -- comparison of different pointer types lacks a cast
	2027 Warning -- increment of a pointer of type 'void *'
	2028 Warning -- assignment of incompatible pointers
	2029 Warning -- decrement of a pointer of type 'void *'
	2030 Warning -- address of register variable 'XXX' requested
	2031 Warning -- pointer of type 'void *' used in arithmetic
	2032 Warning -- passing argument N converts pointer to integral without a cast
	2033 Warning -- passing argument N converts integral to pointer without a cast
	2034 Warning -- passing argument N from incompatible pointer type
	2035 Error -- incompatible type for argument N of 'XXX'
	2036 Warning -- incompatible pointer types in conditional expression
	2037 Warning -- initialization converts integral to pointer without a cast
	2038 Warning -- initialization converts pointer to integral without a cast
	2039 Error -- sizeof applied to incomplete type
	2040 Error -- __alignof applied to incomplete type
	2041 Warning -- sizeof applied to a function type
	2042 Warning -- sizeof applied to a void type
	2043 Error -- sizeof applied to a bit-field
	2044 Warning -- __alignof applied to a function type
	2045 Warning -- __alignof applied to a void type
	2046 Error -- __alignof applied to a bit-field
	2047 Error -- expected a structure type in __offsetof
	2048 Error -- structure tag 'XXX' not defined in __offsetof
	2049 Error -- no identifier specified for initialization
	2050 Error -- type mismatch in initialization
	2051 Warning -- assignment from incompatible pointer type
	2052 Warning -- assignment truncates pointer without a cast
	2053 Warning -- passing argument N truncates pointer without a cast
	2054 Warning -- dereference truncates pointer
	2055 Warning -- ISO C90 forbids mixed declarations and code
	2060 Warning -- hex escape sequence xNNN out of range - truncated
	2097 Warning -- comparison is always true
	2098 Warning -- comparison is always false
	2099 Warning -- comparison between pointer and integer
	2100 Error -- syntax error: XXX
	2101 Error -- pointer subtraction of different types
	2102 Error -- incorrect operand types for pointer subtraction
	2103 Error -- incorrect operand types for pointer addition
	2104 Error -- invalid operands to binary X
	2105 Error -- incompatible operand types to binary X
	2106 Error -- invalid operands to ==/!=
	2107 Error -- invalid operands to </<=/>/>=
	2108 Error -- invalid operands for <</>>
	2109 Error -- undefined label 'X' at end of function
	2110 Error -- invalid type for constant conversion to boolean
	2111 Error -- invalid conversion to pointer
	2112 Error -- invalid type for constant conversion to short int
	2113 Error -- invalid type for constant conversion to int
	2114 Error -- invalid type for constant conversion to unsigned short int
	2115 Error -- invalid type for constant conversion to unsigned int
	2116 Error -- invalid type for constant conversion to unsigned long int
	2118 Error -- invalid type for constant conversion to long int
	2119 Error -- invalid type for constant conversion to double
	2120 Error -- invalid type for constant conversion to float
	2121 Error -- invalid type for constant conversion to unsigned char
	2122 Error -- invalid type for constant conversion to signed char
	2123 Error -- invalid type for constant conversion to long long
	2124 Error -- invalid type for constant conversion to unsigned long long
	2125 Error -- invalid conversion to double
	2126 Error -- conversion to a non-scalar type requested
	2127 Error -- conversion specifies array type
	2128 Error -- invalid type specifier
	2129 Warning -- declaration of 'X' masks formal parameter
	2130 Error -- redeclaration of extern 'X' with different types
	2131 Error -- redeclaration of 'X'
	2132 Error -- redeclaration of extern 'X' as a static
	2133 Error -- redeclaration of static 'X' as an extern
	2134 Error -- redefinition of 'X'
	2135 Error -- use of incomplete tag 'X' in declaration of 'Y'
	2136 Warning -- implicit declaration of function 'XXX'
	2137 Error -- redeclaration of enumeration tag 'XXX'
	2138 Error -- function definition declared 'typedef'
	2139 Error -- field 'XXX' already defined in this structure
	2140 Error -- field reference to a non-structure
	2141 Error -- no field 'X' in structure 'Y'
	2142 Error -- storage size of 'X' isn't known
	2143 Warning -- redefinition of typedef 'X'
	2145 Error -- field 'XXX' declared as a function
	2146 Warning -- static function 'XXX' declared in block scope
	2147 Warning -- no function prototype given for 'XXX'
	2148 Warning -- struct/union has no members
	2150 Error -- label 'X' already defined
	2151 Error -- case label is not an integral constant
	2152 Error -- duplicate case value
	2153 Error -- duplicate 'default' label for switch
	2154 Error -- switch value must be of integral type
	2155 Error -- no enclosing for/while/do for continue
	2156 Error -- no enclosing for/while/do for break
	2157 Error -- invalid expression type in return
	2158 Error -- __asm size is not an integral constant
	2159 Warning -- function returns void -- return value ignored
	2160 Warning -- integer constant out of range
	2161 Warning -- integer constant is so large that it is unsigned
	2162 Warning -- __asm line is too long for "026E30F c continuation
	2163 Warning -- explicit type is missing, (int) assumed
	2164 Warning -- multi-character character constant
	2165 Error -- character constant too large
	2166 Error -- numeric constant contains digits beyond the radix
	2167 Error -- invalid conversion in cast expression
	2168 Warning -- cast to pointer from integer of different size
	2169 Warning -- cast to integer from pointer of different size
	2172 Warning -- unrecognized -q option
	2178 Error -- invalid -fmargins values 'XXX' ignored.
	2173 Warning -- unrecognized -f option
	2174 Error -- too many input files
	2175 Warning -- unknown option: 'XX' -- ignored.
	2179 Warning -- bad value in -fwchar option 'XX' -- ignored.
	2180 Error -- License validation failed: XXX
	2181 Warning -- License warning
	2185 Error -- can't open input file 'X'
	2186 Error -- can't open output file 'X'
	2187 Warning -- unrecognized -W option
	2189 Error -- all dimensions except the first must be specified for a multi-dimensional array
	2190 Error -- invalid array initializer
	2191 Error -- incorrect character array initializer
	2192 Error -- invalid structure initializer
	2193 Error -- too many initializers for structure
	2194 Error -- invalid initialization to static data
	2195 Error -- can't initialize a function
	2196 Error -- can't initialize a typedef
	2197 Warning -- initializer string is too long, truncated
	2198 Warning -- braces around scalar initializer for 'XXX'
	2199 Warning -- bit-field initializer value too large, truncated
	2200 Error -- invalid initializer
	2201 Error -- character array initialized from wide string
	2202 Warning -- initialization from incompatible pointer type
	2203 Warning -- file-scoped declaration of 'XXX' globally reserves register #R
	2204 Error -- __register variable 'XXX' declared extern
	2205 Warning -- ANSI C restricts enumerator values to range of 'int'
	2206 Error -- overflow in enumeration values
	2207 Error -- bit-field 'XXX' must be of type signed int, unsigned int or int
	2208 Warning -- bit-field 'XXX' type invalid. Type 'unsigned int' assumed.
	2209 Warning -- bit-field 'XXX' type invalid in ANSI C
	2210 Error -- invalid type specifier
	2211 Error -- both short & long in type specifier
	2212 Error -- both signed and unsigned in type specifier
	2213 Error -- enumerator value for 'X' not an integral constant
	2214 Error -- structure or union tag used in enumeration specifier
	2215 Warning -- use of incomplete enumeration tag 'XXX'
	2216 Error -- bit-field width not an integer constant
	2217 Error -- bit-field size of 0 for 'X'
	2218 Error -- invalid type for bit-field
	2219 Error -- enumeration tag used in struct/union specifier
	2220 Error -- redefinition of struct/union 'X'
	2221 Error -- use of incomplete structure tag 'X'
	2222 Error -- __register specification is not an integral constant
	2223 Error -- parameter name missing
	2224 Error -- incorrect type for __based identifier
	2225 Error -- undefined identifier 'X' for __based
	2226 Error -- __based constants must be of integral type
	2227 Error -- duplicate identifiers in function declaration
	2228 Error -- array size for 'XXX' not an integral constant
	2229 Error -- redeclaration of 'XXX' in parameter declaration list
	2230 Error -- lvalue expected
	2231 Error -- assignment to a void typed lvalue
	2232 Error -- can't assign to a function
	2233 Error -- invalid pointer assignment
	2234 Error -- assigning to 'XXX' from incompatible type 'XXX'
	2235 Warning -- assigning to a const datum
	2236 Warning -- assignment converts pointer to integral without a cast
	2237 Warning -- assignment converts integral to pointer without a cast
	2240 Error -- undefined identifier 'X'
	2241 Error -- too many arguments for call to function 'X'
	2242 Error -- too few arguments for call to function X
	2243 Error -- invalid use of void expression as a parameter
	2244 Error -- dangling comma in argument list
	2245 Error -- invalid or missing parameter
	2246 Error -- array subscript not of integral type
	2247 Error -- subscripted value is neither array nor pointer
	2248 Error -- call is not to a function or via a function pointer
	2249 Error -- invalid argument type for ->
	2250 Error -- expected identifier after '->'
	2251 Error -- postfix ++/- not allowed in constant expressions
	2252 Error -- lvalue required for postfix '++/-'
	2253 Error -- expected a value after a cast expression
	2254 Error -- prefix ++/- not allowed in constant expressions
	2255 Error -- lvalue required for prefix '++/-'
	2256 Error -- operands to '&' must have integral type
	2257 Error -- operands to 'ˆ' must have integral type
	2258 Error -- operands to '|' must have integral type
	2259 Error -- operands to '&&' must be scalar
	2260 Error -- operands to '||' must be scalar
	2261 Error -- test value for conditional expression is not scalar
	2262 Error -- type mismatch in conditional expression
	2263 Error -- incorrect operand to unary '&'
	2264 Error -- missing operand to unary '*'
	2265 Error -- operand to unary '*' must have pointer type
	2266 Error -- operand of unary '+' must have arithmetic type
	2267 Error -- operand of unary '+' must have arithmetic type
	2268 Error -- operand of unary ' ' must have scalar type
	2269 Error -- operand of unary '!' must have scalar type
	2270 Error -- lvalue needed for assignment with binary operator
	2271 Error -- missing left parenthesis after __dsect_tag
	2272 Error -- missing string in __dsect_tag()
	2273 Error -- missing right parenthesis in __dsect_tag()
	2274 Error -- attempt to take address of bitfield structure member
	2275 Error -- expected expression before multiplicative '*'
	2276 Error -- expected expression after multiplicative '*'
	2277 Error -- expected expression before division operator '/'
	2278 Error -- expected expression after division operator `/'
	2279 Error -- expected expression before modulus operator '%'
	2280 Error -- expected expression after modulus operator '%'
	2281 Error -- request for member 'XXX' in something that is not a structure or union
	2282 Warning -- assignment discards 'const' from pointer target type
	2283 Warning -- assignment discards 'volatile' from pointer target type.
	2284 Warning -- passing of argument N discards 'const' from pointer type
	2285 Warning -- passing of argument N discards 'volatile' from pointer type
	2286 Warning -- division by zero
	2287 Warning -- initialization discards 'const' from pointer target type
	2288 Warning -- initialization discards 'volatile' from pointer target type.
	2290 Error -- size specifier in __asmval must be an integral constant
	2291 Error -- size specifier in __asmval must be between 1 and 4, or 8
	2295 Error -- redeclaration of formal parameter 'XXX'
	2296 Warning -- unary negation applied to an unsigned type
	2300 Error -- size specification in _Decimal specifier must be of integral type
	2301 Error -- size specification in _Decimal must be constant
	2302 Error -- size value in _Decimal must be in the range 1 to 31
	2303 Error -- precision specification in _Decimal specifier must be of integral type
	2304 Error -- precision specification in _Decimal specifier must be constant
	2305 Error -- precision value in _Decimal must be in the range 0 to 31
	2306 Error -- precision value must be less than or equal to size in _Decimal
	2307 Warning -- digits may have been lost in the whole-number part
	2310 Error -- digitsof() must be applied to a Decimal type
	2311 Error -- precisionof() must be applied to a Decimal type
	2315 Warning -- non-zero digits lost in Decimal constant
	2318 Warning -- #pragma options must be specified before the first C statement
	2316 Warning -- _Decimal multiplication truncates digits
	2319 Warning -- unrecognized option "XXX" in #pragma options
	2320 Error -- only one #pragma csect iKIND allowed per program
	2321 Warning -- #pragma prolkey for 'XXX' replaced
	2322 Warning -- extraneous text after #pragma ignored
	2324 Warning -- #pragma map for symbol 'XXX' already specified, this one ignored
	2325 Warning -- unrecognized #pragma XXX ignored
	2324 Warning -- redundant #pragma map for symbol 'XXX' ignored
	2330 Error -- operands to '<<'/'>>' must have integral type
	2331 Warning -- 'XXX' initialized and declared 'extern'
	2332 Error -- 'XXX' is both 'extern' and initialized
	2333 Error -- 'XXX' already initialized
	2334 Warning -- left shift count >= width of type
	2335 Warning -- right shift count >= width of type.
	2336 Warning -- left shift count negative
	2337 Warning -- right shift count negative
	2338 Error -- flexible array member not at end of struct
	2339 Error -- array size missing in 'XXX'
	2340 Error -- array size missing in field 'XXX'
	2341 Warning -- ANSI C forbids zero-sized array field 'XXX'
	2342 Error -- use of incomplete structure in field 'XXX'
	2343 Error -- use of incomplete union in field 'XXX'
	2344 Warning -- initialization of flexible array member
	2345 Error -- declaration of 'XXX' as array of voids
	2346 Error -- declaration of field 'XXX' as array of voids
	2347 Error -- structure tag 'XXX' used in union specifier
	2348 Error -- union tag 'XXX' used in structure specifier
	2350 Error -- controlling expression of an if-statement must have scalar type
	2351 Error -- controlling expression of a while-statement must have scalar type
	2352 Error -- controlling expression of a do-statement must have scalar type
	2353 Error -- controlling expression of a for-statement must have scalar type
	2354 Error -- nested initialization of flexible length array
	2356 Warning -- condition is always false
	2357 Warning -- condition is always true
	2358 Warning -- enumeration values not handled in switch...
	2359 Warning -- case value not in enumerated type 'XXX'
	2360 Warning -- dereferencing 'void *' pointer
	2361 Warning -- index operator applied to 'void *' pointer
	2362 Warning -- case label value is less/greater than minimum/maximum value for type
	2363 Warning -- case label not in enumerated type 'XXX'
	2365 Error -- array 'XXX' is too large to fit in the address spa ce
	2366 Warning -- ANSI C forbids zero-sized array
	2367 Warning -- subscript out of range
	2368 Error -- variable length array may not be initialized
	2369 Error -- array size expression for 'XXX' not an integral type
	2370 Error -- size of array 'XXX' is negative
	2371 Warning -- return type of 'main' is not 'int'
	2375 Warning -- return converts integral to pointer without a cast
	2376 Warning -- return converts pointer to integral without a cast
	2377 Warning -- return discards 'const' from pointer target type
	2378 Warning -- return discards 'volatile' from pointer target type
	2379 Warning -- incompatible pointer type in return
	2380 Error -- increment of a pointer to an unknown structure
	2381 Error -- decrement of a pointer to an unknown structure
	2382 Error -- arithmetic on pointer to an incomplete type
	2383 Warning -- unnamed struct/union that defines no data
	2384 Warning -- floating constant out of range
	2385 Warning -- assignment converts a floating point type to one with less precision
	2386 Warning -- passing argument N converts a floating point type to one with less precision
	2387 Warning -- return converts a floating point type to one with less precision
	2388 Warning -- initialization converts a floating point type to one with less precision
	2389 Warning -- floating point operation result is out of range
	2390 Warning -- assignment converts __far pointer to local pointer without a cast
	2391 Warning -- passing argument N converts __far pointer to local pointer without a cast
	2392 Warning -- return converts __far pointer to local pointer without a cast
	2393 Warning -- initialization converts __far pointer to local pointer without a cast
	2395 Error -- argument to __aletof() is not a __far pointer
	2399 Warning -- non-constant member-designator in offsetof
	2400 Warning -- use of bit-field member in offsetof() is undefined
	2401 Error -- initializer element is not computable at load time
	2402 Error -- array index in initialization designator exceeds bounds
	2403 Error -- array index value not constant in initializer
	2404 Warning -- extra elements in initializer
	2405 Warning -- ANSI C forbids an empty initializer list
	2406 Warning -- anonymous structure/union members are a C11 language extension
	2412 Error -- invalid enumeration size
	2413 Error -- the enum cannot be packed to the requested size
	2415 Warning -- unrecognized #pragma STDC
	2416 Warning -- invalid switch to #pragma STDC FENV_ACCESS ignored
	2429 Error -- invalid size for __register variable 'x'
	2430 Error -- address of __register variable
	2431 Error -- type of __register variable 'x' is not integral or pointer
	2441 Error -- compound expression only allowed within a function
	2450 Warning -- ANSI C forbids conditional expression with only one void side
	2451 Warning -- ANSI C requires second operand in conditional expression, assuming test value
	2461 Warning -- declaration of long double 'XXX' treated as double
	2470 Warning -- use of __FUNCTION__ outside of function scope
	2473 Error -- 'XXX' is unavailable
	2474 Warning -- 'XXX' is deprecated
	2475 Warning -- 'XXX' attribute directive ignored
	2476 Error -- unable to emulate mode 'XX'
	2477 Error -- invalid pointer mode 'XX'
	2480 Warning -- unused label 'XX'
	2481 Warning -- unused variable 'XX'
	2482 Warning -- unused parameter 'XX'
	2483 Warning -- unused function 'XX'
	2500 Warning -- #pragma linkage(...,fetchable) must appear only once
	2504 Error -- z/Architecture is required when -fllgrande is specified
	2508 Warning -- 'XXX' declared in parameter list; its scope may not be what you expect
	2509 Warning -- #pragma for 'xxx' ignored
	2510 Error -- The decimal-floating-point-facility (-march=z6 or -mdecimal-floating-point-facility) is required when -fdfp is specified
	2514 Warning -- static and non-static on same symbol
	2515 Error -- cannot initialize non-reentrant data with the address of reentrant data
	2525 Warning -- signed bit field of length 1
	2601 Error -- can't mix decimal floating point operands and other float types
	2602 Warning -- decimal floating point constant out of range
	2603 Warning -- assignment converts a floating point type to one with less precision
	2604 Warning -- passing argument N converts a floating point type to one with less precision
	2605 Warning -- return converts a floating point type to one with less precision
	2606 Warning -- initialization converts a floating point type to one with less precision
	2607 Warning -- floating point operation result is out of range
	2610 Warning -- ANSI C forbids conversion between function pointers and object pointers
	2615 Error -- invalid argument in __builtin stdarg evaluation
	2616 Warning -- use of a type that undergoes default argument promotions in 'va_start/va_arg' is undefined
	2617 Error -- 'va_start' used in function with non-variable arguments
	2620 Warning -- function declared 'noreturn' has a 'return' statement
	2621 Error -- type qualifiers or the 'static' keyword are invalid unless they are in the outermost array index of a parameter
	2625 Warning -- assignment expression used as condition
	2630 Warning -- bit field declaration
	2631 Warning -- function returns (long long) without a __grande or __regpair modifier, defaults to xxxx
	2640 Error -- invalid constant in __builtin_fp_classify()
	2641 Error -- expression in __builtin_fp_classify is not a floating point value
	2650 Error -- type-name in _Atomic specifier must not contain array, function, atomic or qualified type
	2651 Error -- _Atomic qualifier cannot be applied to an array or function type
	2662 Error -- An identifier may not begin with a universal character representing a digit
	2663 Error -- XXX is not a valid universal character for an identifier
	2667 Error -- invalid type for argument to __builtin_isdigit
	2668 Error -- invalid type for conversion to _Decimal
	2670 Error -- invalid call to __atomic builtin
	2671 Error -- 'void' must be the first and only parameter if specified
	2672 Error -- 'XXX' cannot be declared as type (void)
	2673 Error -- field 'XXX' cannot be declared as type (void)
	2675 Error -- value in _Alignas must be a type or an integer constant expression
	2676 Error -- invalid value in alignment specifier
	2677 Error -- alignment specifier not allowed in typedef
	2678 Error -- alignment specifier not allowed for bitfields
	2679 Error -- alignment specifier not allowed in parameter types
	2680 Error -- attribute sequence not allowed in this context
	2681 Error -- size value in _BitInt must be in the range 1 to XXX
	2700 Error -- static assert failed
	2701 Error -- static_assert expression is not an integral constant
	2703 Error -- label 'x' referenced outside of any function
	2710 Error -- variable length array 'x' at file scope
	2711 Error -- field 'x' declared as a variable length array
	2712 Error -- 'x' declared as function returning a function
	2750 Error -- bad option(s)
	2998 Error -- maximum error count exceeded -- compilation halted.
	2999 Error -- compilation halted due to previous errors
	4010 Warning -- CSECT name 'XXX' is too long, truncated to 'YYY'
	4011 Note -- CSECT mapped to XXX avoid conflicts
	4012 Error -- CSECT name must have at least one alphabetic character.
	4013 Error -- invalid code base register
	4014 Error -- invalid frame base register
	4015 Error -- -fc370=ver is required when -fxplink is specified
	4016 Error -- -fhlasm is not allowed in combination with other options
	4017 Error -- -fno-alias-stmts is not allowed in combination with other options
	4018 Error -- bad option(s)
	4020 Error -- invalid call to built-in 'XXX'
	4030 Error -- can't open output ASM code file "XXX"
	4031 Error -- can't write output assembly source.
	4050 Warning -- __register(XXX) variable conflicts with reserved register
	4060 Error -- invalid __asm operand
	4061 Error -- invalid alias cycle in symbol 'XXX'
	5000 Warning -- parameter mismatch when attempting to inline call to 'XX' from 'XX'
	5010 Warning -- possible use of uninitialized variable 'variable'
	9999 Error -- internal error XXXXX

	ASCII/EBCDIC Translation Table

