Systems/C C Library
Version 2.30

Copyright (©) 2020, Dignus, LLC

Systems/C C Library
Version 2.30

Copyright (© 2024 Dignus LLC, 8378 Six Forks Road Suite 203, Raleigh NC, 27615.
World rights reserved. No part of this publication may be stored in a retrieval
system, transmitted, or reproduced in any way, including but not limited to pho-
tocopy, photograph, magnetic or other record, without the prior agreement and
written permission of the publisher.

This product includes software developed by the University of California, Berkeley

and its contributors.

Copyright (c) 1990, 1993
The Regents of the University of California. All rights reserved.

IBM, S/390, zSeries, zArchitecure, z/OS, z/VM, z/VSE, 0S/390, MVS, VM, CMS,
HLASM, and High Level Assembler are registered trademarks of International Busi-
ness Machines Corporation.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Microsoft, Windows, Windows N'T, Windows XP are trademarks of Microsoft Cor-
poration in the United States and other countries.

Dignus, Systems/C, Systems/C++ and Systems/ASM are registered trademarks of
Dignus, LLC.

ii

Contents

How to use this book

Using the Systems/C C library
Linking with the Systems/C C run-time library on OS/390 and z/0OS
A note on re-entrant (RENT) programs
Using PLINK . . o o oo
Linking under the OpenEdition shell
Other useful utilities L
Linking programs on OS/390 and z/OS
Executing programso

Systems/C C Library Features
Special “built-in” implementations for common C library functions. .
Using the Systems/C Direct-CALL interface

Systems/C z/Architecture Library
z/Architecture library features
z/Architecture data and code locations
Determining addressing modeo
Linking with the Systems/C z/Architecture Library
z/Architecture and OpenEdition services
Direct-CALL extensions
Mixing z/Architecture and non-z/Architecture functions

Programming for TSO and BATCH
Running programs under TSO
argv processing under TSO oo oL
Running programs under BATCH JCL
argv processing under BATCH

Programming for OpenEdition
Linking programs under the OpenEdition Shell
Copying programs from a PDS to the OpenEdition Shell
Running programs under the OpenEdition Shell

0 I O Uk W w W

11

12

21
21
21
22
22
23
23
23

25
25
26
26
26

Systems/C C Library iii

Programming for CMS

Linking programs for CMS
Using PLINK to create CMS programs
Using LKED to link CMS programs
Executing programs on CMS L.

Programming for M'VS 3.8

Linking programs for MVS 3.8
Using PLINK to create MVS 3.8 programs
MVS 3.8 runtime restrictions

Controlling the runtime environment

Runtime Options specified in the program arguments
Runtime Options in TSO and Batch
Runtime Options in OpenEdition
Disabling/Enabling runtime options in TSO and Batch
stdin, stdout and stderr
Changing standard filenames at execution time

Changing standard filenames and attributes at compile time

Choosing the TCP/IP interface
Changing argv delimiters for BATCH and TSO
Disabling runtime options for BATCH and TSO
Controlling stack space allocation
Specifying the runtime storage SUBPOOL
Specifying the runtime KEY 0oL
Controlling access to Unix System Services
Signal Handling

Considerations for SIGABND processing

OpenEdition e

Linking under OpenEdition
Running under OpenEdition

Data locations e
Stand alone function

Compiler invoked routines oL
Initializing re-entrant data

User ABEND codes issued by the runtime

Systems/C C Library functions

iv

System Functions Lo

ACCESS(2) - o o oo
ATO_CANCEL(2) . « . o oo
ATO_ERROR(2) .« oo
ATOREAD(2) . . o oo
ATORETURN(2) .« . oo
ATO_SUSPEND(2) . . o oo

31
31
31
33
34

35
35
36
37

39
39
39
40
40
41
41
41
42
43
43
44
45
45
45
46
47
47
47
48
49
49
50
50

53

ATOWRITE(2) . - o o oo oo 70

CHDIR(2) .« o oo 73
CHMOD(2) . . . oo 75
CHOWN(2) . . . oo 78
CHROOT(2) '« © o o oo 80
CLOCK_GETTIME(2) oo 82
CLOSE(2) © .« o v o oo 84
_DCALLENV(2) . . o 86
_DCALLSETRETREGVAL(2) 87
DDNFIND(2) .« . o o oo e e 88
CDYNALL(2) .« o o oo 90
DUP(2) © oo 98
EXECVE(2) © . o oo e 100
BXIT(2) © oo oo 104
FONTL(2) . .« o oo e 106
FLDATA(2) .« o o oo 108
FORK(2) . . oo 112
FSYNC(2) . o o oo 114
_GET_CPUID(2) . -+ o o oo 116
GETITIMER(2) . . . o oo 117
GETDTABLESIZE(2)o 120
GETGID(2) .+« o o oo 121
GETGROUPS(2) . .« o o oo 122
GETLOGIN(2) . . o\ oo 123
GETPID(2) . .« o o oo e e 124
GETPGRP(2) . . o oo 125
GETPRIORITY(2) . . . o o oo 127
GETPRV(2) . . . o oo 129
GETRUSAGE(2) . . . o oo 130
GETSID(2) . . . o oo 132
GETTIMEOFDAY(2)o 133
GETUID(2) . « v o o oo 135
GRANTPT(2) . . oo 136
IBMED(2) . . o oo 137
_ISPOSIXON(2) © o v oo e 139
_JOBNAME(2) .« o v oo 140
KILL(2) © @ oo oo e 141
LINK(2) © oo oo e e 143
LIOLISTIO(2) . . o o o oo 145
LSEEK(2) . .« o oo 147
MEDIR(2) o oo e 149
MKFIFO(2) .« . o oo 151
MKNOD(2) . . oo 153
MMAP(2) . oo 155
MPROTECT(2) .« o oo 159

vi

MSYNC(2) . o oo 161

MSGCTL(2) .« . o oo oo e 163
MSGGET(2) .« . o oo oo 166
MSGRCV(2) .« . o oo 168
MSGSND(2) © . o oo 170
MUNMAP(2) . . oo 172
NANOSLEEP(2) . . . o oo 173
OPEN(2) . o oo 175
OSDDINFO(2) . . o oo 184
CPASSWD(2) . © o e 186
PATHCONF(2) . . o o oo 188
PIPE(2) . . o oo 190
_PROCNAME(2) . . o oo 192
_QUERYDUB(2) . . . o o oo 193
READ(2) . o o oo 194
READLINK(2) oo 197
RENAME(2)o 198
RMDIR(2) o oo 201
SCHED_YIELD(2) . . . o oo 203
SEMCTL(2) . -« o o oo e e 204
SEMGET(2) .+« o o oo 207
SEMOP(2) o v o oo e 209
SETGROUPS(2) . .\ o oo i 212
SETMODE(2) .« .« v oo e e 213
SETPGID(2) .« o o v oo e e e e 214
SETREGID(2) . . . oo 216
SETREUID(2) o oo 218
SETSID(2) . . . o oo 219
SETUID(2) © « v o o oo 221
SHMAT(2) . o v oo oo 223
SHMCTL(2) .« v o oo e 225
SHMGET(2) . . o oo 227
SIGACTION(2) . . o oo 229
SIGPENDING(2) . . . o o oo 236
SIGPROCMASK(2) . . o oo 237
SIGQUEUE(2) . .« v o vovee e 239
SIGSUSPEND(2) . -« o o oo oo 241
SIGWAIT(2) .« v o o v oo e e e 242
_SMFRECORD(2) . . . oo 244
STAT(2) .« o o o e 245
CSTEPNAME(2) . . . o oo 249
SYMLINK(2) . . . oo 250
CSVCII(2) e 252
SYNC(2) © oot oo 259
TRUNCATE(2) o oo 260

UMASK(2) . o oo 262

UNLINK(2) . . oo e e 263
UNLOCKPT(2) .+« o o oo e e e 265
CUSERID(2) o o oo oo e 266
UTIMES(2) « « v o e oo oo e e e e 267
VEORK(2) © o v oo oo oo e 269
WAIT(2) oo e e e e 271
WRITE(2) © o oo oo oo e 274
TCP/IP related functions 277
ACCEPT(2) .« o o o oo oo 278
BIND(2) « « o oovove e e e 280
CONNECT(2) « o o ooeeeeee e 282
GETCLIENTID(2) .« « v v oot e e e 284
GETHOSTID(2) .« o o vt e e e e 285
GETHOSTNAME(2) . .« o v vee oo 287
GETPEERNAME(2) o e 288
GETSOCKNAME(2) . © o tvee oo 289
GETSOCKOPT(2) . . v o oo e e e e e e e e e e e e e e e e 291
GIVESOCKET(2) . .« o vt et e e 205
TOCTL(2) o o oo oot 208
LISTEN(2) © .\ oo oo e oo 301
POLL(2) o oo oottt 302
RECV(2) .« o oo oo e e e e 305
SELECT(2) « © o v oo e e 309
SELECTEX(2) « « o o ovoee oo e 312
SEND(2) . . . e 313
_SETSOCKPARM(2) © o o oo 316
SOCKET(2) .« o o oo 318
SHUTDOWN(2) .« o o oo e e e e 321
TAKESOCKET(3) .« « o o ot e e e e 323
Gen Library 325
CATOE(3) oo e 326
CTOXX(3) oo e 328
ALARM() o oo oo 331
ASSERT(3) o o o oot 332
BITSTRING(3) .« « o oot e e e e e 333
CLOCK(3) oo oo e e e 336
CTERMID(3) . « « o ooove e e e e e 337
DIRECTORY(3) .« o o oot e e e e 339
DLOPEN(3) . o v oo oo e 341
ERR(3) © v vove oo e e e 344
EXEC(3) « v v v ee e e e e 347
FMTCHECK(3) o o o oot e e e e e 350
FMTMSG(3) -« o o o oot e e e e 352
ENMATCH(3) © o o o oot e e e e e 355

vii

viii

FTOK(3) . o oo oo 357

GETCWD(3) . . o oo 358
GETCONTEXT(3) . . - o o oo 360
GETGRENT(3)o 362
GETPROGNAME(3) i 364
GETPWENT(3) . . . o oo 365
GLOB(3) © o o v oo 367
HCREATE() . . o o o oo e o 372
ISATTY(3) o o oo 376
LSEARCH(3) . . . o oo 377
MAKECONTEXT(3) + « v o oo 378
NICE(3) . o oo oo e 380
POPEN(3) .« o o oo e 381
POSIX.SPAWN(3) . . . o oo 383
POSIX_SPAWNATTR_GETFLAGS(3) . . .« o o oo oo 388
POSIX_SPAWNATTR_GETPGROUP(3) 390
POSIX_SPAWNATTR_GETSIGDEFAULT(3) 392
POSIX_SPAWNATTR_GETSIGMASK(3) 394
POSIX_SPAWNATTRINIT(3) o oot 396
POSIX_SPAWN_FILE_ACTIONS_ADDOPEN(3) 398
POSIX_SPAWN_FILE_ACTIONSINIT(3) 401
PSELECT(3) .« . o o o oo 403
PSIGNAL(3) . . o oo 405
PTSNAME(3) . o o oo e e 406
PAUSE(3) . o o oo e 408
QUEUE(3) . . . o oo 409
RAISE(3) . o o o oo 425
SEM.DESTROY(3) . . o oo oo 426
SEM_GETVALUE(3) . . . o oo 427
SEMINIT(3) . © o oo oo 429
SEM_OPEN(3) . . . o 431
SEM.POST(3) . . o oo 434
SEM_WAIT(3) . . .o 437
SIGNAL(3) © o v o oo 439
SIGSETOPS(3) . . o v v oo e e 443
SETIMP(3) . o v o oo 445
SLEEP(3) . . o v o oo e e 447
SYSCONF(3) . . o oo e 448
TCGETPGRP(3) . . . o o oo 450
TCSENDBREAK(3) o oo 451
TCSETATTR(3) . . o o o oo e 453
TCSETPGRP(3) . . . o o o oo 457
THRD.CREATE(3) o oo 459
TIME(3) . . o o oo 464
TIMES(3) © « o o oo e 465

TIMEZONE(3) . .« oo 467

TPUT(3) . . o oo o e e e e e e e e e e e e 468
TRACEBACK(3) . . o o o o o e e e e e e e e 469
TSEARCH(3) o o o e 471
TTYNAME(3) . . . o o 473
UCONTEXT(3) . o v o oo e e e e e e e e e e e e e e e e 474
UNAME(3) . . o oo o e e e e 475
USLEEP(3) . . . o o o 476
UTIME(3) . . . o o e 477
WORDEXP(3) . . . oo oo 478
WTO(3) . o o o 481
Locale Library 482
BTOWC(3) . . . e e 483
CTYPE(3) . . . o 484
ISALNUM(3) © v oo o e e e e e e e e e e e e e e e e 486
ISALPHA(3) . . o oo 487
ISASCII(3) . . o o o e e 488
ISBLANK(3) . . o oo o e e e e e 489
ISCNTRL(3) . o o o o o e e e e e e e e e e 490
ISDIGIT(3) . . . o oo e e e e 491
ISGRAPH(3) . . o o oo e e e e 492
ISLOWER(3) . . o oo o o e e e e e e e e e e e e 493
ISPRINT(3) . . o o o o o e e e e e e e e e e e e e e e 494
ISPUNCT(3) . . o v oo e e e e e 495
ISSPACE(3) . . . o o o 496
ISUPPER(3) . . o o oo e e e 497
ISWALNUM(3) . . o oo e e e e e e e e e e e e e e e e e 498
ISXDIGIT(3) « o v v o o e e e e e e e e e e e e e e e e e 501
MBLEN(3) . . o oo 502
MBRLEN(3) . . . oo 504
MBRTOWC(3) . . . o oo o e e e e e e e e 506
MBSINIT(3) . . o o o e e e e e 508
MBSRTOWCS(3) . . o o o o e e e e e e e e e e e e e e e e 509
MULTIBYTE(3) . . . o o o e e e 511
RUNE(3) . . oo o e e 513
SETLOCALE(3)« o e e 516
TOASCII(3) . .« o v o e 520
TOLOWER(3) . . . o oo 521
TOUPPER(3) . . o o o o o e e e e e e e e 522
TOWLOWER(3) o o 523
TOWUPPER(3) o o 524
WCSTOL(3) . . o oo 525
WCTRANS(3) . o oo 527
WCTYPE(3) . . o oo 529
WCWIDTH(3) . . . oo oo e e e e e 531

ix

Math library o .o 532

MATH(3) . o oo 533
CFP.CAST(3) . o oo 540
LISBEFP(3) o o 541
ACOS(3) © oo 543
ACOSH(3) . o oo 544
SCALBN(3) . o v o oo oo 545
ASIN(3) © o 546
ASINH(3) © o oo 547
ATAN(3) o 548
ATAN2(3) . oo 549
ATANH(3) oo oo 551
CEIL(3) « © o o v o e e e e 552
COPYSIGN(3)o 553
COS(3) oo 554
COSH(3) '« .\ o oo e e 555
ERF(3) . . o 556
EXP(3) « oo oo 558
FABS(3) . o o oo 561
FDIM(3) . . o oo oo 562
FEENABLEEXCEPT(3) oo vvii i 563
FEGETROUND(3) . .« . o oo 565
FEDEC.GETROUND(3)ot 566
FLOOR(3) . .\ oo 567
FMA3) © oo 568
FMAX(3) . oo 570
FMOD(3) . o oo oo 572
FPCLASSIFY (3) .« o o oo oo ot 573
FREXP(3) . . . oo 575
HYPOT(3) . o oo 576
ILOGB(3) . . o oo 577
ISGREATER(3) . . . o oo 579
LDEXP(3) . o oo 581
LGAMMA(3) © . o oo 582
LOG(3) © o oo 584
LRINT(3) . o o oo oo e 586
LROUND(3) . . o v oo oo 588
MODE(3) © o o o v e e 590
NAN(B) © oo e 591
NEXTAFTER(3) . . . o oo 593
REMAINDER(3) oo oo 594
RINT(3) . oo oo 596
ROUND(3) . o\ ottt e 598
SIGNBIT(3) . .« o oo oo 599

SIN(3) . o o oo 600

SINH(B) . o o v oo e 601

SQRT(3) . . o o 602
TAN(3) . o 604
TANH(3) . . oo 605
TRUNC(3) . . oo oo e e e 606
Standard I/O Libraryo 607
STDIO(3) © « o v o e oo e e 608
FCLOSE(3) .« © o o oo e e 613
FERROR(3) o 614
FELUSH(3) . . . o o o e e e e e e e e e e e e e 616
FGETLN(3) o e 618
FGETWLN(3) o e 620
GETLINE(3) o e 622
FGETS(3) . . o o o o o e e 624
FGETWS(3) . . . o 626
FOPEN(3) . . . 628
FPUTS(3) . o o o o o e e e e e e e e e e e e e e 631
FPUTWS(3) . . o o o e 633
FREAD(3) . . . o o e 634
FSEEK(3) . . . o o o o 637
FUNOPEN(3) . . . oo e e e e e e 640
FWIDE(3) . . . o o 642
GETC(3) . . e 643
GETWC(3) « o oo e e 645
MKTEMP(3) 647
PRINTE(3) e e 650
PUTC(3) . . o oo e e e e e e e e e e e 656
PUTWC(3) . o oo e e e e e 658
REMOVE(3) o 659
SCANF(3) . . o o 660
SETBUF(3) . . . o oo e e e e e e 664
TMPFILE(3) . . o o oo o e e e e e e e e e e e 666
UNGETC(3) . . o o o e e e e e 669
UNGETWC(3) o e e 670
WPRINTF(3) . . . o oo o 671
WSCANF(3) © oo e 677
The Standard Library o o 682
CFREE24(3) .« o o oo 683
_FREE31(3) . . o o 684
_MALLOC24(3) . o o o o e e e 685
_MALLOC31(3) © o oo o e e e e e e e 686
ABORT(3) . . o oo 687
ABS(3) o ot 688
ARCARANDOM(3) o 689
ATEXIT(3) . . o o o o e e 691

xi

ATOF(3) o o oo 692

ATOI(3) . o o o 693
ATOL(3) . o o o o 694
BSEARCH(3) o o o e 696
CALLOC(3) . . o o o e e e e e e e e e 697
DIV(3) . . o o 698
ENVIRON(7) . . . o o e e e e 699
EXIT(3) . o oo o o e e e e e e e e e e e 700
FREE(3) . . . o 701
GETENV(3) . . o o e 702
GETOPT(3) . . o o o o e e e e e e e e e e e e e 704
GETSUBOPT(3) o e e 707
IMAXABS(3) . . o oo 709
IMAXDIV(3) . . oo 710
LABS(3) . . o o o e 711
LDIV(3) . o o o o 712
LLABS(3) . o o o o o e e 713
LLDIV(3) . . o o e 714
MALLOC(3) . o o o o e e e e e e e e e e e e 715
MEMORY (3) . . o o oo o 716
STREMON(3) . . o o e e e e e 718
QSORT(3) + o o o o e e e e e e 721
RADIXSORT(3) . . o o oo o e e e e e e e e e e e e 724
RAND(3) . . o o 726
RANDOM(3) oo e 727
REALLOC(3) . o v v o o e e e e e e e e e e e e e e 729
REALPATH(3) . . . o o oo 730
STRTOD(3) . . . o o e e e e e e e 731
STRTOL(3) . . o o o e e e e e e e e e e 733
STRTOUL(3) . . . o o o e e e e e e e e e e e e e e 735
SYSCONF(3) . . o o o e e e e e e e e e e e 737
SYSTEM(3) . . o o oo e e e e e e e e e e e 739
Standard Time library Lo Lo 740
CTIME(3) . . o o o o e e e e e e e e e e e e e 741
STRETIME(3) . . . o o o o e e e e e e e e e e e e 745
STRPTIME(3) o o e e 748
TIME2POSIX(3) . . . o o oo o e e 749
TZSET(3) . . o o o 751
TZFILE(D) . o o o o o o e e 754
String Libraryo 756
BCMP(3) . . oo 757
BCOPY(3) . o o oo 758
BSTRING(3) . . o o oo o e e e e e e e e 759
BZERO(3) . . o o 761

FFES(3) . o o o oo e e 762

INDEX(3) .« o oo oo 763

MEMCCPY (3) . o v oo o e e e e e e e e e e 764
MEMCHR(3) . . o o oo o e 765
MEMCMP(3) . . o o oo 766
MEMCPY (3) . . o oo o 767
MEMMEM(3) . . . o oo o e e e e 769
MEMMOVE(3) . . . o o o e e e e e 770
MEMSET(3) . . . o oo 771
RINDEX(3) . o v oo o o e e e e e e e e e e e e 772
STRCASECMP(3) . . . o oo o e e e e e e e e e e 773
STRCAT(3) . . . o o o e e e e 774
STRCHR(3) o o oo e e e 775
STRCMP(3) . . . o 776
STRCOLL(3) . . . o o oo e e e e e e o
STRCPY(3) . . o o o o e e e e 778
STRCSPN(3) . . . o 780
STRDUP(3) . . . o o o e e e 781
STRERROR(3) o o o e 782
STRING(3) . . o oo e e e e e e 784
STRLCPY(3) . . o o o o e e e e e e e e 787
STRLEN(3) . . o o oo e e e e e e e e e e e e e 790
STRPBRK(3) o o o e 791
STRRCHR(3) . . . o o o o e e e e e e 792
STRSEP(3) . . . o o o e 793
STRSPN(3) . . . o o 794
STRSTR(3) oo 795
STRTOK(3) . . . o o e e e e 797
STRXFRM(3) . . o oo e e e e e e 799
SWAB(3) . . o 800
WCSWIDTH(3) . . o oo oo e e e e e e e e e e e e e 801
WMEMCHR(3) o o 802
Regular Expression Library 805
REGEX(3) . . o o o 806
REFORMAT(7) o e 813
Net Library o o 817
ADDR2ASCII(3) . . . o oo 818
BYTEORDER(3) o o e 821
ETHERS(3) o o o e e e 822
GAISTRERROR(3) o 825
GETADDRINFO(3) o 827
GETHOSTBYNAME(3) o o e 833
_NSSWITCH_LINE(3)o 837
GETIPNODEBYNAME(3) o oo 839
GETNAMEINFO(3) o o e e e e 843
GETNETENT(3) . . . v o oo o e e e e e e e e e e e e e e e 847

xiii

GETPROTOENT(3) oo ot 849

GETSERVENT(3) o e 851
INET(3) . o o oo e e e e 853
NS(3) o o 856
RESOLVER(3) o o 858
Thread Library o 861
PTHREAD(3) 862
PTHREAD ATFORK(3) 874
PTHREAD ATTR(3) o e 876
PTHREAD BARRIER(3) 881
PTHREAD BARRIERATTR(3) 883
PTHREAD CANCEL(3) o o oo o i e e 885
PTHREAD_CLEANUP_POP(3) 887
PTHREAD_CLEANUP_PUSH(3) 888
PTHREAD_CONDATTR(3) o i 889
PTHREAD_COND_BROADCAST(3) 892
PTHREAD_COND_DESTROY(3) 893
PTHREAD_COND.NIT(3)o 894
PTHREAD COND SIGNAL(3) o oo 896
PTHREAD _COND_TIMEDWAIT(3) 897
PTHREAD COND_WAIT(3)ot 899
PTHREAD CREATE(3) e 900
PTHREAD DETACH(3) o o oo e 902
PTHREAD EQUAL(3) it 904
PTHREAD EXIT(3) o o oo e 905
PTHREAD_GETSPECIFIC(3) 907
PTHREAD_JOIN(3) o oo e 909
PTHREAD KEY_CREATE(3) 911
PTHREAD KEY DELETE(3) 913
PTHREAD KILL(3) o o oot oo 915
PTHREAD MAINNP(3) 916
PTHREAD MUTEXATTR(3) o oo vt 917
PTHREAD MUTEX DESTROY(3) 920
PTHREAD MUTEX INIT(3) o o oot e e 921
PTHREAD MUTEX LOCK(3) o oo it 923
PTHREAD MUTEX_ TRYLOCK(3) 924
PTHREAD MUTEX_ UNLOCK(3) 925
PTHREAD ONCE(3) e 926
PTHREAD RWLOCKATTR_DESTROY(3) 928
PTHREAD RWLOCKATTR_GETPSHARED(3) 929
PTHREAD RWLOCKATTR_SETPSHARED(3) 932
PTHREAD RWLOCK_DESTROY(3) 934
PTHREAD RWLOCKINIT(3) 936
PTHREAD RWLOCK RDLOCK(3) 938
PTHREAD RWLOCK_ UNLOCK(3) 940

xiv

PTHREAD RWLOCK WRLOCK(3) oo 941

PTHREAD_SELF(3) . . . o o o oo oo oo e oo 043
PTHREAD SET LIMIT NP(3) 944
PTHREAD SIGMASK(3) o oo 947
PTHREAD_SPIN_INIT(3) oo oo oot 949
PTHREAD_SPIN.LOCK(3) . « « « v o e oeee oo 951
PTHREAD_TESTCANCEL(3) . . . v oo ooeeee et 953
PTHREAD YIELD(3) . . « o o oo ooe oo e e e 956
THRD_CREATE(3) . . o o oo oo oo e e e oo 957
CEEPIPIL interface 962
CEEPIPI(3) . « o o o oo e e e 963
_CEEPIPLinitmain(3) 969
_CEEPIPLinit-maindp(3) 970
_CEEPIPLAnit Sub(3) . .« o o o oo 971
_CEEPIPLinit-sub_dp(3) . . - o v v oo 972
_CEEPIPLcall main(3) . . . o oooooeee 973
_CEEPIPLcallSub(3) .« o o oooooeeeee 975
_CEEPIPI call sub_addr(3) 977
_CEEPIPIendseq(3) 979
_CEEPIPLstartseq(3), 980
_CEEPIPIterm(3) o i i 981
_CEEPIPI.add entry(3) it 982
_CEEPIPI deleteentry(3) 984
__CEEPIPLidentify entry(3) 985
__CEEPIPLidentify_environment(3) 986
__CEEPIPLidentify_attributes(3) 988
_CEEPIPIset_user-word(3)o 989
_CEEPIPI get_user-word(3) 990
_CEEPIPLalloc.CEEPIT(3) 991
Keyed Access (VSAM) I/O o 993
VSAMIOM) « o o oo e e e e e e e 994
KCLOSE(3) .« o o oo o 1000
KDATA(3) o o oo 1001
KDELETE(3) . « « o o o e e e e e e e e e e e e e e 1003
KERRINFO(3) .« « o o oo oo e e e e e e e 1005
KGETPOS(3) .« o o o oo e e oo e e 1006
KINSERT(3) .« o o o oo e oo oo e e e e 1008
KOPEN(3) '« o o oo oo e e e e 1010
KREAD(3) .« o o o oo e e e e e e e e 1013
KREPLACE(3) « « « o o o oo oo e e e e e e e e 1015
KRETRV(3) .« o o o oo oo e e e e e e e e e e 1016
KSEARCH(3) .« o o o o oo e e e e e e e e e 1018
KSEEK(2) . . o o o oo 1020
KSETPOS(3) « o o v v e e 1022
KWRITE(3) .« o o o oo e e e e e e e e e e e e e e 1024

XV

ASCII/EBCDIC Translation Table 1027
SIGABND example to catch ABEND 978 (out-of-stack) 1029

DCALL example 1033

xvi

How to use this book

This book describes the Systems/C C run-time library.

The Systems/C run-time library provides functions that implement most of the
ANSI-C standard library on OS/390 and z/OS. Using the Systems/C library, you
can build stand-alone programs that run on OS/390 and z/OS.

For information on the Systems/C C compiler, refer to the Systems/C C Compiler
manual.

Systems/C also includes several utility programs used to manage the process of
building OS/390 and z/OS programs. For more information regarding these utilities,
see the Systems/C Utilities manual.

For further information, contact Dignus, LLC at (919) 676-0847, or visit
http://www.dignus.com.

Systems/C C Library 1

2 Systems/C C Library

Using the Systems/C C library

This section describes how to link with the Systems/C C library and how to execute
the resulting programs.

Linking with the Systems/C C run-time library on
0S/390 and z/0S

Once the compiler generated assembly source has been assembled, the disparate
objects can be linked into an executable load module. If the Systems/ASM assem-
bler was used to cross-assemble the assembly source, the object decks should be
transferred to OS/390 via FTP or some other binary-mode transfer mechanism.

Systems/C contains two versions of the Systems/C library - the RENT version
for generating re-entrant programs and the non-rent version for generating non-re-
entrant programs.

If the source were compiled with the —frent option, the RENT library should be em-
ployed to produce a re-entrant load module. This will require using the Systems/C
pre-linker PLINK during the link step.

If no source was compiled with the —frent option, then the non-rent library should
be used. In that case, it is not necessary to use the Systems/C pre-linker, PLINK.

A note on re-entrant (RENT) programs

Re-entrant (RENT) programs are programs which can safely be linked with the
RENT option applied to the IBM LINKER, and can be placed in the OS/390 LIN-
KLST, etc... They are, generally speaking, programs which do not modify their
own loaded sections, but instead allocate memory to contain program variables at
program start-up.

When a C source file is compiled with the —frent option, the compiler will place all
of the extern and static variables in the pseudo-register vector, the PRV. These
variables are referred to by Q-CON references in the generated assembly source.

Systems/C C Library 3

The IBM linker gathers all of the Q-CON references together allocating an entry for
each in the PRV.

The Systems/C library, at start-up, allocates the appropriate space for the PRV,
and retains a pointer to the PRV at a known location.

At run-time, a reference to a variable in the PRV uses the PRV pointer and the
value the linker has substituted for the Q—-CON, adding them together to produce the
run-time offset for the variable.

An issue arises because of variable initialization allowed by the ANSI C standard.
For example, the address of a variable in the PRV isn’t known until run-time, when
the PRV is allocated, but is a valid file-scoped initialization value.

Because of this, the Systems/C compiler, DCC produces run-time initialization
scripts which the Systems/C library processes at program start up, after the PRV
has been allocated. It is the job of the Systems/C pre-linker, PLINK, to locate the
start of these scripts in each object and gather them together. PLINK then places
a list of these at the end of the resulting object, in a known section. The run-time
library walks the list, interpreting the scripts it finds.

Thus, RENT programs must be processed with the Systems/C pre-linker, PLINK,
to ensure proper run-time initialization of variables located in the PRV.

Using PLINK

PLINK gathers the input objects together, performing AUTOCALL resolution
where appropriate, producing a single file which can then be processed by the IBM
BINDER or older IEWL linker.

As PLINK gathers objects, it examines the defined symbols, looking for a Sys-
tems/C initialization script section and other object file processing that may need
to be performed.

The output of PLINK is then processed by the IBM BINDER to produce the
executable load module.

For detailed information on PLINK, see the PLINK section in the Systems/C
Utilities manual.

On cross-hosted platforms (Windows and UNIX), PLINK is typically executed
with the object files listed on the command line; and a —S option or library names
to locate any required library objects.

For example, on a Windows platform the command:

plink "-SC:\sysc\lib\objs_rent\&M" prog.obj

4 Systems/C C Library

will read the initial input file, prog.obj and examine the C:\sysc\lib\objs_rent
directory for any AUTOCALL references. Because no -o option was specified, the
resulting object file is writting to the file p.out.

This command, on UNIX platforms:

plink tl.obj t2.obj libone.a -L../mylibs -ltwo

will read the two primary input objects t1.obj and t2.0bj. It will try and resolve
references from the DAR archive libone.a and then the second DAR archive
../mylibs/libtwo.a

On 0S/390 or z/OS, PLINK operates similar to the IBM pre-linker. The result-
ing gathered object is written to the file //DDN:SYSMOD unless otherwise specified.
PLINK has a default library template of -S//DDN:SYSLIB(%M) which causes it to
look in the SYSLIB PDS for autocall references. Other input objects, -S library
templates or DAR. archives may be added in the PARMS option on the PLINK
step. PLINK reads the file //DDN:SYSIN as the initial input file. Typically, this
file contains INCLUDE cards to include the primary objects for the program. Other
primary input files may be included in the PARMS for PLINK. For example, the
following JCL reads the object INDD(PROG) and uses DIGNUS.LIBCR.OBJ as the
autocall library:

//PLINK EXEC PGM=PLINK
//STDERR DD SYSOUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCR.0BJ,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
//SYSMOD DD DSN=myoutput.obj,DISP=NEW

Note that the STDERR and STDOUT DDs were specified for PLINK’s message output.
Also, the ARLIBRARY control card could have been used to add additional DAR
archive files for resolving external references.

For more detailed information regarding PLINK and the other Systems/C utilities,
see the Systems/C Utilities manual.

Linking under the OpenEdition shell

Systems/C programs can be linked under the OpenEdition shell; to create load
modules that reside in the Hierarchical File System (HFS).

Systems/C C Library 5

To create an HFS load-module, the output from PLINK can be linked using the
OpenEdition cc command. The -e // option should be added the cc command to
indicate that the entry-point is not the default Language Environment entry point
expected by cc. The Systems/C runtime library will specify its own entry-point.

For example, to pre-link and link the object myfunc.o and produce the HFS load-
module myprog under the OpenEdition shell (assuming /usr/local/dignus is the
installation location), simply run PLINK:

plink -omyprog.o myfunc.o "-S/usr/local/dignus/objs_rent/&m"

then use the OpenEdition cc command:

cc -e // -omyprog myprog.o

to produce the myprog load-module. myprog can then be invoked as any other
OpenEdition program.

Other useful utilities

Systems/C provides other useful utilities. More details and examples of their use
can be found in the Systems/C Utilities manual.

DAR — the Systems/C Archive utility

The Systems/C archive utility, DAR, creates and maintains groups of files combined
into an archive. Once an archive has been created, new files can be added and
existing files can be extracted, deleted or replaced. Files gathered together with
DAR can be used to resolve AUTOCALLed references from PLINK.

DRANLIB — the Systems/C Archive index utility

DRANLIB is used to index a Systems/C archive to allow for AUTOCALL refer-
ences to longer names, or to names which are not dependent on the archive member
name. DRANLIB will create a __SYMDEF member in the Systems/C archive which
PLINK will consult when looking for symbolic resolutions.

GOFF2XSD — Convert GOFF format objects to XSD format

GOFF2XSD is used to convert GOFF format objects to XSD format. Typically,
GOFF format objects are created by the IBM HLASM assembler when the XOBJECT
option is enabled. The PLINK linker can read GOFF format natively. This utility
is no longer required for using PLINK and is provided only for back-level support.

6 Systems/C C Library

DCCPC — the Systems/C CICS Command Processor

DCCPC is used to convert EXEC CICS commands in C source into plain C code for
compilation. It is especially useful in cross environments where IBM’s translators
cannot be used.

D2S — the Systems/C DSECT to struct conversion tool

D2S extracts assembly DSECTSs from assembler-generated ADATA information and
generates C-style struct definitions. This is intended to allow C code to work
seamlessly with data structures from your assembly code.

Linking programs on OS/390 and z/0OS

Before execution, programs must be prepared, optionally using the Systems/C pre-
linker, PLINK, and then linked using either PLINK or the IBM LINKER or
BINDER.

Systems/C provides two versions of the Systems/C C library, one for RENT pro-
grams and one for non-RENT programs. If you are using the Systems/C library,
it is important to link with the appropriate version. If any source programs refer-
ence variables found in the Systems/C library (e.g. errno) and that program was
compiled with the —frent option, then the re-entrant version of the Systems/C li-
brary should be used. Using the incorrect version of the library will cause strange
run-time errors. The installation instructions for your particular host platform will
detail where to find the correct Systems/C library. Normally the Systems/C library
is specified as the last library to use for AUTOCALL resolution in the PLINK
step. Furthermore, PLINK must be used for re-entrant programs that use the Sys-
tems/C library or to take advantage of DAR archive libraries for external reference
resolution.

In the following example JCL, there are three objects to link together to form the
resulting executable, MAIN, SUB1, and SUB2, representing a main module and two
supporting sub-modules. These are found in the PDS MY.PDS.OBJ. The resulting
executable is written to MY.PDS.LOAD(MPROG).

//LINK JOB

//PLINK EXEC PGM=PLINK,REGION=2048K

//STEPLIB DD DSN=DIGNUS.LOAD,DISP=SHR

//STDOUT DD SYSOUT=x*

//STDERR DD SYSQUT=x*

//SYSLIB DD DSN=DIGNUS.LIBCR.OBJ,DISP=SHR
//SYSMOD DD DSN=&&PLKDD,UNIT=VIO,DISP=(NEW,PASS),
// SPACE=(32000, (30,30)),

Systems/C C Library 7

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200)
//INDD DD DSN=MYPDS.OB.J,DISP=SHR
//SYSIN DD *

INCLUDE INDD(MAIN)

INCLUDE INDD(SUB1)

INCLUDE INDD(SUB2)
//STDIN DD *
//LINK EXEC PGM=IEWL,REGION=2M,PARM=(’LIST’,
// °’MAP,XREF,LET’,
// ?ALIASES=NO,UPCASE=NO,MSGLEVEL=4,EDIT=YES’)
//SYSPRINT DD SYSOUT=x
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL, (1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL, (1,1))

First, the Systems/C pre-linker, PLINK is invoked, specifying the inclusion of the
three object modules and the Systems/C C reentrant library. This step could have
been performed on a cross-platform host, running PLINK there. Then the IBM
BINDER is invoked for final linking and generation of the resulting load module.

Executing programs

Once a program has been successfully linked, it is a typical OS/390 or zOS load
module and may be executed via JCL, TSO CALL command or, via the OpenEdition
exec() linkage.

By default, the Systems/C library contains no modules that are loaded during pro-
gram execution, meaning it is “all-resident.” As such, there are no run-time library
concerns, and no particular modules which must be present in a STEPLIB concaten-
dation.

For traditional (non-POSIX) programs, the Systems/C C library’s default behavior
is to open file descriptors descriptors #0, #1 and #2 using the names //DDN: STDIN,
//DDN:STDOUT and //DDN:STDERR. Thus, the DD-names STDIN, STDOUT and STDERR
must be properly allocated. The open(2) description contains more information
regarding file descriptors and file 1/0.

For standard Systems/C library uses, where the Direct-CALL feature is not em-
ployed, arguments specified in the TSO CALL command, or via the PARM option
of JCL are processed and presented to the program in the argv[] array passed to
the main() function. The Systems/C library uses a comma (,) as the argument
delimiter, similar to other option processes used in TSO and batch environments.

For example, if the resulting program was named “PROG” in the MY.PROGS PDS, the

following JCL would execute the program, passing the argument strings “argl”,
“arg2” and “arg3” in the argv[] array.

8 Systems/C C Library

//PROG EXEC PGM=PROG,PARM="argl,arg2,arg3"
//STEPLIB DD DSN=MY.PROGS,DISP=SHR
//STDOUT DD SYSOUT=x

//STDERR DD SYSOUT=:

Note the definition of the STDOUT and STDERR DD statements to provide the neces-
sary output path for the Systems/C library.

For programs invoked via the exec() service (POSIX programs), the first 3 file
descriptors are inherited from the parent process. Also, the arguments are processed
by the Unix Systems Services environment and are presented to the program in the
typical UNIX style.

Systems/C C Library 9

10 Systems/C C Library

Systems/C C Library Features

The Systems/C C Library contains several features to aid in the development of
0S/390 and z/OS programs.

This include Systems/C C compiler support for in-line expansion of certain com-
monly used C functions, support for using Systems/C programs in almost any run-
time environment, and enhanced support for z/Architecture 64-bit programs.

Special “built-in” implementations for common C library functions.

The Systems/C compiler, DCC, provides built-in implementations for some of the
more common C library functions. Built-in functions are used when the Systems,/C
C library header file <string.h> system header file is included. The following
functions have built-in implementations:

memcpy()
memset()

mememp/()
memchr()
strepy()
strlen()
stremp()
streat()
strchr()
strncat()
strnemp()

strnepy()
strrehr()

#include <string.h> to take advantage of the built-in versions of these functions.

Systems/C C Library 11

Using the Systems/C Direct-CALL interface

The Systems/C C library is implemented using the Systems/C entry and exit macros
which assume a Systems/C environment is extent at run time.

The Systems/C environment includes items such as the local stack frame used for
automatic variables in your C code, the Systems/C run-time heap, I/O data blocks,
etc...

Thus, in order to call a Systems/C function which uses the Systems/C entry and
exit linkage macros, this environment must be established and accessible.

For typical Systems/C programs, where the initial function is a C main() function;
the Systems/C library handles creation of this environment.

However, there are circumstances where there is no Systems/C main() function.
For example, calling Systems/C routines from COBOL or directly from assembler
source in a system exit.

For this situation, Systems/C provides the Direct-CALL (DCALL) interface, where
a Systems/C function can be directly called from any environment. This interface
can be employed to either automatically create and destroy a Systems/C environ-
ment, or to create and re-use, then destroy a Systems/C environment.

Automatic Creation/Destruction of the Systems/C environment

To use the Direct-CALL to automatically create an destroy a Systems/C environ-
ment, particular Systems/C functions are indicated as being “directly called”. These
functions establish a Systems/c environment, so that normal System/C library func-
tions can be employed until the “directly called” function has ended. At the end
of execution of the “directly called” function, the System/C library environment is
destroyed and all resources are returned to the operating system.

To indicate that a particular function is to be “directly called”, the DCALL=YES
keyword is added to the functions prologue macro with a #pragma prolkey control
statement:

#pragma prolkey(funcname,"DCALL=YES")

where funcname is the name of the “directly called” function. This causes the
prologue generated for the named function to establish the System/C environment,
and destroy it on return from the function.

For more information regarding #pragma prolkey, see the Systems/C C Compiler
manual.

12 Systems/C C Library

For example, if MYFUNC was to be “directly called” from assembler language;
and MYFUNC would further use the Systems/C library you might have in your
assembler source:

L 2,=F’1°
ST 2,PARMS
L 2,=F’2°

ST 2,PARMS+4
LA 1,PARMS
L 15,=V(MYFUNC)
BALR 14,15 Call ’MYFUNC’
* The return value from MYFUNC is in R15.

PARMS DS 2F

which invokes MYFUNC with a standard parameter list, passing the values #1 and
#2.

For the C definition of MYFUNC:

#pragma prolkey(MYFUNC,"DCALL=YES")

int

MYFUNC(int one, int two)

{
printf("In MYFUNC - arg #1 is %d\n", one);
printf (" arg #2 is %d\n", two);

return (0); /* return O to the caller */

In this example, when MYFUNC is invoked, a Systems/C environment will be
created, and MYFUNC can then invoke Systems/C library functions (e.g. printf()
above.)

On return from MYFUNC - the Systems/C environment will be destroyed and any
resources will be returned to the operating system. The return value from MYFUNC
will be in R15 as it is declared to be a function returning an int.

Notice also that two parameters were passed to MYFUNC in this example. The
Systems,/C linkage follows standard linkage conventions, so Systems/C “direct call”
functions interoperate well with most environments. When invoking “direct call”
Systems/C functions from some high-level languages, such as PL/T and COBOL,
be sure to declare any parameters as pointers to their data types, as these other
languages pass parameters by-reference, instead of the C by-value approach.

Systems/C C Library 13

Register uses across DCALL executions

When a Dignus environment is created and destroyed, the Dignus runtime saves and
restores the registers as per normal linkage rules.

In the 31-bit runtime environment, the Dignus library assumes R13 points to a
72-byte save area and will save and restore R2 through R14.

In the 64-bit runtime environment, if the DCALL creation routine is invoked in
AMODE 31, then the runtime only assumes R13 points to a 72-byte save area.
However, the full 64-bit registers values for R2 through R14 are saved and restored.
If the creation routine is invoked in AMODE 64, then the runtime assumes R13
points to a 144-byte save area, and the full 64-bit values of R2 through R14 are
saved and restored.

The runtime does not guarantee the preservation of R0, R1 or R15 across a DCALL
function call.

Creating, re-using and destroying a Systems/C environment

The Direct-CALL interface can also be used to create a Systems/C environment
which is not destroyed. The created environment may be used multiple times until it
is explicitly destroyed. This can save run-time cost, as the creation of a Systems/C
environment involves some overhead. Reusing a previously created environment
avoids the creation problem for functions called many times.

Creating a Systems/C environment

To create a Systems/C environment, the DCALL prologue key is altered to indicate
that the environment should be created when the named function is invoked, but
not destroyed when the function returns. To indicate this, use

DCALL=ALLOCATE

on the prologue key statement. On return from the C function, an environment
pointer is returned in general register one (R1). This value should be saved, and
may be re-used on subsequent Systems/C function calls to re-use the created envi-
ronment. Note that the creation function can call other Systems/C functions, alter
global data in the environment, etc... providing for a nice location to accomplish
any particular initialization that may be needed.

For example:

14 Systems/C C Library

#pragma prolkey(create,"DCALL=ALLOCATE")
void
create()
{
/* This function is called to create a */
/* Systems/C environment. */

/* On return, the created environment address */
/* is returned in R1. */

Another approach to saving the environment pointer for R1 is to use the
__dcall_env() function. __dcall_env() returns the same environment pointer that
will be returned in the R1 register.

Thus, __dcall_env() can be used to save the environment pointer in a parameter
passed to the

DCALL=ALLOCATE

function. For example:

#include <machine/dcall.h>

void
create(void **env_ptr)
{
/* Set the *env_ptr value to the created environment */
/* pointerx*/
*env_ptr = __dcall_env();

Using this approach, the environment pointer can be saved in a parameter which
can then later be passed to other functions which need it.

Reusing a created environment

To reuse a previously created Systems/C environment, a different DCALL prologue
key is provided, indicating that an environment should not be established, but can
be found in the supplied location. To indicate this use:

DCALL=SUPPLIED

Systems/C C Library 15

on the prologue key statement. When this is specified, the Systems/C library
will use the environment address specified in register zero (R0). Before invok-
ing the function, load register 0 with the address previously returned in R1 by
a DCALL=ALLOCATE function call.

For example:

#pragma prolkey(funcl,"DCALL=SUPPLIED")

func1()

{
/* calls to funcl() assume a Systems/C */
/* environment is passed in RO */
printf("in funci\n");

#pragma prolkey(func2,"DCALL=SUPPLIED")

func2()

{
/* calls to func2() assume a Systems/C */
/* environment is passed in RO */
printf("in func2\n");

A DCALL=SUPPLIED function cannot invoke another DCALL=SUPPLIED function using
the same environment address. That is, while the environment is being used by
a DCALL=SUPPLIED function, a separately invoked DCALL=SUPPLIED function will
restart the stack point and corrupt the program. If two DCALL=SUPPLIED interfaces
are provided, and need to share function code, then a 3rd non-DCALL function is
the best approach.

The Systems/C library also provides for an exit to locate the desired environment
when a function is called, the FINDENV=ezitname option for DCALL function.
FINDENYV specifies an entry point which will be invoked for DCALL=SUPPLIED
function calls. When FINDENYV is present, the Systems/C library will invoke the
exit before any other processing. The exit should return with a

L R15,=V(CRT94)
BR 15

having located the Systems/C environment and placing that address into register 0
(RO.)

The FINDENYV exit must preserve register nine through thirteen (R9-R13) and does
not have an available save area.

For example,

16 Systems/C C Library

#pragma prolkey(func3,"DCALL=SUPPLIED,FINDENV=FINDME")

When func3() is invoked, the exit FINDME will be driven to load the Systems/C
environment pointer into RO.

One example of using the FINDENYV option is to pass the environment pointer in
the parameter block. For example, if the SUPPLIED function was:

#progma prolkey (SUPPEX, "DCALL=SUPPLIED,FINDENV=QQFNDENV")
SUPPEX (void **env_ptr, int *parml)
{

/* env_ptr is used by the QQ@FNDENV assembler piece */

/* to set RO to the environment pointer. */

}

then the @QQFNDENYV assembly function might be:

Q@Q@FNDENV CSECT
QQ@FNDENV AMODE ANY
QQFNDENV RMODE ANY
USING @Q@FNDENV, 15
L 2,000,1)
L 0,0(0,2) Get environment ptr into RO
L 15,=V(Q@CRT9A)
BR 15
LTORG
END

Note that if the name specified in FINDENV is an external label, not present in the
current compilation, then it should be made visible to the assembler via an EXTRN
statement. For example:

__asm { EXTRN FARAWAY }
#pragma prolkey(func4,"DCALL=SUPPLIED,FINDENV=FARAWAY")

The DCCPRLG macro will reference the FINDENV specified label via an address-
constant (A-CON), and the label needs to be appropriately defined for proper ref-
erence. Note that the EXTRN statement should only appear once in the generated
assembly. Multiple EXTRN statements for the same label are flagged as errors by the
assembler.

Systems/C C Library 17

Reusing an existing PRV

For a DCALL=ALLOCATE or DCALL=YES function, it is possible to indicate
that the previously established PRV should be employed instead of re-allocating the
PRV and performing global initialization functions.

Normally, when a DCALL=ALLOCATE or DCALL=YES function is invoked, the
runtime will acquire space for the PRV and run global initialization functions (in-
cluding global constructor functions.)

However, there are instances where only a new stack frame is required, but no PRV
should be allocated. For example; to implement multi-threading via the ATTACH
macro. The environment requires its own stack, but wants to share the global state.
This only applies to re-entrant data as non-re-entrant data is in the load module
proper and thus would be shared amongst all environments.

In this case, the PRV=0 option on the DCALL=ALLOCATE or DCALL=YES can
be used.

When PRV=0 is specified, the Dignus runtime will create a new stack frame envi-
ronment for the environment but will not create or initialize a new PRV and will not
invoke global constructor functions. Instead, the PRV is taken from the value found
in register zero (RO) at the start of the DCALL=ALLOCATE or DCALL=YES

function.

The Dignus library function __getprv(2) can be used in the primary environment to
retrieve the current PRV value before invoking a PRV=0 function.

When re-using an existing PRV, the environment start up does not reinitialize global
or static reentrant variables and does not execute global initializers on start up. On
completion, the runtime does not execute global destructors or free the specified
PRV. In this fastion, the PRV=0 environment will ”share” the global re-entrant
variables with the environment specified in RO.

Differences from main()

The Systems/C Direct-CALL environment start up does not provide all the same
function that a normal main() start up provides.

There is no argument processing in the Direct-CALL environment, the DCALL func-
tion is simply invoked directly and processes parameters as any other C function.
The caller should create a normal parameter list, with R1 pointing at the parameter
block.

Furthermore, the Direct-CALL start up does not initialize the TZ environment vari-

able. The TZ environment variable is used by the localtime() function to determine
the current timezone and is initialized when a normal main() function is invoked.

18 Systems/C C Library

However, this initialization is operating-system specific and is avoided in the Direct-
CALL start up.

To have localtime() present a locale time zone, the TZ environment variable should
be set appropriately. See the tzset(3) description for more information on the format
of the TZ environment variable.

Destroying the Systems/C environment

After the Systems/C environment is no longer needed, it should be destroyed to
return resources to the operating system. To destroy an environment created with
DCALL=ALLOCATE, use the DCALL=DESTROY prologue key. The address of

the environment to destroy should be placed in register 0 (R0.) To indicate this use:

DCALL=DESTROY

on a prologue key pragma. The specified function will be invoked with the given
environment, and may invoke any other Systems/C functions. On return from
that function, global destructors will be invoked, and the the environment will be
destroyed, returning resources to the operating system. After calling the function,
the environment address is no longer valid.

For example:

#pragma prolkey(destroy,"DCALL=DESTROY")

destroy()

{
/* perform any clean-up that needs to happen */
/* On return from this function, the */
/* Systems/C environment specified in RO */

/* will be destroyed. */

Note that the Pseudo-Register-Vector (PRV) is created when a
DCALL=ALLOCATE function is invoked, and is wused when any SUP-
PLIED or DESTROY functions are subsequently invoked. Thus, all
DCALL=ALLOCATE/SUPPLIED/DESTROYed functions that use the same
global variables must be in the same bound load module, so they will have the
same PRV. That is, environments created with DCALL=ALLOCATE cannot be
passed to functions linked in different load modules, unless __remote function
pointers are employed to switch PRVs.

Systems/C C Library 19

Saving environment memory by avoiding I/0

By default, when a Systems/C environment is created, with either DCALL=YES
or DCALL=ALLOCATE, the Systems/C library initializes the I/O functions so file
I/O can occur. This initialization consumes some overhead in both run-time and
memory. If the Systems/C functions do not make use of any of the Systems/C I/0
facilities, this can be avoided by adding

NOSTDIO=1

to the DCALL statements in the prologue keys for the library creation. When
NOSTDIO=1 is specified, the Systems/C library will not initialize its I/O functions.
Any calls to I/O functions in that environment will ABEND, so care must be taken
to ensure none exist.

For example:

#pragma prolkey(noio,"DCALL=YES,NOSTDIO=1")
noio ()
{

/* This function, or any function it calls, */
/* does no I/0 %/

20 Systems/C C Library

Systems/C z/Architecture
Library

Systems/C supports programs for the z/Architecture system, providing the complete
Systems/C library to the z/Architecture environment.

This includes full support for 64-bit addresses, bringing the power of the Systems/C
library to this environment.

The Systems/c z/Architecture library uses the LP64 programming model, long and
pointer data types are 64-bits wide.

z/Architecture library features

The Systems/C library contains extentions to the memory management facil-
ities helpful in a 64-bit programming environment, __malloc31(), __free31(),
__malloc24(), __free24(). These allow for the management of allocated space
that is guaranteed to be 31-bit or 24-bit addressable as appropriate.

z/Architecture programs can use the Systems/C and Systems/C++ __ptr31 pointer
qualifier to define and use 31-bit addresses in z/Architecture mode. For more infor-
mation regarding the __ptr31 qualifier, see the Systems/C C Compiler manual.

The Systems/C z/Architecture library provides full support for all of the functions
in the 31-bit library, including TCP /IP, memory allocation, and file I/O. For many
applications, simply recompiling and relinking with the z/Architecture library will
enable programs on the new z/Architecture hardware.

The Systems/C z/Architecture library has no restrictions on program data, all data
can reside above the 2-gigabyte “bar”.

z/Architecture data and code locations

The Systems/C z/Architecture library allows loading of data above the 2-gigabyte
“bar”. There are no restrictions in the Systems/C z/Architecture library for data to

Systems/C C Library 21

reside anywhere in particular. The default location for the runtime heap, stack and
re-entrant data in the z/Architecture library is above the 2-gigabyte “bar”, freeing
up lower instructions for.

Currently, the z/OS program loader will not load instruction code above the 2-
gigabyte “bar”, thus the Systems/C library assumes that program code is located
within the first 2-gigabytes of the address space.

Determining addressing mode

The z/Architecture library has no restrictions on the addressing mode. It will
operate correctly if the AMODE is 64, 31 or 24.

At program start-up, the z/Architecture library determines the proper addressing
mode based on flags present in the definition of the main() function. If main() was
compiled with the —-mlp64 option, and the —famode option was not used to specify
otherwise, the z/Architecture library will switch to AMODE=64 before beginning the
program.

If the —famode option was used to indicate an AMODE other than 64, the
z/Architecture library will not change the AMODE to 64.

The Systems/C C Compiler manual has more information on the —mlp64 and
—famode options.

Linking with the Systems/C z/Architecture Library

To produce z/Architecture programs, the program must be linked with the
z/Architecture libraries. The procedure is only slightly different that linking with
the non-z/Architecture library.

Systems/C provides a reentrant and non-reentrant z/Architecture libraries. On
cross-platform hosts, these objects are in the objs_rent_z and objs_norent_z di-
rectories. On OS/390 and z/OS, these are in the LIBCRZ and LIBCNZ PDSes. To
use the Systems/C z/Architecture library, simply specify these directories/PDSs in
place of the non-zArchitecture versions.

For example, JCL to execute the PLINK pre-linker with the Systems/C
z/Architecture reentrant library would be similar to the following:

//PLINK EXEC PGM=PLINK

//STDERR DD SYSOUT=A

//STDOUT DD SYSOUT=A

//SYSLIB DD DSN=DIGNUS.LIBCRZ.0BJ,DISP=SHR

22 Systems/C C Library

//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *

INCLUDE INDD (PROG)
//SYSMOD DD DSN=myoutput.obj, DISP=NEW

The same command on a UNIX or Windows platform might be:
plink -omyoutput.obj prog.obj "-SC:\sysc\objs_rent_z\&M"

assuming Systems/C was installed in the C:\sysc directory.

z/Architecture and OpenEdition services

All of the OpenEdition (POSIX) functions available to 31-bit programs operate with
the z/Architecture library. The Systems/C library uses the 64-bit z/OS interfaces
for this, and thus all pointers will be 64-bits in size.

The 64-bit z/OS interfaces were only made available after z/OS 1.5, and thus the
z/Architecture library requires z/OS 1.5 or later for OpenEdition services.

Direct-CALL extensions

Systems/C Direct-CALL programs linked with the z/Architecture library can be
invoked from a 64-bit or 31-bit execution environment. The Direct-CALL library
will automatically switch to AMODE 64 when a z/Architecture DCALL entry point
is invoked.

Note that the environment pointer returned in register RO with a DCALL=CREATE
invocation is allocated in the AMODE of the calling function. Thus, for 31-bit programs
invoking z/Architecture DCALL=SUPPLIED entry points, even if the entry pointer is
running with AMODE=64, the environment pointer will be a 31-bit address. For
z/Architecture programs running with AMODE=64, the environment pointer for a
DCALL=SUPPLIED invocation is be a complete 64-bit value.

Mixing z/Architecture and non-z/Architecture functions

With Systems/C, each load module is either linked with the z/Architecture versions
of the Systems/C library, or non-z/Architecture versions. This allows for a complete
library in both environments without issues in clashing names or varying pointer
sizes, or other considerations.

However, programs linked with the z/Architecture library may invoke DCALL pro-
grams created with the non-z/Architecture library, and vice-versa. The Systems/C

Systems/C C Library 23

DCALL environment initialization will automatically switch AMODEs as appropriate,
allowing for a seamless transition between the AMODE=64 and AMODE=24/AMODE=31
environments.

Also, Systems/C and Systems/C++ provide extensions which allow the programmer
to declare explicit 64 and 31-bit pointers which facilitates the transition between
the two environments. See the Systems/C Compiler manual and Systems/C++
Compiler manual for more information.

24 Systems/C C Library

Programming for TSO and
BATCH

Systems/C programs can be executed from either TSO or BATCH (JCL) environ-
ments.

Running programs under TSO

Systems,/C programs started via a TSO address space are typically invoked via the
CALL command.

For example:

READY
call ’my.progs(prog)’ ’my parms’

would invoke the program prog in the my . progs PDS, passing the single parm string
“my parms”.

The double-quote character can be used to group together characters including a
comma. Within a double-quoted string, the back-slash character can be used to
represent the double quote. For example, to produce the argv[] strings "my,parm"
and "parm2", the parm string would be ’"my,parm",parm2’.

Note that TSO, by default, will upper-case parameter strings. If lower-case letters
are needed in the parm string, be careful to add the ASIS option on the CALL
command.

If a Systems/C program is in a PDS that is in the JOBLIB or STEPLIB concatenta-

tions, it can be executed just as any other system program, without directly using
CALL.

Systems/C C Library 25

argv processing under TSO

When a program is executed via the TSO CALL interface, the argument string is
parsed looking for argument delimitor character, which defaults to a comma ().
Each delimitor character separates an argument value.

Unlike UNIX (USS) systems, the parm string is not parsed for spaces, or quotes. It
is simply broken at each instance of the delimitor character.

An alternate character for argument delimiters can be specified by defining the char
__argvc variable. If that is defined, the runtime uses the specified character as the
delimiter. If the character specified is a space, the runtime will skip multiple spaces.

Thus, the parm string ’my,parms’ would produce two values passed in the argv
array on the invocation of main(). The first would be the string "my", the second
is the string "parms".

Similarly, the parm string ’my space,parms’ would produce two argv elements,
"my space" and "parms", because spaces are not a parameter delimiter.

Running programs under BATCH JCL

Systems/C programs can be executed under normal JCL via the typical EXEC JCL
statement.

For example, if the PDS MY.PDS contained a Systems/C program named MYPROG
then the JCL statement:

//RUN EXEC PGM=MY.PDS(MYPROG) ,PARM=’parm string’

would execute MYPROG passing the parameter string ’parm string’.

argv processing under BATCH

Similar to argument processing under TSO, the Systems/C runtime looks for the
argument delimitor character to separate arguments. Unlike UNIX or POSIX sys-
tems, BATCH mainframe programs typically use commas as a parameter delimiter.
The default argument delimitor character is a comma, but can be overriden by
defining the char __argvc variable. If the char __argvc is defined to be a space,
then multiple spaces are skipped. To better integrate into existing environments,
the Systems/C runtime defaults to a comma as the argument delimitor character.

26 Systems/C C Library

Each delimitor character in the incoming PARM value is taken as a separator to
separate the resulting argv values passed to the main() function.

The char __argvc variable can indicate a different character to use as the argument
separator. If char __argvc is set to a space, the runtime environment will skip
adjacent spaces, considering them as one.

Thus, if the delimitor character is using the default value of a comma, the PARM value
"my ,parms’ would produce two values passed in the argv array on the invocation
of main(). The first would be the string "my", the second is the string "parms".

Similarly, if a comma is the delimitor character, the PARM string *my space,parms’
would produce two argv elements, "my space" and "parms", because spaces are
not a parameter delimiter.

If needed, the double-quote character can be used to group together characters, in-
cluding the delimitor charactor. Within a double-quoted string, the back-slash char-
acter can be used to represent the double quote. For example, to produce the argv]]
strings "my,parm" and "parm2", the PARM string would be ’"my,parm",parm2’,
assuming comma is the delimitor character.

Systems/C C Library 27

28 Systems/C C Library

Programming for OpenEdition

The Systems/C library supports programs executed under OpenEdition MVS (Unix
Systems Servies - USS). Programs can be executed under the USS shell, or take
advantage of the facilities provided by OpenEdition services, including the various
POSIX functions and Hierarchical File System (HFS.)

Note that all of the POSIX functions also operate in 64-bit mode.

As noted in the individual function descriptions, many of the POSIX functions are
only supported for HFS files. A POSIX file funtion applied to a non-POSIX file will
fail with an appropriate error code.

If Unix System Services are unavailable, the functions will fail with error return
codes when possible.

More recent versions of OpenEdition require re-entrant programs; thus the compiler
option —frent must be specified when compiling, and the objects should be linked
with the re-entrant Systems/C library.

Linking programs under the OpenEdition Shell
Systems/C programs can be linked under the OpenEdition shell; to create load
modules that reside in the Hierarchical File System (HFS).

To create an HFS load-module, the output from PLINK can be linked using the
OpenEdition cc command. The -e // option should be added the cc command to
indicate that the entry-point is not the default Language Environment entry point
expected by cc. The Systems/C runtime library will specify its own entry-point.

For example, to pre-link and link the object myfunc.o and produce the HFS load-
module myprog under the OpenEdition shell (assuming /usr/local/dignus is the
installation location), simply run PLINK:

plink -omyprog.o myfunc.o "-S/usr/local/dignus/objs_rent/&m"

then use the OpenEdition cc command:

Systems/C C Library 29

cc -e // -omyprog myprog.o

to produce the myprog load-module. myprog can then be invoked as any other
OpenEdition program.

Copying programs from a PDS to the OpenEdition Shell

To copy a program from a PDS or PDSE to the HFS file system, the program must
be re-linked into the HFS. Unfortunately, the IBM linker will not determine the
proper entry-point in this case, and so the Systems/C entry point must be specified
on the cc command.

To re-link a program from a PDS or PDSE into the HF'S, the Systems/C entry-point
@crt0 (lower-case) must be specified in the cc command.

For example, if the PDS MYNAME.T.LOAD contained the Systems/C program named
MYPROG, it could be copied into the HFS executabled named myprog with the com-
mand:

cc -e @crt0 -omyprog "//’MYNAME.T.LOAD(TEST)’"

Running programs under the OpenEdition Shell

Programs running under the OpenEdition shell are started via the BPX1EXC exec
service. Systems/C programs residing in the HFS can simply be run as any other
OpenEdition program.

More recent versions of OpenEdition require re-entrant programs; thus the compiler
option —frent must be specified when compiling, and the objects should be linked
with the re-entrant Systems/C library.

The Systems/C runtime recognizes when the program is started via the exec service,
and processes the incoming argument and environment parameters appropriately.
The arguments will be presented to the program in the argv array; and the envi-
ronment variables will be available via the standard getenv() functions.

Furthermore, when started via exec, the first three file descriptors will be inherited
from the invoking process. The Systems/C I/O functions will make these directly
available to the program as file descriptors #0, #1 and #2, which are then also
associated with FILE * variables stdin, stdout and stderr. Also in this case, the
default filename style will be set to “//HFS:” so that file names will, by default,
refer to files within the Hierarchical File System.

30 Systems/C C Library

Programming for CMS

The Systems/C library supports a limited CMS environment, taking advantage of
the OSRUN facility on CMS. The library does not support TCP /IP, or the SF'S, but
is a basic port of the existing I/O and memory management library used on z/OS.

Linking programs for CMS

To produce an object deck that is eventually linked on CMS, the CMS runtime
objects must be present on the PLINK command line before the normal object
library specification. This will insert the CMS runtime ahead of the normal runtime.
These are the cmsutil, @@ddndec, @@tygsac and @@ddncms object decks found in
the objs_rent and objs_norent directories on cross-platform hosts, or the LIBCR
and LIBCN PDSs on z/0S.

The Systems/C runtime also makes reference to the DMSSTKR symbol when linking,
thus during the PLINK step the —allow_ref=DMSSTKR option should be used to
account for this unresolved reference in the PLINK step.

Once the PLINK step is performed, the resulting object deck can be copied to
CMS, and placed in an FB 80 file with the .TEXT file mode.

The CMS linker, LKED can then be used to create a member of a LOADLIB that can
be executed with OSRUN.

Note that Systems/C programs for CMS are currently limited to RMODE=24 execu-
tion, because of restrictions in the OS/390 emulation routines.

Using PLINK to create CMS programs

PLINK performs several important tasks for CMS programs.

The CMS linkage editor (LKED) is limited to only 4096 bytes for PRV (Psuedo
Register Vector) processing. PLINK addresses this issue by performing all PRV
processing, so that the object deck presented to LKED has no PRV references.

Systems/C C Library 31

LKED also does not handle XSD or GOFF style input. PLINK when the —(pz) option
will properly adjust the resulting object deck to only be ESD-style, shortening long
names and converting the input object decks appropriately.

To create programs for CMS, the CMS runtime support must be specified before
the normal z/OS runtime libraries.

For example, on a Windows platform, if the typical PLINK command for pre-
linking looked like (where the Systems/C installation was in the C:\sysc directory):

plink -px -omy_prog.obj tl.obj t2.obj "-SC:\sysc\objs_rent\&M"

then to link for execution on CMS, we need to insert the CMS runtime objects and
specify the DMSSTKR is allowed to be an unresolved reference:

plink -px -omy_prog.obj tl.obj t2.obj
-allow_ref=DMSSTKR
C:\sysc\objs_rent\cmsutil
C:\sysc\objs_rent\@@ddndec
C:\sysc\objs_rent\@0tygsac
C:\sysc\objs_rent\@@ddnms
"-SC:\sysc\objs_rent\&M"

(note that if the command line becomes too long for Windows, the —@ option can
be used to place command line options in a file. See the PLINK section of the
Systems/C Utilities manual for more information.)

To implement the same task when running PLINK on OS/390 or z/OS, simply
adjust the SYSIN stream to specify the CMS runtime object decks.

If the typical PLINK step in the JCL looked like:

//PLINK EXEC PGM=PLINK,PARM=’-px’
//STDERR DD SYSOUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCR.O0BJ,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
//8YSMOD DD DSN=myoutput.obj, DISP=NEW

then, to pre-link this program for CMS, adjust the PARM value to include the -
allow_ref=DMSSTKR and specify the CMS objects in the SYSIN stream, as in:

32 Systems/C C Library

//PLINK EXEC PGM=PLINK,PARM=’-px,allow_ref=DMSSTKR’
//STDERR DD SYSOUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCR.O0BJ,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
INCLUDE SYSLIB(CMSUTIL)
INCLUDE SYSLIB(@@DDNDEC)
INCLUDE SYSLIB(@QTYQSAC)
INCLUDE SYSLIB(@@DDNCMS)
//SYSMOD DD DSN=myoutput.obj, DISP=NEW

(note that the —pz option was also specified in the PARM string when executing
PLINK.)

Using LKED to link CMS programs

After the PLINK step has been executed the resulting object deck should be copied
to CMS and placed into an FB 80 dataset with the TEXT file mode. This can be
accomplished using FTP or any other binary transfer.

Once the PLINK output has been placed on CMS, the LKED command will link it
and produce a LOADLIB member which can be executed with OSRUN.

The VMLIB TXTLIB must be GLOBAL'd to resolve references that the Systems/C run-
time requires. Also, this library should be specified as the SYSLIB so LKED can
resolve those references.

The PLINK generated object deck should be specified as the SYSLIN input to LKED.

Because of limitations in the OSRUN environment, Systems/C programs must be
linked with RMODE=24 specified.

For example, if the result of PLINK was placed on the A disk with the file name
PROG TEXT A, and the resulting program should reside in the MYLOAD LOADLIB A
load library, these commands would execute LKED to accomplish the linking:

FILEDEF SYSLMOD DISK MYLOAD LOADLIB A (RECFM U
GLOBAL TXTLIB VMLIB

FILEDEF SYSLIB DISK VMLIB TXTLIB S (PERM
FILEDEF SYSLIN DISK PROG TEXT A

LKED PROG (RMODE 24 AMODE 31

FILEDEF SYSLMOD CLEAR

FILEDEF SYSLIB CLEAR

FILEDEF SYSLIN CLEAR

Systems/C C Library 33

Note the RMODE 24 was specified on the LKED command.

Consult the IBM VM /CMS documentation for further information about these com-
mands.

Executing programs on CMS

To execute Systems/C programs on CMS, the 0SRUN command is used. Appropriate
FILEDEFs should be specified as the program may require. Each DD the program
opens should be FILEDEF'd so that the open() may succeed.

The PARM option of the OSRUN command specifies any parameters passed to the
program.

For example, if we intend to execute the program PROG with the parameters,
“any,parms”, from the MYLOAD LOADLIB A library, and the program read from the
STDIN DD and wrote to the STDOUT and STDERR DDs, these commands would be
employed:

GLOBAL LOADLIB MYLOAD

FILEDEF STDIN TERMINAL

FILEDEF STDOUT TERMINAL (LRECL 133 BLKSIZE 133
FILEDEF STDERR TERMINAL (LRECL 133 BLKSIZE 133
OSRUN PROG PARM=’any,parms’

Note that the LRECL and BLKSIZE values must be specified on the FILEDEF for CMS
files. For TERMINAL type files, the LRECL and BLKSIZE should be the same to avoid
any block level buffering.

Systems/C programs are limited to the environment supported by 0SRUN.

34 Systems/C C Library

Programming for MVS 3.8

The Systems/C library supports programs for the MVS 3.8 operating system. Gen-
erally, the full support of the Systems/C library is available, with the restrictions
inherent in the MVS 3.8 environment.

Linking programs for MVS 3.8

Systems,/C supports executing C programs on MVS 3.8 by inserting MVS 3.8 specific
objects in the link step before the normal library objects. These objects replace the
normal library objects, providing MVS 3.8 low-level operating system support. The
modules can be found in the MVS38_objs_rent and MVS38_objs_norent directories
on cross-platform hosts, or as PDS members in the LIBCR38 and LIBCN38 PDS
libraries on OS/390 and z/OS hosts.

To create MVS 3.8 executables, simple place these directories (or PDSs) in the
PLINK search order ahead of the normal library.

Also, for support of long names in external identifiers, the Systems/C library is
delivered in extended object (XSD) form. The MVS 3.8 linker does not support this
form of object deck. Thus, the Systems/C pre-linker, PLINK, must be used and
the —px option of PLINK must be enabled to process these objects and produce an
object deck that is suitable for linking with the MVS 3.8 linker.

If IBM’s HLASM assembler is used to produce the objects, and the XOBJECT param-
eter to HLASM is enabled, HLASM will produce object files in the GOFF object
file format. PLINK can directly process these input files and produce objects that
can be handled by the MVS 3.8 linker. PLINK, with the —pz option, will properly
convert these files into objects suitable for the MVS 3.8 linker. With this approach,
HLASM-produced objects with support for long identifier names can be used to
create MVS 3.8 programs. For more detailed information about PLINK see the
Systems/C Utilities manual.

Systems/C C Library 35

Using PLINK to create MVS 3.8 programs

As mentioned above, PLINK must be used to pre-link the input objects and place
them in a format suitable for use on MVS 3.8. PLINK’s primary function in this
regard is to convert any long names and or XSD cards in the generated objects to
short names and produce an object file that the MVS 3.8 linker will process. Thus,
the —pzx option should be used on the PLINK command, which instructs PLINK
to perform this processing.

Furthermore, for re-entrant programs, PLINK will process all PRV-related opera-
tions, processing PR and XD symbols internally. The MVS 3.8 linker cannot handle
PRV vectors larger than 4K bytes. The PLINK —prem option, which supports this
function, is enabled by default, and should not be disabled when creating MVS 3.8
executables.

PLINK is also used to ensure the MVS 3.8 objects are used instead of the normal
library objects. On cross-platform systems, simply specify the MVS 3.8 object
directories ahead of the normal object directoris on the PLINK command line. On
0S/390 or z/08, specify the MVS 3.8 library PDS ahead, in a concatenation with
the normal library PDS.

On 0OS/390 or z/OS to link with the MVS 3.8 re-entrant libraries, add the
LIBCR38 PDS to the SYSLIB concatenation, otherwise use the LIBCN38 PDS.
On cross-platform hosts, to link with the re-entrant MVS 3.8 library, add the
MVS38_objs_rent directory to the search list, ahead of the normal library speci-
fication. To link with the non-re-entrant MVS 3.8, on cross-platform hosts, add the
MVS38_objs_norent directory.

For example, on a Windows platform, if the typical PLINK command for pre-
linking looked like (where the Systems/C installation was in the C:\sysc directory):

plink -omy_prog.obj tl.obj t2.obj "-SC:\sysc\objs_rent\&M"

then to link for execution on MVS 3.8, insert another search template which specifies
the MVS 3.8 directory, as in:

plink -omy_prog.obj tl.obj t2.obj "-SC:\sysc\MVS38_objs_rent\&M"
"-SC:\sysc\objs_rent\&M"

(note that if the command line becomes too long for Windows, the —~@ option can
be used to place command line options in a file. See the PLINK section of the
Systems/C Utilities manual for more information.)

To implement the same task when running PLINK on OS/390 or z/OS, simply
adjust the SYSLIB DD statement to provide the proper concatenation.

If the typical PLINK step in the JCL looked like:

36 Systems/C C Library

//PLINK EXEC PGM=PLINK,PARM=’-px’
//STDERR DD SYSOUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCR.O0BJ,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD
INCLUDE INDD (PROG)
//SYSMOD DD DSN=myoutput.obj, DISP=NEW

then, to pre-link this program for MVS 3.8, adjust the SYSLIB DD statement to add
the MVS 3.8 PDS, as in:

//PLINK EXEC PGM=PLINK,PARM=’-px’
//STDERR DD SYSQUT=A
//STDOUT DD SYSQOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCR38.0BJ,DISP=SHR
// DD DSN=DIGNUS.LIBCR.0BJ,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
//8YSMOD DD DSN=myoutput.obj, DISP=NEW

(note that the —pz option was specified in the PARM string when executing PLINK.)

MVS 3.8 runtime restrictions

In general, beyond the environmental constraints of an MVS 3.8 system, there are
no issues with Systems/C programs. Except for the following noted differences, the
entire Systems/C run-time library and all of the Systems/C programming features
operate as they would on a more recent operating system.

MVS 3.8 only supports 24-bit addresses, thus Systems/C programs are limited by
MVS 3.8’s memory size restrictions.

Dynamic allocation of files via the 0_CREAT flag on open(2) calls is not supported.

MVS 3.8 does not provide TCP/IP, thus the TCP/IP related functions in the Sys-
tems/C library will not operate.

MVS 3.8 does not provide the BPX family of services, thus POSIX functions are not
available and will fail with an error return code.

Systems/C C Library 37

MVS 3.8 programs can be executed on OS/390 or z/OS. If the program objects
are re-linked on OS/390 or z/0OS, the AMODE=24 and RMODE=24 options should be
specified on the IBM link step, or to the PLINK command if PLINK is creating
a TSO TRANSMIT module. The MVS 3.8 low-level operating system interfaces
provided in the MVS 3.8 objects will not operate correctly on OS/390 or z/OS if
the program is not linked AMODE=24 and RMODE=24.

38 Systems/C C Library

Controlling the runtime
environment

Runtime Options specified in the program arguments

Runtime options can be specified in the program arguments in a BATCH or TSO
program, or in the DIG_RUNOPTS environment variable in a program running under
OpenEdition.

Runtime options are not examined in DCALL environments.

By default, runtime options are disabled in the BATCH and TSO environments, to
enable them set the global int __runopt variable to 1.

The following runtime options are supported:

ENVAR (name=val) specifies that the environment variable name should be set to the
value val in the start-up runtime environment.

TRAP(trap-setting) Specifies that a runtime ESTAE should be established for the
receipt of signals generated by hardware interrupts. trap-setting is
either ON or OFF.

Unrecognized options are silently ignored.

Runtime Options in TSO and Batch

In the TSO and BATCH environment, the incoming argument string is examined.
All text up to the first backslash (’\’) is examined to look for runtime options. The
actual program arguments follow this first backslash. If no backslash is present
at all, then the entire string is taken to be the program arguments. Note that
the backslash character can be changed via the declaration of the global variable
__rochar, as in:

Systems/C C Library 39

char __rochar = ’/’; /x set / as the runtime options delimiter */

Previous versions of the Dignus Systems/C runtime used the slash (’/’) character
as the delimiter; but Dignus Systems/C programs use the slash in file names which
frequently appear as command line arguments (i.e. //DSN:MY.FILE.NAME). Because
of this the default runtime options delimiter character was changed to backslash

C\)-

Furthermore, to avoid other potential issues with older programs, runtime options
processing is off by default in the TSO and BATCH environments. If your program
wants to take advantage of runtime options processing in the TSO or BATCH en-

vironments, it needs to be specifically enabled by declaring the __runopt integer as
in:

int __runopt = 1;

Runtime Options in OpenEdition

When running in the OpenEdition environment, the Systems/C library looks for
runtime options in the environment variable ”_DIG_RUNOPTS”. Any runtime options
are specified there. The incoming argument list is not examined in this environment.

Disabling/Enabling runtime options in TSO and Batch

If you define an integer named __runopt at global scope, and give it the value O;
then runtime options processing is disabled, and the entire parameter string will be
used.

This is the default behavior.

That is:

int __runopt = 0;

will defeat runtime options processing in TSO and Batch.

To enable runtime options processing in TSO and Batch, set the value of __runopt
to 1 as in:

int __runopt = 1;

40 Systems/C C Library

By default, the backslash (

) character is used to delimit the end of the runtime options and the start of the
argument string. You can change this default character by declaring the character
variable __rochar at file scope and initializing it with the character to use. For
example:

char __rochar = ’|’; /* use | to mark end of runtime options */

stdin, stdout and stderr

According to the C standard definition, three standard streams are initilized and
opened when program begins execution, stdin for input, and stdout and stderr
for output.

In Systems/C, streams are implemented in terms of lower-level file descriptors, stdin
is associated with file descriptor #0, stdout is associated with file descriptor #1
and stderr is associated with file descriptor #2.

Initially, the Systems/C library opens these file descriptors with the names
"//DDN:STDIN", "//DDN:STDOUT" and "//DDN:STDERR". "//DDN:STDOUT" and
"//DDN:STDERR" are opened with an LRECL=133 and BLKSIZE=1330 by default.

Changing standard filenames at execution time

The standard approach of using the freopen(3) function to reassociate the standard
file streams operates as expected with the Systems/C runtime.

For example, to close and re-open the stdin stream to the SYSIN DD, a program
can simply:

if (! (freopen("//DDN:SYSIN", "r", stdin)) {
perror("couldn’t re-open stdin");

}

See the freopen(3) function description for more information.

Changing standard filenames and attributes at compile time

A program can specify alternate strings to change the names the library uses to
open the first three file descriptors.

To change the name, initialize a char * variable with the replacement file name to
be used, as described in the following table:

Systems/C C Library 41

stdin char *x __fdOnm = "name";
stdout char *x __fdinm = "name";
stderr char *x __fd2nm = "name";

When __fdOnm, __fdinm, or __fd2nm is defined, the library uses the name defined
there as the initial name for file descriptors #0, #1 and #2 respectively.

For example, the following declaration causes the library to associate the SYSIN DD
with file descriptor #0, making it the stdin stream at program start-up:

char *__fdOnm = "//DDN:SYSIN";

To change the default attribute used to open a file, specify an attribute string in the
__fdOatr, __fdlatr or __fd2atr global variables. The string specified will be passed
as the attribute parameter to the open(2) invocation at library start-up.

For example, the following declaration will cause the stdout stream, file descriptor
#1, to be opened as an FB80 file with a blocksize of 800:

char *__fdlatr = "recfm=fb,lrecl=80,blksize=800";
See the open(2) function description for more information about file attribute
strings.

Note that these names are only used when a program is not executed via the BPX
execve interface. If a program is executed from the USS shell, or via the BPXCALL
interface in batch mode, the first 3 file descriptors are inherited from the environment
and the Systems/C library does not invoke open(2) to provide them.

Choosing the TCP/IP interface

By default, the Systems/C runtime library uses the BPX socket interface for imple-
mentation of the various TCP/IP-related functions.

Older versions used the EZASMI interface.

You can choose to use the EZASMI interface by defining the __bpxso integer variable
at a global scope and initializing it with the value 0, as in:

int __bpxso = 0;

Note that if you use the EZASMI interface, socket file descriptors will not be inherited
across a fork() function call and the file descriptor will be close()’d in the child.

42 Systems/C C Library

Changing argv delimiters for BATCH and TSO

By default, when a Systems/C program is executed under BATCH or TSO, the
delimiter that separates arguments is the comma, which is typical of these programs.

However, it can be changed to any character by defining the char __argvc variable
in a program.

When __argvc is defined, the runtime library uses the character value specified there
as the argument delimiter.

Furthermore, if __argvc is defined as a single space, the runtime will consider adja-
cent spaces as one.

Thus, if the program had:

char __argvc =’ ’;

then the parm string, a parm string’, under TSO or BATCH would generate the
argv[] array:

argv[1] "a"
argv[2] ‘"parm"

argv[3] "string"
argv[4] NULL

Disabling runtime options for BATCH and TSO

Normally, when executing in a TSO or BATCH environment, any value in the PARM
string up to the first right slash is examined for runtime options.

If needed, you can disable this check by defining the __runopt integer variable at
global scope, with a value of 0, as in:

int __runopt = O;

If __runopt is defined, and it has a zero value, then the initial runtime startup
processing will not look for any runtime options, and the entire string will be used
to produce the argc and argv values passed to the main() function.

Systems/C C Library 43

Controlling stack space allocation

The Systems/C runtime library allocates space used at runtime for per-function
areas. This space is the runtime “stack”. The runtime doesn’t allocate a separate
space for each function, instead allocating and managing this space in blocks of
storage.

The initial block of storage is called the ISTK (initial stack allocation.) If this block
is sufficiently large for the entire run of the program, no other memory will need
to be allocated. Creating a sufficiently large block can greatly improve runtime
performance.

The initial stack allocation can be specified in the #pragma prolkey of the main()
or other entry-point function. When the Systems/C library begins execution, it uses
the value specified in the ISTK=n prologue key for the initial allocation size.

For example,

#pragma prolkey(main,"ISTK=4096")
main ()

{

specifies that the initial stack allocated when this program is begun is 4096 bytes.

As a program runs, more stack space may be dynamically required. The Systems/C
runtime system automatically allocates and manages that space as needed. This
space is called the extension stack, or ESTK.

However, small and frequent allocations can result in degraded performance. If
indicated, it may be prudent to specify a particular stack extension on a function,
to cause the library to pre-allocate a larger extension should one be needed. This
can be done using the ESTK=n prologue key.

For example:

#pragma prolkey(lotsofstack,"ESTK=16384")
lotsofstack()
{

specifies that when lotsofstack() is invoked, should a stack extension be required,
the allocated space will be at least 16384 bytes in size.

44 Systems/C C Library

Specifying the runtime storage SUBPOOL

By default, the Systems/C runtime allocates stack and heap memory in the default
subpool.

However, this can be altered by specifing #pragma prolkey setting SP=n on the
main() or other entry-point function.

The subpool value is a numeric.
For example,
#pragma prolkey(main,"DCALL=YES,SP=123")

myfunc ()
{

specifies that memory allocated by the Direct-CALL function myfunc () be allocated
from sub-pool #123.

Specifying the runtime KEY

Systems/C programs begin execution in the default key setting. Specifying the
#pragma prolkey setting KEY=val will cause the runtime library to switch to the
specified key and begin execution. When the runtime is complete, for example, a
Direct-CALL environment terminates, the key will be reset to the value that was
present on entry to the function.

val can be either the keyword ENTRY or a numeric key value.
For example:

#pragma prolkey(func,"DCALL=YES,KEY=8")
func()

specifies that just before func() is invoked, the current hardware protection key
saved, and the set to 8. On return from func(), the key will be restored to the
saved value.

Controlling access to Unix System Services

On z/08S, when a Unix System Service is required the runtime library invokes the
appropriate assembler interface. For example, to open a file in the Hierarchical File
System (HFS), the runtime library would invoke the BPX10PN service.

Systems/C C Library 45

When a Unix System Service is invoked, it causes the z/OS task to become "dubbed’;
which is undesirable in some cases, and simply not allowed in others. In particular,
this is not allowed in a CICS environment.

To provide control over this, the runtime library defines an int variable named
__NOBPX.

__NOBPX is initialized to 0 indicating that Unix System Service functions are allowed.

Assigning any non-zero value to __NOBPX will cause the runtime library to disallow
Unix System Service functions, failing the function with errno set to ENOSYS.

This can be particularly useful in a Direct-CALL CICS environment, where Unix
System Service functions are not allowed.

Note that the runtime library may attempt to invoke Unix System Services due to
runtime library requirements, even if the user’s program does not directly invoke
these services.

Signal Handling

A Systems/C program supports several style of signal management. Using an
library-established ESTAE exit to catch signal-producing hardware interrupts, as
well as supporting the OpenEdition ”SIR” style of signal handling.

When a Systems/C program is initiated via an exec(2) function, the OpenEdition
style of signals is assumed, as this would be in a POSIX environment. Also, if the
pthread_create(3) function is called, that requires the POSIX environment, and thus
OpenEdition signals are used.

Otherwise, the use of an ESTAE to recognize hardware interrupts and generate
a signal is controlled by the TRAP setting on the prologue macro of the main()
function. TRAP defaults to OFF so no ESTAE is established, and a hardware inter-
rupt is simply processed as z/OS usually does, typically an ABEND. Specifying the
#pragma prolkey setting TRAP=0N, or specifying the TRAP(ON) run option, causes
the Systems/C library to establish an ESTAE exit to handle hardware interrupts
and raise an appropriate signal.

You can also use the runtime option of ”TRAP (ON)” or ”TRAP (OFF)” to override the
program setting on the prologue macro.

As previously mentioned, in a POSIX environment (execution was initiated via
exex(2)), an ESTAE exit is required for proper signal delivery and the setting of the
TRAP value will be forced to ON. Also the ESTAE exit is required for POSIX pthread
processing if pthread functions are used.

46 Systems/C C Library

Considerations for SIGABND processing

In the Dignus runtime on z/OS when an ESTAE exit is established, a STGABND signal
is raised when an ABEND is issued. The SIGABND can be handled with a SIGABND
signal handler established by either the signal(3) or sigaction(2) functions.

The signal hander can use the __abendcode(3) and __rsncode(3) functions to query
the abend and reason codes associated with the ABEND.

Returning from the signal handler causes the program state to be restored to the
instruction that caused the ABEND. As that is the instruction that caused the
ABEND, the ABEND will then be re-issued. If the SIGABND signal handler remains
active, then it will be re-invoked, essentially causing a loop. This is consistent with
signal processing in UNIX environments.

If the signal state for SIGABND is SIG_DFL on return from the signal handler normal
z/0OS abend processing will processing will occur. In z/OS parlance, the ABEND
will be ”percolated”.

SIG_IGN is invalid for SIGABND signals; as a SIGABEND cannot be ignored.

The Dignus stack management routines issue an ABEND 978 for the out-of-stack
situation. To establish a signal handler for that it is necessary to use the sigalt-
stack(3) and sigaction(2) functions to provide a separate stack area for executing of
the handler. Otherwise, an ABEND 978 is immediately percolated as there is no
stack on which to execute the signal handler.

An example of how to catch an ABEND 978 is provided in the appendix.

OpenEdition

Linking under OpenEdition

A Systems/C program can either be linked into a PDS, PDSE or into the Hiearchical
File System (HFS.

Under USS, to link a Systems/C program, first the program is processed with the
Systems/C pre-linker (PLINK, to produce an output object module. Then, the
final linking can use the USS cc command to link. To use the cc command link into
the HF'S, the “-e //” option should be added.

For example,

plink -o progl.obj progl.o -S"objs_rent/&M"
cc -e // -o progl progl.obj

Systems/C C Library 47

would pre-link the program progil.o including the re-entrant Systems/C library
objects, then the “cc -e //” command would complete the link, producing the
program progl.

Note that if the library objects need not be present in the HFS; the PLINK com-
mand can reference the library PDS, as in:

plink -o progl.obj progl.o -S"//DSN:DIGNUS.LIBCR.0BJ(&M)"

Alternatively, a batch linking process can specify that the final output from the IBM
binder reside in the HFS. Simply adjust the SYSLMOD DD definition appropriately. For
example, to cause the IBM binder to write to the HF'S file /users/employee/progi,
an appropriate SYSLMOD definition might be:

//SYSLMOD DD PATH=’/u/rivers/PLINK20/test/prog’,
// PATHOPTS=(OWRONLY,OCREAT) ,
// PATHMODE=(SIRWX0, SIRWXG, SIRWXU)

Running under OpenEdition

When a Systems/C program is executed via the exec() function, the Systems/C
runtime start-up processes the command-line arguments in a typical UNIX-style
fashion. Also, the Systems/C runtime correctly initializes the environment values
from the environment pointers specified in the exec() invocation.

The isPosixOn(2) function can be used to determine if the program was started via
exec() and thus, mostly likely, under the OpenEdition shell. For example:

if (isPosix0On()) {
printf ("I was started under USS\n");
} else {
printf ("I was started under BATCH or TSO\n");

When programs are started via exec(), the default file “style” (_style) is set to
"//HFS:". So that any file name which doesn’t explicitly specifically specify a
different style is assumed to be an //HFS:-style file.

Programs started via exec() inherit the first 3 file descriptors from the parent pro-
cess. So the values of __£dOnm, __fdinm, __fd2nm, __fdOatr, __fdlatr and __fd2atr
do not apply. If a program needs to adjust these default file descriptors, the stan-
dard freopen(3) approach should be used. See the freopen(3) function description
for more information.

Programs executing in the OpenEdition environment use BPX-style signal handling.

48 Systems/C C Library

Data locations

Systems/C data address ranges are not restricted in any fashion, data can re-
side above the 2-gigabyte “bar”, or above the 16-megabyte “line” or below the
16-megabyte “line”.

Data in Systems/C programs is in three general areas, the “HEAP”, which is data
allocated via malloc() function calls, the “STACK”, which is local data allocated
to each function, and the “PRV”, which contains file-scoped re-entrant data. Also
note that the library provides a separate mechanism for dynamic management of
“heap” memory in a particular address range, via _malloc31() and __malloc24.

Each of these locations can be specified by additional #pragma prolkey statements
on program entry points, either the main () function entry point, or a DCALL entry
point.

The default locations for the HEAP, STACK and PRV in z/Architecture programs
(programs where the main() function was compiled with the —~march=zarch option
enabled) is above the 2-gigabyte “bar”. Otherwise, the default is below the 2-
gigabyte “bar”.

If the —famode=any, or —famode=31 or —famode=2/ option was specified on the com-
pilation of the main() function for z/Architecture programs, the default locations
will be below the 2-gigabyte “bar”.

Each of the HEAP, STACK and PRV locations can be specifically defined by adding
LOCHEAP=loc, LOCSTACK=loc and LOCPRC=loc to the entry-point’s prologue macro us-
ing #pragma prolkey. The values for loc are 24, 31, ANY and 64. ANY is equivalent
to 31.

For example, if the following #pragma prolkey was specified for a main() com-
piled with —march=zarch, and no —famode option was specified, then the Systems/C
runtime could allocate the PRV and HEAP data above the 2-gigabyte “bar”, but
STACK data would be restricted to below.

#pragma prolkey(main,"LOCSTACK=31")
int main(int argc, char *argvl[])

{

Stand alone function

The Systems/C and Systems/C++ compilers can be used to create programs that
use your own entry and exit linkage. Such code cannot be linked with the Systems/C
runtime because the Systems/C runtime assumes that the Systems/C linkage has
been employed.

Systems/C C Library 49

However, some functions can be safely linked into such an environment.

Compiler invoked routines

When not compiling in z/Arch mode (-march=zarch is not specified), the C and
C++ compilers use “helper” functions to accomplish some 64-bit arithmetic. These
functions are:

Q@OMULU64 64-bit unsigned multiply
Q@OMULI64 64-bit signed multiply
@@DIVU64 64-bit unsigned divide/modulus
@@DIVIB4 64-bit signed divide/modulus

These function only assume that register 13 points to a typical save area (80 bytes)
and can safely be used in a typical environment. These functions can be found in
the Systems/C library and can be linked with your own code (provided R13 points
to a typical save area in your own linkage.)

Initializing re-entrant data

When compiling with the —frent option, or more generally, in the presence of any
__rent data, the Systems/C and Systems/C++ compilers generate a re-entrant ini-
tialization section which is gathered together by the pre-linker PLINK. PLINK
places its information in a CSECT named @ORINIT#. If that symbol is not resolved,
then the program required no re-entrant initializations.

At initial program start-up, the Systems/C runtime examines this section and, after
allocating the re-entrant data, performs the various initializations indicated.

If it is desired to have initialized re-entrant data within your own runtime environ-
ment, then this same operation needs to be performed.

The Systems/C runtime provides the @@SARNTI function (stand-alone re-entrant
initialization) to accomplish this task. After allocating re-entrant data, the program
should initialize the data area to zeros and then invoke @@SARNTI with the address
of the re-entrant data, the PLINK-generated re-entrant initialization section and
some other parameters as described below.

The size of the re-entrant data can be obtained using a CXD relocation.

@@SARNTI is “stand alone” in that it requires no other runtime and uses standard
OS linkage. When linked from the 31-bit runtime library @@SARNTI assumes that
R13 points to a typical 80-byte save area, and further assumes that R1 points to a
typical OS-linkage parameter block. When linked from the 64-bit runtime library
@O@SARNTI assumes that R13 is a 64-bit pointer that points to a Format-4 64-bit
style save area, and that R1 is a 64-bit pointer that points to a parameter block
that contains 64-bit pointers.

50 Systems/C C Library

The parameters for @ASARNTI are:

stack address of at least 1024 bytes used for stack space
prv address of allocated rent data
entries address of PLINK-generated initializers

The first parameter (the stack space used by @@SARNTI) must be a least 1024 bytes
long.

The second parameter is the address of the memory allocated to contain the PRV.
That memory must be initialized to all zeros before invoking @@SARNTI.

The third parameter is the address of the @RINIT# section containing the PLINK-
generated initialization data.

@@SARNTI returns a zero (0) in register R15 if it is successful, otherwise it returns a
non-zero value in R15. The current return codes are:

0 successful initialization
4 invalid /unsupported initializers

On return from @@SARNTI the temporary stack space passed as the first parameter
is unused by the Systems/C runtime and may be released or reused.

For example, the following snippet of code shows how to allocate the re-entrant data
section for a 31-bit environment, initialize it to zero and then invoke @@SARNTI. The
64-bit environment would be similar except that the parameters addressed by R1
would be 64-bit pointers.

WXTRN Q@RINIT#

L 6,=A(GERINIT#)

LTR 6,6

BZ NONE nothing to do?

L 4,RENT_SIZE

GETMAIN RC,LV=(4) allocate reentrant data
LR 5,1

LR 0,1

L 1,RENT_SIZE

LA 14,0(0,0)

LA 15,0(0,0)

MVCL 0,14 zero-out rent data (assuming it’s not too large)
LA 1,PARMS

LA 7,STACK stack space

ST 7,0(0,1) first parm

LR 7,5 addr of rent data

ST 7,4(0,1) 2nd parm

LR 7,6 addr of initializers

ST 7,8(0,1) 3rd parm

Systems/C C Library 51

L 15,=V(@Q@SARNTI)
BALR 14,15
LTR 15,15
BZ DONE
. problems; initialization failed

NONE DS OH
DONE DS OH

RENT_SIZE CXD
STACK DS 0D
DS CL1024 stack space
PARMS DS 0D
DS 1A address of stack
DS 1A address of PRV
DS 1A address of rent

52 Systems/C C Library

User ABEND codes issued by
the runtime

The Systems/C library can issue a small number of user ABENDs, due to various
start-up and other situations where it is impossible to continue running and no other
diagnostic facility is available.

These diagnostics are issued using the ABEND macro in z/OS, with the given ABEND
number.

These values should not be employed by user code as they indicate issues particular
to the Systems/C runtime environment.

The following list describes the ABEND number and the situation where it arises:

135 A dd number could not be allocated in the table of DD names; this is
deprecated and will be eliminated in a future release.

136 The table for managing DD names cannot be allocated. This is likely
due to insufficent available memory. This is deprecated and will be
eliminated in a future release.

178 The initial memory allocation for a dynamic storage area (DSA) set-up
failed, likely due to insufficient available memory, the program cannot
run.

278 The first memory segment allocation failed, likely due to insufficient

available memory, the program cannot run.

279 Insufficient memory was available to set up the program name, argv
array or environ array at program start-up.

378 Returning the allocated re-entrant variable data space to the operating
system failed at program termination. This is likely due to a program
memory overlay detected at the end of execution.

478 Returning an allocated stack segment to the operating system failed.
This is likely due to a program memory overlay detected at the end
of execution.

Systems/C C Library 53

955

278

678

978

801

3532

An invalid or corrupt handle was passed to a DCALL=SUPPLIED

function.

Returning the initial memory allocation to the operating system failed.
This is likely due to a program memory overlay detected at the end
of execution.

Re-entrant variable initialization failed. This is either a compiler or
library problem and should be reported to Dignus.

The stack management routines were unable to allocate further mem-
ory to expand the stack segment. ABEND 978 can be ”caught”
by a SIGABND handler only if the library has established as ESTAE
(TRAP(ON) is true) and an alternate execution stack is provided for
the signal handling function.

64-bit program start failed. This is typically caused by linking code
compiled for 31-bit with the 64-bit Dignus runtime. When linking with
the 64-bit runtime, the -mlp64 option must be used on the DCC and
DCXX compiler command lines.

The SIGABRT signal was sent to a Dignus program not executing
under OpenEdition. The program prints a traceback and ends with
this user ABEND.

54 Systems/C C Library

Systems/C C Library functions

The Systems/C library provides the ANSI standard functions, as well as several
extensions which aide in the porting of other programs to the mainframe.

The Systems/C library is compiled using the standard Systems/C prologue and
epilogue macros. The Systems/C library environment would need to be established
if these functions are to be included in a Systems/C program that uses an alternate
stack frame layout.

This section provides an overview of the C library functions, the return values and
other common definitions and concepts.

The function return types and parameters, as well as the requisite #include files
are described in the SYNOPSIS section. The function is then described, followed by
the possible values of the global variable errno. Also, related functions are named
in the SEE ALSO section. If the function conforms to any particular standards,
that will be noted in the STANDARDS section.

The run-time library is also divided into sections for easy reference.

Systems/C C Library 55

System Functions

System functions are those that are typically implemented by the operating system
on UNIX platforms.

These are implemented in the Systems/C C run-time library as best as the host
operating system allows.

Several of the system functions described below depend on IBM’s OpenEdition As-
sembler Callable Services. If these services are not available, the functions can fail,
typically setting the global variable errno to EOPNOTSUPP (operation is not sup-
ported.) For more information about OpenEdition services, see the IBM “OS/390
OpenEdition Assembler Callable Services” manual and related IBM documentation.

56 Systems/C C Library

ACCESS(2)
NAME

access — check access permissions of an //HFS:-style file or pathname

SYNOPSIS

#include <unistd.h>

int
access(const char #*path, int mode);

DESCRIPTION

The access() function checks the accessibility of the file named by path for the
access permissions indicated by mode. The value of mode is the bitwise inclusive
OR of the access permissions to be checked (R_OK for read permission, W_0K for write
permission and X_0K for execute/search permission) or the existence test, F_0K. All
components of the pathname path are checked for access permissions (including
F_OK).

RETURN VALUES

If path cannot be found or if any of the desired access modes would not be granted,
then a -1 value is returned; otherwise a 0 value is returned.

ERRORS

Access to the file is denied if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EROFS] Write access is requested for a file on a read-only file system.

Systems/C C Library 57

[ETXTBSY] Write access is requested for a pure procedure (shared text) file
presently being executed.

[EACCES] Permission bits of the file mode do not permit the requested access,
or search permission is denied on a component of the path pre-
fix. The owner of a file has permission checked with respect to the
“owner” read, write, and execute mode bits, members of the file’s
group other than the owner have permission checked with respect
to the “group” mode bits, and all others have permissions checked
with respect to the “other” mode bits.

[EFAULT] Path points outside the process’s allocated address space.

[EI0] An I/O error occurred while reading from or writing to the file
System.

[ENOTSUPP] The access() function is not supported on this type of path name.

SEE ALSO

chmod(2), open(2), stat(2)

STANDARDS

The access() function call is expected to conform to IEEE Std1003.1-1990
(“POSIX”) for a path in the HFS.

CAVEAT

access() is a potential security hole due to race conditions and should never be used.
Setuid and setgid applications should restore the effective uid or gid and perform
actions directly rather than use access() to simulate access checks for the real user
of group id.

access() only operates on //HFS:-style files. If the access() function is applied to

non-//HFS: style files, the return value will be set to -1, and errno will be set to
EOPNQOTSUPP.

58 Systems/C C Library

AIO_CANCEL(2)
NAME

aio_cancel — cancel an outstanding asynchronous I/O operation

SYNOPSIS

#include <aio.h>

int
aio_cancel(int fildes, struct aiocb * iocb);

DESCRIPTION

The aio_cancel() function cancels the outstanding asynchronous I/O request for the
file descriptor specified in fildes. If iocb is specified, only that specific asynchronous
I/O request is cancelled.

Normal asynchronous notification occurs for cancelled requests. Requests complete
with an error result of ECANCELED.

RESTRICTIONS

The aio_cancel() function does not cancel asynchronous I/O requests for HFS,
DDN or DSN files. The aio_cancel() function will always return AI0_NOTCANCELED
for file descriptors associated with HF'S, DDN or DSN files.

The aio_cancel() function dependes on pthreads for operation, and thus requires a
POSIX environment.

RETURN VALUES
The aio_cancel() function returns -1 to indicate an error, or one of the following:

[AIO_CANCELED] All outstanding requests meeting the criteria specified were can-
celled.

[AIO_NOTCANCELED] Some requests were not cancelled, status for the requests should
be checked with aio_error(2).

[ATO_ALLDONE] All of the requests meeting the criteria have finished.

Systems/C C Library 59

ERRORS

An error return from aio_cancel() indicates:

[EBADF] The fildes argument is an invalid file descriptor.

SEE ALSO

aio_error(2), aio_read(2), aio_return(2), aio_suspend(2), aio_write(2)

STANDARDS

The aio_cancel() function is expected to conform to the IEEE Std 1003.1
(“POSIX.1”) standard.

60 Systems/C C Library

AIO_ERROR(2)
NAME

alo_error — retrieve error status of asynchronous I/O operation

SYNOPSIS

#include <aio.h>

int
aio_error(const struct aiocb *iocb);

DESCRIPTION

The aio_error() function returns the error status of the asynchronous I/O request
associated with the structure pointed to by ¢ocb.

RETURN VALUES

If the asynchronous I/O request has completed successfully, aio_error() returns
0. If the request has not yet completed, EINPROGRESS is returned. If the request
has completed unsuccessfully the error status is returned as described in read(2),
write(2), or fsync(2) is returned.

On failure, aio_error() returns -1 and sets errno to indicate the error condition.

RESTRICTIONS

The aio_error() function dependes on pthreads for operation, and thus requires a
POSIX environment.

ERRORS

The aio_error() function will fail if:

[EINVAL] The doch argument does not reference an outstanding asynchronous
I/O request.

Systems/C C Library 61

SEE ALSO

aio_cancel(2), aio_read(2), aio_return(2), aio_suspend(2), aio_write(2), fsync(2),
read(2), write(2)

STANDARDS

The aio_error() function is expected to conform to the IEEE Std 1003.1
(“POSIX.1”) standard.

62 Systems/C C Library

AIO_READ(2)
NAME

aio_read — asynchronous read from a file

SYNOPSIS

#include <aio.h>

int
aio_read(struct aiocb *iocb);

DESCRIPTION

The aio_read() function allows the calling process to read iocb->aio_nbytes from
the descriptor iocb->aio_fildes beginning at the offset iocb->aio_offset into the
buffer pointed to by zocb->aio_buf. The call returns immediately after the read re-
quest has been enqueued to the descriptor; the read may or may not have completed
at the time the call returns.

The iocb->aio_lio_opcode argument is ignored by the aio_read() function.

The ioch pointer may be subsequently used as an argument to aio_return() and
ajio_error() in order to determine return or error status for the enqueued operation
while it is in progress.

If the request could not be enqueued (generally due to invalid arguments), then the
call returns without having enqueued the request.

If the request is successfully enqueued, the value of iocb->aio_offset can be mod-
ified during the request as context, so this value must not be referenced after the
request is enqueued.

RESTRICTIONS

The Asynchronous I/O Control Block structure pointed to by iochb and the buffer
that the jocb->aio_buf member of that structure references must remain valid until
the operation has completed. For this reason, use of auto (stack) variables for these
objects is discouraged.

The asynchronous I/O control buffer iocb should be zeroed before the aio_read()
call to avoid passing bogus context information to the kernel.

Systems/C C Library 63

Modifications of the Asynchronous I/O Control Block structure or the buffer con-
tents after the request has been enqueued, but before the request has completed,
are not allowed.

If the file offset in idocb->aio_offset is past the offset maximum for
iocb->aio_fildes, no I/O will occur.

The aio_read() function dependes on pthreads for operation, and thus requires a
POSIX environment.

RETURN VALUES

The aio_read() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The aio_read() function will fail if:

[EAGAIN] The request was not queued because of system resource limitations.

[ENOSYS] The aio_read() function is not supported.

The following conditions may be synchronously detected when the aio_read() func-
tion call is made, or asynchronously, at any time thereafter. If they are detected
at call time, aio_read() returns -1 and sets errno appropriately; otherwise the
aio_return() function must be called, and will return -1, and aio_error() must be
called to determine the actual value that would have been returned in errno.

[EBADF] The iocb->aio_fildes argument is invalid.

[EINVAL] The offset iocb->aio_offset is not valid, the priority specified by
tocb->aio_reqprio is not a valid priority, or the number of bytes
specified by iochb->aio _nbytes is not valid.

[EOVERFLOW] The file is a regular file, jocb->aio nbytes is greater than zero, the
starting offset in ‘ocb->aio_offset is before the end of the file, but
is at or beyond the tocb->aio_fildes offset maximum.

If the request is successfully enqueued, but subsequently cancelled or an error occurs,
the value returned by the aio_return() function is per the read(2) function, and
the value returned by the aio_error() function is either one of the error returns
from the read(2) function, or one of:

64 Systems/C C Library

[EBADF] The iochb->aio_fildes argument is invalid for reading.
[ECANCELLED] The request was explicitly cancelled via a call to aio_cancel().

[EINVAL] The offset 10cb->aio_offset would be invalid.

SEE ALSO

aio_cancel(2), aio_error(2), aio_return(2), aio_suspend(2), aio_write(2)

STANDARDS

The aio_read() function is expected to conform to the IEEE Std 1003.1
(“POSIX.17) standard.

Systems/C C Library 65

AIO_RETURN(2)
NAME

aio_return — retrieve return status of asynchronous I/O operation

SYNOPSIS

#include <aio.h>

int
aio_return(struct aiocb *iocb);

DESCRIPTION

The aio_return() function returns the final status of the asynchronous I/O request
associated with the structure pointed to by iocb.

The aio_return() function should only be called once, to obtain the final status
of an asynchronous I/O operation once aio_error(2) returns something other than
EINPROGRESS.

RETURN VALUES

If the asynchronous I/0 request has completed, the status is returned as described
in read(2), write(2), or fsync(2). On failure, aio_return() returns -1 and sets errno
to indicate the error condition.

RESTRICTIONS

The aio_return() function dependes on pthreads for operation, and thus requires
a POSIX environment.

ERRORS

The aio_return() function will fail if:

[EINVAL] The doch argument does not reference an outstanding asynchronous
I/O request.

66 Systems/C C Library

SEE ALSO

aio_cancel(2), aio_error(2), aio_suspend(2), aio_write(2), fsync(2), read(2), write(2)

STANDARDS

The aio_return() function is expected to conform to the IEEE Std 1003.1
(“POSIX.1”) standard.

Systems/C C Library 67

AIO_SUSPEND(2)

NAME

aio_suspend — suspend until asynchronous I/O operations or timeout complete

SYNOPSIS

#include <aio.h>

int

aio_suspend(const struct aiocb * const iocbs[], int niocb,
const struct timespec * timeout);

DESCRIPTION

The aio_suspend() function suspends the calling process until at least one of the
specified asynchronous I/O requests have completed, a signal is delivered, or the
timeout has passed.

The iocbs argument is an array of nioch pointers to asynchronous I/O requests.
Array members containing null pointers will be silently ignored.

If timeout is not a null pointer, it specifies a maximum interval to suspend. If timeout
is a null pointer, the suspend blocks indefinitely. To effect a poll, the timeout should
point to a zero-value timespec structure.

RETURN VALUES

If one or more of the specified asynchronous I/O requests have completed,
aio_suspend() returns 0. Otherwise it returns -1 and sets errno to indicate the
error, as enumerated below.

RESTRICTIONS

The aio_suspend() function dependes on pthreads for operation, and thus requires
a POSIX environment.

68 Systems/C C Library

ERRORS

The aio_suspend() function will fail if:

[EAGAIN] The timeout expired before any I/O requests completed.
[EINVAL] At least one of the requests specified in ¢ocbs is invalid.
[EINTR] the suspend was interrupted by a signal.

SEE ALSO

aio_cancel(2), aio_error(2), aio_return(2), aio_write(2)

Systems/C C Library 69

AIO_WRITE(2)
NAME

aio_write — asynchronous write to a file

SYNOPSIS

#include <aio.h>

int
ajo_write(struct aiocb *iocb);

DESCRIPTION

The aio_write() function allows the calling process to write iocb->aio_nbytes from
the buffer pointed to by iocb->aio_buf to the descriptor iocb->aio_fildes. The
call returns immediately after the write request has been enqueued to the descriptor;
the write may or may not have completed at the time the call returns. If the request
could not be enqueued, generally due to invalid arguments, the call returns without
having enqueued the request.

If 0_APPEND is set for ioch->aio_fildes, aio_write() operations append to the file
in the same order as the calls were made. If 0_APPEND is not set for the file descriptor,
the write operation will occur at the absolute position from the beginning of the file
plus iocb->aio_offset for supported files.

The ioch pointer may be subsequently used as an argument to aio_return() and
aio_error() in order to determine return or error status for the enqueued operation
while it is in progress.

If the request is successfully enqueued, the value of jocb->aio_offset can be mod-
ified during the request as context, so this value must not be referenced after the
request is enqueued.

RESTRICTIONS

The Asynchronous I/O Control Block structure pointed to by iocb and the buffer
that the jocb->aio_buf member of that structure references must remain valid until
the operation has completed. For this reason, use of auto (stack) variables for these
objects is discouraged.

The asynchronous I/O control buffer iocb should be zeroed before the aio_write()
function to avoid passing bogus context information.

70 Systems/C C Library

Modifications of the Asynchronous I/O Control Block structure or the buffer con-
tents after the request has been enqueued, but before the request has completed,
are not allowed.

If the file offset in docb->aio_offset is past the offset maximum for
iocb->aio_fildes, no I/O will occur.

The aio_write() function dependes on pthreads for operation, and thus requires a
POSIX environment.

RETURN VALUES

The aio_write() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS
The aio_write() function will fail if:

[EAGAIN] The request was not queued because of system resource limitations.

[ENOSYS] The aio_write() function is not supported.

The following conditions may be synchronously detected when the aio_write() func-
tion call is made, or asynchronously, at any time thereafter. If they are detected
at call time, aio_write() returns -1 and sets errno appropriately; otherwise the
ajo_return() function must be called, and will return -1, and aio_error() must be
called to determine the actual value that would have been returned in errno.

[EBADF] The docb->aio_fildes argument is invalid, or is not opened for
writing.
[EINVAL] The offset iocb->aio_offset is not valid, the priority specified by

tocb->aio_reqprio is not a valid priority, or the number of bytes
specified by iochb->aio _nbytes is not valid.

If the request is successfully enqueued, but subsequently canceled or an error occurs,
the value returned by the aio_return() function is per the write(2) function, and
the value returned by the aio_error() is either one of the error returns from the
write(2) function, or one of:

[EBADF] The iocb->aio_fildes argument is invalid for writing.
[ECANCELED] The request was explicitly canceled via a call to aio_cancel().

[EINVAL] The offset iocb->aio_offset would be invalid.

Systems/C C Library 71

SEE ALSO

alo_cancel(2), aio_error(2), aio_return(2), aio_suspend(2),

STANDARDS

The aio_write() function is expected to conform to the IEEE Std 1003.1
(“POSIX.1”) standard.

72 Systems/C C Library

CHDIR(2)
NAME

chdir, fchdir - change current //HFS:-style working directory

SYNOPSIS

#include <unistd.h>

int
chdir(const char *path);

int
fchdir(int fd);

DESCRIPTION

The path argument points to the pathname of a directory. The chdir() function
causes the named directory to become the current working directory, that is, the
starting point for path searches of pathnames not beginning with a slash, ‘/’.

The path argument must be an //HFS:-style file name.

The fchdir() function causes the directory referenced by fd to become the current
working directory, the starting point for path searches of pathnames not beginning
with a slash, ¢/’

In order for a directory to become the current directory, a process must have execute
(search) access to the directory.

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

chdir() will fail and the current working directory will be unchanged if one or more
of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

Systems/C C Library 73

[EOPNOTSUPP] The file system containing the file named by namel! does not support
directories.

[EMLINK] The link count of the file named by namel! would exceed 32767.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named directory does not exist.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EACCES] Search permission is denied for any component of the path name.

[EFAULT] Path points outside the process’s allocated address space.

[EI0] An I/O error occurred while reading from or writing to the file
system.

fchdir() will fail and the current working directory will be unchanged if one or more
of the following are true:

[EACCES] Search permission is denied for the directory referenced by the file
descriptor.

[ENOTDIR] The file descriptor does not reference a directory.

[EBADF] The argument fd is not a valid file descriptor.

SEE ALSO

chroot(2)

STANDARDS

The chdir() function call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.17).

74 Systems/C C Library

CHMOD(2)

NAME

chmod, fchmod - change mode of an //HFS:-style file

SYNOPSIS

#include <sys/stat.h>

int

chmod(const char #*path, mode_t mode);

int

fchmod(int fd, mode_t mode);

DESCRIPTION

The file permission bits of the file named specified by path or referenced by the file
descriptor fd are changed to mode. The chmod() function verifies that the process
owner (user) either owns the file specified by path (or fd), or is the super-user. The
chmod() function follows symbolic links to operate on the target of the link rather

than the link itself.

A mode is created from or’d permission bit masks defined in <sys/stat.h>

#define
#define
#define
#define

#tdefine
#define
#tdefine
#define

#define
#define
#define
#define

#define
#define
#define

S_IRWXU
S_IRUSR
S_IWUSR
S_IXUSR

S_IRWXG
S_IRGRP
S_IWGRP
S_IXGRP

S_IRWXO0
S_IROTH
S_IWOTH
S_IX0TH

S_ISUID
S_ISGID
S_ISVTX

0000700
0000400
0000200
0000100

0000070
0000040
0000020
0000010

0000007
0000004
0000002
0000001

0004000
0002000
0001000

/*
/%
/*
/%

/*
/*
/*
/%

/%
/%
/%
/*

/%
/*
/*

RWX mask for owner */
R for owner */
W for owner */
X for owner */

RWX mask for group */
R for group */
W for group */
X for group */

RWX mask for other */
R for other */
W for other */
X for other */

set user id on execution */

set group id on execution */
sticky bit */

Systems/C C Library 75

#ifndef _POSIX_SOURCE
#define S_ISTXT 0001000
#endif

Setting the S_ISUID bit indicates that when the file is executed, the process’s effective
user-id is set to the file’s owner user-id, so that the process appears to be running
under the user-id of the file’s owner.

Settin the S_ISGID bit indicates that when the file is executed, the process’s effective
group-id is that of file’s owner group-id.

RETURN VALUE

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

chmod() will fail and the file mode will be unchanged if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EPERM] The effective user ID does not match the owner of the file and the

effective user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the process’s allocated address space.

[EI0] An 1/0O error occurred while reading from or writing to the file
system.

fchmod() will fail if:

[EBADF] The descriptor is not valid.

76 Systems/C C Library

[EINVAL] fd refers to a socket, not to a file.

[EROFS] The file resides on a read-only file system.

[EIO] An I/O error occurred while reading from or writing to the file
System.

SEE ALSO

chown(2), open(2), stat(2)

STANDARDS

The chmod() function call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.17).

Systems/C C Library 77

CHOWN(2)

NAME

chown, fchown, Ichown — change owner and group of an //HFS:-style file

SYNOPSIS

#include <unistd.h>

int
chown(const char #*path, uid_t owner, gid_t group);

int
fchown(int fd, uid_t owner, gid_t group);

int
lchown(const char *path, uid_t owner, gid_t group);

DESCRIPTION

The owner ID and group ID of the file named by path or referenced by fd is changed
as specified by the arguments owner and group. The owner of a file may change the
group to a group of which he or she is a member, but the change owner capability
is restricted to the super-user.

chown() clears the set-user-id and set-group-id bits on the file to prevent accidental
or mischievous creation of set-user-id and set-group-id programs if not executed by

the super-user. chown() follows symbolic links to operate on the target of the link
rather than the link itself.

lchown() is similar to chown() but does not follow symbolic links.

One of the owner or group id’s may be left unchanged by specifying it as -1.

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

78 Systems/C C Library

ERRORS

chown() and lchown() will fail and the file will be unchanged if:

[ENOTDIR]

A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire

[ENOENT]
[EACCES]

[ELOOP]

[EPERM]
[EROFS]
[EFAULT]

[EIO0]

path name exceeded 1023 characters.
The named file does not exist.
Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the path-
name.

The effective user ID is not the super-user.
The named file resides on a read-only file system.
Path points outside the process’s allocated address space.

An 1/0O error occurred while reading from or writing to the file
system.

fchown() will fail if:

[EBADF] fd does not refer to a valid descriptor.

[EINVAL] fd refers to a socket, not a file.

[EPERM] The effective user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.

[EI0] An I/O error occurred while reading from or writing to the file
system.

SEE ALSO

chmod(2)

STANDARDS

The chown() function call is expected to conform to ISO/IEC 9945-1:1990

(“POSIX.17).

Systems/C C Library 79

CHROOT(2)
NAME

chroot - change root directory

SYSNOPSIS

#include <unistd.h>

int
chroot(const char *dirname);

DESCRIPTION

dirname is the address of the pathname of an //HFS:-style directory, terminated by
an ASCII NUL. chroot() causes dirname to become the root directory, that is, the
starting point for path searches of pathnames beginning with ¢/’

In order for a directory to become the root directory a process must have execute
(search) access for that directory.

It should be noted that chroot() has no effect on the process’s current directory.
This call is restricted to the super-user.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate an error.

ERRORS

chroot() will fail and the root directory will be unchanged if:

[ENOTDIR] A component of the path name is not a directory.

[EPERM] The effective user ID is not the super-user, or one or more file de-
scriptors are open directories.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any component of the path name.

80 Systems/C C Library

[ELOOP] Too many symbolic links were encountered in translating the path-

name.

[EFAULT] dirname points outside the process’s allocated address space.

[EI0] An I/O error occurred while reading from or writing to the file
system.

SEE ALSO

chdir(2)

Systems/C C Library 81

CLOCK_GETTIME(2)
NAME

clock_gettime, clock settime, clock_getres — get/set/calibrate date and time

SYNOPSIS

#include <sys/time.h>

int
clock_gettime(clockid_t clock_id, struct timespec *tp);

int
clock_settime(clockid_t clock_id, const struct timespec *tp);

int
clock_getres(clockid_t clock_id, struct timespec *tp);

DESCRIPTION

The clock_gettime() and clock_settime() allow the calling process to retrieve or
set the value used by a clock which is specified by clock_id.

Only the CLOCK_REALTIME and CLOCK_MONOTONIC clocks are supported by this im-
plementation. The clock_id argument can only be one of those values.

The structure pointed to by tp is defined in jsys/time.h; as:

struct timespec {
time_t tv_sec; /* seconds */
long tv_nsec; /* and nanoseconds */

};

The system TOD clock is set during the initial program load or via operator com-
mands. The clock_settime() function verifies its arguments but always returns an
-1 with errno set to EPERM.

The resolution (granularity) of a clock is returned by the clock_getres() system
call. This value is placed in a (non-NULL) *tp.

82 Systems/C C Library

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

The following error codes may be set in errno:

[EINVAL] The clock_id argument was not a valid value.
[EFAULT] The *tp argument address referenced invalid memory.
[EPERM] The process is not allowed to set the time.

SEE ALSO

ctime(3)

STANDARDS

The clock_gettime(), clock_settime(), and clock_getres() system calls conform
to IEEE Std 1003.1b-1993 (“POSIX.17).

Systems/C C Library 83

CLOSE(2)
NAME

close - delete a descriptor

SYNOPSIS

#include <unistd.h>

int
close(int d);

DESCRIPTION

The close() call deletes a descriptor from the per-process object reference table. If
this is the last reference to the underlying object, the object will be deactivated. For
example, on the last close of a file the current seek pointer associated with the file
is lost; on the last close of a socket(2) associated naming information and queued
data are discarded.

When a process exits, all associated file descriptors are freed, but since there is a
limit on active descriptors per processes, the close() function call is useful when a
large quantity of file descriptors are being handled.

RETURN VALUES

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and the global integer variable errno is set to indicate the error.

IMPLEMENTATION NOTES

When closing a file that has a partial written record, Systems/C will pad the record
to the LRECL size and write the data. The padding byte used depends on how
the file was opened. For O_TEXT files, the padding byte is the space character. For
non-0_TEXT files, the padding byte is the NUL character, zero.

ERRORS

close() will fail if:

84 Systems/C C Library

[EBADF] d is not an active descriptor.

[EINTR] An interrupt was received.

SEE ALSO

fentl(2), open(2),

STANDARDS

The close() function call is expected to conform to IEEE Std1003.1-1990
(“POSIX”), as closely as possible given the host operating system environment.

Systems/C C Library 85

__DCALL_ENV(2)
NAME

__dcall_env - retrieve direct-call environment pointer

SYNOPSIS

#include <machine/dcall.h>

void * __dcall_env(void)

DESCRIPTION

The __dcall_env() function returns the current environment pointer which can be
used by subsequent

DCALL=SUPPLIED

functions.

The __dcall_env() function is typically used in the
DCALL=ALLOCATE

function to make the environment pointer available to the allocation function to
save for later use.

86 Systems/C C Library

_DCALL_SETRETREGVAL(2)
NAME

__dcall_setretregval - set the value of a register after invoking a DCALL routine.

SYNOPSIS

#include <machine/dcall.h>

void __dcall_setretregval(int reg, long val);

DESCRIPTION

The __dcall_setretregval function sets the value a register will have on return from
the DCALL’d environment.

The reg parameter indicates the register number, and should be in the range 0 to
15. Values outside that range are ignored.

The val parameter indicates the value the register should have on return.

Overwritting register values that have architected uses (e.g. R15) is undefined and
can have undesired results.

In an AMODE 64 environment, if the calling environment is AMODE 64 then val
will represent the entire register. Otherwise if the caller was AMODE 24 or AMODE
31, then only the lower 32-bits of val will be set in the register reg.

The __dcall_setretregval function can be used to set a register value for returning
to the calling environment, for example setting RO or R1 when the DCALL’d function
returns.

Systems/C C Library 87

DDNFIND(2)

NAME

ddnfind, ddnext - determine DSN’s associated with a DD name.

SYNOPSIS

#include <machine/syscio.h>

void *
ddnfind(char *ddn, char *dsn);

void *
ddnnext (void *token, char *dsn);

DESCRIPTION

The ddnfind() and ddnnext() functions are used to retrieve a DATA SET name
(DSN) name(s) allocated to a DD name (DD). ddnfind() retrieves the first DSN as-
sociated with the DD ddn, and saves it in the location specified by dsn. ddnfind()
returns a token, which is then passed to subsequent calls to ddnnext(). The Sys-
tems/C file prefix (//DDN:) should not be specified in the ddn parameter.

ddnnext() is used to retrieve subsequent DSNs associated with the DD ddn.
ddnnext() accepts the token created from the ddnfind() function, and returns

the token that should be used on a subsequent call to ddnnext().

When the list of DSNs has been exhausted, dnnext() returns NULL and releases the
space associated with token.

The storage allocated for dsn should be sufficiently large to contain any valid DSN
name. The Systems/C file prefix (//DSN:) is not returned in dsn.

IMPLEMENTATION NOTES

The ddnfind() and ddnnext() functions examine the job JFCB control block to
determine the associated DSN. If the DD is associated with a HFS file, then the
returned name will appear as “...PATH=.SPECIFIED...”.

88 Systems/C C Library

RETURN VALUES

ddnfind() returns a pointer to the allocate token if the ddn is located, NULL if the
ddn does not exist, or (void #*) (-1) if there insufficient space to allocate the token.
If successful, ddnfind() places the first DSN name in the storage addressed by dsn.

ddnnext() returns the token and places the DSN name in the storage addressed by
dsn. At the end of the list of DSN names, ddnnext() returns NULL.

SEE ALSO

osddinfo(2)

Systems/C C Library 89

__DYNALL(2)
NAME

dynalloc - allocate a data set

SYNOPSIS

#include <machine/dynit.h>

int
__dynall(__dyn_t #*parms);

int
dynalloc(__dyn_t *parms);

int
__dynfre(__dyn_t *parms);

int
dynfree(__dyn_t *parms) ;

void
__dyninit(__dyn_t *parms);

DESCRIPTION

The __dynall function is used to dynamically allocate MVS data sets, __dynfre is
used to unallocate an MVS data set. dynalloc is an alias for __dynall and dynfree

is an alias for __dynfre.

__dynall creates the SVC 99 parameter list based on the fields of the incoming parms
structure and then employs the SVC 99 facility to invoke the allocate function.

__dynfre creates the SVC 99 parameter list based on the fields of the incoming parms
structure and then employs the SVC 99 facility to invoke the deallocate function.

In each case, the parms argument points to a __dyn_t structure that contains the

following fields:

char *ddname DD name. If the string is 8 question marks, then it indicates the area
where the system-generated ddname is returned, otherwise the string
is truncated at 8 characters and upper-cased before being passed to
the SVC 99 interface.

90 Systems/C C Library

char *dsname data set name. The string has a maximum length of 1023 characters
and is upper cased before being passed to the SVC 99 interface.

int sysout sysout dataset, set to __DEF_CLASS for the default SYSOUT class
char *sysoutname program name for SYSOUT

char *member member name of a PDS/PDSE

int status data set status, can be one of the following:

__DISP_OLD
__DISP_MOD
__DISP_NEW
__DISP_SHR

int normdisp data set’s normal disposition, can be on of:

__DISP_UNCATLG
__DISP_CATLG
__DISP_DELETE
__DISP_KEEP

int conddisp data set’s conditional disposition, can be one of the following;:

__DISP_UNCATLG
__DISP_CATLG
__DISP_DELETE
__DISP_KEEP

char *unit unit name

char *volser a comma-separated list of volume serial numbers
int volseq volume sequence number

int volcount maximum volume count

int label type of tape label , can be one of the following:

__LABEL_NL no label

__LABEL SL. IBM standard label

__LABEL_NSL non-standard label

__LABEL_SUL both IBM standard and user label
__LABEL BLP bypass label processing

__LABEL_ LTM check and bypass leading tape mark
__LABEL AL ANSI standard label

__LABEL_AUL ANSI standard and user label

Systems/C C Library 91

int dsorg data set organization, can be one of the following:

__DSORG_unknown unknown organization

__DSORG_U

unmoveable

_DSORG_VSAM VSAM

__DSORG_GS
__DSORG_PO
__DSORG_PQU
__DSORG_MQ
__DSORG_CQ
__DSORG_CX
__DSORG_DA
__DSORG_DAU
__DSORG_PS
__DSORG_PSU
__DSORG_IS
__DSORG_ISU

graphics

partioned organization
partioned organization unmoveable
message processing queue
direct access message queue
communication line group
direct access

direct access unmoveable
phsyical sequential

phsyical sequential unmoveable
indexed sequential (deprecated)

indexed sequential unmoveable (deprecated)

int alcunit unit of space allocation, one of the following:

_CYL
__TRK

Cylinders
Tracks

int primary primary space allocation

int secondary secondary space allocation

int recfm record format, one of, or a combination of the following,

M_
A
S_

FB
VB
FBS
VBS

long long blksize block size

92 Systems/C C Library

int lrecl logical record length, 0x8000 indicates X’ for BSAM and QSAM al-
locations.

char *volrefds volume serial reference

char *dcbrefds DSNAME for DCB reference

char *dcbrefdd DDNAME for DCB reference

unsigned int flags miscellaneous flags, a combination of the following:

__CLOSE close on free

__RELEASE release unused space
__PERM

__CONTIG request contiguous space
__ROUND round allocation sizes
__TERM device is a terminal
__DUMMY_DSN

__HOLDQ

__WAIT

char *password data set password

int dirblk number of directory blocks

int avgblk average block length

char *storclass SMS storage class

char *mgntclass SMS management class

char *dataclass SMS data class

int recorg VSAM dataset organization , one of the following:

_KS
__ES
_RR
_LS

int keylength VSAM key length
int keyoffset VSAM key offset
int rls VSAM record level sharing flags, one of the following:

__RLS_NRI no read integrity
_RLS_CR consistent read
__RLS_CRE consistent read explicit

Systems/C C Library 93

char *refdd copy attributes from referenced DDNAME
char *like copy attributes from DSNAME
int dsntype Type attribute of PDS or PDSE, one of the following:

__DSNT_LARGE large format, greater than 65535 trks
_DSNT_BASIC basic format data set
__DSNT_EXTPREF extended format preferred
__DSNT_EXTREQ extended format required
_DSNT_HFS HFS file system

_DSNT_PIPE FIFO special pipe

__DSNT_PDS PDS

__DSNT_LIBRARY PDSE

char *pathame path name
int pathopts path options, one of the following:

__PATH_OSYNC
__PATH_OCREAT
__PATH_OEXCL
__PATH_ONOCTTY
__PATH_OTRUNC
__PATH_OAPPEND
__PATH_ONONBLOCK
__PATH_ORDWR
__PATH_ORDONLY
__PATH_OWRONLY

int pathmode path mode, one or a combination of the following:

__PATH_SISUID
__PATH_SIGUID
__PATH_STIRUSR
__PATH_SIWUSR
__PATH_STIXUSR
__PATH_SIRWXU
__PATH_SIRGRP
__PATH_SIWGRP
__PATH_STXGRP
__PATH_SIWRXG
__PATH_STROTH

94 Systems/C C Library

__PATH_SIWOTH
__PATH_STIXOTH
__PATH_STWRXO

int pathndisp path normal disposition, can be one of the following:

__DISP_DELETE
__DISP_KEEP

int pathcdisp path conditional disposition , can be one of the following:

__DISP_DELETE
__DISP_KEEP

char * __ptr3l * __ptr31l miscitems extra text units

struct __S99RBX * _ptr31l rbx SVC99 RBX (request block extension) pointer
struct __S99EMPARMS * _ ptr31 emsparmlist pointer to messages

int infocode SVC 99 returned info code

int errcode SVC 99 returned error code

The __dyn_t structure must be initialized before invoking __dymnall or __dynfre. This
is accomplised using the __dyninit macro, or by using the __ DYN_T_INITIALIZER
macro. Unpredictable results may occur if the structure isn’t properly initialized.

The miscitems, rbx and emsparmlist fields can be used to pass additional information
to underlying SVC99 service. For more information about these, and the underly-
ing SVC99 service, consult the IBM ”z/0OS MVS Programm Authorized Assembler

Services Guide” and the __svc99(2) documentation.

The __dynfre function deallocates a z/OS data set based on the values passed via
the parms parameter. The only fields in the given __dyn_t structure used by __dynfre
are:

char *ddname
char *dsname
char *member
char *pathname
char *normdisp
char *pathndisp

char *miscitems

all other fields are ignored.

Systems/C C Library 95

EXAMPLES

This program dynamically allocates a file named "MYNAME.MY.DATASET”, with
an allocation unit of CYL, a primary quantity of 2 and a secondary quantity of 1,
with a logical record length of 121, a block size of 12100 and a fixed record ASA
format.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <machine/dynit.h>
#include <machine/svc99.h>

int main () {

__dyn_t ip;

__dyninit(&ip);

ip.ddname = "mydd"; /* MYDD DD */
ip.dsname = "MYNAME.MY.DATASET"; /* DSN=’MYNAME.MY.DATASET’ */
ip.status = __DISP_NEW; /* DISP=(NEW,CATLG) */
ip.normdisp = __DISP_CATLG;

ip.alcunit = __CYL; /* SPACE=(CYL, (2,1)), */

ip.primary = 2;
ip.secondary = 1;
ip.dirblk = 1;

ip.flags = __RELEASE & __CONTIG; /x RLSE,CONTIG) */
ip.dsorg = __DSORG_PO; /* DCB=(DSORG=PO, */
ip.recfm = _F_ + _B_ + _A_; /* RECFM=FBA, */
ip.lrecl = 121; /* LRECL=121, */
ip.blksize = 12100; /* BLKSIZE=12100) */

if (dynalloc(&ip) != 0) {
int err, inf;
err = ip.errcode;
inf = ip.infocode;
printf ("Dynalloc failed with error code 0x%04x (%d), "
"info code 0x%04x (%d)\n", err, inf);

To deallocate a file:

#include <stdio.h>

96 Systems/C C Library

#include <stdlib.h>
#include <string.h>
#include <machine/dynit.h>

int
main(void)

{
__dyn_t ip = __DYN_T_INITIALIZER;

ip.ddname = "mydd";

dynfree(&ip);
}

RETURN VALUES

The dynalloc() function returns -1 if it was unable to allocate enough memory to

build the parameters for the __svc99() function.

Otherwise, it returns the return code from the invocation of __svc99().

ISSUES

The dynalloc and dynfree functions are only available on z/OS.

SEE ALSO

"z/OS MVS Programm Authorized Assembler Services Guide”, __malloc31(3),

_sve99(3).

Systems/C C Library 97

DUP(2)
NAME

dup, dup2 - duplicate an existing file descriptor

SYNOPSIS

#include <unistd.h>

int
dup(int o0lddd)

int
dup2(int o0lddd, int newdd)

DESCRIPTION

dup() duplicates an existing object descriptor and returns its value to the calling
process (newd = dup(oldd)). The argument oldd is a small non-negative integer
index in the per-process descriptor table. The value must be less than the size of
the table, which is returned by getdtablesize(2). The new descriptor returned by
the call is the lowest numbered descriptor currently not in use by the process.

The object referenced by the descriptor does not distinguish between oldd and newd
in any way. Thus if newd and oldd are duplicate references to an open file, read(2),
write(2) and lseek(2) calls all move a single pointer into the file, and append mode,
non-blocking I/O and synchronous I/O options are shared between the references.
If a separate pointer into the file is desired, a different object reference to the file
must be obtained by issuing an additional open(2) call.

In dup2(), the value of the new descriptor newd is specified. If this descriptor is
already in use and oldd '= newd, the descriptor is first deallocated as if a close(2)

call had been used. If oldd is not a valid descriptor, then newd is not closed. If oldd
== newd and oldd is a valid descriptor, then dup2() is successful, and does nothing.

RETURN VALUES

The value -1 is returned if an error occurs in either call. The external variable
errno indicates the cause of the error.

98 Systems/C C Library

ERRORS

dup() and dup2() fail if:

[EBADF] oldd or newd is not a valid active descriptor.
[EMFILE] Too many descriptors are active.

[ENOMEM] Insufficient memory was available.

SEE ALSO

close(2), fentl(2), getdtablesize(2), open(2)

STANDARDS

The dup() and dup2() function calls are expected to conform to IEEE Std1003.1-
1990 (“POSIX”), as closely as possible given the constraints of the host operating
system.

Systems/C C Library 99

EXECVE(2)
NAME

execve - execute a file

SYNOPSIS

#include <unistd.h>

int
execve(const char #*path, char *const argv[], char *const envpl[]);

DESCRIPTION

execve() transforms the calling process into a new process. The new process is
constructed from an ordinary //HFS:-style file, whose name is pointed to by path,
called the new process file. This file is either an executable object file, or a file of
data for an interpreter.

An interpreter file begins with a line of the form:
#! <interpreter> [<arg>]

When an interpreted file is is execve()’d, the system actually execve’s the spec-
ified interpreter. If the optional arg is specified, it becomes the first argument to
the interpreter, and the name of the originally execve()’d file becomes the sec-
ond argument; otherwise, the name of the originally execve()’d file becomes the
first argument. The original arguments are shifted over to become the subsequent
arguments. The zero’th argument is set to the specified interpreter.

The argument argv is a pointer to a NULL-terminated array of character pointers to
nul-terminated character strings. These strings construct the argument list to be
made available to the new process. At least one argument must be present in the
array; by custom, the first element should be the name of the executed program (for
example, the last component of path).

The argument envp is also a pointer to a NULL-terminated array of character pointers
to nul-terminated strings. A pointer to this array is normally stored in the global
variable environ. These strings pass information to the new process that is not
directly an argument to the command.

//HFS:-style file descriptors open in the calling process image remain open in the new
process image, except for those for which the close-on-exec flag is set (see close(2)

100 Systems/C C Library

and fentl(2)). File descriptors not associated with //HFS:-style files are closed as
if the close-on-exec flag was set. Descriptors that remain open are unaffected by
execve().

Signals set to be ignored in the calling process are set to be ignored in the new
process. Signals which are set to be caught in the calling process image are set to
default action in the new process image. Blocked signals remain blocked regardless
of changes to the signal action. The signal stack is reset to be undefined.

If the set-user-ID mode bit of the new process image file is set (see chmod(2)),
the effective user ID of the new process image is set to the owner ID of the new
process image file. If the set-group-ID mode bit of the new process image file is
set, the effective group ID of the new process image is set to the group ID of the
new process image file. (The effective group ID is the first element of the group
list.) The real user ID, real group ID and other group IDs of the new process image
remain the same as the calling process image. After any set-user-ID and set-group-
ID processing, the effective user ID is recorded as the saved set-user-ID, and the
effective group ID is recorded as the saved set- group-ID. These values may be used
in changing the effective IDs later (see setuid(2)).

The set-ID bits are not honored if the respective file system has the SSTFNOSUID
option enabled or if the new process file is an interpreter file.

The new process also inherits the following attributes from the calling process:

process 1D see getpid(2)
parent process ID see getppid(2)
process group 1D see getpgrp(2)
access groups see getgroups(2)
working directory see chdir(2)
root directory see chroot(2)

control terminal

resource usages see getrusage(2)
interval timers

resource limits see getrlimit(2)
file mode mask see umask(2)

signal mask

When a program is executed as a result of an execve() call, the lower-level service
passes a parameter list, which is pointed to by regiter 1. The parameter list consists
of the following parameter addresses, with the high-order bit set in the last value.

Systems/C C Library 101

R1 Parameter list

Argument count

Argument length list

Argument data list

Environment length

| @Environment data list | Environment data list

|
|
|
|
|
[| @Environment count I Environment count
|
|
|
I
|

[|@Plist (high_order = ’1°)| Parameter list

| __ | (Self_pointer)

The Systems/C runtime recognizes this entry style and transforms the parameters
into the standard:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the number of elements in argv (the “arg count”) and argv points to
the array of character pointers to the arguments themselves.

For entry into Systems/C programs, the argv and envp array elements are assumed
to be nul-terminated.

RETURN VALUES

As the execve() function overlays the current process image with a new process
image the successful call has no process to return to. If execve() does return to
the calling process an error has occurred; the return value will be -1 and the global
variable errno is set to indicate the error.

ERRRORS

execve() will fail and return to the calling process if:

[ENOTDIR] A component of either path prefix is not a directory.

102 Systems/C C Library

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire

path name exceeded 1023 characters.

[ENAMETOOLONG] When invoking an interpreted script, the interpreter name exceeds

[ENOENT]

[ELOOP]

[EACCES]
[EACCES]
[EACCES]

[ENOEXEC]

[ENOMEM]

[E2BIG]

[EFAULT]

[EI0]

SEE ALSO

MAXSHELLCMDLEN characters.
The new process file does not exist.

Too many symbolic links were encountered in translating the path-
name.

Search permission is denied for a component of the path prefix.
The new process file is not an ordinary file.
The new process file mode denies execute permission.

The new process file has the appropriate access permission, but is
not in the proper format to be a process image.

The new process requires more virtual memory than is allowed by
the imposed maximum.

The number of bytes in the new process’ argument list is larger than
the system-imposed limit.

Path, argv, or envp point to an illegal address.

An I/0 error occurred while reading from the file system.

fork(2), _exit(2), execl(3), exit(3), The BPX1EXC service in the IBM publication
“OpenEdition Assembler Callable Services”.

Systems/C C Library 103

_EXIT(2)
NAME

_exit - terminate the calling program

SYNOPSIS

#include <unistd.h>

void
_exit(int status);

DESCRIPTION
The _exit() function terminates a program with the following consequences:

e All of the descriptors open in the calling process are closed. This may entail
delays, for example, waiting for output to drain.

e All allocated memory for the programs stack and heap space is released.

e For OpenEdition (POSIX) programs, if the parent OpenEdition process of the
calling process has an outstanding wait(2) call or catches the SIGCHLD signal,
it is notified of the calling process’s termination and the status is set as defined
by wait(2).

e For OpenEdition (POSIX) programs, the parent process-ID of all of the calling
process’s existing child processes are set to 1; the initialization process inherits
each of these processes.

e For OpenEdition (POSIX) programs, if the termination of the process causes
any process group to become orphaned (usually because the parents of all
members of the group have now exited), and if any member of the orphaned
group is stopped, the SIGHUP signal and the SIGCONT signal are sent to all
members of the newly-orphaned process group.

e For OpenEdition (POSIX) programs, if the process is a controlling process,
the SIGHUP signal is sent to the foreground process group of the controlling
terminal, and all current access to the controlling terminal is revoked.

e For DCALL environments, the environment is destroyed and cannot be used
again via DCALL=SUPPLIED.

Most C programs call the library routine exit(3), which flushes buffers, closes
streams, unlinks temporary files, etc., before calling _exit().

104 Systems/C C Library

RETURN VALUES

_exit() can never return.

SEE ALSO

fork(2), wait(2), exit(3)

STANDARDS

The _exit() function call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.1”) as much as the host system allows.

Systems/C C Library 105

FCNTL(2)

NAME

fentl - file control

SYNOPSIS

#include <fcntl.h>

int

fcntl(int fd, int cmd, ...)

DESCRIPTION

fentl() provides for control over descriptors. The argument fd is a descriptor to be
operated on by c¢md as described below. Depending on the value of c¢md, fentl can
take an additional third argument int arg.

F_GETFL

F_SETFL

F_GETFD

F_SETFD

Get descriptor status flags, as described below (arg is ignored).
Set descriptor status flags to arg.

Get the file descriptor flags (FD_LEAVEONCLOSE or FD_FREEONCLOSE,
or both) associated with the DSN/DDN file descriptor.

Set the leave-on-close (FD_LEAVEONCLOSE) and/or free-on-close
(FD_FREEONCLOSE) flags associated with the DSN/DDN file descrip-
tor. If the FD_LEAVEONCLOSE bit is set in arg, then when the asso-
ciated file is closed, the LEAVE option will be specified on the MVS
CLOSE macro. If the FD_FREEONCLOSE bit is set in arg, then when
the associated file is closed, the FREE option will be specified on the
MVS CLOSE macro.

RETURN VALUES

Upon successful completion, the value returned depends on cmd as follows:

F_GETFL
F_GETFD

other

Value of flags.
Value of flags.

Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

106 Systems/C C Library

ERRORS

fentl() will fail if:

[EBADF] fd is not a valid open file descriptor.

SEE ALSO

close(2), getdtablesize(2), open(2)

Systems/C C Library 107

FLDATA (2)

NAME

fldata - retrieve low-level file information

SYNOPSIS

#include <machine/syscio.h>

int

fldata(int fd, char *buf, int bufsize, fldata_t *info);

DESCRIPTION

The fldata() function examines the open file descriptor fd and returns information
about the file. If the file descriptor was generated by a call to open(2), (or indirectly
via fopen(3)), then fldata() returns the original name specified on the open()
function call in buf, up to bufsize characters. The fldata() function does not append
a NUL character to buf.

fldata() also sets various fields of the fldata_t structure with information from the
open file. The fldata_t structure (shown below) is defined in <machine/syscio.h>.

typedef struct

/* Record formats */

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

_fileData {
int __recfmF:1;
int __recfmV:1;
int __recfmU:1;
int __recfmS:1;
int __recfmBlk:1;
int __recfmASA:1;
int __recfmM:1;

/* Data Set organization */

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int
int
int
int
int
int
int
int
int
int

__dsorgP0:1;
__dsorgPDSmem:1;
__dsorgPDSdir:1;
__dsorgPS:1;
__dsorgConcat:1;
__dsorgMem:1;
__dsorgHiper:1;
__dsorgTemp:1;
__dsorgVSAM:1;
__dsorgHFS:1;

108 Systems/C C Library

/*
/%
/*
/%
/*
/*
/*

/%
/*

/*

Fixed Records */

Variable Records */

Undefined Records */

Spanned */

Blocked data set */

ASA print control characters */
Machine control character */

PDS */
PDS member specified on open */

sequential file */

HFS file =/

unsigned int __dsorgPDSE:1;

/* How was the file opened? */
unsigned int __openmode:2;
unsigned int __modeflag:4;
unsigned int __vsamRLS:3;
unsigned int __reservl:8;
__device_t __device;
unsigned long __blksize;
unsigned long __maxreclen;
unsigned short __vsamtype;
unsigned long __vsamkeylen;
unsigned long __vsamRKP;
char * __dsname;
unsigned int __reserv2;

} fldata_t;

The fields of fldata_t are as follows:

__recfmF Set to 1 for fixed-length records

__recfmV Set to 1 for variable-length records

__recvmU Set to 1 for undeifned-length records

__recfmS Set to 1 for spanned records

__recfmBlk Set to 1 for blocked records

__recfmASA Set to 1 if the file uses ASA print-control characters
__recfmM Set to 1 if the file uses machine print-control characters
__dsorgP0 Set to 1 for a PDS file

__dsorgPDSmem Set to 1 for PDS members

__dsorgPDSdir Set to 1 for PDS or PDSE directory

__dsorgPsS Set to 1 for sequential files

_dsorgConcat Set to 1 for concatenated sequential files

__dsorgHFS Set to 1 for HF'S files.

__dsorgPDSE Set to 1 if the file is a PDSE

__openmode How the files was opened, one of __TEXT, __BINARY or __RECORD

_modeflag How the file is altered or used, can be __APPEND, __READ, __UPDATE,
__WRITE. These values can be logically OR’d together.

Systems/C C Library 109

_device The low-level “device driver” handling this file, one of __DISK,
__TERMINAL, __SOCKET or __HFS

__blksize Block size of the file

__maxreclen Record length of the file (1-32760); or 2147483647 for an LRECL=X
Variable Spanned file.

__dsname For //DDN:-style files, this is set to a pointer to the NUL-terminated
DSN-name associated with the file. If the DD-name is a concatena-
tion, this contains the first DSN-name in the concatenation. If the
name passed to open(2) was not a //DDN:-style name, this field will
be NULL.

RETURN VALUES

If successful, fldata() returns the number of characters copied into buf (which may
be zero.) Otherwise, fldata() returns -1 and sets the global variable errno to
indicate the error.

ERRORS

fldata() will fail if:

[EBADF] fd is not a valid descriptor.

[EFAULT] Either buf or info specifies an invalid address.

[ENOSYS] Couldn’t determine the associated DSN name for a //DDN:-style
name

Furthermore, for //HFS:-style files, fldata() can fail under the same conditions that
fstat(2) can fail.

SEE ALSO

open(2), fstat(2), ddnfind(2), fileno(3)

ISSUES

The __dsname field is statically allocated in the library and should be saved between
calls to fldata.

110 Systems/C C Library

The fldata_t structure defines fields not currently supported by the Systems/C
library (e.g. VSAM-related fields.) These are provided for compatibility with IBM’s
fldata function. Note that the IBM fldata function operates on FILE streams
not file descriptors and has a slightly different parameter list.

Systems/C C Library 111

FORK(2)
NAME

fork - create a new process

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

pid_t
fork(void);

DESCRIPTION

fork() causes creation of a new process. The new process (child process) is an exact
copy of the calling process (parent process) except for the following:

e The child process has a unique process ID.

e The child process has a different parent process ID (i.e. the process ID of the
parent process.)

e The child process has its own copy of the parent’s descriptors. These descrip-
tors reference the same underlying objects, so that, for instance, file pointers
in file objects are shared between the child and the parent, so that an Iseek(2)
on a descriptor in the child process can affect a subsequent read(2) or write(2)
by the parent. This descriptor copying is also used by the shell to establish
standard input and output for newly created processes as well as to set up
pipes.

Any file descriptors associated with non //HFS:-style files are closed in the
child process.

e The child process’ resource utilizations are set to 0.

All interval timers are cleared

Any file locks previous set by the parent are not inherited by the child.

The child has no pending signals.

112 Systems/C C Library

RETURN VALUES

Upon successful completion, fork() returns a value of 0 to the child process and
returns the process ID of the child process to the parent process. Otherwise, a value
of -1 is returned to the parent process, no child process is created, and the global
variable errno is set to indicate the error.

ERRORS

fork() will fail and no child process will be created if:

[EAGAIN] The system-imposed limit on the total number of processes under
execution would be exceeded.

[EAGAIN] The user is not the super user, and the “soft” resource limit on the
number of per-user processes has been exhausted.

[ENOMEM] There is insufficient space for the new process.

SEE ALSO

execve(2), wait(2)

Systems/C C Library 113

FSYNC(2)
NAME

fsync - synchronise changes to a file

SYNOPSIS

#include <unistd.h>
int

fsync(int £d);

DESCRIPTION

For //HFS:-style files, fsync() causes all modified data and attributes of fd to be
moved to a permanent storage device. This normally results in all in-core modified
copies of buffers for the associated file to be written to a disk.

fsync() should be used by programs that require a file to be in a known state, for
example, in building a simple transaction facility.

Because of internal operating system buffering, for non-//HFS:-style files, the
fsync() function fails with a -1 return code, and errno set to EIO.

RETURN VALUES

The fsync() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The fsync() function fails if:

[EBADF] fd is not a valid descriptor.

[EINVAL] fd refers to something that is not a regular file.

[EI0] An 1/O error occurred while reading from or writing to the file
system.

114 Systems/C C Library

SEE ALSO

sync(2)

Systems/C C Library 115

__GET_CPUID(2)
NAME

__get_cpuid() - return the IBM CPU identifier

SYNOPSIS

#include <machine/tiot.h>

int __get_cpuid(char *buff);

DESCRIPTION

The __get_cpuid() function returns the current CPU identifier as a nul-terminated
string in the buffer addressed by buff. Buff must be at least 11 bytes long (10 bytes
for the identifier, with a terminating zero.)

The CPU ID contains the serial number, followed by the model number.

RETURN VALUES

The __get_cpuid() function always returns the value 0. The CPU ID is contained
in the string buff.

116 Systems/C C Library

GETITIMER(2)
NAME

getitimer, setitimer — get/set value of interval timer

SYNOPSIS

#include <sys/time.h>
#define ITIMER_REAL 0
#define ITIMER_VIRTUAL
#define ITIMER_PROF

N~

int
getitimer (int which, struct itimerval *value);

int
setitimer (int which, const struct itimerval *value,
struct itimerval *ovalue);

DESCRIPTION

The system provides each process with three interval timers, defined in jsys/time.h; .
The getitimer() system call returns the current value for the timer specified in
which in the structure at value. The setitimer() system call sets a timer to the
specified value (returning the previous value of the timer if ovalue is not a null
pointer).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */

};

If it_value is non-zero, it indicates the time to the next timer expiration. If it_interval
is non-zero, it specifies a value to be used in reloading it_value when the timer expires.
Setting #t_value to 0 disables a timer, regardless of the value of it_interval. Setting
it_interval to 0 causes a timer to be disabled after its next expiration (assuming
it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this
resolution.

Systems/C C Library 117

The ITIMER _REAL timer decrements in real time. A SIGALRM signal is delivered when
this timer expires.

The ITIMER VIRTUAL timer decrements in process virtual time. It runs only when
the process is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER _PROF timer decrements both in process virtual time and when the
system is running on behalf of the process. It is designed to be used by inter-
preters in statistically profiling the execution of interpreted programs. Each time
the ITIMER PROF timer expires, the SIGPROF signal is delivered. Because this signal
may interrupt in-progress system calls, programs using this timer must be prepared
to restart interrupted system calls.

The maximum number of seconds allowed for it_interval and it_value in setitimer()
is 100000000.

NOTES

Three macros for manipulating time values are defined in jsys/time.h;. The
timerclear () macro sets a time value to zero, timerisset () tests if a time value
is non-zero, and timercmp() compares two time values.

The underlying IBM implementation uses the MVS STIMERM interface, if the number

of concurrent STIMERM SET requests for the current task is exceeded, the program
can abnormally end.

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

The getitimer() and setitimer() system calls will fail if:

[EFAULT] The value argument specified a bad address.

[EINVAL] The value argument specified a time that was too large to be handled
or was negative.

[ENOSYS] POSIX signals were not enabled for the program and are required
for delivering the signal when the timer expires.

118 Systems/C C Library

SEE ALSO

gettimeofday(2), select(2)

Systems/C C Library 119

GETDTABLESIZE(2)
NAME

getdtablesize - get descriptor table size

SYNOPSIS

#include <unistd.h>

int
getdtablesize(void)

DESCRIPTION

Each process has a fixed size descriptor table, which is guaranteed to have at least 20
slots. The entries in the descriptor table are numbered with small integers starting
at 0. The call getdtablesize() returns the size of this table.

SEE ALSO

close(2), dup(2), open(2)

120 Systems/C C Library

GETGID(2)
NAME

getgid, getegid - get group process identification

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

gid_t
getgid(void);

gid_t
getegid(void) ;

DESCRIPTION

The getgid() function returns the real group ID of the calling process, getegid()
returns the effective group ID of the calling process.

The real group ID is specified at login time.

The real group ID is the group of the user who invoked the program. As the
effective group ID gives the process additional permissions during the execution of
“set-group-ID” mode processes, getgid() is used to determine the real-user-id of

the calling process.

ERRORS

As long as UNIX System Services are available, the getgid() and getegid() func-
tions are always successful, and no return value is reserved to indicate an error.

SEE ALSO

getuid(2), setgid(2), setregid(2)

STANDARDS

The getgid() and getegid() function calls are expected to conform to ISO/IEC
9945-1:1990 (“POSIX.1"), as closely as the host system allows.

Systems/C C Library 121

GETGROUPS(2)
NAME

getgroups - get group access list

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

int
getgroups (int gidsetlen, gid_t *gidset);

DESCRIPTION

getgroups() gets the current group access list of the user process and stores it in
the array gidset. The parameter gidsetlen indicates the number of entries that may
be placed in gidset. getgroups() returns the actual number of groups returned
in gidset. No more than NGROUPS_MAX will ever be returned. If gidsetlen is zero,
getgroups() returns the number of supplementary group IDs associated with the
calling process without modifying the array pointed to by gidset.

RETURN VALUES

A successful call returns the number of groups in the group set. A value of -1
indicates that an error occurred, and the error code is stored in the global variable
errno.

ERRORS

The possible errors for getgroups() are:

[EINVAL] The argument gidsetlen is smaller than the number of groups in the
group set.

[EFAULT] The argument gidset specifies an invalid address.

SEE ALSO

setgroups(2)

122 Systems/C C Library

GETLOGIN(2)
NAME

getlogin - get login name

SYNOPSIS

#include <unistd.h>

char *
getlogin(void);

DESCRIPTION

The getlogin() routine returns the login name of the user associated with the
current session. The name is normally associated with a login step at the time a
session is created, and is inherited by all processes descended from the login shell.
(This is true even if some of those processes assume another user ID.)

RETURN VALUES

If a call to getlogin() succeeds, it returns a pointer to a NUL-terminated string in
a static buffer, or NULL if the name has not been set.

ERRORS

If OpenEdition services are available, getlogin() should not fail. If OpenEdition
services are available, and the request fails getlogin() will terminate the program
with an abend.

STANDARDS

getlogin() conforms to ISO/IEC 9945-1:1996 (“POSIX.17).

Systems/C C Library 123

GETPID(2)
NAME

getpid, getppid - get parent or calling process identification

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

pid_t
getpid(void);

pid_t

getppid(void) ;

DESCRIPTION

getpid() returns the process ID of the calling process. Though the ID is guaranteed
to be unique, it should NOT be used for constructing temporary file names, for
security reasons; see mkstemp(3) instead.

getppid() returns the process ID of the parent of the calling process.
ERRORS

If OpenEdition services are available, the getpid() and getppid() functions are
always succesful, and no return value is reserved to indicate an error.

If OpenEdition services are not available, getpid() and getppid() return zero, and
the global variable errno is set to the value ENOSYS.

STANDARDS

The getpid() and getppid() function calls are expected to conform to ISO/IEC
9945-1:1990 (“POSIX.1”) as closely as the host operating system allows.

124 Systems/C C Library

GETPGRP(2)
NAME

getpgrp - get process group

SYNOPSIS

#include <unistd.h>

pid_t
getpgrp(void) ;

pid_t
getpgid(pid_t pid);

DESCRIPTION

The process group of the current process is returned by getpgrp(). The process
group of the process identified by pid is returned by getpgid(). If pid is zero,
getpgid() returns the process group of the current process.

Process groups are used for distribution of signals, and by terminals to arbitrate
requests for their input: processes that have the same process group as the terminal
are foreground and may read, while others will block with a signal if they attempt
to read.

This call is thus used by programs to create process groups in implementing job
control. The tcgetpgrp(3) and tcsetpgrp(3) calls are used to get/set the process
group of the control terminal.

RETURN VALUES

The getpgrp() call always succeeds. Upon successful completion, the getpgid()
call returns the process group of the specified process; otherwise, it returns a value
of -1 and sets errno to indicate the error.

ERRORS

getpgrp() will succeed unless:

[EPERM] pid is not in the same session as the calling process

[ESRCH] there is no process whose process ID equals pid

Systems/C C Library 125

SEE ALSO

getsid(2), setpgid(2)

STANDARDS

The getpgrp() function call is expected to conform to ISO/TEC 9945-1:1990
(“POSIX.1") as closely as the host system allows.

126 Systems/C C Library

GETPRIORITY (2)
NAME

getpriority, setpriority - get/set program scheduling priority

SYNOPSIS

#include <sys/time.h>
#include <sys/resource.h>

int
getpriority(int which, int who);

int
setpriority(int which, int who, int prio);

DESCRIPTION

The scheduling priority of the process, process group, or user, as indicated by which
and who is obtained with the getpriority() call and set with the setpriority() call.
Which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted
relative to which (a process identifier for PRIO_PROCESS, process group identifier for
PRIO_PGRP, and a user ID for PRIO_USER). A zero value of who denotes the current
process, process group, or user. Prio is a value in the range -20 to 19. The default
priority is 0; lower priorities cause more favorable scheduling.

The getpriority() call returns the highest priority (lowest numerical value) enjoyed
by any of the specified processes. The setpriority() call sets the priorities of all
of the specified processes to the specified value. Only the super-user may lower
priorities.

RETURN VALUES

Since getpriority() can legitimately return the value -1, it is necessary to clear the
external variable errno prior to the call, then check it afterward to determine if a
-1 is an error or a legitimate value.

The setpriority() function returns the value 0 if successful; otherwise the value -1
is returned and the global variable errno is set to indicate the error.

Systems/C C Library 127

ERRORS
getpriority() and setpriority() will fail if:

Which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

[EINVAL]

[EINVAL] Who is not a alid process ID, group ID or user ID.

[ENOSYS] The system does not support this function, or the installation has
not enabled it.

[ESRCH] No process was located using the which and who values specified.

In addition to the errors indicated above, setpriority() will fail if:

A process was located, but neither its effective nor real user 1D

[EPERM]
matched the effective user ID of the caller.
[EACCES] A non super-user attempted to lower a process priority.
SEE ALSO

nice(3), fork(2)

128 Systems/C C Library

GETPRV(2)
NAME

__getprv - return the current Pseudo Register Vector address

SYNOPSIS

#pragma map (__getprv,"@QGETPRV")
void *__getprv(void) ;

This function does not appear in any header file, thus, the #pragma map statement
must be properly provided to use it.

DESCRIPTION

The __getprv() function returns the address of the current Pseudo Register Vector
(PRV). The PRV contains global re-entrant data.

Typically __getprv() is used in conjunction with #pragma

prokley(...,"DCALL=ALLOCATE,PRV=0") functions for creating stack envi-
ronments that share the same global variables.

Systems/C C Library 129

GETRUSAGE(2)
NAME

getrusage - get information about resource utilization

SYNOPSIS

#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>

#tdefine RUSAGE_SELF 0
#define RUSAGE_CHILDREN -1
int

getrusage(int who, struct rusage *rusage);

DESCRIPTION

getrusage() returns information describing the resources utilized by the cur-
rent process, or all its terminated child processes. The who parameter is either
RUSAGE_SELF or RUSAGE_CHILDREN. The buffer to which rusage points will be filled
in with the following structure:

struct rusage {
struct timeval ru_utime; /* user time used */
struct timeval ru_stime; /* system time used */

The fields are interpreted as follows:

ru_utime the total amount of time spent executing in user mode.

ru_stime the total amount of time spent in the system executing on be-
half of the process(es).

RETURN VALUES

The getrusage() function returns the value 0 if successful; otherwise the value -1
is returned and the global variable errno is set to indicate the error.

130 Systems/C C Library

ERRORS

The getrusage() function will fail if:

[EINVAL] The who parameter is not a valid value. gitem|[[EFAULT]| The ad-
dress specified by the rusage parameter is not in a valid part of the
process address space.

SEE ALSO

gettimeofday(2), wait(2)

Systems/C C Library 131

GETSID(2)
NAME

getsid - get process session

SYNOPSIS

#include <unistd.h>

pid_t
getsid(pid_t pid);

DESCRIPTION

The session ID of the process identified by pid is returned by getsid(). If pid is
zero, getsid() returns the session ID of the current process.

RETURN VALUES

Upon successful completion, the function getsid() returns the session ID of the
specified process; otherwise, it returns a value of -1 and sets errno to indicate an
€rTor.

ERRORS

getsid() will succeed unless:

[EPERM] pid is not in the same session as the calling process.
[ESRCH] there is no process with a process ID equal to pid.
SEE ALSO

getpgid(2), getpgrp(2), setpgid(2), setsid(2)

132 Systems/C C Library

GETTIMEOFDAY (2)
NAME

gettimeofday - get date and time

SYNOPSIS

#include <sys/time.h>

int
gettimeofday(struct timeval *tp, struct timezone *tzp);

DESCRIPTION

The system’s notion of the current Greenwich time and the current time zone is
obtained with the gettimeofday() call. The time is expressed in seconds and
microseconds since midnight (0 hour), January 1, 1970. The resolution of the system
clock is hardware dependent, and the time may be updated continuously or in
“ticks”. If tp or tzp is NULL, the associated time information will not be returned.

The structure pointed to by ¢p and tzp are defined in <sys/time.h> as:

struct timeval {
long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */

};

struct timezone {
int tz_minuteswest; /* minutes west of Greenwich */
int tz_dsttime; /* type of dst correction */

};

The timezone structure indicates the local time zone (measured in minutes of time
westward from Greenwich), and a flag that, if nonzero, indicates that Daylight
Saving time applies locally during the appropriate part of the year.

The Systems/C runtime on OS/390 and z/OS assumes the system clock is set to

Greenwhich time (not local time), and uses the CVTTZ value to determine the time-
zone offset.

Systems/C C Library 133

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

The following error codes may be set in errno:

[EFAULT] An argument address referenced invalid memory.

SEE ALSO

ctime(3)

134 Systems/C C Library

GETUID(2)
NAME

getuid, geteuid - get user identification

SYNOPSIS

#include <unistd.h>
#include <sys/types.h>

uid_t
getuid(void) ;

uid_t
geteuid(void) ;

DESCRIPTION

The getuid() function returns the real user ID of the calling process. The geteuid()
function returns the effective user ID of the calling process.

The real user ID is that of the user who has invoked the program. As the effective
user ID gives the process additional permissions during execution of “set-user-ID”
mode processes, getuid() is used to determine the real-user-id of the calling process.

ERRORS

As long as the UNIX System Services are available, the getuid() and geteuid()
functions are always successful, and no return value is reserved to indicate an error.

SEE ALSO

getgid(2), setgid(2), setreuid(2), setuid(2)

STANDARDS

The geteuid() and getuid() function calls are expected to conform to ISO/IEC
9945-1:1990 (“POSIX.1"), as close as the host system allows.

Systems/C C Library 135

GRANTPT(2)
NAME

grantpt - grant access to a slave pseudoterminal

SYNOPSIS

#include <stdlib.h>
int

grantpt(int filedes);

DESCRIPTION

The grantpt() function changes the ownership and mode of a slave pseudoterminal.
filedes is a file descriptor that is the result of an open(2) of the corresponding master
pseudoterminal.

Secure connections can be provided by using grantpt() and unlockpt(2), or by
simply issuing the first open against the slave pseudoterminal from the userid or
process that opened the master terminal.

RETURN VALUE

If successful, grantpt() returns the value 0, otherwise a -1 is returned and the global
variable errno is set to indicate the error.

ERRORS

grantpt() will fail it:

[EACCESS] grantpt() has already been issued on this descriptor, or the slave
pseudoterminal has already been opened.

[EBADF] filedes is invalid

[EINVAL] filedes is not a master pseudoterminal

[ENOENT] The slave pseudoterminal was not found.

SEE ALSO

ptsname(3), unlockpt(2)

136 Systems/C C Library

IBMFD(2)
NAME

__ibmfd - return the current Pseudo Register Vector address

SYNOPSIS

#tinclude <fcntl.h>

int __ibmfd(int fd);

DESCRIPTION

The __ibmfd() function returns the associated IBM BPX or SOCKET file descriptor
number for the given fd.

The value of fd must come from a BPX socket-related function (e.g. socket() or
accept()) or a call to open() specifying an HFS file.

This function can be used to map the file-descriptor number fd to it’s underlying
IBM file-descriptor number for direct calls to the lower-level IBM BPX interfaces.

Care must be taken when directly calling the low-level BPX interfaces, as the state of
the file may be altered from the state managed by the Dignus runtime. For example,
the Dignus runtime may consider a file descriptor to be ”open”, but a direct call to
BPX1CLS could close the underlying IBM file-descriptor causing mysterious errors.

RETURN VALUE

If successful, __ibmfd() returns the value of the IBM file descriptor, otherwise a -1
is returned and the global variable errno is set to indicate the error.

ERRORS

__ibmfd() will fail it:

[EBADF] fd is invalid

[EINVAL] fd is not an HFS or SOCKET descriptor

Systems/C C Library 137

SEE ALSO

open(3), socket(2), accept(2)

138 Systems/C C Library

__ISPOSIXON(2)
NAME

__isPosixOn - determine if the OpenMVS functions are available

SYNOPSIS

#include <unistd.h>

int
__isPosix0On(void);

DESCRIPTION

The __isPosixOn() function returns 1 if the OpenMVS system functions are avail-
able and the program is executing in a POSIX environment, otherwise it returns
0.

Systems/C C Library 139

__JOBNAME(2)
NAME

__jobname - return the current jobname

SYNOPSIS

#include <machine/tiot.h>

char *
__jobname (void) ;

char *
__jobname_r(char *buf);

DESCRIPTION

The __jobname() function returns the current jobname of the executing program
on MVS, 0S/390 and z/0OS. The value returned is a pointer to a NUL-terminated
string. Trailing blanks are removed from the name returned by the operating system.

__jobname() returns a pointer to a static area, care should be taken to copy this
value before invoking __jobname() again and when using __jobname() in a multi-
tasking environment.

__jobname_r() places the job name in the area addressed by buf. buf must be at
least 9 characters in size. __jobname_r() returns buf.

SEE ALSO

__stepname(2), __procname(2), __userid(2) __querydub(2)

140 Systems/C C Library

KILL(2)
NAME

kill - send signal to a program or process

SYNOPSIS

#include <sys/types.h>
#include <signal.h>

int
kill(pid_t pid, int sig);

DESCRIPTION

The kill() function sends the signal given by sig to pid, a process or a group of
processes. Sig may be one of the valid signals, or it may be 0, in which case error
checking is performed but no signal is actually sent. This can be used to check the
validity of pid.

When running under OpenEdition, and pid is not the same process ID as the call-
ing program, the BPX1KIL service is used to send the signal to a different process
or process group. Otherwise, pid is ignored, and the signal is sent to the calling
program.

For a process to have permission to send a signal to a process designated by pid,
the real or effective user ID of the receiving process must match that of the sending
process or the user must have appropriate privileges (such as given by a set-user-1D
program or the user is the super-user). A single exception is the signal SIGCONT,
which may always be sent to any descendant of the current process.

If pid is greater than zero, sig is sent to the process whose ID is equal to pid.

If pid is zero, sig is sent to all processes whose group is equal to the process group
ID of the sender, and for which the process has permission.

If pid is -1, and the user has super-user privileges, the signal is sent to all processes
excluding the process with ID 1 (usually init), and the process sending the signal.
If the user is noto the super user, the signal is sent to tall processes with the same
uid as the user excluding the process sending the signal. No error is returend if any
process could be signaled.

If pid is negative, but not -1, the signal is sent to all processes whose process group
ID is equal to the absolute value of pid.

Systems/C C Library 141

If sig is SIGABRT and SIGABRT signals have not been caught via the signal() function,
and the program is not running under OpenEdition, then a function call traceback
will be generated on the STDERR stream, and the program will issue a user X’DCC’
or 3532 ABEND.

RETURN VALUES

The kill() function returns the value 0 if successful; otherwise the value -1 is returned
and the global variable errno is set to indicate the error.

ERRORS

kill() will fail and no signal will be sent if:

[EINVAL] Sig is not a valid signal number.
[ESRCH] No process can be found corresponding to that specified by pid.
[ESRCH] The process id was given as 0 but the sending process does not have

a process group.

[EPERM] The sending process is not the super-user and its effective user id
does not match the effective user-id of the receiving process. When
signaling a process group, this error is returned if any members of
the group could not be signaled.

SEE ALSO

getpgrp(2), getpid(2), raise(3)

STANDARDS

The kill() function call is expected to conform to ISO/IEC 9945-1:1990 (“POSIX.17)
as closely as the host operating system allows.

142 Systems/C C Library

LINK(2)
NAME

link - make a hard file link

SYNOPSIS

#include <unistd.h>
int

link(const char *namel, const char *name2);

DESCRIPTION

The link() function call atomically creates the specified directory entry (hard link)
name2 with the attributes of the underlying object pointed at by namel. If the link
is successful, the link count of the underlying object is incremented, and namel and
name2 share equal access and rights to the underlying object.

If namel is removed, the file name?2 is not deleted and the link count of the under-
lying object is decremented.

Namel must exist for the hard link to succeed and both namel and name2 must be
in the same file system. namel may not be a directory.

RETURN VALUES

The link() function returns the value 0 if successful; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

link() will fail and no link will be created if:

[ENOTDIR] A component of either path prefix is not a directory.

[ENAMETOOLONG] A component of either pathname exceeded 255 characters, or entire
length of either path name exceeded 1023 characters.

[ENOENT] A component of either path prefix does not exist.

Systems/C C Library 143

[EOPNOTSUPP]

[EMLINK]
[EACCES]

[EACCES]

[ELOOP]

[ENOENT]
[EEXIST]
[EPERM]

[EXDEV]

[ENOSPC]

[EDQUOT]

[EIO0]

[EROFS]

[EFAULT]

SEE ALSO

The file system containing the file named by namel! does not support
links.

The link count of the file named by namel! would exceed 32767.
A component of either path prefix denies search permission.

The requested link requires writing in a directory with a mode that
denies write permission.

Too many symbolic links were encountered in translating one of the
pathnames.

The file named by namel does not exist.
The link named by name2 does exist.
The file named by namel is a directory.

The link named by name2 and the file named by namel are on
different file systems.

The directory in which the entry for the new link is being placed
cannot be extended because there is no space left on the file system
containing the directory.

The directory in which the entry for the new link is being placed
cannot be extended because the user’s quota of disk blocks on the
file system containing the directory has been exhausted.

An I/O error occurred while reading from or writing to the file
system to make the directory entry.

The requested link requires writing in a directory on a read-only file
system.

One of the pathnames specified is outside the process’s allocated
address space.

pathconf(2), readlink(2), symlink(2), unlink(2)

STANDARDS

The link() function call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.17) as closely as the host operating system allows.

144 Systems/C C Library

LIO_LISTIO(2)
NAME

lio_listio — list directed I/O

SYNOPSIS

#include <aio.h>

int
lio_listio(int mode, struct aiocb * const [] list, int nent,
struct sigevent *sig);

DESCRIPTION

The lio_listio() function initiates a list of I/O requests with a single function call.
The list argument is an array of pointers to aiocb structures describing each oper-
ation to perform, with nent elements. NULL elements are ignored.

The aio_lio_opcode field of each aiocb specifies the operation to be performed.
The following operations are supported:

[LIO_READ] Read data as if by a call to aio_read(2).

[LIO_NOP] No operation.

[LIO_WRITE] Write data as if by a call to aio_write(2).

If the mode argument is LI0_WAIT, lio_listio() does not return until all the requested
operations have been completed. If mode is LIO_NOWAIT, the requests are processed

asynchronously, and the signal specified by sig is sent when all operations have
completed. If sig is NULL, the calling process is not notified of I/O completion.

The order in which the requests are carried out is not specified; in particular, there
is no guarantee that they will be executed in the order 0, 1, ..., nent-1.

RESTRICTIONS

The lio_listio() function dependes on pthreads for operation, and thus requires a
POSIX environment.

Systems/C C Library 145

RETURN VALUES

If mode is LIO_WAIT, the lio_listio() function returns 0 if the operations completed
successfully, otherwise -1.

If mode is LIO_NOWAIT, the lio_listio() function 0 if the operations are successfully
queued, otherwise -1.

ERRORS

The lio_listio() function will fail if:

[EAGAIN] There are not enough resources to enqueue the requests.
[EINVAL] The mode argument is neither LIO_WAIT nor LIO_NOWAIT.
[EINTR] A signal interrupted the function before it could be completed.
[EI0] One or more requests failed.

In addition, the lio_listio() function may fail for any of the reasons listed for
aio_read(2) and aio_write(2).

If lio_listio() succeeds, or fails with an error code of EAGAIN, EINTR or EIO, some
of the requests may have been initiated. The caller should check the error status of
each aiocb structure individually by calling aio_error(2).

SEE ALSO

alo_error(2), aio_read(2), aio_write(2), read(2), write(2)

STANDARDS

The lio_listio() function is expected to conform to IEEE Std 1003.1-2001
(“POSIX.17).

146 Systems/C C Library

LSEEK (2)
NAME

Iseek - reposition read/write file offset

SYNOPSIS

#include <unistd.h>

off_t
lseek(int filedes, off_t offset, int whence)

DESCRIPTION

The Iseek() function repositions the offset of the file descriptor fildes to the argu-
ment offset according to the directive whence. The argument fildes must be an open
file descriptor. lseek() repositions the file position pointer associated with the file
descriptor fildes as follows:

e If whence is SEEK_SET, the offset is set to offset bytes.
e If whence is SEEK_CUR, the offset is set to its current location plus offset bytes.

e If whence is SEEK_END, the offset is set to the size of the file plus offset bytes.

The Iseek() function allows the file offset to be set beyond the end of the existing
end-of-file of the file. If data is later written at this point, subsequent reads of the
data in the gap return bytes of zeros (until data is actually written into the gap).

Some devices are incapable of seeking. The value of the pointer associated with such
a device is undefined.

RETURN VALUES

Upon successful completion, Iseek() returns the resulting offset location as mea-
sured in bytes from the beginning of the file. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

Systems/C C Library 147

ERRORS

Iseek() will fail and the file position pointer will remain unchanged if:

[EBADF] Fildes is not an open file descriptor.

[ESPIPE] Fildes is associated with a pipe, socket, or FIFO.
[EINVAL] Whence is not a proper value.

SEE ALSO

dup(2), open(2)

ISSUES

This document’s use of whence is incorrect English, but is maintained for historical
reasons.

There are limitations to the Systems/C lseek() support for non-HFS files, due to
implementing a byte offset file abstraction in the OS/390 and z/OS environments.
lseek(fd, 0, SEEK_CUR) is supported for any file. This returns the internal byte
count (the number of bytes read or written.) 1seek(fd, n, SEEK_CUR) is supported
if the corresponding SEEK_SET lseek operation is supported. That is, the value of
n is added to the current position to determine a new offset. If lseek with the
SEEK_SET option on the computed offset succeeds, this succeeds. lseek(fd, O,
SEEK_SET) succeeds on any non-HFS file for which the NOTE and POINT service is
valid. lseek(fd, n, SEEK SET) succeeds for any non-HFS file opened with the
0_RDONLY mode and for which the NOTE and POINT service is valid. This will not
extend the file size as the file is opened read-only. Seeking past the end of file on a
read-only file will return -1 and set errno to EINVAL.

lseek(fd, 0, SEEK_END) is supported for non-HF'S 0_RDONLY files. This is can be
an expensive operation because the entire file must be read to determine its length
in bytes.

These limitations similarly affect the fseek() function, which uses lseek() in its
implementation.

STANDARDS

The lseek() function call is expected to conform to IEEE Std1003.1-1990
(“POSIX”) as closely as the host operating system allows.

148 Systems/C C Library

MKDIR(2)
NAME

mkdir — make a directory file

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

int

mkdir (const char *path, mode_t mode) ;

DESCRIPTION

The HFS directory path is created with the access permissions specified by mode
and restricted by the umask(2) of the calling process. path must be an //HFS:-style
file name.

The directory’s owner ID is set to the process’s effective user ID.

RETURN VALUES

The mkdir() unction returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

mkdir() will fail and no directory will be created if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied for a component of the path prefix, or
write permission is denied on the parent directory of the directory
to be created.

Systems/C C Library 149

[ELOOP]

[EROFS]
[EEXIST]

[ENOSPC]

[ENOSPC]

[EDQUOT]

[EDQUOT]

[EIO]

[EI0]

[EFAULT]

SEE ALSO

Too many symbolic links were encountered in translating the path-
name.

The named file resides on a read-only file system.
The named file exists.

The new directory cannot be created because there is no space left
on the file system that will contain the directory.

There are no free inodes on the file system on which the directory
is being created.

The new directory cannot be created because the user’s quota of
disk blocks on the file system that will con tain the directory has
been exhausted.

The user’s quota of inodes on the file system on which the directory
is being created has been exhausted.

An1/0 error occurred while making the directory entry or allocating
the inode.

An I/O error occurred while reading from or writing to the file
system.

Path points outside the process’s allocated address space.

chmod(2), stat(2), umask(2)

STANDARDS

The mkdir() function call is expected to conform to IEEE Std1003.1-1990
(“POSIX”) as closely as the host operating system allows.

150 Systems/C C Library

MKFIFO(2)
NAME

mkfifo - make a fifo file

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

int
mkfifo(const char *path, mode_t mode);

DESCRIPTION

mkfifo() creates a new fifo file with name path. The access permissions are specified
by mode and restricted by the umask(2) of the calling process.

The fifo’s owner ID is set to the process’s effective user ID. The fifo’s group ID is
set to that of the parent directory in which it is created.

RETURN VALUES

The mkfifo() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

mkfifo() will fail and no fifo will be created if:

[ENOTSUPP] The system does not support Unix Systems Services.
[ENOTSUP] The specified path is not in the HFS file system.
[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

Systems/C C Library 151

[ELOOP]

[EROFS]

[EEXIST]

[ENOSPC]

[ENOSPC]

[EDQUOT]

[EDQUOT]

[E1I0]

[EI0]

[EFAULT]

SEE ALSO

Too many symbolic links were encountered in translating the path-
name.

The named file resides on a read-only file system.
The named file exists.

The directory in which the entry for the new fifo is being placed
cannot be extended because there is no space left on the file system
containing the directory.

There are no free inodes on the file system on which the fifo is being
created.

The directory in which the entry for the new fifo is being placed
cannot be extended because the user’s quota of disk blocks on the
file system containing the directory has been exhausted.

The user’s quota of inodes on the file system on which the fifo is
being created has been exhausted.

An I/0 error occurred while making the directory entry or allocating
the inode.

An 1/O error occurred while reading from or writing to the file
system.

Path points outside the process’s allocated address space.

chmod(2), mknod(2), stat(2), umask(2)

STANDARDS

The mkfifo() function call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.17) as closely as the host operating system allows.

152 Systems/C C Library

MKNOD(2)
NAME

mknod - make an //HFS:-style special file node

SYNOPSIS

#include <unistd.h>
int

mknod (const char *path, mode_t mode, dev_t dev);

DESCRIPTION

The HF'S filesystem node path is created with the file type and access permissions
specified in mode. The access permissions are modified by the process’s umask value.

If mode indicates a block or character special file, dev is a configuration dependent
specification denoting a particular device on the system. Otherwise, dewv is ignored.

mknod () requires super-user privileges.
RETURN VALUES

The mknod() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

mknod() will fail and the file will be not created if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

Systems/C C Library 153

[EPERM]

[EI0]

[ENOSPC]

[ENOSPC]

[EDQUOT]

[EDQUOT]

[EROFS]
[EEXIST]
[EFAULT]

[EINVAL]

SEE ALSO

The process’s effective user ID is not super-user.

An I/0 error occurred while making the directory entry or allocating
the inode.

The directory in which the entry for the new node is being placed
cannot be extended because there is no space left on the file system
containing the directory.

There are no free inodes on the file system on which the node is
being created.

The directory in which the entry for the new node is being placed
cannot be extended because the user’s quota of disk blocks on the
file system containing the directory has been exhausted.

The user’s quota of inodes on the file system on which the node is
being created has been exhausted.

The named file resides on a read-only file system.
The named file exists.
Path points outside the process’s allocated address space.

Creating anything else than a character special file, regular file,
FIFO or directory is not supported.

chmod(2)), mkfifo(2), stat(2), umask(2)

154 Systems/C C Library

MMAP(2)
NAME

mmap - allocate memory, or map files or devices into memory

SYNOPSIS

#include <sys/types.h>
#include <sys/mman.h>

void *
mmap (void *addr, size_t len, int prot, int flags, int fd, off_t offset);

DESCRIPTION

The mmap() function causes the pages starting at addr and continuing for at most
len bytes to be mapped from the //HFS: object described by fd, starting at byte
offset offset. If len is not a multiple of the pagesize, the mapped region may extend
past the specified range, or mmap() may fail. Any such extension beyond the end
of the mapped object will be zero-filled.

If addr is non-zero, it is used as a hint to the system. (As a convenience to the
system, the actual address of the region may differ from the address supplied.) If
addr is zero, an address will be selected by the system. The actual starting address
of the region is returned. A successful mmap deletes any previous mapping in the
allocated address range.

If MAP_FIXED is specified, a non-zero addr must be aligned to a page boundary,
if _MAP_MEGA is specified addr a non-zero addr must be segment aligned. When
MAP_FIXED is not supplied, the result will be on the nearest page boundary if possible
or if __MAP_MEGA is specifed on the nearest segment boundary, if possible.

On systems that support it the __MAP_64 option can be specified to request an address
above-the-bar in 64-bit environents. If the len value is larger than 2G, or the addr
value is larger than 64G then __MAP_64 is implied. The __MAP_64 option can be added
to request 64-bit addresses when neither of those is true.

The protections (region accessibility) are specified in the prot argument by or’ing
the following values:

PROT_NONE Pages may not be accessed.

PROT_READ Pages may be read.

Systems/C C Library 155

PROT_WRITE

PROT_EXEC

Pages may be written.

Pages may be executed.

The flags parameter specifies the type of the mapped object, mapping options and
wether modifications made to the mapped copy of the page are private to the process
or are to be shared with other references. Sharing, mapping type and options are
specified in the flags argument by or’ing the following values:

MAP_FIXED

MAP_PRIVATE

MAP_SHARED

__MAP_MEGA

__MAP_64

Do not permit the system to select a different address than the one
specified. If the specified address cannot be used, mmap() will fail.
If MAP_FIXED is specified, addr must be a multiple of the pagesize.
Use of this option is discouraged.

Modifications are private.
Modifications are shared.

Memory is mapped using segment-sized units instead of page-sized
units.

Use above-the-bar (64-bit) storage and support lengths larger than
Ox7ffttfff. When __MAP 64 is specified, MAP_SHARED is assumed.
MAP_PRIVATE and MAP_MEGA may not be combined with __MAP_64.

The close(2) function does not unmap pages, see munmap(2) for further information.

RETURN VALUES

Upon successful completion, mmap() returns a pointer to the mapped region. Oth-
erwise, a value of MAP_FAILED is returned and errno is set to indicate the error.

ERRORS

mmap() will fail if:

[EACCES]

[EAGAIN]

[EBADF]

The flag PROT_READ was specified as part of the prot parameter and
fd was not open for reading. The flags MAP_SHARED and PROT_WRITE
were specified as part of the flags and prot parameters and fd was
not open for writing.

The caller is not in PSW key 8.

fd is not a valid open file descriptor.

156 Systems/C C Library

[EINVAL] MAP_FIXED was specified and the addr parameter was not page (or
segment) aligned, or part of the desired address space resides out of
the valid address space for a user process.

[EINVAL] addr was above OxTfffftf (see ISSUES below).

[EINVAL] len was negative.

[EINVAL] len was larger than Ox7fHIfff in 64-bit mode (see ISSUES below).

[EINVAL] offset was not page-aligned (or segment-aligned when __MAP _MEGA is
specified.)

[EINVAL] flags or prot were invalid.

[EINVAL] An attempt to map an already mapped file with a different specifi-
cation of __MAP_MEGA.

[EINVAL] An invalid address (greater than Ox7ffffff and less than 64G) was
passed for addr.

[EINVAL] Both __MAP_64 and MAP_FIXED were specified but the addr had zeros
in the high-order 32-bits.

[ENODEV] fd refers to a non-supported file type.

[ENOMEM] MAP_FIXED was specified and the addr parameter wasn’t available.

[ENOMEM] There is not enough space remaining in the address space.

[ENOMEM] There is not enough shared storage available in the entire system.

[ENOSYS] MAP_PRIVATE was specified, but the hardware doesn’t support it.

[ENXIO] The address range is not valid for the file.

64-BIT addresses

Originally, even in 64-bit addressing mode, the z/OS mmap service did not allow
a length greater than 2G or an address greater than the 31-bit address space. IBM
APARs OA60306 and PH32235 were created to deliver the ability to handle true
64-bit lengths and 64-bit addresses.

In general, this is called ”64-bit support”. I can be specifically requested using the
__MAP_64 specification, or by specifying an addr above 64G or specifying a len larger
than 2G.

There are several caveats to this support as outlined in the z/OS BPX4MMP system

service documentation. Consult the IBM documentation ”z/OS UNIX Systems
Services Programming: Assembler Callable Services Reference” for more details.

Systems/C C Library 157

ISSUES

Even in 64-bit addressing mode, the z/OS mmap function cannot map addresses
above OxTfHf or specify a length larger than Ox7ffffff. The returned address will
also be in the 31-bit address space.

This issue was addressed in IBM APAR OA60306 and APAR PH32235.

The __MAP_64 flag is only valid when IBM APAR’s OA60306 and PH32235 have been
applied, or when running on versions of z/OS after version 2.5. Using it in other
situations is undefined and may fail mysteriously. The Dignus runtime has no way
to determine if its use in any runtime environment is valid.

SEE ALSO

mprotect(2), msync(2), munmap(2).

158 Systems/C C Library

MPROTECT(2)
NAME

mprotect - control the protection of pages

SYNOPSIS

#include <sys/types.h>
#include <sys/mman.h>

int
mprotect (const void *addr, size_t len, int prot);

DESCRIPTION

The mprotect() system call changes the specified pages to have protection prot.
Not all implementations will guarantee protection on a page basis; the granularity
of protection changes may be as large as an entire region.

Currently these protection bits are known, which can be combined, OR’d together:

PROT_NONE No permissions at all.
PROT_READ The pages can be read.
PROT_WRITE The pages can be written.

PROT_EXEC The pages can be executed.

RETURN VALUES

The mprotect() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS
The mprotect() function will fail if:

[EINVAL] The virtual address range specified by the addr and len arguments
is not valid.

[EACCES] The calling process was not allowed to change the protection to the
value specified by the prot argument.

Systems/C C Library 159

SEE ALSO

msync(2), munmap(2)

160 Systems/C C Library

MSYNC(2)
NAME

msync - synchronize a mapped region

SYNOPSIS

#include <sys/types.h>
#include <sys/mman.h>

int

msync(void *addr, size_t len, int flags);

DESCRIPTION

The msync() system call writes any modified pages back to the filesystem and
updates the file modification time. If len is 0, all modified pages within the re-
gion containing addr will be flushed; if len is non-zero, only those pages containing
addr and len-1 succeeding locations will be examined. The flags argument may be
specified as follows:

MS_ASYNC Return immediately

MS_SYNC Perform synchronous writes

MS_INVALIDATE Invalidate all cached data

RETURN VALUES

The msync() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

msync() will fail if:

[EINVAL] addr is not a multiple of the hardware page size.

[EINVAL] len is too large or negative.

[EINVAL] flags was both MS_ASYNC and MS_INVALIDATE. Only one of these flags
is allowed.

[EI0] An I/0O error occurred while writing to the file system.

Systems/C C Library 161

SEE ALSO

mprotect(2), munmap(2)

162 Systems/C C Library

MSGCTL(2)

NAME

msgctl - message control operations

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>
#include <sys/msg.h>

int

msgctl(int msqid, int cmd, struct msqid_ds xbuf);

DESCRIPTION

The msgctl() system call performs some control operations on the message queue

specified by msqid.

Each message queue has a data structure associated with it, parts of which may
be altered by msgctl() and parts of which determine the actions of msgctl().
The data structure is defined in <sys/msg.h> and contains (amongst others) the

following members:

struct msqid_ds {
ipc_perm msg_perm;
msg *msg_first; /*

struct
struct
struct
u_long
u_long
u_long
pid_t
pid_t
time_t
long
time_t
long
time_t
long
long

msg *msg_last;
msg_cbytes;
msg_qnum;
msg_qgbytes;
msg_lspid;
msg_lrpid;
msg_stime;
msg_padl;
msg_rtime;
msg_pad2;
msg_ctime;
msg_pad3;
msg_pad4 [4];

/*
/*
/*
/*
/*
/*
/*

/*

/*

/* msg queue permission bits */
first message in the queue */
last message in the queue */
number of bytes in use on the queue */
number of msgs in the queue */
max # of bytes on the queue */
pid of last msgsnd() */
pid of last msgrcv() */
time of last msgsnd() */

time of last msgrcv() */

time of last msgctl() */

Systems/C C Library 163

The ipc_perm structure used inside the shmid. ds structure is defined in

<sys/ipc.h> and looks like this:

struct ipc_perm {
ushort
ushort
ushort
ushort
ushort
ushort
key_t

};

cuid;
cgid;
uid;
gid;
mode;
seq;
key;

/*
/*
/*
/*
/*
/*
/*

creator user id */

creator group id */

user id */

group id */

r/w permission */

sequence # (to generate unique msg/sem/shm id) */
user specified msg/sem/shm key */

The operations to be performed by msgctl() is specified in ¢md and is one of:

IPC_STAT Gather information about the message queue and place it in the structure

pointed to by buf.

IPC_SET Set the value of the msg perm.uid, msg perm.gid, and msg _gbytes fields
in the structure associated with msgid. The values are taken from the corre-
sponding fields in the structure pointed to by buf. his operation can only be
executed by the super-user, or a process that has an effective user id equal to
either msg_perm.cuid or msg_perm.uid in the data structure associated with
the message queue. The value of msg_gbytes can only be increased by the
super-user. Values for msg_gbytes that exceed the system limit are silently

truncated to that

limit.

IPC_RMID Remove the message queue specified by msqid and destroy the data associ-
ated with it. Only the super-user or a process with an effective uid equal to
the msg_perm.cuid or msg_perm.uid values in the data structure associated

with the queue can do this.

The permission to read from or write to a message queue (see msgsnd(2) and ms-
grev(2)) is determined by the msg _perm.mode field in the same way as is done with
files (see chmod(2)), but the effective uid can match either the msg perm.cuid field
or the msg_perm.uid field, and the effective gid can match either msg_perm.cgid or

msg_perm.gid.

RETURN VALUES

The msgctl() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

164 Systems/C C Library

ERRORS

The msgctl() function will fail if:

[EPERM] The c¢md argument is equal to IPC_SET or IPC_RMID and the caller
is not the super-user, nor does the effective uid match either the
msg_perm.uid or msg_perm.cuid fields of the data structure associ-
ated with the message queue.

An attempt is made to increase the value of msg_gbytes through
IPC_SET but the caller is not the super-user.

[EACCES] The command is IPC_STAT and the caller has no read permission for
this message queue.

[EINVAL] The msqid argument is not a valid message queue identifier.

cmd is not a valid command.

[EFAULT] The buf argument specifies an invalid address.

SEE ALSO

msgget(2), msgrev(2), msgsnd(2)

ISSUES

The underlying IBM Unix Systems Services does not support the seq and key fields
of the ipc_perm structure, nor the msg _first, msg_last or msg_cbytes field of the
msqid_ds. They are provided for compatibility and will always be zero.

Systems/C C Library 165

MSGGET(2)
NAME

msgget - get message queue

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int
msgget (key_t key, int msgflg);

DESCRIPTION

The msgget() function returns the message queue identifier associated with key. A
message queue identifier is a unique integer greater than zaero.

A message queue is created if either key is equal to IPC_PRIVATE, or key does not
have a message queue identifier associated with it, and the ITPC_CREAT bit is set in

msgflg.
If a new message queue is created, the data structure associated with it (the msgid_ds
structure, see msgctl(2)) is initialized as follows:

e msg perm.cuid and msg_perm.uid are set to the effective uid of the calling

process.

e msg perm.gid and msg_perm.cgid are set to the effective gid of the calling
process.

e msg _perm.mode is set to the lower 9 bits of msgfig.

e msg_cbytes, msg_qnum, msg_lspid, msg_lrpid, msg rtime and msg_stime are
set to 0.

e msg_gbytes is set to the system wide maximum value for the number of bytes
in a queue (MSGMNB).

e msg _ctime is set to the current time.

RETURN VALUES

Upon successful completion a positive message queue identifier is returned. Other-
wise, -1 is returned and the global variable errno is set to indicate the error.

166 Systems/C C Library

ERRORS

[EACCES] A message queue is already associated with key and the caller has
no permission to access it.

[EEXIST] Both IPC_CREAT and IPC_EXCL are set in msgflg, and a message
queue is already associated with key.

[ENOSPC] A new message queue could not be created because the system limit
for the number of message queues has been reached.

[ENOENT] IPC_CREAT was not set in msgflg and no message queue associated
with key was found.

SEE ALSO

msgctl(2), msgrev(2), msgsnd(2)

Systems/C C Library 167

MSGRCV(2)

msgrev - receive a message from a message queue

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int
msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);

DESCRIPTION

The msgrcv() function receives a message from the message queue specified in
msqid, and places it into the structure pointed to by msgp. This structure should
consist of the following members:

long mtype; /* message type */
char mtext[1]; /* body of message */

mitype is an integer greater than 0 that can be used for selecting messages, mtezt is
an array of bytes, with a size up to that of the system limit.

The value of msgtyp has one of the following meanings:

e The msgtyp argument is greater than 0. The first message of type msgtyp will
be received.

e The msgtyp argument is equal to 0. The first message on the queue will be
received.

e The msgtyp argument is less than 0. The first message of the lowest message
type that is less than or equal to the absolute value of msgtyp will be received.

The msgsz argument specifies the maximum length of the requested message. If the
received message has a length greater than msgsz it will be silently truncated if the
MSG_NOERROR flag is set in msgflg, otherwise an error will be returned.

If no matching message is present on the message queue specified by msgqid, the
behavior of msgrev() depends on whether the IPC_NOWAIT flag is set in msgflag or
not. If IPC_NOWAIT is set, msgrcv() will immediately return a value of -1, and set
errno to ENOMSG. If TPC_NOWAIT is not set, the calling process will be blocked until:

168 Systems/C C Library

e A message of the requested type becomes available on the message queue.

e The message queue is removed, in which case -1 will be returned, and errno
set to EINVAL.

e A signal is received and caught. -1 is returned, and errno set to EINTR.
If a message is is successfully received, the data structure associated with msqid is
updated as follows:

e msg lrpid is set to the pid of the caller.

e msg_lrtime is set to the current time.

e msg _gnum is decremented by 1.

RETURN VALUES

Upon successful completion, msgrev() returns the number of bytes received into
the mtext field of the structure pointed to by msgp. Otherwise, -1 is returned, and
errno set to indicate the error.

ERRORS
The msgrev() function will fail if:

[EINVAL] The msqid argument is not a valid message queue identifier.

The msgsz argument is less than 0.

[E2BIG] A matching message was received, but its size was greater than
msgsz and the MSG_NOERROR flag was not set in msgflg.

[EACCES] The calling process does not have read access to the message queue.
[EFAULT] The msgp argument points to an invalid address.
[EIDRM] The message queue was removed while msgrev() was waiting for a

message of the requested type to become available on it.
[EINTR] The system call was interrupted by the delivery of a signal.

[ENOMSG] There is no message of the requested type available on the message
queue, and IPC_NOWAIT is set in msgflg.

SEE ALSO

msgctl(2), msgget(2), msgsnd(2)

Systems/C C Library 169

MSGSND(2)
NAME

msgsnd - send a message to a message queue

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int
msgsnd (int msqid, void *msgp, size_t msgsz, int msgflg);

DESCRIPTION

The msgsnd() function sends a message to the message queue specified in msgid.
msgp points to a structure containing the message. This structure should consist of
the following members:

long mtype; /* message type */
char mtext[1]; /* body of message */

mtype is an integer greater than 0 that can be used for selecting messages (see
msgrev(2)), mtext is an array of bytes, with a size up to the system limit.

If the number of bytes already on the message queue plus msgsz is bigger than the
maximum number of bytes on the message queue (msg_gbytes, see msgctl(2)), or
the number of messages on all queues system-wide is already equal to the system
limit, msgflg determines the action of msgsnd(). If msgflg has IPC_NOWAIT mask set
in it, the call will return immediately. If msgflg does not have IPC_.NOWAIT(s)et
in it, the call will block until:

e The condition which caused the call to block does no longer exist. The message
will be sent.

e The message queue is removed, in which case -1 will be returned, and errno
is set to EINVAL.

e The caller catches a signal. The call returns with errno set to EINTR.

After a successful call, the data structure associated with the message queue is
updated in the following way:

170 Systems/C C Library

e msg _qgnum is incremented by 1.
e msg 1spid is set to the pid of the calling process.

e msg_stime is set to the current time.

RETURN VALUES

The msgsnd() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS
msgsnd() will fail if:

[EINVAL] msqid is not a valid message queue identifier
msgsz is less than 0, or greater than msg_gbytes.

mtype is not greater than 0.
[EACCES] The calling process does not have write access to the message queue.

[EAGAIN] There was no space for this message either on the queue, or in the
whole system, and IPC_NOWAIT was set in msgfig.

[EFAULT] msgp points to an invalid address.

[EIDRM] The message queue was removed while msgsnd() was waiting for
a resource to become available in order to deliver the message.

[EINTR] The system call was interrupted by the delivery of a signal.

SEE ALSO

msgctl(2), msgget(2), msgrev(2)

Systems/C C Library 171

MUNMAP(2)
NAME

munmap - remove a mapping

SYNOPSIS

#include <sys/types.h>
#include <sys/mman.h>

int
munmap (void *addr, size_t len);

DESCRIPTION

The munmap() system call deletes the mapping for the specified address range, and
causes further references to addresses within the range to generate invalid memory
references.

RETURN VALUES

The munmap() returns the value 0 if successful; otherwise the value -1 is returned
and the global variable errno is set to indicate the error.

ERRORS

munmap() will fail if:

[EINVAL] The addr parameter was not page aligned, the len parameter was
negative, or some part of the region being unmapped is outside the
valid address range for a process.

SEE ALSO

mmap(2), mprotect(2), msync(2)

172 Systems/C C Library

NANOSLEEP(2)
NAME

nanosleep — suspend process execution for an interval measured in nanoseconds

SYNOPSIS

#include <time.h>

int
nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

DESCRIPTION

The nanosleep() system call causes the process to sleep for the specified time.
An unmasked signal will cause it to terminate the sleep early, regardless of the
SA_RESTART value on the interrupting signal.

RETURN VALUES

If the nanosleep() system call returns because the requested time has elapsed, the
value returned will be zero.

If the nanosleep() system call returns due to the delivery of a signal, the value
returned will be -1, and the global variable errno will be set to indicate the in-
terruption. If rmip is non-NULL, the timespec structure it references is updated to
contain the unslept amount (the request time minus the time actually slept).

ERRORS

The nanosleep() system call fails if:

[EFAULT] Either rqtp or rmtp points to memory that is not a valid part of the
process address space.

[EINTR] The nanosleep() system call was interrupted by the delivery of a
signal.

[EINVAL] The rqtp argument specified a nanosecond value less than zero or

greater than or equal to 1000 million.

[ENOSYS] The nanosleep() system call is not supported by this implementa-
tion.

Systems/C C Library 173

IMPLEMENTATION

The nanosleep() function requires the use of BPX signals to interrupt the process
before the timeout occurs. If BPX signals are not enabled, the nanosleep() function
will wait until the specified time has elapsed.

SEE ALSO

sigsuspend(2), sleep(3)

STANDARDS

The nanosleep() system call conforms to IEEE Std 1003.1b-1993 (“POSIX.17).

174 Systems/C C Library

OPEN(2)
NAME

open - open or create a file for reading or writing

SYNOPSIS

#include <fcntl.h>

int
open(const char *path, int flags, ...)

DESCRIPTION

The file name specified by path is opened for reading and /or writing as specified by
the argument flags and the file descriptor returned to the calling process. The flags
argument may indicate the file is to be created if it does not exist (by specifying the
0_CREAT flag). In this case open requires a third argument mode_t mode.

The flags specified are formed by or’ing the following values

0_RDONLY open for reading only

0_WRONLY open for writing only

0_RDWR open for reading and writing

0_NONBLOCK do not block on open

0_APPEND append on each write

0_CLOEXEC close the file on exec

0_CREAT create file if it does not exist

0_TRUNC truncate size to 0

0_EXCL error if create and file exists

0_SHLOCK atomically obtain a shared lock

0_EXLOCK atomically obtain an exclusive lock

_0_BINARY specifies that I/O is to be done in binary mode, not text
translation.

_0_TEXT (default) specify that I/O is to be done with text translation.

Systems/C C Library 175

_0_ATTR An extra char * argument is found after the mode argument.
This argument can be applied to non-HF'S files, and specifies
file attributes to use in the OS/390 DCB.

Opening a file with 0_APPEND set causes each write on the file to be appended to the
end. If 0_TRUNC is specified and the file exists, the file is truncated to zero length.
If 0_EXCL is set with O_CREAT and the file already exists, open() returns an error.
This may be used to implement a simple exclusive access locking mechanism. If the
0_NONBLOCK flag is specified and the open() call would result in the process being
blocked for some reason (e.g., waiting for carrier on a dialup line), open() returns
immediately. The first time the process attempts to perform I/O on the open file it
will block (not currently implemented).

For HFS files, if the 0_CLOEXEC flag is set, then the FD_CLOEXEC flag will be set;
otherwise it is cleared.

If _0_BINARY is specified, the bytes retrieved from the operating system are passed
to the program without further processing.

If _O_TEXT is specified, on input, trailing blanks are deleted and a new-line is ap-
pended. On output, the new-line marks the end of the record, with trailing blanks
appended to complete an output record.

When opening a file, a lock with flock(2) semantics can be obtained by setting
0_SHLOCK for a shared lock, or 0_EXLOCK for an exclusive lock. If creating a file
with 0O_CREAT, the request for the lock will never fail (provided that the underlying
filesystem supports locking).

If successful, open() returns a non-negative integer, termed a file descriptor. It
returns -1 on failure. The file pointer used to mark the current position within the
file is set to the beginning of the file.

The system imposes a limit on the number of file descriptors open simultaneously
by one process. Getdtablesize(2) returns the current system limit.

PATH NAMES

The Systems/C open() function uses path name prefixes to determine how to al-
locate the file. A path name prefix consists of two slashes, followed by the prefix
style name, followed by a colon (// style:). If a prefix is not specified, and the path
name begins with a single slash (/), or the path name begins with the two characters
period (.) and then slash (/), the file is treated as if the //HFS: prefix had been
specified. Otherwise, the current default style is used.

The current default style is found in the global variable extern char * _style,
and may be changed by assigning a new value to that variable. When a Systems/C

176 Systems/C C Library

program is invoked from either a TSO or BATCH environment, the default value of
_style is //DDN:.

When a Systems/C program is invoked via the exec function (i.e. under OpenEdi-
tion), the default value of _style is //HFS:.

The styles currently supported include:

//DSN: The specified path is a fully qualified dataset name on OS/390.

//DDN: The specified path is a DDN allocated via a JCL DD card, or the TSO
ALLOCATE command.

//HFS: The specified path is a file that resides in the Hiearchical File System
(HES).

Both //DSN: and //DDN: style names may also specify PDS member names, sur-
rounded by parentheses.

DCB ATTRIBUTES

If the _0_ATTR bit is set in the flags argument, and the style is not //HFS:, then this
call to open is understood to have four arguments; the forth is a character string
which describes the DCB attributes to initially use for the OS/390 OPEN service.
All four arguments must be present if _0_ATTR is set.

These attributes are used to provide DCB during an OPEN EXIT on the OS/390
OPEN system service. Thus they can be used to provide default values when they
are not present on DD cards, or can provide appropriate values when creating a new
data set.

The format of that string is a comma separated list of NAMFE=VALUF pairs.

The following names and values are currently supported:

abend abend indicates how the runtime should handle BSAM I/0
ABENDs after a successful BSAM OPEN. If abend=abend is
specified then any ignornable I/O ABEND will become an ac-
tual ABEND to be processed by whatever ABEND processing
is pertinent. If abend=recover is specified, any ignorable I/0O
ABEND will be "ignored” (although the operating system will
often produce a message of some kind) and the library will
report the I/O failure to the program, with errno set appro-
priately.

The default is abend=recover.

Systems/C C Library 177

blksize

blocks

bufno

cylinders

directory

catalog

delete
keep
keylen

lrecl

ncp

preopen

noseek

primary

recfm

integer block size.

No parameter. blocks specifies allocations are in blocks. May
be abbreviated as blks or blk.

integer number of buffers. bufno specifies the number of buffers
to specify when allocating a non-HFS data set.

No parameter. cylinders specifies allocations are in cylinders.
May be abbreviated as cyls or cyl.

integer specifying the number of directory blocks for a new
PDS. If the value is omitted, directory blocks will not be spec-
ified when allocating the new PDS.

Indicates the file should be added to the system catalog. May
be abbreviated as catlg.

The file should be deleted when it is deallocated.
The file is kept when it is deallocated.
integer specifying the key length value in the DCB.

integer representing the logical record length, or the character
X" indicating a record length larger than 32760 for Variable
Spanned files.

integer representing the NCP value for BSAM I/O (number of
outstanding READ/WRITE requests before a CHECK.) This
is also the number of I/O buffers the library will allocate when
multi-buffering I/0 is allowed.

No parameter. preopen indicates that the values specified as
attributes should apply to the DCB before opening the file, thus
"overriding” any JCL specification.

No parameter. Indicates that the file positioning function
(Iseek(2)) will not be used on the returned file descriptor.
When noseek is true, the MACRF option on a BSAM OPEN
will not indicate the use of NOTE and POINT, and thus the
file can read LARGE format data sets. Reading/writing of
LARGE format data sets also requires the BLOCKTOKEN-
SIZE(NOREQUIRE) in SYS1.PARMLIB. noseek is also re-
quired for multi-buffer support (if seeking is needed, only one
I/0O buffer is used.)

integer specifying the primary allocation size. May be abbrevi-
ated as pri.

specifies the record format, either f, fa, fb, fs, fba, fbs, fsa,
fbsa, v, vb, vs, vbs or u is supported.

178 Systems/C C Library

secondary

rlse

norlse

tracks

type

uncatlg

unit

verbose

volser

volseq

integer specifying the secondary allocation size. May be abbre-
viated as sec

No parameter. Indicates any unused space for a new data set
be returned (this is the default setting.)

No parameter. Indicates any unused space for a new data set
not be returned

No parameter. tracks specifies allocations are in tracks. May
be abbreviated as trks or trk

keyword specifying type of I/O. Currently, the record keyword
is supported to indirect record I/O (e.g. type=record). When
used with open(2), this attribute sets the _0_RECIO flag.

Indicates the file should removed from the system catalog. May
be abbreviated as uncatlg.

character string that specifies the device name.

No parameter. Causes allocation messages to appear in the
system log. The default is not verbose.

character string representing the volume serial identifier. May
be abbreviated as vol.

integer specify the volume sequence number.

Invalid NAMFE=VALUEF pairs are silently ignored.

Note that preopen, blocks, cylinders and tracks NAMUEs have no VALUE spec-
ified, and that the VALUE is optional on the directory NAME.

For example, the following code will open //DDN:MYDD for binary input with a
blksize of 3200 and an lrecl of 80:

open("//DDN:MYDD", O_RDONLY|_O_ATTR|_O_BINARY,
0, "blksize=3200,lrecl=80");

CREATING //DsSN: FILES

Files can be created by the Systems/C runtime when the 0_CREAT flag is specified.
Many of the 0_ATTR flags only apply when creating files.

For example, if the 0_ATTR string specifies that a file is fixed block, but an existing
file opened for input is variable blocked, the library will continue as if the file were

variable blocked.

Systems/C C Library 179

If a file doesn’t exist, the initial allocation sizes and attributes may be specified in
the JCL or ALLOC statement, via the 0_ATTR string, or may be calculated by the
Systems/C library.

Attributes are combined from these sources in the following order.

If the ”preopen” attribute is not enabled, then the value from the JCL or ALLOC
statement are used first. If "preopen” is specified, then the values specified in the
0_ATTR string are used first. That is, if ”preopen” is specified, the constructed DCB
is initialized with any values specified in 0_ATTR, otherwise it is not. If during OPEN
processing (in the OPEN exit routine), values are not provided then the ones specified
from the O_ATTR string are used. For any values still not defined, the following rules
are used to calculate default values.

If RECFM is unspecified and the file is opened for output with the _O_BINARY flag,
then a RECFM=FB will be used. If the file is opened for output without the _0_BINARY
flag, then the device is queried. If the device is a terminal, RECFM=U will be used,
otherwise RECFM=FBA will be used. If the RECFM remains unspecified for an input
file, further processing stops and the OPEN will likely fail with a errno set to EIO.

If both BLKSIZE and LRECL remain unspecified (both are zero) then the library
examines the RECFM to determine these values. If RECFM=U, then BLKSIZE will be
the maximum blocksize for the device, and LRECL will be zero. If RECFM=F then
BLKSIZE=LRECL=80 will be used. If RECFM=FB then LRECL will be the 80 and BLKSIZE
will be the largest blocksize that is possible for the device. If RECFM=V then the
BLKSIZE will be the maximum blocksize that is possible for the device, and LRECL
will be the lessedr of BLKSIZE-4 and 1028.

If LRECL is provided, but BLKSIZE is not, then for RECFM=U files, the BLKSIZE becomes
LRECL and LRECL is set to zero. For RECFM=F files, the BLKSIZE is set to be the same
as the LRECL, and for RECFM=FB files, the BLKSIZE is set to be the largest multiple
of the LRECL that can fit in the maximum blocksize of the device. For RECFM=V files
the BLKSIZE is set to LRECL+4.

If LRECL is not provided, but BLKSIZE is, then for RECFM=U, LRECL is set to 0. For
RECM=F and RECFM=FB, LRECL is set to be the BLKSIZE value. For RECFM=V files,
LRECL is set to the lesser of BLKSIZE-4 and 1028.

For BSAM I/0, if the DCB has a DCBNCP value of 0 or 1 and the ncp attribute was
used and it specifies a value larger than 1, then the specified ncp attribute value is
used.

For example, the following statement creates a new file RECFM=FB, USER.FILE, spec-
ifying that the primary allocation is 1000 blocks, the secondary allocation is 500
blocks, the record length is 80 and the block size is 800 (note the specification of
0_CREAT which causes the library to create the file if it doesn’t exist):

open("//DSN:USER.FILE", O_WRONLY|O_CREAT|_O_ATTR|_O_BINARY,

180 Systems/C C Library

0,
"recfm=fb,blksize=800,1lrecl=80,blks,primary=1000, secondary=500") ;

Note that combining values via the 0_ATTR string and JCL or other sources may
create conflicting values that cause the open() to fail. For example, if the JCL
only specifies LRECL=133 and the program provides an attribute string that specifies
"recfm=fb,lrecl=80,blksize=8000", then the resulting combined attributes will
be RECFM=FB, LRECL=133,BLKSIZE=8000 which is invalid because the BLKSIZE is not
a multiple of the LRECL. In such a situation, the "preopen" attribute can be used
to indicate that the values specified in the 0_ATTR string take precedence over the
values from the JCL.

To ensure a file does not previously exist, use the 0_EXCL flag. If 0_EXCL is specified
in combination with 0_CREAT, and the file already exists, the open() function will
return -1 and indicate the error in errno.

RECORD I/0

Typically, the C model of I/0 is simply a stream of bytes; without consideration
of record lengths or boundaries. The Systems/C runtime presents this abstraction
to the C program, managing block and record considerations internally. Thus, for
example, a read(2) request of 500 bytes will internally deblock a file, and gather 500
bytes, crossing any record boundaries as needed.

However, there are situations in mainframe programming environemnts where it is
helpful to manage data in terms of records. Specifying _0_RECIO in the flags causes
the Systems/C runtime to respect record boundaries. If _0_RECIO a write(2) request
will only write a record-sized portion of data. Similarly, a read(2) request will only
read a record-sized portion of data. After each I/O operation, the file pointer moves
to the next record boundary. The "type=record” attribute can be used as well as
_0_RECIO. The "type=record” attribute causes the -0_RECIO flag to be set.

The read(2), write(2), sections have more information on different semantics when
_0_RECIO is present in flags. The fopen(3), fread(3), fwrite(3) sections have more
information on different semantics when the type=record attribute is specified.
Note that type=record attribute enables record 1/0O for fopen(3), fread(3), fwrite(3)
while the _0_RECIO flag enables record I/O for open(2), read(2) and write(2). When
type=record attribute is specified in open(2), it is translated to the 0 RECIO flag.

IMPLEMENTATION NOTES

Because fopen(3) uses open(2) to access files, the path prefixes discussed above are
also valid for fopen(3) path names. Furthermore, any attributes string fopen(3)
receives is similar simply passed to open(2).

Systems/C C Library 181

0_APPEND mode is only supported on sequential files. An open of a PDS member
with O_APPEND will cause a runtime abend when the file is subsequently closed.

RETURN VALUES

If successful, open() returns a non-negative integer, termed a file descriptor. It
returns -1 on failure, and sets errno to indicate the error.

ERRORS

The named file is opened unless:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname was too large for the given path prefix
style, or an entire path name exceeded 1023 characters.

[ENOENT] 0_CREAT is not set and the named file does not exist.

[ENOENT] A component of the path name that must exist does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] The required permissions (for reading and/or writing) are denied
for the given flags.

[EACCES] 0_CREAT is specified, the file does not exist, and creation of the file
was not permitted.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EISDIR] The named file is a directory or PDS, and the arguments specify it
is to be opened for writing.

[EROFS] The named file resides on a read-only file system, and the file is to
be modified.

[EMFILE] The process has already reached its limit for open file descriptors.

[ENFILE] The system file table is full.

[ENOMEM] There was insufficient memory available to allocate the supporting

data structures needed.

[ENXIO] The named file is a character special or block special file, and the
device associated with this special file does not exist.

[EINTR] The open() operation was interrupted by a signal.

182 Systems/C C Library

[EOPNOTSUPP]

[ENOSPC]

[EDQUOT]

[EFTYPE]

[EI0]

[EFAULT]
[EEXIST]
[EOPNOTSUPP]

[EINVAL]

SEE ALSO

0_SHLOCK or 0_EXLOCK is specified but the underlying filesystem does
not support locking.

0_CREAT is specified, the file does not exist, and the directory or
PDS in which the entry for the new file is being placed cannot be
extended because there is no space left on the file system containing
the directory, or the PDS containing the member.

0_CREAT is specified, the file does not exist, and the user’s allocation
quota on the file system on which the file is being created has been
exhausted.

An attempt was made to open a Format-F file where the LRECL
was not a multiple of the BLKSIZE, or a blocked Format-V file
where the LRECL was not less than BLKSIZE-4.

An I/0 error occurred while making the directory entry or allocating
the PDS directory entry for 0_CREAT.

Path points outside the process’s allocated address space.
0_CREAT and 0_EXCL were specified and the file exists.
An attempt was made to open a socket (not currently implemented).

An attempt was made to open a descriptor with an illegal combi-
nation of 0_RDONLY, O_WRONLY, and O_RDWR.

close(2), dup(2), getdtablesize(2), lseek(2), _setmode(2),read(2), write(2)

Systems/C C Library 183

OSDDINFO(2)
NAME

osddinfo - retrieve information about a dataset from a DD name.

SYNOPSIS

#include <machine/syscio.h>

int osddinfo(char *ddname, char dsname[45], char member[9],
char *recfm_p, int *lrecl_p, int *blksize_p);

DESCRIPTION

The osddinfo() function is used to retrieve data set information based on the given
ddname. ddname is a NUL-terminated character string specifying the DD name of
the data set.

The remaining parameters are pointers to areas to contain return information. If
the pointers are NULL, then osddinfo() does not store the value. Because some
values may require invocation of additional operating systems services, it is best to
make these NULL if the information is not required.

The data set name associated with the DD name ddname is stored in the area
pointed-to by dsname.

If the DD name is allocated to a member of a PDS, the member name is stored in
the area pointed-to by member. If a PDS member is not allocated to the DD name,
the empty string is stored there.

The area pointed to by a non-NULL recfm_p will contain the record-format flag of the
file. Possible values are defined in the jmachine/syscio.h; header file and include:

RECFM_U Undefined length records
RECFM_F Fixed length records

RECFM_V Variable length records
RECFM_D Variable length ASCII records
RECFM_T Track overflow

RECFM_B Blocked records

RECFM_S Spanned or Standard records

184 Systems/C C Library

RECFM_A ASA control characters are present

RECFM_M Machine control characters are present

The values for these are the defined by the JFCB DSECT.

Note that RECFM_U is defined as RECFM_F logically OR’d with RECFM_V. So, care must
be taken to test for RECFM_U before testing for RECFM_F or RECFM_V.

The area pointed to by a non-NULL lrecl_p contains the data sets logical record length,
or 0. If the record format can be determined, and it is Variable Spanned, and the
record length is defined as LRECL=X, then the special value LRECL_X is returned.
LRECL X is defined in the jmachine/syscio.h; header file.

The area pointed to by a non-NULL blksize_p contains the data sets block size, or 0.

RETURN VALUES

The osddinfo() return 0 if the DD name is defined and the information can be
retrieved. If osddinfo() cannot retrieve the information, or can’t allocate sufficient
memory to operate, it returns -1.

IMPLEMENTATION NOTES

The osddinfo() function uses the RJFJICB service to determine the dataset name and
member associated with a DD name. If the allocation that created the JFCB control
block did not include RECFM/LRECL/BLKSIZE statements, then osddinfo() uses
the OBTAIN service to retrieve the information from the VTOC.

SEE ALSO

ddnfind(2), ddnnext(2)

Systems/C C Library 185

__PASSWD(2)
NAME

__passwd - verify or change a user password

SYNOPSIS

#include <pwd.h>
int

__passwd(const char *username, const char *oldpass, const char *newpass);

DESCRIPTION

__passwd() verifies or changes the password of the user specified by username. Old-
pass contains the current password and must always be present. Newpass optionally
contains the new password, or can be NULL.

If newpass is non-NULL, then the old password is verified, and if it matches newpass
becomes the new password.

If newpass is NULL, then the old password is simply verified, and the password
remains unchanged.

RETURN VALUES

If successful, __passwd() returns a 0, otherwise -1 is returned and the global variable
errno is set to indicate the error.

ERRORS

__passwd() The __passwd() function will fail if:

[EACCES] The password in oldpass is not authorized.

[EINVAL] The username, oldpass or newpass is invalid. username, oldpass and
newpass must be 1 to 8 characters in length.

[ENEEDAUTH] The BPX.DAEMON facility is defined, but the current program is is
not considered controled by a security product (e.g. RACF.)

186 Systems/C C Library

[EPERM] The caller does not have permission for this operation. See the
BPX.DAEMON class in the IBM “OpenEdition Planning” manual.

[ESRCH] The specified username was not found.

SEE ALSO

getpwent(2), endpwent(3)

Systems/C C Library 187

PATHCONTF(2)
NAME

pathconf, fpathconf - get configurable pathname variables for //HFS: files

SYNOPSIS

#include <unistd.h>

long
pathconf (const char *path, int name);

long
fpathconf (int fd, int name);

DESCRIPTION

The pathconf() and fpathconf() functions provide a method for applications to
determine the current value of a configurable system limit or option variable asso-
ciated with a pathname or file descriptor.

For pathconf(), the path argument is the name of an //HFS:-style file or directory.
For fpathconf(), the fd argument is an open file descriptor that references an
//HFS:-style file or directory. The name argument specifies the system variable to
be queried. Symbol constants for each name value are found in the include file
<unistd.h>.

The availalble values are as follows:

_PC_LINK_MAX The maximum file link count.
_PC_MAX_CANON The maximum number of bytes in terminal canonical input line.

_PC_MAX_INPUT The minimum maximum number of bytes for which space is available
in a terminal input queue.

_PC_NAME MAX The maximum number of bytes in a file name.
_PC_PATH_MAX The maximum number of bytes in a pathname.

_PC_PIPE BUF The maximum number of bytes which will be written atomically to a
pipe.

_PC_CHOWN_RESTRICTED Return 1 if appropriate privileges are required for the
chown(2) system call, otherwise 0.

188 Systems/C C Library

_PC_NO_TRUNC Return 1 if file names longer than KERN_NAME_MAX are truncated.
_PC_VDISABLE Returns the terminal character disabling value.
_PC_ACL Returns 1 if the security product supports access control lists, 0 otherwise.

_PC_ACL_ENTRIES_MAX Returns the maximum number of ACL entries that can be
placed on the file.

RETURN VALUES

if the call to pathconf() or fpathconf() is not successful, -1 is returned an errno
is set appropriately. Otherwise, if the variable is associated with functionality that
does not have a limit in the system, -1 is returned and errno is not modified.
Otherwise, the current variable value is returned.

ERRORS

If any of the following conditions occur, the pathconf() and fpathconf() functions

shall return -1 and set errno to the corresponding value.

[EINVAL] The value of the name argument is invalid.

[EINVAL] The implementation does not support an association of the variable
name with the associated file.

pathconf() will fail if:

[ENOTDIR|] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an
entire path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EIO] An I/O error occurred while reading from or writing to the file
system.

fpathconf() will fail if:

[EBADF] fd is not a valid open file descriptor.
[EI0] An 1/O error occurred while reading from or writing to the file
system.

Systems/C C Library 189

PIPE(2)
NAME

pipe, pipe2 - create descriptor pair for interprocess communication

SYNOPSIS

#include <unistd.h>

int
pipe(int fildes[2]);

int
pipe2(int fildes[2], int flags);

The pipe() function creates a “pipe”, which is an object allowing bidirectional data
flow, and allocates a pair of file descriptors.

The pipe2() function allows control over the attributes of the file descriptors via
the flags argument. Values for flags are constructed by a bitwise-inclusive OR. of
flags from the following list, defined in jfcntl.h;:

0_CLOEXEC Set the close-on-exec flag for the new file descriptors.

0_NONBLOCK Set the non-blocking flag for the ends of the pipe.

If the flags argument is 0, the behavior is identical to a call to pipe().

The first descriptor is used as the “read end” of the pipe, the second is the “write
end”, so that data written to filedes[1] appears on (i.e. can be read from) fileds[0].
This allows the output of one program to be sent to another program: the source’s
standard output can be set up to be the “write end” of the pipe, and the sink’s
standard input is set up to tbe the “read end” of the pipe. The pipe itself persists
until all its associated descriptors are closed.

A pipe that has had an end closed is considered “widowed.” Writing on such a pipe
may cause the writing process to receive a SIGPIPE signal. Widowing a pipe is the
only way to deliver end-of-file to a reader: after the reader consumes any buffered
data, reading a widowed pipe returns a zero count.

IMPLEMENTATION NOTES

The pipe2() function calls the pipe() system call and then calls fentl to set the
appropriate flags.

190 Systems/C C Library

RETURN VALUES

The pipe() function will fail if:

[EMFILE] Too many descriptors are active.

[ENFILE] The system file table is full.

[EFAULT] The fildes buffer is in an invalid area of the process’s address space.
SEE ALSO

read(2), write(2)

Systems/C C Library 191

__PROCNAME(2)
NAME

__procname - return the current procedure name

SYNOPSIS

#include <machine/tiot.h>

char *
__procname (void) ;

DESCRIPTION

The __procname() function returns the current JCL procedure name of the exe-
cuting program on MVS, OS/390 and z/OS. The value returned is a pointer to a
NUL-terminated string. Trailing blanks are removed.

If the program was invoked directly, the returned name will be the empty string.

__procname() returns a pointer to a static area, care should be taken to copy this
value before invoking __procname() again.

SEE ALSO

__jobname(2), __stepname(2), __userid(2)

192 Systems/C C Library

__QUERYDUB(2)
NAME

__querydub - return the current procedure name

SYNOPSIS

#include <unistd.h>

int __querydub(void);

DESCRIPTION

The __querydub() function returns BPX ”dub” status of the current task, indicat-
ing if the task has already been dubbed, or can possibly be dubbed.

RETURN VALUES

If successful, __querydub() returns one of these values:

_QDB_DUBBED_FIRST The task has already been dubbed. This task and this RB caused
the dub.

_QDB_DUBBED The task has already been dubbed. Another task or another RB
caused the dub.

_QDB_DUB_MAY FAIL The task has not been dubbed, and any attempt to do so might
fail (typically due to bad or missing authorizations.)

_QDB_DUB_OKAY The task has not been dubbed, and any attempt will likely succeed.

_QDB_DUB_AS_PROCESS The task has not beed dubbed, but its address space has. A
dub of this task will result in a new process.

_QDB_DUB_AS_THREAD The task has not been dubbed, but its address space has. A

dub of this task will result in a new thread within the process.

If not successful, __querydub() returns -1 and sets an error condition in errno.

SEE ALSO

_-isPosixOn(2)

Systems/C C Library 193

READ(2)
NAME

read - read input

SYNOPSIS

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>

size_t
read(int d, void *buf, size_t nbytes)

ssize_t
pread(int d, void *buf, size_t nbytes, off_t offset);

DESCRIPTION

read() attempts to read nbytes of data from the object referenced by the descriptor
dinto the buffer pointed to by buf. The pread() function perform the same function,
but read from the specified position in the file without modifying the file pointer.

On objects capable of seeking, the read() starts at a position given by the pointer
associated with d (see lseek(2)). Upon return from read(), the pointer is incre-
mented by the number of bytes actually read.

Objects that are not capable of seeking always read from the current position. The
value of the pointer associated with such an object is undefined.

Upon successful completion, read(), pread() and readv() return the number of
bytes actually read and placed in the buffer. The system guarantees to read the
number of bytes requested if the descriptor references a normal file that has that
many bytes left before the end-of-file, but in no other case.

IMPLEMENTATION NOTES

If a file descriptor has been opened in _0_TEXT mode (the default), and references
record-structured (non-//HFS: and non-socket) file, records will be read from the
associated file, with trailing blanks removed, and a new-line character appended.
If the [lrecl of the file is 1, or the file descriptor is a socket, or the file descriptor
references an HF'S file, the bytes are read as if _.0_BINARY had been specified.

194 Systems/C C Library

If the file descriptor has been opened with _0_RECIO flag, and the file descriptor ref-
erences a record-structured file, then the read operation is performed using “record
I/O”. In this situation, the read will read the next record in the file, returning that
many bytes. If nbytes is smaller than the record length, the file pointer will be
advanced to the start of the next record.

The pread() function is only supported for HF'S files.

RETURN VALUES

If successful, the number of bytes actually read is returned. Upon reading end-of-
file, zero is returned. Otherwise, a -1 is returned and the global variable errno is
set to indicate the error.

When reading from a file with variable-length records using “record 1/0”, it is
possible to encounter a zero-length record. Instead of returning zero (which would
indicate end-of-file), the read() function will return -1 and set errno to EAGAIN.
Thus, a program reading variable-length records can distinguish between end-of-file
and a zero-length record by checking the value of errno.

ERRORS

read() will succeed unless:

[EBADF] d is not a valid file or socket descriptor open for reading.

[EFAULT] buf points outside the allocated address space.

[EI0] An I/0O error occurred while reading from the file system.

[EINTR] A read from a slow device was interrupted before any data arrived

by the delivery of a signal.
[EINVAL] The pointer associated with d was negative.

[EAGAIN] The file was marked for non-blocking 1/0, and no data were ready
to be read, or the file is a variable-length record file using record
I/O and a zero-length record was encountered.

[ENXIO] The file is not a supported I/O format.

The pread() function may also return the following errors:

[EINVAL] The offset value was negative.

Systems/C C Library 195

[EOVERFLOW] The file is an HF'S file and an attemp was made to read beyond the
maximum offset of the file.

[ESPIPE] The file descriptor is associated with a pipe, socket, or FIFO.

[ENXIO] The file does not support the operation, or the request was outside
the capabilities of the device.

SEE ALSO

dup(2), fentl(2), open(2)

STANDARDS

The read() function call is expected to conform to IEEE Std1003.1-1990
(“POSIX”), as closely as the host file system allows. The readv() and pread()

functions are expected to conform to X/Open Portability Guide Issue 4, Version 2
(“XPG4.27).

196 Systems/C C Library

READLINK(2)
NAME

readlink — read value of an //HFS:-style symbolic link

SYNOPSIS

#include <unistd.h>

int
readlink(const char *path, char *buf, int bufsiz);

DESCRIPTION

readlink() places the contents of the symbolic link path in the buffer buf, which
has size bufsiz. The readlink() function does not append a NUL character to buf.

RETURN VALUES

The call returns the count of characters placed in the buffer if it succeeds, or a -1 if
an error occurs, placing the error code in the global variable errno.

ERRORS
readlink() will fail if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EINVAL] The named file is not a symbolic link.

[EI0] An I/0O error occurred while reading from the file system.

[EFAULT] Buf extends outside the process’s allocated address space.

Systems/C C Library 197

RENAME(2)
NAME

rename - change the name of a file

SYNOPSIS

#include <stdio.h>

int
rename (const char *from, const char *to);

DESCRIPTION

rename() causes the file named from to be renamed as to. If to exists, it is first
removed. Both from and to must be of the same type (that is, both DSN names,
or both PDS members, or both HFS directories or both HF'S non-directories), and
must reside on the same file system. The types of from and to are determined by
the Systems/C file naming conventions. See open(2) for more information regarding
Systems/C file names.

IMPLEMENTATION NOTES

Only renaming of //DSN:-style and //HFS:-style names are supported in this release.

//DSN: style files must be entirely contained with 5 volumes, or rename() will fail.

RETURN VALUES

A 0 value is returned if the operation succeeds, otherwise rename() returns -1 and
the global variable errno indicates the reason for the failure.

ERRORS

rename() will fail and neither of the argument files will be affected if:

[ENAMETOOLONG] For HF'S files, a component of either name exceeded 255 characters,
or the entire length of either path name exceeded 1023 characters.

198 Systems/C C Library

[ENAMETOOLONG] For DSN files, a name was longer than 44 characters.

[ENOENT]

[EACCES]

[EACCES]

[EACCES]

[EPERM]

[EPERM]

[EPERM]

[EPERM]

[ELOOP]

[ENOMEM]

[ENOSYS]
[ENOSYS]
[ENOTDIR]
[ENOTDIR]
[EISDIR]

[EXDEV]

[ENOSPC]

A component of the from path does not exist, or a path prefix of to
does not exist.

For HFS files, A component of either path prefix denies search per-
mission.

For DSN files, the VITOC LOCATE macro indicates an acces viola-

tion.

The requested link requires writing in an HFS directory, a PDS
directory or a VI'OC with a mode that denies write permission.

For DSN files, permission was not granted to uncatalog the from
name, or permission was not granted to catalog the to name.

For DSN files, permission was not granted to perform the RENAME
operation.

The HFS directory containing from is marked sticky, and neither
the containing directory nor from are owned by the effective user
ID.

For HF'S files, the to file exists, the HFS directory containing to is
marked sticky, and neither the containing directory nor to are owned
by the effective user ID.

Too many symbolic links were encountered in translating either
pathname for HF'S files.

For DSN files, insufficient memory was available to perform the
operation.

For DSN files, the from spans more than 5 volumes.

The rename operation involves unsupported file types.

A component of either path prefix is not a directory for HF'S files.
from is an HF'S directory, but to is not an HF'S directory.

to is an HF'S directory, but from is not a HFS directory

The link named by to and the file named by from are on different
logical devices (file systems). Or, the file types of to and from do not
match (i.e. to is a DSN and from is a DDN.) Note that this error
code will not be returned if the implementation permits cross-device
links.

The HFS directory, or VTOC, or PDS directory in which the entry
for the new name is being placed cannot be extended because there
is no space left.

Systems/C C Library 199

[EDQUOT] The HFS directory in which the entry for the new name is being
placed cannot be extended because the user’s quota of disk blocks
on the file system containing the directory has been exhausted.

[EIO0] An 1/0O error occurred while making or updating an HFS directory
entry, or a VI'OC or a PDS directory.

[EROFS] The requested link requires writing in an HFS directory, VTOC or
PDS directory on a read-only file system.

[EFAULT] Either the from or to argument is NULL, or either from or to was a
pointer outside of the allocated address space.

[EINVAL] from is an invalid name.

[ENOTEMPTY] to is a directory and is not empty.

SEE ALSO

open(2)

STANDARDS

The rename() function call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.17) as closely as the host operating system allows.

200 Systems/C C Library

RMDIR(2)
NAME

rmdir — remove a directory file

SYNOPSIS

#include <unistd.h>

int
rmdir(const char *path);

DESCRIPTION

rmdir() removes an HFS directory file whose name is given by path. The directroy
must not have any entries other that ‘.’ and ‘..".

RETURN VALUES

The rmdir() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The named file is removed unless:

[ENOTDIR] A component of the path is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named directory does not exist.
[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[ENOTEMPTY] The named directory contains files other than ‘.” and ‘..” in it.
[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] Write permission is denied on the directory containing the link to
be removed.

Systems/C C Library 201

[EPERM] The directory containing the directory to be removed is marked
sticky, and neither the containing directory nor the directory to be
removed are owned by the effective user ID.

[EBUSY] The directory to be removed is the mount point for a mounted file
system.

[EIO0] An I/0 error occurred while deleting the directory entry or deallo-
cating the inode.

[EROFS] The directory entry to be removed resides on a read- only file system.

[EFAULT] Path points outside the process’s allocated address space.

SEE ALSO

mkdir(2), unlink(2)

202 Systems/C C Library

SCHED_YIELD(2)
NAME

sched_yield — yield processor

SYNOPSIS

#include <sched.h>

int
sched_yield(void);

DESCRIPTION

The sched_yield() system call forces the running process to relinquish the processor
until it again becomes the head of its process list. It takes no arguments.

RETURN VALUES

The sched_yield() function returns the value 0 if successful; otherwise the value
-1 is returned and the global variable errno is set to indicate the error.

ERRORS

On failure errno will be set to the corresponding value:

[ENOSYS] The system is not configured to support this functionality.

STANDARDS

The sched_yield() system call conforms to IEEE Std 1003.1b-1993 (“POSIX.17).

Systems/C C Library 203

SEMCTL(2)
NAME

semctl - control operations on a semaphore set

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int

semctl(int semid, int semnum, int cmd, ...);

DESCRIPTION

semctl() performs the operation indicated by c¢md on the semaphore set indicated
by semid. A fourth argument, a union semun arg, is required for certain values
of ¢md. For the commands that use the arg parameter, union semun is defined as
follows:

union semun {

int val; /* value for SETVAL x*/
struct semid_ds *buf; /* buffer for IPC_STAT & IPC_SET
u_short *array; /* array for GETALL & SETALL x/

};

Commands are performed as follows:

IPC_STAT Fetch the semaphore set’s struct semid_ds, storing it in the mem-
ory pointed to by arg.buf.

IPC_SET Changes the sem perm.uid, sem perm.gid, and sem perm.mode
members of the semaphore set’s struct semid_ds to match those
of the struct pointed to by arg.buf. The calling process’s effective
uid must match either sem_perm.uid or sem_perm.cuid, or it must
have superuser privileges.

IPC_RMID Immediately removes the semaphore set from the system. The
calling process’s effective uid must equal the semaphore set’s
sem_perm.uid or sem_perm.cuid, or the process must have supe-
ruser privileges.

204 Systems/C C Library

GETVAL Return the value of semaphore number semnum.
SETVAL Set the value of semaphore number semnum to arg.val.

GETPID Return the pid of the last process to perform an operation on
semaphore number semnum.

GETNCNT Return the number of processes waiting for semaphore number sem-
num’s value to become greater than its current value.

GETZCNT Return the number of processes waiting for semaphore number sem-
num’s value to become 0.

GETALL Fetch the value of all of the semaphores in the set into the array
pointed to by arg.array.

SETALL Set the values of all of the semaphores in the set to the values in
the array pointed to by arg.array.

The struct semid_ds is defined as follows:

struct semid_ds {

struct ipc_perm sem_perm; /* operation permission struct */
struct sem *sem_base; /* pointer to first semaphore in set */
u_short sem_nsems; /* number of sems in set */

time_t sem_otime; /* last operation time */

long sem_padl; /* SVABI/386 says I need this here */
time_t sem_ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */
long sem_pad?2; /* SVABI/386 says I need this here */
long sem_pad3[4]; /* SVABI/386 says I need this here */
s

The sem_base field is provided for compatibility with other operating systems, but
on OS/390 and z/0S, this field will always be NULL.

RETURN VALUES

On success, when c¢md is one of GETVAL, GETPID, GETNCNT or GETZCNT, semctl()
returns the corresponding value; otherwise, 0 is returned. On failure, -1 is returned,
and errno is set to indicate the error.

Systems/C C Library 205

ERRORS

semctl() will fail if:

[EINVAL] No semaphore set corresponds to semid.

[EINVAL] semnum is not in the range of valid semaphores for given semaphore
set.

[EPERM] The calling process’s effective uid does not match the uid of the

semaphore set’s owner or creator.

[EACCES] Permission denied due to mismatch between operation and mode of
semaphore set.

SEE ALSO

semget(2), semop(2)

206 Systems/C C Library

SEMGET(2)
NAME

semget - obtain a semaphore id

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int
semget (key_t key, int nsems, int flag);

DESCRIPTION

Based on the values of key and flag, semget() returns the identifier of a newly
created or previously existing set of semaphores. The key is analogous to a filename:
it provides a handle that names an IPC object. There are three ways to specify a
key:

e IPC_PRIVATE may be specified, in which case a new IPC object will be created.

e An integer constant may be specified. If no IPC object corresponding to key
is specified and the IPC_CREAT bit is set in flag, a new one will be created.

e ftok() may be used to generate a key from a pathname. See ftok(3).

The mode of the newly created IPC object is determined by OR’ing the following
constants into the flag parameter:

SEM_R Read access for user.
SEM_A Alter access for user.
(SEM_R>>3) Read access for group.
(SEM_A>>3) Alter access for group.
(SEM_R>>6) Read access for other.
(SEM_A>>6) Alter access for other.

If a new set of semaphores is being created, nsems is used to indicate the number
of semaphores the set should contain. Otherwise, nsems may be specified as 0.

Systems/C C Library 207

RETURN VALUES

semget() returns the id of a semaphore set if successful; otherwise, -1 is returned
and errno is set to indicate the error.

ERRORS
semget () will fail if:

[EACCES] Access permission failure.

[EEXIST] IPC_CREAT and IPC_EXCL were specified, and a semaphore set cor-
responding to key already exists.

[EINVAL] The number of semaphores requested exceeds the system imposed
maximum per set.

[ENOSPC] Insufficiently many semaphores are available.
[ENOSPC] The system could not allocate a struct semid ds.
[ENOENT] No semaphore set was found corresponding to key, and IPC_CREAT

was not specified.

SEE ALSO

semctl(2), semop(2), ftok(3)

208 Systems/C C Library

SEMOP(2)
NAME

semop - atomic array of operations on a semaphore set

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int
semop(int semid, struct sembuf array[], unsigned nops);

DESCRIPTION

semop() atomically performs the array of operations indicated by array on the
semaphore set indicated by semid. The length of array is indicated by nops. Each
operation is encoded in a struct sembuf, which is defined as follows:

struct sembuf {

u_short sem_num; /* semaphore # x/
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

};

For each element in array, sem_op and sem flg determine an operation to be
performed on semaphore number sem num in the set. The values SEM_UNDO and
IPC_NOWAIT may be OR’ed into the sem_flg member in order to modify the behav-
ior of the given operation.

The operation performed depends as follows on the value of sem_op:

e When sem_op is positive, the semaphore’s value is incremented by sem_op’s
value. If SEM_UNDO is specified, the semaphore’s adjust on exit value is decre-
mented by sem_op’s value. A positive value for sem_op generally corresponds
to a process releasing a resource associated with the semaphore.

e The behavior when sem_op is negative depends on the current value of the
semaphore:

Systems/C C Library 209

— If the current value of the semaphore is greater than or equal to the
absolute value of sem_op, then the value is decremented by the absolute
value of sem_op. If SEM_UNDO is specified, the semaphore’s adjust on exit
value is incremented by the absolute value of sem_op.

— If the current value of the semaphore is less than sem_op’s value, one of
the following happens:

« If IPC_NOWAIT was specified, then semop() returns immediately with
a return value of EAGAIN.

x If some other process has removed the semaphore with the IPC_RMID
option of semctl(), then fnnamesemop() returns immediately with
a return value of EINVAL.

x Otherwise, the calling process is put to sleep until the semaphore’s
value is greater than or equal to the absolute value of sem_op. When
this condition becomes true, the semaphore’s value is decremented
by the absolute value of sem_op, and the semaphore’s adjust on exit
value is incremented by the absolute value of sem_op.

A negative value for sem_op generally means that a process is waiting for

a resource to become available.

e When sem_op is zero, the process waits for the semaphore’s value to become
zero. If it is already zero, the call to semop() can return immediately. Oth-
erwise, the calling process is put to sleep until the semaphore’s value becomes
ZETO0.

For each semaphore a process has in use, the operating system maintains an ‘adjust
on exit’ value, as alluded to earlier. When a process exits, either voluntarily or
involuntarily, the adjust on exit value for each semaphore is added to the semaphore’s
value. This can be used to insure that a resource is released if a process terminates
unexpectedly.

RETURN VALUES

The semop() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

semop() will fail if:

[EINVAL] No semaphore set corresponds to semid.

[EACCES] Permission denied due to mismatch between operation and mode of
semaphore set.

210 Systems/C C Library

[EAGAIN] The semaphore’s value was less than sem_op, and IPC_NOWAIT was

specified.
[E2BIG] Too many operations were specified.
[EFBIG] sem_num was not in the range of valid semaphores for the set.

SEE ALSO

semctl(2), semget(2)

Systems/C C Library 211

SETGROUPS(2)
NAME

setgroups - set group access list

SYNOPSIS

#include <sys/param.h>
#include <unistd.h>

int
setgroups(int ngroups, const gid_t *gidset);

DESCRIPTION

setgroups() sets the group access list of the current user process according to the
array gidset. The parameter ngroups indicates the number of entries in the array
and must be no more than NGROUPS, as defined in <sys/param.h>.

Only the super-user may set new groups.

RETURN VALUES

The setgroups() function returns the value 0 if successful; otherwise the value -1
is returned and the global variable errno is set to indicate the error.

ERRORS

The setgroups() call will fail if:

[EPERM] The caller is not the super-user.

[EFAULT] The address specified for gidset is outside the process address space.
SEE ALSO

getgroups(2)

212 Systems/C C Library

_SETMODE(2)
NAME

_setmode - sets the file text vs. binary translation mode.

SYNOPSIS

#include <fcntl.h>

int
_setmode(int d, int mode)

DESCRIPTION

_setmode() alters the binary vs. text flag of the file descriptor d, setting it to the
given mode. _setmode returns the previous mode value.

mode must be either 0_TEXT or _0_BINARY. _0_TEXT sets the file descriptor to text
mode, _-0_BINARY to binary mode. See open(2) for a description of these I/O trans-
lation modes.

_setmode() is typically used to change the default translation mode of stdin and
stdout, but can be used on any open file. _setmode() should be applied before
performing any input or output on the file descriptor.

RETURN VALUES

If successful, the previous mode value is returned. Otherwise, a -1 is returned and
the global variable errno is set to indicate the error.

ERRORS

_setmode() will succeed unless:

[EBADF] d is not a valid, open file descriptor.
[EINVAL] mode is not _0_TEXT nor 0_BINARY.
SEE ALSO

fentl(2), open(2), read(2), write(2)

Systems/C C Library 213

SETPGID(2)
NAME

setpgid, setpgrp - set process group

SYNOPSIS

#include <unistd.h>

int
setpgid(pid_t pid, pid_t pgrp);

int
setpgrp(pid_t pid, pid_t pgrp);

DESCRIPTION

setpgid() sets the process group of the specified process pid to the specified pgrp.
If pid is zero, then the call applies to the current process.

If the invoker is not the super-user, then the affected process must have the same
effective user-id as the invoker or be a descendant of the invoking process.

RETURN VALUES

The setpgid() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

setpgid() will fail and the process group will not be altered if:

[EACCES] Pid is a valid child of the current process, but pid has been ex-
ecve(2)’d. Access to the target process was denied.

[EINVAL] pgrp is an invalid process group.

[EPERM] The effective user ID of the requested process is different from that of

the caller and the process is not a descendent of the calling process.

[ESRCH] The requested process does not exist.

214 Systems/C C Library

SEE ALSO

getpgrp(2)

STANDARDS

The setpgid() function call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.1") as closely as the host system allows.

COMPATIBILITY

setpgrp() is identical to setpgid(), and is provided for calling convention compat-
ibility with historical versions of BSD UNIX.

Systems/C C Library 215

SETREGID(2)
NAME

setregid - set real and effective group ID

SYNOPSIS

#include <unistd.h>

int
setregid(gid_t rgid, gid_t egid);

DESCRIPTION

The real and effective group ID’s of the current process are set to the arguments.
Unprivileged users may change the real group ID to the effective group ID and
vice-versa; only the super-user may make other changes.

Supplying a value of -1 for either the real or effective group ID forces the system to
substitute the current ID in place of the -1 parameter.

Historically, the setregid() function was intended to allow swapping the real and
effective group IDs in set-group-ID programs to temporarily relinquish the set-group-
ID value. This function did not work correctly, and its purpose is now better served
by the use of the setegid() function (see setuid(2)).

When setting the real and effective group IDs to the same value, the standard
setgid() function is preferred.

RETURN VALUES

The setregid() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

[EAGAIN] A RACF failure has occured.

[EINVAL] One of the parms is an invalid user id.

[EPERM] The current process is not the super-user and a change other than

changing the effective group-id to the real group-id was specified.

216 Systems/C C Library

SEE ALSO

getgid(2), setegid(2), setgid(2), setuid(2)

Systems/C C Library 217

SETREUID(2)
NAME

setreuid - set real and effective user ID’s

SYNOPSIS

#include <unistd.h>

int
setreuid(uid_t ruid, uid_t euid);

DESCRIPTION

The real and effective user IDs of the current process are set according to the argu-
ments. If ruid or euid is -1, the current uid is filled in by the system. Unprivileged
users may change the real user ID to the effective user ID and vice-versa; only the
super-user may make other changes.

The setreuid() function has been used to swap the real and effective user IDs in
set-user-ID programs to temporarily relinquish the set-user-ID value. This purpose
is now better served by the use of the seteuid() function (see setuid(2)).

When setting the real and effective user IDs to the same value, the standard setuid()
function is preferred.

RETURN VALUES

The setreuid() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

[EAGAIN] A RACEF failure has occured.

[EINVAL] One of the parms is an invalid user id.

[EPERM] The current process is not the super-user and a change other than
changing the effective user-id to the real user-id was specified.

SEE ALSO

getuid(2), seteuid(2), setuid(2)

218 Systems/C C Library

SETSID(2)
NAME

setsid - create session and set process group 1D

SYNOPSIS

#include <unistd.h>

pid_t
setsid(void);

DESCRIPTION

The setsid() function creates a new session. The calling process is the session leader
of the new session, is the process group leader of a new process group and has no
controlling terminal. The calling process is the only process in either the session or
the process group.

RETURN VALUES

Upon successful completion, the setsid() function returns the value of the process
group ID of the new process group, which is the same as the process ID of the calling
process. If an error occurs, setsid() returns -1 and the global variable errno is set
to indicate the error.

ERRORS

The setsid() function will fail if:

[EPERM] The calling process is already a process group leader, or the process
group ID of a process other than the calling process matches the
process ID of the calling process.

SEE ALSO

setpgid(2), tegetpgrp(3), tesetpgrp(3)

Systems/C C Library 219

STANDARDS

The setsid() function is expected to be compliant with the ISO/IEC 9945-1:1990
(“POSIX.1”) specification as closely as the host system allows.

220 Systems/C C Library

SETUID(2)

NAME

setuid, seteuid, setgid, setegid - set user and group ID

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

int
setuid(uid_t uid);

int
seteuid(uid_t euid);

int
setgid(gid_t gid);

int
setegid(gid_t egid);

DESCRIPTION

The setuid() function sets the real and effective user IDs and the saved set-user-1D
of the current process to the specified value. The setuid() function is permitted if
the specified ID is equal to the real user ID or the effective user ID of the process,
or if the effective user ID is that of the super user.

The setgid() function sets the real and effective group IDs and the saved set-group-
ID of the current process to the specified value. The setgid() function is permitted
if the specified 1D is equal to the real group ID or the effective group ID of the
process, or if the effective user ID is that of the super user.

The seteuid() function (setegid()) sets the effective user ID (group ID) of the
current process. The effective user ID may be set to the value of the real user ID or
the saved set-user-1D (see execve(2)); in this way, the effective user ID of a set-user-
ID executable may be toggled by switching to the real user ID, then re-enabled by
reverting to the set-user-ID value. Similarly, the effective group ID may be set to
the value of the real group ID or the saved set-group-ID.

Systems/C C Library 221

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

The functions will fail if:

[EAGAIN] A problem in RACF access occurred.
[EINVAL] An invalid user (group) id was specified.
[EPERM] The user is not the super user and the ID specified is not the real,

effective 1D, or saved ID.

SEE ALSO

getgid(2), getuid(2), setregid(2), setreuid(2)

STANDARDS

The setuid() and setgid() functions are compliant with the ISO/IEC 9945-1:1990
(“POSIX.1”) specification with _POSIX_SAVED_IDS not defined with the permitted
extensions from Appendix B.4.2.2. The seteuid() and setegid() functions are ex-
tensions based on the POSIX concept of _POSIX_SAVED_IDS, and have been proposed
for a future revision of the standard.

222 Systems/C C Library

SHMAT(2)
NAME

shmat, shmdt - attach or detach shared memory

SYNOPSIS

#include <machine/param.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

void *
shmat (int shmid, void *addr, int flag);

int
shmdt (void *addr);

DESCRIPTION

shmat() attaches the shared memory segment identified by shmid to the calling
process’s address space. The address where the segment is attached is determined
as follows:

e If addris 0, the segment is attached at an address selected by the system.

e If addris nonzero and SHM_RND is not specified in flag, the segment is attached
the specified address.

e If addr is specified and SHM_RND is specified, addr is rounded down to the
nearest multiple of SHMLBA.

shmdt() detaches the shared memory segment at the address specified by addr from
the calling process’s address space.

RETURN VALUES

Upon success, shmat() returns the address where the segment is attached; other-
wise, -1 is returned and errno is set to indicate the error.

The shmdt() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

Systems/C C Library 223

ERRORS

shmat() will fail if:

[EINVAL] No shared memory segment was found corresponding to shmid.
[EINVAL] addr was not an acceptable address.
SEE ALSO

shmctl(2), shmget(2)

224 Systems/C C Library

SHMCTL(2)

NAME

shmctl - shared memory control

SYNOPSIS

#include
#include
#include
#include

int

<machine/param.h>
<sys/types.h>
<sys/ipc.h>
<sys/shm.h>

shmctl(int shmid, int cmd, struct shmid_ds *buf);

DESCRIPTION

The shmctl() function performs the action specified by e¢md on the shared memory
segment identified by shmid:

IPC_STAT

IPC_SET

IPC_RMID

Fetch the segment’s struct shmid ds, storing it in the memory
pointed to by buf.

Changes the shm perm.uid, shm perm.gid, and shm perm.mode
members of the segment’s struct shmid_ds to match those of the
struct pointed to by buf. The calling process’s effective uid must
match either shm_perm.uid or shm_perm.cuid, or it must have su-
peruser privileges.

Removes the segment from the system. The removal will not take
effect until all processes having attached the segment have exited;
however, once the IPC_RMID operation has taken place, no further
processes will be allowed to attach the segment. For the oper-
ation to succeed, the calling process’s effective uid must match
shm_perm.uid or shm_perm.cuid, or the process must have supe-
ruser privileges.

The shmid_ds struct is defined as follows:

struct shmid_ds {

struct ipc_perm shm_perm; /* operation permission structure */
int shm_segsz; /* size of segment in bytes */

Systems/C C Library 225

pid_t shm_lpid; /* process ID of last shared memory op */

pid_t shm_cpid; /#* process ID of creator */

short shm_nattch; /* number of current attaches */
time_t shm_atime; /* time of last shmat() */

time_t shm_dtime; /* time of last shmdt() */

time_t shm_ctime; /* time of last change by shmctl() */
void *shm_internal; /* sysv stupidity */

};

The shm_internal field is provided for compatibility with other functions.

RETURN VALUES

The shmctl() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

shmectl() will fail if:

[EINVAL] Invalid operation, or no shared memory segment was found corre-
sponding to shmad.

[EPERM] The calling process’s effective uid does not match the uid of the
shared memory segment’s owner or creator.

[EACCES] Permission denied due to mismatch between operation and mode of
shared memory segment.

SEE ALSO

shmat(2), shmdt(2), shmget(2), ftok(3)

226 Systems/C C Library

SHMGET(2)

NAME

shmget - obtain a shared memory identifier

SYNOPSIS

#include
#include
#include
#include

int

shmget (key_t key, int size, int flag);

<machine/param.h>
<sys/types.h>
<sys/ipc.h>
<sys/shm.h>

DESCRIPTION

Based on the values of key and flag, shmget() returns the identifier of a newly
created or previously existing shared memory segment. The key is analogous to a
filename: it provides a handle that names an IPC object. There are three ways to
specify a key:

e IPC_PRIVATE may be specified, in which case a new IPC object will be created.

e An integer constant may be specified. If no IPC object corresponding to key
is specified and the TPC_CREAT bit is set in flag, a new one will be created.

e ftok() may be used to generate a key from a pathname. See ftok(3).

The mode of a newly created IPC object is determined by OR’ing the following
constants into the flag parameter:

SHM_R Read access for user.

SHM_W Write access for user.

(SHM_R>>3) Read access for group.

(SHM_W>>3) Write access for group.

(SHM_R>>6) Read access for other.

(SHM_W>>6) Write access for other.

When creating a new shared memory segment, size indicates the desired size of the
new segment in bytes. The size of the segment may be rounded up to a multiple

convenient to the system (i.e., the page size).

Systems/C C Library 227

RETURN VALUES

Upon successful completion, shmget() returns the positive integer identifier of a
shared memory segment. Otherwise, -1 is returned and errno set to indicate the
erTor.

ERRORS
shmget () will fail if:

[EINVAL] Size specified is greater than the size of the previously existing seg-
ment. Size specified is less than the system imposed minimum, or
greater than the system imposed maximum.

[ENOENT] No shared memory segment was found matching key, and IPC_CREAT
was not specified.

[ENOSPC] The system was unable to allocate enough memory to satisfy the
request.

[EEXIST] IPC_CREAT and IPC_EXCL were specified, and a shared memory seg-

ment corresponding to key already exists.

SEE ALSO

shmat(2), shmctl(2), shmdt(2), ftok(3)

228 Systems/C C Library

SIGACTION(2)
NAME

sigaction — software signal facilities

SYNOPSIS

#include <signal.h>

struct sigaction {

union {
void (*__sa_handler) (int) ;
void (*__sa_sigaction) (int, struct __siginfo *, void *);
} __sigaction_u; /* signal handler */
int sa_flags; /* see signal options below */
sigset_t sa_mask; /* signal mask to apply */
s
#define sa_handler __sigaction_u.__sa_handler
#define sa_sigaction __sigaction_u.__sa_sigaction
int

sigaction(int sig, const struct sigaction * restrict act,
struct sigaction * restrict oact);

int __abendcode(void) ;
int __rsncode(void);

DESCRIPTION The system defines a set of signals that may be delivered to a
process. Signal delivery resembles the occurrence of a hardware interrupt: the
signal is normally blocked from further occurrence, the current process context is
saved, and a new one is built. A process may specify a handler to which a signal
is delivered, or specify that a signal is to be ignored. A process may also specify
that a default action is to be taken by the system when a signal occurs. A signal
may also be blocked, in which case its delivery is postponed until it is unblocked.
The action to be taken on delivery is determined at the time of delivery. Normally,
signal handlers execute on the current stack of the process. This may be changed,
on a per-handler basis, so that signals are taken on a special signal stack.

Signal routines normally execute with the signal that caused their invocation
blocked, but other signals may yet occur. A global signal mask defines the set
of signals currently blocked from delivery to a process. The signal mask for a pro-
cess is initialized from that of its parent (normally empty). It may be changed with
a sigprocmask(2) call, or when a signal is delivered to the process.

Systems/C C Library 229

When a signal condition arises for a process, the signal is added to a set of signals
pending for the process. If the signal is not currently blocked by the process then it
is delivered to the process. Signals may be delivered any time a process enters the
operating system (e.g., during a system call, page fault or trap, or clock interrupt). If
multiple signals are ready to be delivered at the same time, any signals that could be
caused by traps are delivered first. Additional signals may be processed at the same
time, with each appearing to interrupt the handlers for the previous signals before
their first instructions. The set of pending signals is returned by the sigpending(2)
system call. When a caught signal is delivered, the current state of the process is
saved, a new signal mask is calculated (as described below), and the signal handler
is invoked. The call to the handler is arranged so that if the sig- nal handling routine
returns normally the process will resume execution in the context from before the
signal’s delivery. If the process wishes to resume in a different context, then it must
arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration
of the process’ signal handler (or until a sigprocmask(2) system call is made). This
mask is formed by taking the union of the current signal mask set, the signal to be
delivered, and the signal mask associated with the handler to be invoked.

The sigaction() system call assigns an action for a signal specified by sig. If act is
non-zero, it specifies an action (SIG_DFL, SIG_IGN, or a handler routine) and mask
to be used when delivering the specified signal. If oact is non-zero, the previous
handling information for the signal is returned to the user.

Once a signal handler is installed, it normally remains installed until another sigac-
tion() system call is made, or an execve(2) is performed. A signal-specific default
action may be reset by setting sa_handler to SIG_DFL. The defaults are process ter-
mination, possibly with core dump; no action; stopping the process; or continuing
the process. See the signal list below for each signal’s default action. If sa_handler
is SIG_DFL, the default action for the signal is to discard the signal, and if a signal is
pending, the pending signal is discarded even if the signal is masked. If sa_handleris
set to SIG_IGN current and pending instances of the signal are ignored and discarded.

Options may be specified by setting sa_flags. The meaning of the various bits is as
follows:

SA_NOCLDSTOP If this bit is set when installing a catching function for the SIGCHLD
signal, the SIGCHLD signal will be generated only when a child process exits,
not when a child process stops.

SA_NOCLDWAIT If this bit is set when calling sigaction() for the SIGCHLD signal, the
system will not create zombie processes when children of the calling process
exit. If the calling process subsequently issues a wait(2) (or equivalent), it
blocks until all of the calling process’s child processes terminate, and then
returns a value of -1 with errno set to ECHILD. The same effect of avoiding
zombie cre- ation can also be achieved by setting sa_handler for SIGCHLD to
SIG_IGN.

230 Systems/C C Library

SA_ONSTACK If this bit is set, the system will deliver the signal to the process on a
signal stack, specified with sigaltstack(2).

SA_NODEFER If this bit is set, further occurrences of the delivered signal are not
masked during the execution of the handler.

SA_RESETHAND If this bit is set, the handler is reset back to SIG_DFL at the moment
the signal is delivered.

SA_RESTART See paragraph below.

SA_SIGINFO If this bit is set, the handler function is assumed to be pointed to by
the sa_sigaction member of struct sigaction and should match the prototype
shown above or as below in EXAMPLES. This bit should not be set when
assigning SIG_DFL or SIG_IGN.

If a signal is caught during some system calls, the call may be forced to terminate
with the error EINTR, the call may return with a data transfer shorter than requested,
or the call may be restarted. Restart of pending calls is requested by setting the
SA_RESTART bit in sa_flags.

After a fork(2) or vfork(2) all signals, the signal mask, the signal stack, and the
restart /interrupt flags are inherited by the child.

The execve(2) system call reinstates the default action for all signals which were
caught and resets all signals to be caught on the user stack. Ignored signals remain
ignored; the signal mask remains the same; signals that restart pending system calls
continue to do so.

The following is a list of all signals with names as in the include file <signal.h>:

NAME Default Action Description

SIGHUP terminate process terminal line hangup

SIGINT terminate process interrupt program

SIGQUIT create core image quit program

SIGILL create core image illegal instruction

SIGTRAP create core image trace trap

SIGABRT create core image abort(3) call (formerly SIGIOT)
SIGEMT create core image emulate instruction executed
SIGFPE create core image floating-point exception
SIGKILL terminate process kill program

SIGBUS create core image bus error

SIGSEGV create core image segmentation violation

SIGSYS create core image non-existent system call invoked
SIGPIPE terminate process write on a pipe with no reader
SIGALRM terminate process real-time timer expired
SIGTERM terminate process software termination signal
SIGURG discard signal urgent condition present on

Systems/C C Library 231

socket

SIGSTOP stop process stop (cannot be caught or
ignored)

SIGTSTP stop process stop signal generated from
keyboard

SIGCONT discard signal continue after stop

SIGCHLD discard signal child status has changed

SIGTTIN stop process background read attempted from
control terminal

SIGTTOU stop process background write attempted to
control terminal

SIGIO discard signal I/0 is possible on a descriptor
(see fentl(2))

SIGXCPU terminate process cpu time limit exceeded (see
setrlimit(2))

SIGXFSZ terminate process file size limit exceeded (see
setrlimit(2))

SIGVTALRM terminate process virtual time alarm (see
setitimer(2))

SIGPROF terminate process profiling timer alarm (see
setitimer(2))

SIGWINCH discard signal Window size change

SIGINFO discard signal status request from keyboard

SIGUSR1 terminate process User defined signal 1

SIGUSR2 terminate process User defined signal 2

SIGDANGER terminate process

SIGTHSTOP terminate process

SIGTHCONT terminate process

SIGTRACE terminate process

SIGDCE terminate process

SIGDUMP terminate process

SIGABND terminate process ABEND was encountered

SIGPOLL terminate process

SIGIOERR terminate process

NOTE

The sa_mask field specified in act is not allowed to block SIGKILL, SIGSTOP or
SIGABND. Any attempt to do so will be silently ignored.

It is good practice to make a copy of the global variable errno and restore it before
returning from the signal handler. This protects against the side effect of errno
being set by functions called from inside the signal handler.

232 Systems/C C Library

SIGABND Notes

The signal SIGABND can be used to establish a signal handler function to invoke
when an ABEND is encountered. The Dignus runtime defines the two functions
__abendcode and __rsncode that can be used to retrieve the ABEND and REA-
SON codes from the ABEND information. These values are only valid within the
signal handler.

Returning from a SIGABND handler restores execution at the point of the ABEND
and will result in an infinite loop if the handler remains in effect. That is, the
handler returns, the processor state is restored to the instruction that issued the
ABEND, the ABEND occurs and the signal handler is re-entered. If the state of the
SIGABND handler is SIG_DFL then the ABEND will be percolated to be processed in
the normal manner.

The SA_RESETHAND flag can be used to set the SIGABND to SIGDFL on entry to
the signal handler; so that the handler may be executed once and then when the
processor state is restored, normal ABEND handling will occur.

The Systems/C library issues an ABEND 978 when stack space has been exhausted.
In order to be invoked for an ABEND 978, the signal handler must be defined to
execute on the alternate signal stack; or the ABEND 978 will simply be re-issued
to percolate via normal ABEND processing.

non-POSIX signal handling

For POSIX environment programs, the system defaults to using the POSIX sig-
nal handling interfaces in z/OS. In non-POSIX environments (BATCH/TSO), the
system defaults to non-POSIX signal handling.

In non-POSIX signal handling, the TRAP(ON) option must be available to enable
recognition of SIGILL, SIGSEGV, SIGFPE and SIGABND. When TRAP is ON, the
runtime environment establishes an ESTAE exit to process these events and present
the signals to the program. When TRAP is OFF, no ESTAE is established and
normal system ABEND processing will occur without a signal being generated.

Also in a non-POSIX environment, the raise(3) function may be used to initiate
a signal within a program, but since POSIX signal handling is not enabled, the
program will not be able to receive a signal from an external process.

RETURN VALUES

The sigaction() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

Systems/C C Library 233

EXAMPLES

There are two possible prototypes the handler may match:

ANSI C:

void handler(int);

POSIX SA_SIGINFO:

void handler(int, siginfo_t *info, ucontext_t *uap);

The handler function should match the SA_SIGINFQ prototype if the SA_SIGINFQ bit
is set in sa_flags. It then should be pointed to by the sa_sigaction member of struct
stgaction. Note that you should not assign SIG_DFL or SIG_IGN this way.

If the SA_SIGINFO flag is not set, the handler function should match the ANSI C
prototype and be pointed to by the sa_handler member of struct sigaction.

The sig argument is the signal number, one of the SIG... values from <signal.h>.

The wuap argument to a POSIX SA_SIGINFO handler points to an instance of
ucontext_t.

ERRORS

The sigaction() system call will fail and no new signal handler will be installed if
one of the following occurs:

[EFAULT] Either act or oact points to memory that is not a valid part of the
process address space.

[EINVAL] The sitg argument is not a valid signal number.

[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or
SIGSTOP.

[EINVAL] An attempt is made to ignore SIGABND.

SEE ALSO

kill(2), ptrace(2), sigaltstack(2), sigblock(2), sigpause(2), sigpending(2), sigproc-
mask(2), sigsetmask(2), sigsuspend(2), wait(2), fpsetmask(3), setjmp(3), siginter-
rupt(3), sigsetops(3), ucontext(3)

234 Systems/C C Library

STANDARDS

The sigaction() system call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.17).

Systems/C C Library 235

SIGPENDING (2)
NAME

sigpending — get pending signals

SYNOPSIS

#include <signal.h>

int
sigpending(sigset_t *set);

DESCRIPTION

The sigpending() system call returns a mask of the signals pending for delivery to
the calling process in the location indicated by set. Signals may be pending because
they are currently masked, or transiently before delivery (although the latter case
is not normally detectable).

RETURN VALUES

The sigpending()— function returns the value 0 if successful; otherwise the value
-1 is returned and the global variable errno is set to indicate the error.

ERRORS

The sigpending() system call will fail if:

[EFAULT] The set argument specified an invalid address.
[ENOSYS] The caller is not running in a POSIX environment.
SEE ALSO

sigaction(2), sigprocmask(2), sigsuspend(2), sigsetops(2)

STANDARDS

The sigpending() system call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.17).

236 Systems/C C Library

SIGPROCMASK (2)
NAME

sigprocmask — manipulate current signal mask

SYNOPSIS

#include <signal.h>

int
sigprocmask(int how, const sigset_t * restrict set,
sigset_t * restrict oset);

DESCRIPTION

The sigprocmask() system call examines and/or changes the current signal mask
(those signals that are blocked from delivery). Signals are blocked if they are mem-
bers of the current signal mask set.

If set is not null, the action of sigprocmask() depends on the value of the how
argument. The signal mask is changed as a function of the specified set and the
current mask. The function is specified by how using one of the following values
from jsignal.h;:

SIG_BLOCK The new mask is the union of the current mask and the specified set.

SIG_UNBLOCK The new mask is the intersection of the current mask and the comple-
ment of the specified set.

SIG_SETMASK The current mask is replaced by the specified set.

If oset is not null, it is set to the previous value of the signal mask. When set is
null, the value of how is insignificant and the mask remains unset providing a way
to examine the signal mask without modification.

The system quietly disallows SIGKILL or SIGSTOP to be blocked.

RETURN VALUES

The sigprocmask() function returns the value 0 if successful; otherwise the value
-1 is returned and the global variable errno is set to indicate the error.

Systems/C C Library 237

ERRORS

The sigprocmask() system call will fail and the signal mask will be unchanged if
one of the following occurs:

[EINVAL] The how argument has a value other than those listed here.
SEE ALSO
kill(2), sigaction(2), sigpending(2), sigsuspend(2), fpsetmask(3), sigsetops(3)

STANDARDS

The sigprocmask() system call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.17).

238 Systems/C C Library

SIGQUEUE(2)
NAME

sigqueue - queue a signal to a process.

SYNOPSIS

#include <signal.h>
int

sigqueue(pid_t pid, int signo, const union sigval value);

DESCRIPTION

The sigqueue() function causes the signal specified by signo to be sent with the
value specified by walue to the process specified by pid. If signo is zero (the null
signal), error checking is performed but no signal is actually sent. The null signal
can be used to check the validity of pid.

The conditions required for a process to have permission to queue a signal to another
process are the same as for the kill(2) function. The sigqueue() function queues a

signal to a single process specified by the pid argument.

The sigqueue() system call returns immediately. If the resources were available to
queue the signal, the signal will be queued and sent to the receiving process.

If the value of pid causes signo to be generated for the sending process, and if signo
is not blocked for the calling thread and if no other thread has signo unblocked or
is waiting in a sigwait() system call for signo, either signo or at least the pending,
unblocked signal will be delivered to the calling thread before sigqueue() returns.

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

The sigqueue() system call will fail if:

Systems/C C Library 239

[EAGAIN] No resources are available to queue the signal. The process has
already queued (MAXQUEUEDSIGS) signals that are still pending
at the receiver(s), or a system-wide resource limit has been exceeded.

[EINVAL] The value of the signo argument is an invalid or unsupported signal
number.

[EPERM] The process does not have the appropriate privilege to send the
signal to the receiving process.

[ESRCH] The process pid does not exist.

SEE ALSO

kill(2), sigaction(2), sigpending(2), sigsuspend(2), sigtimedwait(2), sigwait(2), sig-
waitinfo(2), pause(3), pthread_sigmask(3), siginfo(3)

STANDARDS

The sigqueue() system call conforms to IEEE Std 1003.1-2004 ("POSIX.1”).

240 Systems/C C Library

SIGSUSPEND(2)
NAME

sigsuspend — atomically release blocked signals and wait for interrupt

SYNOPSIS

#include <signal.h>

int
sigsuspend(const sigset_t *sigmask);

DESCRIPTION

The sigsuspend() system call temporarily changes the blocked signal mask to the
set to which sigmask points, and then waits for a signal to arrive; on return the
previous set of masked signals is restored. The signal mask set is usually empty to
indicate that all signals are to be unblocked for the duration of the call.

In normal usage, a signal is blocked using sigprocmask(2) to begin a critical sec-
tion, variables modified on the occurrence of the signal are examined to determine
that there is no work to be done, and the process pauses awaiting work by using
sigsuspend() with the previous mask returned by sigprocmask(2).

RETURN VALUES

The sigsuspend function requires POSIX signal handling, if POSIX signal handling
is not enabled, sigsuspend immediately returns -1 with errno set to ENOSYS.

Otherwise, the sigsuspend() system call will terminate by being interrupted, re-
turning -1 with errno set to EINTR.

SEE ALSO

sigaction(2), sigpending(2), sigprocmask(2), sigsetops(3)

STANDARDS

The sigsuspend() system call is expected to conform to ISO/TEC 9945-1:1990
(“POSIX.17).

FreeBSD 6.2 May 16, 1995 FreeBSD 6.2

Systems/C C Library 241

SIGWAIT(2)
NAME

sigwait — select a set of signals

SYNOPSIS

#include <signal.h>

int
sigwait(const sigset_t * restrict set, int * restrict sig);

DESCRIPTION

The sigwait() system call selects a set of signals, specified by set. If none of the
selected signals are pending, sigwait() waits until one or more of the selected signals
has been generated. Then sigwait() atomically clears one of the selected signals
from the set of pending signals for the process and sets the location pointed to by
stg to the signal number that was cleared.

The signals specified by set should be blocked at the time of the call to sigwait().

IMPLEMENATION NOTES

The sigwait() function depends on POSIX signals, if they are not enabled sigwait ()
immediately returns the value ENOSYS.

RETURN VALUES

If successful, sigwait() returns 0 and sets the location pointed to by sig to the
cleared signal number. Otherwise, an error number is returned.

ERRORS

The sigwait() system call will fail if:

[EINVAL] The set argument specifies one or more invalid signal numbers.

[ENOSYS] sigwait() is invoked with POSIX signals disabled.

242 Systems/C C Library

SEE ALSO

sigaction(2), sigpending(2), sigsuspend(2), pause(3), pthread_sigmask(3)

STANDARDS

The sigwait() function conforms to ISO/IEC 9945-1:1996 (“POSIX.17).

Systems/C C Library 243

__SMF_RECORD(2)
NAME

_smf record - generate an SMF record

SYNOPSIS

#include <unistd.h>

int
_smf_record(int type, int subtype, int length, char *record);

DESCRIPTION

The __smf record() function generates an SMF record in the SMF data set with
a type of type and a subtype of subtype. The record to write is is specified by the
address record and is of length characters.

The caller must be APF-authorized, or permitted to the appropriate BPX.SMF
facilty type or BPX.SMF.type.subtype resource.

For more information about SMF records consult the IBM document ”z/OS MVS
System Management Facilities (SMF)”.

For more information about creating facility authorizations, consult the IBM docu-
ment 7 z/OS UNIX System Services Planning.”.

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

The __smf record() system call will fail if:

[EINVAL] The value of the length operand is incorrect.

[EMVSERR] The SMF service returned a failing return code.

[ENOMEM] Insufficent storage was available.

[EPERM] Not sufficiently authorized or permission problems when accessing

the BPX.SMF resource.

244 Systems/C C Library

STAT(2)
NAME

stat, Istat, fstat - get //HFS: file status

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

int
stat(const char *path, struct stat *sb);

int
lstat(const char *path, struct stat *sb);

int
fstat(int fd, struct stat *sb);

DESCRIPTION

The stat() function obtains information about the file pointed to by path. Read,
write or execute permission of the named file is not required, but all directories
listed in the path name leading to the file must be searchable.

Istat() is similar to stat() except in the case where the named file is a symbolic
link, in which case Istat() returns information about the link, while stat() returns

information about the file the link references.

The fstat() function obtains the same information about an open file known by the

file descriptor fd.

stat() and lstat() may only be applied to //HFS:-style files. fstat() can only be
used in combination with a file descriptor associated with an //HFS:-style file.

The sb argument is a pointer to a stat() structure as defined by <sys/stat.h>
(shown below) and into which information is placed concerning the file.

struct stat {

dev_t st_dev;
ino_t st_ino;
mode_t st_mode;

nlink_t st_nlink;

/%
/*
/*
/*

inode’s device */
inode’s number */
inode protection mode */
number of hard links */

Systems/C C Library 245

uid_t st_uid; /* user ID of the file’s owner */
gid_t st_gid; /* group ID of the file’s group */
dev_t st_rdev; /* device type */

#ifndef _POSIX_SOURCE
struct timespec st_atimespec; /* time of last access */
struct timespec st_mtimespec; /* time of last data modification */
struct timespec st_ctimespec; /* time of last file status change */

#else
time_t st_atime; /* time of last access */
long st_atimensec; /* nsec of last access */
time_t st_mtime; /* time of last data modification */
long st_mtimensec; /* nsec of last data modification */
time_t st_ctime; /* time of last file status change */
long st_ctimensec; /* nsec of last file status change */
#endif
off_t st_size; /* file size, in bytes */
int64_t st_blocks; /* blocks allocated for file */
u_int32_t st_blksize; /* optimal blocksize for I/0 */
u_int32_t st_flags; /* user defined flags for file */
u_int32_t st_gen; /* file generation number */
3

The time-related fields of struct stat are as follows:

st_atime Time when file data last accessed. Changed by the mknod(2),
utime(2) and read(2) system calls.

st_mtime Time when file data last modified. Changed by the mknod(2),
utime(2) and write(2) system calls.

st_ctime Time when file status was last changed. Changed by the chmod(2),
chown(2), link(2), mknod(2), rename(2), unlink(2), utime(2) and
write(2) system calls.

If _POSIX_SOURCE is not defined, the time-related fields are defined as:

#ifndef _POSIX_SOURCE

#define st_atime st_atimespec.tv_sec
#define st_mtime st_mtimespec.tv_sec
#define st_ctime st_ctimespec.tv_sec
#endif

The size-related fields of struct stat are as follows:

st_blksize The optimal I/O block size for the file.

246 Systems/C C Library

st_blocks

The actual number of blocks allocated for the file in 512-byte units.
This number may be zero.

The status information word st_mode has the following bits:

#define S_IFMT 0170000

#define
#define
#define
#define
#define
#define
#define
#tdefine
#define
#tdefine
#define
#define
#define
#define

S_ISUID
S_ISGID
S_ISVTX
S_IRUSR
S_IWUSR
S_IXUSR

S_IFIFO
S_IFCHR
S_IFDIR
S_IFBLK
S_IFREG
S_IFLNK
S_IFSOCK
S_IFWHT
0004000
0002000
0001000
0000400
0000200
0000100

0010000
0020000
0040000
0060000
0100000
0120000
0140000
0160000

/%
/*
/%
/*
/%
/*
/%
/*
/%

type of file */
named pipe (fifo) */
character special */
directory */

block special */
regular */

symbolic link */
socket */

whiteout */

/* set user id on execution */

/* set group id on execution */

/* save swapped text even after use */
/* read permission, owner */

/* write permission, owner */

/* execute/search permission, owner */

For a list of access modes, see <sys/stat.h>, access(2) and chmod(2).

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

stat() and Istat() will fail if:

[ENOTDIR]

A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT]
[EACCES]

[ELOOP]

[EFAULT]

The named file does not exist.

Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the path-

name.

sb or name points to an invalid address.

Systems/C C Library 247

[EIO0] An I/O error occurred while reading from or writing to the file
system.

fstat() will fail if:

[EBADF] fd is not a valid open file descriptor.

[EFAULT] sb points to an invalid address.

[EI0] An I/O error occurred while reading from or writing to the file
system.

SEE ALSO

access(2), chmod(2), chown(2), utime(2), symlink(2)

STANDARDS

The stat() and fstat() function calls are expected to conform to ISO/IEC 9945-
1:1990 (“POSIX.1”) for //HFS:-style files.

248 Systems/C C Library

__STEPNAME(2)
NAME

__stepname - return the current step name of the running program

SYNOPSIS

#include <machine/tiot.h>

char *
__stepname (void) ;

DESCRIPTION

The __stepname() function returns the current JCL step name of the executing
program on MVS, OS/390 and z/OS. The value returned is a pointer to a NUL-
terminated string. Trailing blanks are removed.

__stepname() returns a pointer to a static area, care should be taken to copy this
value before invoking __stepname() again.

SEE ALSO

__jobname(2), __procname(2), __userid(2)

Systems/C C Library 249

SYMLINK (2)
NAME

symlink — make symbolic link to a file

SYNOPSIS

#include <unistd.h>

int
symlink(const char *namel, const char *name2);

DESCRIPTION

A symbolic link name2 is created to namel (name2 is the name of the file created,
namel is the string used in creating the symbolic link). Either name may be an
//HFS:-style arbitrary path name; the files need not be on the same file system.

RETURN VALUES

The symlink() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The symbolic link succeeds unless:

[ENOTDIR] A component of the name2 prefix is not a directory.

[ENAMETOOLONG] A component of either pathname exceeded 255 characters, or the
entire length of either path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] A component of the name2 path prefix denies search permission.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EEXIST] Name2 already exists.

250 Systems/C C Library

[EI0]

[EROFS]

[ENOSPC]

[ENOSPC]

[EDQUOT]

[EDQUOT]

[EDQUOT]

[EIO]

[EFAULT]

SEE ALSO

An I/0O error occurred while making the directory entry for name2,
or allocating the inode for name2, or writing out the link contents
of name?2.

The file name2 would reside on a read-only file system.

The directory in which the entry for the new symbolic link is being
placed cannot be extended because there is no space left on the file
system containing the directory.

The new symbolic link cannot be created because there is no space
left on the file system that will contain the symbolic link.

The directory in which the entry for the new symbolic link is being
placed cannot be extended because the user’s quota of disk blocks
on the file system containing the directory has been exhausted.

The new symbolic link cannot be created because the user’s quota
of disk blocks on the file system that will contain the symbolic link
has been exhausted.

The user’s quota of inodes on the file system on which the symbolic
link is being created has been exhausted.

An1/0 error occurred while making the directory entry or allocating
space.

Namel or name2 points outside the process’s allocated address
space.

link(2), Istat(2), readlink(2), unlink(2)

Systems/C C Library 251

__SVC99(2)
NAME

_svc99 - issue SVC99/DYNALLOC macro

SYNOPSIS

#include <machine/svc99.h>

int
__svc99(__S99RB *request_block_ptr);

DESCRIPTION

The __svc99 function is used to execute the MVS SVC 99 or DYNALLOC interface.
This low-level operating system interface provides for dynamically allocating or deal-
locating a resource, concatenating or deconcatenating data sets, or retrieving infor-
mation about a data set.

The request_block_ptr points to a __S99RB structure that contains the following fields:

S99RBLN Length (initialized to 20). output.

S99VERB SVC99 action code.

S99FLAG1 FLAGS action code.

S99ERROR Error code.

S99INFO Information reason code.

S99TXTPP 31-bit pointer to array of text units.

S99599X 31-bit pointer to request block extension (RBX).
S99FLAGS2 FLAGS?2 field-bit pointer to request block extension.

The request_block_ptr, any text units and the request block extension must be
allocated in 31-bit addressable storage. (-malloc31() can be employed in 64-bit
programs to allocate 31-bit addressable storage.)

The S99TXTPP field points to an array of ” Text Units” that provide further param-
eters and information to the DYNALLOC request, e.. DDNAME, DSNAME, DSORG,
etc...

252 Systems/C C Library

A Text Unit begins with a 2-byte key that is the code for the information. The key
is followed by a 2-byte field indicating the number of elements of the Text Unit (this
is often simply 1.) Each element is a length-prefixed "blob” of data. The data is a
2-byte length field followed by the data bytes. This data is called the Text Unit’s
”parameter.”

The S99TXTPP field of the S99RB structure points to an array of pointers to text
units. The end of this array is marked with the high-order bit set (the VL-bit.)
Thus, the basic structure is:

S99RBptr -> S99RB

S99RB

- +

| I

| === | Text Units

| S99TXTPP | ====> 4-mmmm o +

| === | | 0 | TxtUnit Ptr | --> TXTUNIT #O

I I | ——————— - I

Fommm o + ..
| 0 | TxtUnit Ptr | --> TXTUNIT #n-1
| - I
| 8 | TxtUnit Ptr | --> TXTUNIT #n
e L +

For more information about the DYNALLOC macro, ” Text Units” and other functions
__svc99() provides - refer to the ”"z/OS MVS Programm Authorized Assembler
Services Guide” from IBM.

EXAMPLES

This program dynamically allocates a file named "MYFILE. EXAMPLE”, with an
allocation unit of TRACK, a primary quantity of 20 and a secondary quantity of 1,
with a logical record length of 80, a block size of 80 and a fixed record format.

#include <stdio.h>
#include <machine/svc99.h>

int
main(void)
{
int rc;
__S99RB request_block;
char *tus[10] = { /* array of text unit pointers */

Systems/C C Library 253

/* TU # Data Data */

/* Code Elems Len */
"\0\x02" "\0\x01" "\O\xOE" "MYFILE.EXAMPLE", /* DSN=MYFILE.EXAMPLE x*/
"\0\x05" "\0\x01" "\0\x01" "\x02", /* DISP=(,CATLG) */
"\0\x07" "\O\O", /* SPACE=(TRK,.. */
"\O\xOA" "\0\xO1" "\0\x03" "\0\0\x14", /* primary=20 */
"\0\xO0B" "\0\xO01" "\0\x03" "\0\O0\xO1", /* secondary=1 */
"\0\x15" "\0\x01" "\0\xO5" "SYSDA", /* UNIT=SYSDA */
"\0\x30" "\0\xO01" "\0\x02" "\0\x50", /* BLKSIZE=80 */
"\0\x3C" "\0\x01" "\0\x02" "\x40\0", /* DSORG=PS */
"\0\x42" "\0\x01" "\0\x02" "\0\x50", /* LRECL=80 */
"\0\x49" "\0\x01" "\0\xO01" "\x80" /* RECFM=F */

};

/* The last element of the Text Units array must have */
/* it’s VL-bit set */
tus[9] = (char *) (((unsigned int)tus[9]) | 0x80000000) ;

/* Set up the SVC99 request block */

memset (&request_block, 0, sizeof (request_block));

request_block.S99RBLEN = 20; /* always set to 20 */
request_block.S99RBVERB = S99VRBAL; /* Allocation */

request_block.S99FLAG1 |= S99NOCNV; /* Do not use an existing allocation */
request_block.S99TXTPP = tus;

rc = __svc99(&request_block);
if(rc 1= 0) {
printf(" SVC99 failed - Error code = %d Information code = %d\n,

request_block.S99ERROR, request_block.S99INF0);

254 Systems/C C Library

The following example demonstrates how to retrieve information about a file using
the information retrieval function of the DYNALLOC interface. It provides a function
that, given a Data Set Name displays the Data Set Organization:

#include <stdio.h>
#include <machine/svc99.h>

/*

*

* Interpret the DSORG value

* query
*%/
char *

DSORG_name (int dsorg)

{

switch(dsorg) {

returned from SVC 99 Inquire DALRTORG

case 0x0000: return "*xUNKNOW**"; break;
case 0x0004: return "TR"; break; /* TCAM 3705 */
case 0x0008: return "VSAM"; break; /* VSAM */
case 0x0020: return "TQ"; break; /* TCAM message queue */
case 0x0040: return "TX"; break; /* TCAM line group */
case 0x0080: return "GS"; break; /* Graphics */
case 0x0200: return "PO"; break; /* Partitioned Organization */
case 0x0300: return "POU"; break; /* Partitioned Organization */
/* Unmovable */
case 0x0400: return "MQ"; break; /* Government of message */
/* transfer to or from */
/* telecommunications */
/* message processing queue */
case 0x0800: return "CQ"; break; /* Direct access message */
/* queue */
case 0x1000: return "CX"; break; /* Communication line group */
case 0x2000: return "DA"; break; /* Direct Access */
case 0x2100: return "DAU"; break; /* Direct Access Unmovable */
case 0x4000: return "PS"; break; /* Physical Sequential */
case 0x4100: return "PSU"; break; /* Physical Sequential */
/* Unmovable */
case 0x8000: return "IS"; break; /* Indexed Sequential? */
case 0x8100: return "ISU"; break; /* Indexed Sequential Unmovable?x/
default: return "777"; break;
}
}
/*
* get_DSN_org()
* Given a DS name - get the data set organization

Systems/C C Library 255

*% /
get_DSN_org(char *dsn)
{

int dsorg, rc;

/* TXT UNITs */
unsigned char TUdsname[100] = {
0, DINDSNAM, /* KEY - DSNAME x/

0, 1, /* # of entries (1) =/
0, 0, /* length of entry (set below) */
/* remaining space used for the DSNAME (set below) */

s

unsigned char TUdsorgl] = {

0, DINRTORG, /* KEY - request DSORG */
o0, 1, /* # of entries (1) x/
0, 2, /* parm length of 2 */

0, 0 /* the parm bytes */

3

s

/* TXT units array */
unsigned char **TextUnits[] = { TUdsname,
(char =x*) (((int)TUdsorg) | 0x80000000) /* VL-bit */

};
__S99RBX request_block_extension = {
"SO9RBX",
0x01,
0x00, /* No messages */
Y
__S99RB request_block = {
20, /* length - always 20 */
S99VRBIN, /* S99VERB - Inquire function */
0, /* S99FLAG1 */
0, /* S99ERROR */
0, /* S99INFO */
&TextUnits, /* S99TXTPP */
&request_block_extension, /* S99S99X x*/
0 /* S99FLAG2 */

s

/* Set the DS NAME - up to 94 characters, blank padded */
/* IBM allows 44 characters here, but we have extra x/
/* space to allow the user to use quotes, etc.. */

{

int i, len;

256 Systems/C C Library

Irc

char *cp;

i=0;
len = 0;
cp = dsn;
while(*cp) {
if(i<94) {
TUdsname [i+6] = *cp;
i++;
lent++;
}
CcCpt+;

}

/
£

/

* blank pad remaining bytes */
or(;i<94;i++) TUdsname[i+6] = * ’;

* Set the length of the TU data */

TUdsname[4] = (len >> 8);
TUdsname [5] = len;

= __svc99(&request_block) ;

if(rc == 0 &% request_block_extension.S99EERR == 0 &&

request_block_extension.S99EINFO == 0) {
/* Get the DSORG flag from the DINRTORG TextUnit */

/* DYNALLOC doesn’t fail the request if it can’t */
/* determine the DSORG, so you should check the Request Block */
/* Extension. */
dsorg = (TUdsorg[6] << 8) | TUdsorgl7];
printf ("get_DSN_org(\"%s\") - returned DSORG is 0x%04x (%s)\n",
dsn, dsorg, DSORG_name(dsorg));

} else {

printf ("get_DSN_org(\"%s\") - SVC99 failed - rc is %d\n", dsn, rc);
printf(" S99ERROR is 0x%04x\n", request_block.S99ERROR) ;
if (request_block.S99ERROR == 0x0440) {
/* DSN or Pathname not found */

printf (" DSN not found\n");
}
printf(" S99INFO is 0x%04x\n", request_block.S99INFO);
printf(" S99EERR is 0x%04x\n", request_block_extension.S99EERR);
printf (" S99EINFO is 0x%04x\n", request_block_extension.S99EINFO);

Systems/C C Library 257

RETURN VALUES

The __svc99() function returns the value 0 if successful; -1 on error, otherwise it
returns the return code from the SVC 99 invocation.

In a 64-bit environment, __sve99() verifies that the given request block address is
in 31-bit addressable; if not it returns -1.

ISSUES

The __svc99 function is only available on z/0OS.

SEE ALSO

7z/OS MVS Programm Authorized Assembler Services Guide”, __malloc31(3),
__dynall(2).

258 Systems/C C Library

SYNC(2)
NAME

sync - schedule //HFS: filesystem updates

SYNOPSIS

#include <unistd.h>
void

sync(void) ;

DESCRIPTION

The sync() function forces a write of dirty (modified) file system buffers in memory
cache out to disk. The operating system keeps this information in memory to reduce
the number of disk I/O transfers required by the system.

The function fsync(2) may be used to synchronize individual file descriptors for
//HFS:-style files.

sync() schedules the write of file system updates, and may return before all writing
is complete.

RETURN VALUES

The sync() function returns the value 0 if successful; otherwise the value -1 is
returned.

SEE ALSO

fsync(2)

Systems/C C Library 259

TRUNCATE(2)
NAME

truncate, ftruncate - truncate or extend a file to a specified length

SYNOPSIS

#include <unistd.h>

int
truncate(const char *path, off_t length);

int

ftruncate(int fd, off_t length);

DESCRIPTION

truncate() causes the file named by path or referenced by fd to be truncated or
extended to length bytes in size. If the file was larger than this size, the extra data
is lost. If the file was smaller than this size, it will be extended as if by writing bytes
with the value zero. With ftruncate(), the file must be open for writing.

For non-//HFS:-style names, truncate() is implemented by opening the file and
invoking ftruncate().

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

truncate() succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

260 Systems/C C Library

[EACCES]
[EACCES]

[ELOOP]

[EISDIR]
[EROFS]
[EIO0]

[EFAULT]

Search permission is denied for a component of the path prefix.
The named file is not writable by the user.

Too many symbolic links were encountered in translating the path-
name.

The named file is a directory.
The named file resides on a read-only file system.
An I/0O error occurred updating the file.

Path points outside the process’s allocated address space.

ftruncate() succeeds unless:

[EBADF]
[EINVAL]
[EINVAL]

[EI0]

SEE ALSO

open(2)

ISSUES

The fd is not a valid descriptor.
The fd references a socket, not a file.
The fd is not open for writing.

An I/0O error occurred updating the file.

Use of truncate() to extend a file is not portable.

Systems/C C Library 261

UMASK(2)
NAME

umask — set file creation mode mask for //HFS:-style files

SYNOPSIS

#include <sys/stat.h>

mode_t
umask (mode_t numask) ;

DESCRIPTION

The umask() function sets the process’s file mode creation mask to numask and
returns the previous value of the mask. The 9 low-order access permission bits of
numask are used by system calls, including open(2), mkdir(2), and mkfifo(2), to turn
off corresponding bits requested in file mode for //HFS:-style files. (See chmod(2)).
This clearing allows each user to restrict the default access to his files.

Child POSIX processes inherit the mask of the calling process.

RETURN VALUES

If OpenEdition services are available, the previous value of the file mode mask is
returned. Otherwise, a value of zero is returned.

ERRORS

If OpenEdition services are not available, umask() returns a value of zero and sets
errno to ENOSYS.

ISSUES

Unfortunately, there is no way to distinguish a return value of 0 from an intended
file mask value of 0. In typical POSIX implementations, umask() cannot fail.

262 Systems/C C Library

UNLINK(2)
NAME

unlink — remove HFS: directory entries or //DSN: files

SYNOPSIS

#include <unistd.h>

int
unlink(const char *path);

DESCRIPTION

For //HFS:-style files, the unlink() function removes the link named by path from
its directory and decrements the link count of the file which was referenced by the
link. If that decrement reduces the link count of the file to zero, and no process
has the file open, then all resources associated with the file are reclaimed. If one or
more process have the file open when the last link is removed, the link is removed,
but the removal of the file is delayed until all references to it have been closed. path
may not be a directory.

For //DSN:-style files, the unlink() function removes the entry by invoking the OS
DYNALLOC service to allocate a the entry with a disposition of DELETE. unlink()
then uses DYNALLOC to un-allocate the file, causing it to be deleted.

unlink() is only supported for //HFS: and //DSN:-style file names.

RETURN VALUES

The unlink() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS
The unlink() succeeds unless:
[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

Systems/C C Library 263

[ENOENT]
[EACCES]

[EACCES]

[ELOOP]

[EPERM]

[EPERM]

[EBUSY]

[EI0]

[EIO]
[EROFS]

[EFAULT]

SEE ALSO

The named file does not exist.
Search permission is denied for a component of the path prefix.

Write permission is denied on the directory containing the link to
be removed.

Too many symbolic links were encountered in translating the path-
name.

The named file is a directory.

The directory containing the file is marked sticky, and neither the
containing directory nor the file to be removed are owned by the
effective user ID.

The entry to be unlinked is the mount point for a mounted file
system.

An I/0 error occurred while deleting the directory entry or deallo-
cating the inode.

The DYNALLOC service failed for //DSN:-style files.
The named file resides on a read-only file system.

Path points outside the process’s allocated address space.

close(2), link(2), rmdir(2)

ISSUES

The unlink() function only supports un-linking of //DSN: or //HFS:-style files.

264 Systems/C C Library

UNLOCKPT(2)
NAME

unlockpt - pseudo-terminal access function

SYNOPSIS

#include <stdlib.h>
int

unlockpt(int filedes);

DESCRIPTION

The unlockpt() unlocks a slave pseudoterminal from its master counterpart, allow-
ing the slave to opened. filedes is a file descriptor that is the result of an open(2) of
the master pseudoterminal.

Secure connections can be provided by using grantpt(2) and unlockpt(), or by
simply issuing the first open against the slave pseudoterminal from the userid or
process that opened the master terminal.

RETURN VALUES

If successful, unlockpt() returns the value 0, otherwise a -1 is returned and the
global variable errno is set to indicate the error.

ERRORS

unlockpt() will fail if:

[EACCESS] Either a grantpt(2) has not yet been issued, or unlockpt() has
already been issued.

[EBADF] filedes is invalid, or was not opened for writing

[EINVAL] filedes is not a master pseudoterminal

SEE ALSO

grantpt(2), ptsname(3)

Systems/C C Library 265

__USERID(2)
NAME

__userid - return the current user name

SYNOPSIS

#include <machine/tiot.h>

char *
_userid(void);

DESCRIPTION

The __userid() function returns the current user name of the executing program
on OS/390 and z/0OS. The value returned is a pointer to a NUL-terminated string.
Trailing blanks are removed from the name returned by the system.

__userid() returns a pointer to a static area, care should be taken to copy this value
before invoking __userid() again.

RETURN VALUES

If successful, __userid() returns a pointer to a static area that contains the current
used id. If the user id is unavailable, __userid() returns NULL.

SEE ALSO

__jobname(2), __stepname(2), __procname(2)

266 Systems/C C Library

UTIMES(2)
NAME

utimes, futimes - set //HFS: file access and modification times

SYNOPSIS

#include <sys/time.h>
int
utimes(const char *path, const struct timeval *times);

int
futimes(int fd, const struct timeval *times);

DESCRIPTION

The access and modification times of the //HFS: file named by path or referenced
by fd are changed as specified by the argument times.

If times is NULL, the access and modification times are set to the current time. The
caller must be the owner of the file, have permission to write the file, or be the
super-user.

If times is non-NULL, it is assumed to point to an array of two timeval structures.
The access time is set to the value of the first element, and the modification time is
set to the value of the second element. The caller must be the owner of the file or
be the super-user.

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS
utimes() will fail if:

[EACCES] Search permission is denied for a component of the path prefix; or
the times argument is NULL and the effective user ID of the process
does not match the owner of the file, and is not the super-user, and
write access is denied.

Systems/C C Library 267

[EFAULT] path or times points outside the process’s allocated address space.

[EIO0] An I/0 error occurred while reading or writing the affected inode.
[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[ENAMETOOLONG] A component of a pathname exceeded NAME_MAX characters, or an
entire path name exceeded PATH_MAX characters.

[ENOENT] The named file does not exist.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The times argument is not NULL and the calling process’s effective
user ID does not match the owner of the file and is not the super-
user.

[EROFS] The file system containing the file is mounted read-only.

futimes() will fail if:

[EBADF] fd does not refer to a valid descriptor.

Either function will fail if:

[EACCES] The times argument is NULL and the effective user ID of the process
does not match the owner of the file, and is not the super-user, and
write access is denied.

[EFAULT] times points outside the process’s allocated address space.

[EI0] An I/O error occurred while reading or writing the affected file
information.

[EPERM] The times argument is not NULL and the calling process’s effective
user ID does not match the owner of the file and is not the super-
user.

[EROFS] The file system containing the file is mounted read-only.

SEE ALSO

stat(2), utime(3)

268 Systems/C C Library

VFORK (2)
NAME

vfork — spawn new process in a virtual memory efficient way

SYNOPSIS

#include <unistd.h>

pid_t
vfork(void);

DESCRIPTION

The vfork() system call can be used to create new processes without fully copy-
ing the address space of the old process. It is useful when the purpose of fork(2)
would have been to create a new system context for an execve(2). The vfork()
function differs from fork(2) in that the child may ”borrow” the parent’s memory
and thread of control until a call to execve(2) or an exit (either by a call to _exit(2)
or abnormally). The parent process may be suspended while the child is using its
resources.

The vfork() system call returns 0 in the child’s context and (later) the pid of the
child in the parent’s context.

The vfork() system call can normally be used just like fork(2). It does not work,
however, to return while running in the child’s context from the procedure that
called vfork() since the eventual return from vfork() would then return to a no
longer existent stack frame. The only function calls allowed in the child process are
an execve(2) to load a new program image or _exit(2) to exit the child.

RETURN VALUES

Same as for fork(2).

SEE ALSO

execve(2), manref_exit2, manreffork2, manrefwait2, manrefexit3

Systems/C C Library 269

ISSUES

The vfork() function has been marked as obsolete and may be removed from future
standards. Portable programs should use the fork(2) function.

270 Systems/C C Library

WAIT(2)
NAME

wait, waitpid, wait3 - wait for process termination

SYNOPSIS

#include <sys/types.h>
#include <sys/wait.h>

pid_t
wait(int *status);

#include <sys/time.h>
#include <sys/resource.h>

pid_t
waitpid(pid_t wpid, int *status, int options);

pid_t
wait3(int *status, int options, struct rusage *rusage);

DESCRIPTION

The wait () function suspends execution of its calling process until status information
is available for a terminated child process, or a signal is received. On return from a
successful wait() call, the status area contains termination information about the
process that exited as defined below.

For waitpid() the wpid parameter specifies the set of child processes for which to
wait. If wpid is -1, the call waits for any child process. If wpid is 0, the call waits
for any child process in the process group of the caller. If wpid is greater than zero,
the call waits for the process with process id wpid. If wpid is less than -1, the call
waits for any process whose process group id equals the absolute value of wpid.

For waitpid() and wait3(), the status parameter is defined below. The options
parameter contains the bitwise OR of any of the following options. The WNOHANG
option is used to indicate that the call should not block if there are no processes
that wish to report status. If the WUNTRACED option is set, children of the current
process that are stopped due to a SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP

signal also have their status reported.

For wait3(), if rusage is non-zero, a summary of the resources used by the termi-
nated process and all its children is returned.

Systems/C C Library 271

When the WNOHANG option is specified and no processes wish to report status,
wait3() returns a process id of 0.

The wait() call is identical to waitpid() with an options value of zero.

The following macros may be used to test the manner of exit of the process. One
of the first three macros will evaluate to a non-zero (true) value:

WIFEXITED(status) True if the process terminated normally by a call to _exit(2) or
exit(3).

WIFSIGNALED (status) True if the process terminated due to receipt of a signal.

WIFSTOPPED (status) True if the process has not terminated, but has stopped and
can be restarted. This macro can be true only if the wait call speci-
fied the WUNTRACED option or if the child process is being traced.

Depending on the values of those macros, the following macros produce the remain-
ing status information about the child process:

WEXITSTATUS (status) If WIFEXITED(status) is true, evaluates to the low-order 8
bits of the argument passed to _exit(2) or exit(3) by the child.

WTERMSIG(status) If WIFSIGNALED(status) is true, evaluates to the number of the
signal that caused the termination of the process.

WCOREDUMP (status) If WIFSIGNALED (status) is true, evaluates as true if the termi-
nation of the process was accompanied by the creation of a core file
containing an image of the process when the signal was received.

WSTOPSIG(status) If WIFSTOPPED (status) is true, evaluates to the number of the
signal that caused the process to stop.

NOTES

A status of 0 indicates normal termination.

If a parent process terminates without waiting for all of its child pro- cesses to
terminate, the remaining child processes are assigned the par- ent process 1 ID (the
init process ID).

If a signal is caught while any of the wait() calls are pending, the call may be

interrupted or restarted when the signal-catching routine returns, depending on the
options in effect for the signal.

272 Systems/C C Library

RETURN VALUES

If wait() returns due to a stopped or terminated child process, the process ID of
the child is returned to the calling process. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

If wait3(), or waitpid() returns due to a stopped or terminated child process, the
process ID of the child is returned to the calling process. If there are no children not
previously awaited, -1 is returned with errno set to ECHILD. Otherwise, if WNOHANG
is specified and there are no stopped or exited children, 0 is returned. If an error is
detected or a caught signal aborts the call, a value of -1 is returned and errno is
set to indicate the error.

ERRORS

wait() will fail and return immediately if:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EFAULT] The status or rusage arguments point to an illegal address. (May
not be detected before exit of a child process.)

[EINTR] The call was interrupted by a caught signal, or the signal did not
have the SA_RESTART flag set.

STANDARDS

The wait() and waitpid() functions are defined by POSIX; wait3() is not specified
by POSIX. The WCOREDUMP () macro is an extension to the POSIX interface.

SEE ALSO

_exit(2), exit(3)

Systems/C C Library 273

WRITE(2)
NAME

write, pwrite - write output

SYNOPSIS

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>

size_t
write(int d, const void *buf, size_t nbytes)

ssize_t
purite(int d, const void *buf, size_t nbytes, off_t offset);

DESCRIPTION

write() attempts to write nbytes of data to the object referenced by the descriptor
d from the buffer pointed to by buf.

On objects capable of seeking, the write() starts at a position given by the pointer
associated with d, see lseek(2). Upon return from write(), the pointer is incre-
mented by the number of bytes which were written.

Objects that are not capable of seeking always write from the current position. The
value of the pointer associated with such an object is undefined.

When using non-blocking I/O on objects such as sockets that are subject to flow
control, or when the file is opened with 0 RECIO flag, write() may write fewer bytes
than requested; the return value must be noted, and the remainder of the operation
should be retried when possible.

IMPLEMENTATION NOTES

When writing to objects which have been opened in _-0_TEXT mode (the default in the
Systems/C library), and the associated file is a record-structured file (non //HFS:
and non-socket), records are padded with blanks after a new-line is encountered up to
the record length. If the record if completely filled before a new-line is encountered,
the record is completed and subsequent text appears on the next record, i.e. text
“wraps around”. Any padding bytes added are not reflected in the return value. If

274 Systems/C C Library

the lrecl of the file is 1 , writes are performed as if the file had been opened with
_0_BINARY specified.

If the file descriptor has been opened with _0_RECIO flag, then the write operation
is performed using “record I/O”. In this situation, the operation will write only
record length bytes, any bytes in the buffer past the record length are discarded. If
the output file is a variable-length record, then the write will generate the proper
record-length specification based on the nbytes specified. For files with a fixed record
length, if nbytes specifies a value smaller than the record length, the remainder of
the record is filled with NUL (zero) bytes. Also note that a write of zero bytes to
a variable record length file when using “record I/O” will generate a record with a
zero record length. Care should be taken to ensure that is the desired result as other
programs that read the file may be confused by the zero record length record. After
the write operation, the file pointer will be advanced to start of the next record.

The pwrite() function is only supported for HF'S files.

RETURN VALUES

Upon successful completion the number of bytes which were written is returned.
Otherwise a -1 is returned and the global variable errno is set to indicate the error.

ERRORS

write() will fail and the file pointer will remain unchanged if:

[EAGAIN] The file was marked for non-blocking I/O, and no data could be
written immediately.

[EBADF] d is not a valid descriptor open for writing.

[EDQUOT] The user’s quota of disk blocks on the file system containing the file
has been exhausted.

[EINVAL] The pointer associated with d was negative.

[EIO] An I/O error occurred while reading from or writing to the file
system.

[ENOSPC] There is no free space remaining on the file system containing the
file.

[ENXIO0] The file is not a supported 1/O format.

The pwrite() function may also return the following errors:

Systems/C C Library 275

[EINVAL] The offset value was negative.
[ESPIPE] The file descriptor is associated with a pipe, socket, or FIFO.

[ENXIO] The file does not support the operation, or the request was outside
the capabilities of the device.

SEE ALSO

fentl(2), 1seek(2), open(2)

STANDARDS

The write() function call is expected to conform to IEEE Std1003.1-1990
(“POSIX”), as close as the host file system makes possible.

276 Systems/C C Library

TCP/IP related functions

The functions described here are related to the TCP/IP implementation in the
Systems/C library.

The functions described here are implemented in terms of the IBM TCP/IP im-
plementation on OS/390. The descriptions include features which may not yet be
available on that implementation (e.g. the address family AF_UNIX is not supported
in IBM’s implementation.) The description of these features are provided for com-
pleteness.

Systems/C C Library 277

ACCEPT(2)
NAME

accept - accept a connection on a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
accept(int s, struct sockaddr *addr, socklen_t *addrlen)

DESCRIPTION

The argument s is a socket that has been created with socket(2), bound to an
address with bind(2), and is listening for connections after a listen(2). The accept()
argument extracts the first connection request on the queue of pending connections,
creates a new socket with the same properties of s and allocates a new file descriptor
for the socket. If no pending connections are present on the queue, and the socket is
not marked as non-blocking, accept() blocks the caller until a connection is present.
If the socket is marked non-blocking and no pending connections are present on the
queue, accept() returns an error as described below. The accepted socket may not
be used to accept more connections. The original socket s remains open.

The argument addr is a result parameter that is filled in with the address of the con-
necting entity, as known to the communications layer.The exact format of the addr
parameter is determined by the domain in which the communication is occurring.
The addrlen is a value-result parameter; it should initially contain the amount of
space pointed to by addr; on return it will contain the actual length (in bytes) of the
address returned. This call is used with connection-based socket types, currently
with SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept() by selecting
it for read.

For certain protocols which require an explicit confirmation, such as ISO or
DATAKIT, accept() can be thought of as merely dequeueing the next connection
request and not implying confirmation. Confirmation can be implied by a normal
read or write on the new file descriptor, and rejection can be implied by closing the
new socket.

One can obtain user connection request data without confirming the connection by
issuing a recvmsg(2) call with an msg_iovlen of 0 and a nonzero msg_controllen,

278 Systems/C C Library

or by issuing a getsockopt(2) request. Similarly,one can provide user connection
rejection information by issuing a sendmsg(2) call with providing only the control
information, or by calling setsockopt(2).

RETURN VALUES

The call returns -1 on error. If it succeeds, it returns a non-negative integer that is
a descriptor for the accepted socket.

ERRORS

The accept() will fail if:

[EBADF] The descriptor is invalid.

[EINTR] The accept() operation was interrupted.

[EMFILE] The per-process descriptor table is full.

[ENFILE] The system file table is full.

[ENOTSOCK] The descriptor references a file, not a socket.

[EINVAL] listen(2) has not been called on the socket descriptor.

[EFAULT] The addr parameter is not in a writable part of the user address
space.

[EWOULDBLOCK] The socket is marked non-blocking and no connections are present
to be accepted.

SEE ALSO

bind(2), connect(2), getpeername(2), listen(2), select(2), socket(2)

Systems/C C Library 279

BIND(2)
NAME

bind - assign a local protocol address to a socket.

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
bind(int s, const struct sockaddr *addr, socklen_t addrlen)

DESCRIPTION

bind() assigns the local protocol address to a socket. When a socket is created with
socket(2) it exists in an address family space but has no protocol address assigned.
bind() requests that addr be assigned to the socket.

NOTES

Binding an address in the UNIX domain creates a socket in the file system that
must be deleted by the caller when it is no longer needed (using unlink(2)). UNIX
domain sockets are currently unsupported in IBM’s TCP/IP implementation, on
which the Systems/C library is based. The documentation related to UNIX domain
sockets is included for completeness.

The rules used in address binding vary between communication domains.

RETURN VALUES

If the bind is successful, a 0 value is returned. A return value of -1 indicates an
error, which is further specified in the global errno.

ERRORS

The bind() call will fail if:

[EBADF] s is not a valid descriptor.

280 Systems/C C Library

[ENOTSOCK]

s is not a socket.

[EADDRNOTAVAIL] The specified address is not available from the local machine.

[EADDRINUSE]

[EACCES]

[EFAULT]

The specified address is already in use.

The requested address is protected, and the current user has inad-
equate permission to access it.

The addr parameter is not in a valid part of the user address space.

The following errors are specific to binding addresses in the UNIX domain.

[ENOTDIR]

A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire

[ENOENT]

[ELOOP]

[EIO]

[EROFS]

[EISDIR]

SEE ALSO

path name exceeded 1023 characters.
A prefix component of the path name does not exist.

Too many symbolic links were encountered in translating thepath-
name.

An1/0 error occurred while making the directory entry or allocating
the inode.

The name would reside on a read-only file system.

An empty pathname was specified.

connect(2), getsockname(2), listen(2), socket(2)

Systems/C C Library 281

CONNECT(2)
NAME

connect - initiate a connection on a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
connect(int s, const struct sockaddr *name, socklen_t namelen)

DESCRIPTION

The parameter s is a socket. If it is of type SOCK_DGRAM, this call specifies the peer
with which the socket is to be associated; this address is that to which datagrams
are to be sent, and the only address from which datagrams are to be received. If the
socket is of type SOCK_STREAM, this call attempts to make a connection to another
socket.

The other socket is specified by name, which is an address in the communications
space of the socket. Each communications space interprets the name parameter
in its own way. Generally, stream sockets may successfully connect() only once;
datagram sockets may use connect() multiple times to change their association.
Datagram sockets may dissolve the association by connecting to an invalid address,
such as a null address.

RETURN VALUES

If the connection or binding succeeds, 0 is returned. Otherwise a -1 is returned,
and a more specific error code is stored in errno.

ERRORS

The connect() call fails if:

[EBADF] s is not a valid descriptor.

[ENOTSOCK] s is a descriptor for a file, not a socket.

282 Systems/C C Library

[EADDRNOTAVAIL] The specified address is not available on this machine.

[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this

[EISCONN]

[ETIMEDQOUT]

socket.
The socket is already connected.

connection establishment timed out without establishing a connec-
tion.

[ECONNREFUSED] The attempt to connect was forcefully rejected.

[ENETUNREACH]
[EADDRINUSE]

[EFAULT]

[EINPROGRESS]

[EALREADY]

The network isn’t reachable from this host.
The address is already in use.

The name parameter specifies an area outside the process address
space.

The socket is non-blocking and the connection cannot be completed
immediately. It is possible to select(2) for completion by selecting
the socket for writing.

The socket is non-blocking and a previous connection attempt has
not yet been completed.

The following errors are specific to connecting names in the UNIX domain. These
errors may not apply in future versions of the UNIX IPC domain. Also, they are
not currently support in the IBM TCP/IP implementation.

[ENOTDIR]

A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire

[ENOENT]
[EACCES]
[EACCES]

[ELOOP]

SEE ALSO

path name exceeded 1023 characters.

The named socket does not exist.

Search permission is denied for a component of the path prefix.
Write access to the named socket is denied.

Too many symbolic links were encountered in translating the path-
name.

accept(2), getpeername(2), getsockname(2), select(2), socket(2)

Systems/C C Library 283

GETCLIENTID(2)
NAME

getclientid - get the identifier for the calling application

SYNOPSIS

#include <sys/socket.h>
#include <sys/types.h>

int getclientid(int domain, struct clientid *clientid);

int __getclientid(int domain, struct clientid #*clientid);

DESCRIPTION

The getclientid() function call returns the identifier by which the calling appli-
cation is known to the TCP/IP address space. The clientid can be used in the
givesocket(2) and takesocket(2) calls. However, this function is supplied for use by
existing programs that depend on the address space name returned.

domain is the address domain requested.
clientid as a pointer to the struct clientid to be filled.

The __getclientid() function returns the process identifier (PID) format of the
clientid structure. This version provides improved performance and integrity over
the getclientid() function. __getclientid() is only available if BPX sockets are
being used.

See givesocket(2) for more information regarding the clientid structure.

RETURN VALUES

On success, getclientid() returns 0. getclientid() returns -1 on failure and sets
errno to indicate the error:

[EFAULT] clientid points outside the caller’s allocated address space.
[ENOSYS] __getclientid was invoked when the EZASMI socket interface was
being used.

284 Systems/C C Library

GETHOSTID(2)
NAME

gethostid - get unique identifier of current host

SYNOPSIS

#include <unistd.h>

long
gethostid(void)

DESCRIPTION

gethostid() returns the 32-bit identifier for the current host. Historically, this has
been the unique DARPA internet address for the local machine.

RETURN VALUES

If the call fails, a value of -1 is returned and an error code may be placed in the
global location errno. However, -1 is also a valid host id value.

ERRORS

The following errors may be returned by gethostid():

[ENOMEM] There is inadequate memory to initialize the TCP/IP system
[EINVAL] The TCP/IP subsystem name is invalid

[ENOSYS] The TCP/IP system is not available

SEE ALSO

gethostname(2)

Systems/C C Library 285

ISSUES

32 bits for the unique identifier is too small. On UNIX systems, the return value -1
is not reserved; furthermore, -1 may be a correct return value for the host identifier.
errno should be set to zero before the call to gethostid() and then examined if
gethostid() return -1.

286 Systems/C C Library

GETHOSTNAME(2)
NAME

gethostname - get name of current host

SYNOPSIS

#include <unistd.h>

int
gethostname (char *name, int namelen)

DESCRIPTION

gethostname() returns the standard host name for the current host.. The pa-
rameter namelen specifies the size of the name array. The returned name is null-
terminated unless insufficient space is provided.

RETURN VALUES

If the call succeeds a value of 0 is returned. If the call fails, a value of -1 is returned
and an error code is placed in the global location errno.

ERRORS

The following errors may be returned by gethostname():

[EFAULT] The name or namelen parameter gave an invalid address.

SEE ALSO

gethostid(2)

ISSUES

Host names are limited to MAXHOSTNAMELEN (from <sys/param.h>) characters, cur-
rently 256.

Systems/C C Library 287

GETPEERNAME(2)
NAME

getpeername - get name of connected peer

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
getpeername(int s, struct sockaddr *name, socklen_t *namelen)

DESCRIPTION

getpeername() returns the name of the peer connected to socket s. The namelen
parameter should be initialized to indicate the amount of space pointed to by name.
On return it contains the actual size of the name returned (in bytes). The name is
truncated if the buffer provided is too small.

RETURN VALUES

A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.

[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to perform the
operation.

[EFAULT] The name parameter points to memory not in a valid part of the

process address space.

SEE ALSO

accept(2), bind(2), getsockname(2), socket(2)

288 Systems/C C Library

GETSOCKNAME(2)
NAME

getsockname - get socket name

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
getsockname(int s, struct sockaddr *name, socklen_t *namelen)

DESCRIPTION

getsockname() returns the current name for the specified socket. The namelen
parameter should be initialized to indicate the amount of space pointed to by name.
On return it contains the actual size of the name returned (in bytes).

RETURN VALUES

A 0 is returned if the call succeeds, -1 if it fails.

ERRORS

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOBUFS] Insufficient resources were available in the system to perform the
operation.

[EFAULT] The name parameter points to memory not in a valid part of the

process address space.

SEE ALSO

bind(2), getpeername(2), socket(2)

Systems/C C Library 289

ISSUES

Names bound to sockets in the UNIX domain are inaccessible; getsockname()
returns a zero length name.

290 Systems/C C Library

GETSOCKOPT(2)
NAME

getsockopt, setsockopt - get and set options on sockets

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
getsockopt(int s, int level, int optname,
void *optval, socklen_t *optlen)

int
setsockopt(int s, int level, int optname,
const void *optval, socklen_t optlen)

DESCRIPTION

getsockopt() and setsockopt() manipulate the options associated with a socket.
Options may exist at multiple protocol levels; they are always present at the upper-
most “socket” level.

When manipulating socket options the level at which the option resides and the
name of the option must be specified. To manipulate options at the socket level,
level is specified as SOL_SOCKET. To manipulate options at any other level the protocol
number of the appropriate protocol controlling the option is supplied. For example,
to indicate that an option is to be interpreted by the TCP protocol, level should be
set to the protocol number of TCP; see getprotoent(3)

The parameters optval and optlen are used to access option values for setsockopt().
For getsockopt() they identify a buffer in which the value for the requested op-
tion(s) are to be returned. For getsockopt(), optlen is a value-result parameter,
initially containing the size of the buffer pointed to by optval, and modified on return
to indicate the actual size of the value returned. If no option value is to be supplied
or returned, optval may be NULL.

optname and any specified options are passed uninterpreted to the appropriate pro-
tocol module for interpretation. The include file <sys/socket.h> contains defini-
tions for socket level options, described below. Options at other protocol levels vary
in format and name.

Systems/C C Library 291

Most socket-level options utilize an int parameter for optval. For setsockopt(),
the parameter should be non-zero to enable a boolean option, or zero if the op-
tion is to be disabled. SO_LINGER uses a struct linger parameter, defined in
<sys/socket.h>, which specifies the desired state of the option and the linger inter-
val (see below). SO_SNDTIMEO and SO_RCVTIMEOQ use a struct timeval parameter,
defined in <sys/time.h>.

The following options are recognized at the socket level. Except as noted, each may
be examined with getsockopt() and set with setsockopt().

SO_DEBUG enables recording of debugging information
SO_REUSEADDR enables local address reuse

SO_REUSEPORT enables duplicate address and port bindings
SO_KEEPALIVE enables keep connections alive

SO_DONTROUTE enables routing bypass for outgoing messages
SO_LINGER linger on close if data present

SO_BROADCAST enables permission to transmit broadcast messages

SO_O00OBINLINE

SO_SNDBUF

SO_RCVBUF

SO_SNDLOWAT

SO_RCVLOWAT

SO_SNDTIMEO

enables reception of out-of-band data in band
set buffer size for output

set buffer size for input

set minimum count for output

set minimum count for input

set timeout value for output

SO_RCVTIMEO set timeout value for input
SO_TYPE get the type of the socket (get only)
SO_ERROR get and clear error on the socket (get only)

SO_DEBUG enables debugging in the underlying protocol modules.

SO_REUSEADDR

indicates that the rules used in validating addresses supplied in a bind(2) call should
allow reuse of local addresses. SO_REUSEPORT allows completely duplicate bindings
by multiple processes if they all set SO_REUSEPORT before binding the port. This
option permits multiple instances of a program to each receive UDP/IP multicast
or broadcast datagrams destined for the bound port. SO0_KEEPALIVE enables the
periodic transmission of messages on a connected socket. Should the connected
party fail to respond to these messages, the connection is considered broken and
processes using the socket are notified via a SIGPIPE signal when attempting to send
data. SO_DONTROUTE indicates that outgoing messages should bypass the standard

292 Systems/C C Library

routing facilities. Instead, messages are directed to the appropriate network interface
according to the network portion of the destination address.

SO_LINGER controls the action taken when unsent messages are queued on socket
and a close(2) is performed. If the socket promises reliable delivery of data and
SO_LINGER is set, the system will block the process on the close(2) attempt until it
is able to transmit the data or until it decides it is unable to deliver the information
(a timeout period, termed the linger interval, is specified in seconds in the setsock-
opt() call when SO_LINGER is requested). If SO_LINGER is disabled and a close(2)
is issued, the system will process the close in a manner that allows the process to
continue as quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams on the
socket. Broadcast was a privileged operation in earlier versions of some systems.
With protocols that support out-of-band data, the SO_00BINLINE option requests
that out-of-band data be placed in the normal data input queue as received; it will
then be accessible with recv(2) or read(2) calls without the MSG_00B flag. Some
protocols always behave as if this option is set. SO_SNDBUF and SO_RCVBUF are
options to adjust the normal buffer sizes allocated for output and input buffers,
respectively. The buffer size may be increased for high-volume connections, or may
be decreased to limit the possible backlog of incoming data.

SO_SNDLOWAT is an option to set the minimum count for output operations. Most
output operations process all of the data supplied by the call, delivering data to the
protocol for transmission and blocking as necessary for flow control. Nonblocking
output operations will process as much data as permitted subject to flow control
without blocking, but will process no data if flow control does not allow the smaller
of the low water mark value or the entire request to be processed. A select(2)
operation testing the ability to write to a socket will return true only if the low
water mark amount could be processed. The default value for SO_SNDLOWAT is set
to a convenient size for network efficiency, often 1024. SO_RCVLOWAT is an option
to set the minimum count for input operations. In general, receive calls will block
until any (non-zero) amount of data is received, then return with the smaller of the
amount available or the amount requested. The default value for SO_RCVLOWAT is
1. If SO_RCVLOWAT is set to a larger value, blocking receive calls normally wait until
they have received the smaller of the low water mark value or the requested amount.
Receive calls may still return less than the low water mark if an error occurs, a signal
is caught, or the type of data next in the receive queue is different from that which
was returned.

SO_SNDTIMEO is an option to set a timeout value for output operations. It accepts
a struct timeval parameter with the number of seconds and microseconds used
to limit waits for output operations to complete. If a send operation has blocked
for this much time, it returns with a partial count or with the error EWOULDBLOCK
if no data were sent. In the current implementation, this timer is restarted each
time additional data are delivered to the protocol, implying that the limit applies
to output portions ranging in size from the low water mark to the high water mark
foroutput. SO_RCVTIMED is an option to set a timeout value for input operations. It

Systems/C C Library 293

accepts a struct timeval parameter with the number of seconds and microseconds
used to limit waits for input operations to complete. In the current implementation,
this timer is restarted each time additional data are received by the protocol, and
thus the limit is in effect an inactivity timer. If a receive operation has been blocked
for this much time without receiving additional data, it returns with a short count
or with the error ENOULDBLOCK if no data were received.

Finally, SO_TYPE and SO_ERROR are options used only with getsockopt(). SO_TYPE
returns the type of the socket, such as SOCK_STREAM; it is useful for servers that
inherit sockets on startup. SO_ERROR returns any pending error on the socket and
clears the error status. It may be used to check for asynchronous errors on connected
datagram sockets or for other asynchronous errors.

IMPLEMENTATION NOTES

Although many options are described here, only the ones available with IBM
TCP/IP are actually supported. Consult the IBM TCP /TP documentation for more
information.

RETURN VALUES

A 0 is returned if the call succeeds, -1 if it fails.

ERRORS

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOPROTOOPT] The option is unknown at the level indicated.

[EFAULT] The address pointed to by optval is not in a valid part of the process
address space. For getsockopt(), this error may also be returned
if optlen is not in a valid part of the process address space.

SEE ALSO

ioctl(2), socket(2), getprotoent(3)

294 Systems/C C Library

GIVESOCKET(2)
NAME

givesocket - Tell TCP/IP to make the socket available

SYNOPSIS

#include <sys/socket.h>
int givesocket(int d, struct clientid *clientid,
int *token);

DESCRIPTION

givesocket () instructs TCP/IP to create a token indicating that the specified socket
descriptor d is available to a takesocket() call issued by another program. The
created token is returned via the token pointer, and should be used in a subsequent
takesocket() call. Any connected stream socket can be given.

This is typically used by a master/driving program which uses accept() to handle
incoming connections, then uses givesocket() to “give” the sockets to the appli-
cation programs that actually handle the data. The token set by givesocket() is
passed to the application program to use in a takesocket() call.

The master program passes a clientid structure to the TCP/IP system to identify
the receiver of the socket.

clientid is of the form:

struct clientid {
int domain;
union {
char name[8];
struct {
int NameUpper;
pid_t pid;
} c_pid;
} c_name;
char subtaskname[8];

struct {
char type;
union {
char specific[19];

Systems/C C Library 295

struct {
char unused[3];
int SockToken;
} c_close;
} c_func;
} c_reserved;

};

domain is the domain of the input socket descriptor.

If the clientid was set by a getclientid() call, c_name.name can be set to the ap-
plication program’s address space name, left-justified and padded with blanks. The
application program can run in the same address space as the master program, in
which case this field is set to the master program’s address space. Or, c_name.name
can be set to blanks, so any OS/390 address space can take the socket.

If the clientid was set by a getclientid() call, subtaskname can be set to the task
identifier of the taker. This, combined with a c_name.name value, allows only a pro-
cess with this c_name.name and subtaskname to take the socket. Or, subtaskname
can be set to blanks. If c_name.name has a value and subtaskname is blank, any
task with that c_name.name can take the socket.

c_reserved.type can be set to SO_CLOSE, to indicate the socket should be auto-
matically closed by givesocket(), and a unique socket identifying token is to be
returned in c_close.SockToken. The c_close.SockToken should be passed to the
taking program to be used as input to takesocket() instead of the socket descriptor.
The now closed socket descriptor could be re-used by the time the takesocket() is
called, so the c_close.SockToken should be used for takesocket().

c_close.SockToken is a unique socket identifying token returned by givesocket
to be used as input to takesocket(), instead of the socket descriptor when
c_reserved.type has been set to SO_CLOSE.

c_reserved specifies binary zeros if an automatic close of a socket is not to be done
by givesocket().

Using name and subtaskname for givesocket /takesocket:

1. The giving program calls getclientid() to obtain its client ID. The giving
program calls givesocket() to make the socket available for a takesocket()
call. The giving program passes its client ID along with the token for the
descriptor of the socket to be given to the taking program by the taking
program’s startup parameter list.

2. The taking program calls takesocket(), specifying the giving program’s client
ID and socket descriptor token.

296 Systems/C C Library

3. Waiting for the taking program to take the socket, the giving program uses
select () to test the given socket for an exception condition. When select() re-
ports that an exception condition is pending, the giving program calls close()
to free the given socket.

4. If the giving program closes the socket before a pending exception condition is
indicated, the TCP connection is immediately reset, and the taking program’s
call to takesocket() is unsuccessful. Calls other than the close() call issued
on a given socket return -1, with errno set to EBADF.

Note: For backward compatibility, a client ID can point to the struct client ID
structure obtained when the target program calls getclientid(). In this case, only
the target program, and no other programs in the target program’s address space,
can take the socket.

RETURN VALUES

On success, givesocket() returns 0. On error, givesocket() returns -1 and sets
errno to the specific error.

[EBADF] The descriptor d was not a valid socket descriptor.

[EFAULT] The clientid parameter points outside the caller’s allocated address
space.

[EINVAL] The clientid parameter does not specify a valid client id or the do-

main doesn’t match the domain of the input socket descriptor.

NOTES

This givesocket() function is different from other C libraries available on OS/390,
in that it returns the token to pass to takesocket() as a third parameter. When
porting programs from other C implementations, be sure to take this difference into
account.

SEE ALSO

accept(2), close(2), getclientid(2), listen(2), select(2), takesocket(2)

Systems/C C Library 297

IOCTL(2)
NAME

ioctl - control device

SYNOPSIS

#include <sys/ioctl.h>

int
ioctl(int d, unsigned long request, ...)
DESCRIPTION

The ioctl() function manipulates the underlying device parameters of special files.
In particular, many operating characteristics of character special files (e.g. termi-
nals) may be controlled with ioctl() requests. The argument d must be an open file
descriptor.

The third argument to ioctl is traditionally named char *argp. Most uses of ioctl
however, require the third argument to be a caddr_t or an int.

An ioctl request has encoded in it whether the argument is an “in” parameter or

“out” parameter, and the size of the argument argp in bytes. Macros and defines
used in specifying an ioctl request are located in the file <sys/ioctl.h>.

IMPLEMENTATION NOTES

The Systems/C ioctl() is implemented using the IBM TCP/IP ioctl interface, and
thus only supports those IOCTLs that interface provides:

FIONBIO Sets or clears blocking status.

FIONREAD Returns the number of immediately readable
bytes for the socket.

SIOCADDRT Adds a specified routing table entry.

SIOCATMARK Determines whether the current location in the

input data is pointing to out-of-band data.

SIOCDELRT Deletes a specified routine table entry.

298 Systems/C C Library

SIOCGIFADDR

SIOCGIFBRDADDR

SIOCGIFCONF

SIOCGIFDSTADDR

SIOCGIFFLAGS

SIOCGIFMETRIC

SIOCGIFNETMASK

SIOCSIFMETRIC

SIOCSIFDSTADDR

SIOCSIFFLAGS

SIOCTTLSCTL

Requests the network interface address for an
interface name.

Requests the network interface broadcast ad-
dress for an interface name.

Requests the network interface configuration.
The configuration consists of a variable number
of 32-byte arrays.

Requests the network interface destination ad-
dress.

Requests the network interface flags.

Requests the network interface routing metric.
Requests the network interface network mask.
Sets the network interface routing metric.
Sets the network interface destination address.
Sets the network interface flags.

Query or control the use of AT-TLS informa-
tion for a connection.

RETURN VALUES

If an error has occurred, a value of -1 is returned and errno is set to indicate the

error.

ERRORS

ioctl() will fail

[EBADF]
[ENOTTY]

[ENOTTY]

[EINVAL]
[ENOMEM]

[EPROTOYPE]

if:

d is not a valid descriptor.
d is not associated with a character special device.

The specified request does not apply to the kind of object that the
descriptor d references.

Request or argp is not valid.
Insufficient memory is available to satisfy the request.

Socket is not TCP.

Systems/C C Library 299

[EINVAL]
[EPERM]
[ENOTCONN]
[EPIPE]
[EQPNOSUPP]
[EACCESS]
[EALREADY]
[EPROTO]
[EINPROGRESS]
[EWOULDBLOCK]

[ENOBUFS]

Invalid parameters passed to request.

Permission denied for request.

Operation attempted on socket that wasn’t connected.

Request was made on socket that is no longer establihed.
Request is not supported.

Access denied for request.

Request is already made or is in process.

Invalid protocol specified in request.

A socket handshake is in progress.

The socket is non-blocking and an SSL handshake is in progress.

The specified return area is too small.

The errno value can also be set according to the return value from the underlying
IBM implementation. Consult the IBM “IP Communications Server” documenta-
tion for the particular ioctl() request and possible errno settings.

300 Systems/C C Library

LISTEN(2)
NAME

listen - listen for connections on a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
listen(int s, int backlog)

DESCRIPTION

To accept connections, a socket is first created with socket(2), a willingness to accept
incoming connections and a queue limit for incoming connections are specified with
listen(), and then the connections are accepted with accept(2). The listen() call
applies only to sockets of type SOCK_STREAM or SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connec-
tions may grow to. If a connection request arrives with the queue full the client may
receive an error with an indication of ECONNREFUSED, or, if the underlying protocol
supports retransmission, the request may be ignored so that retries may succeed.

RETURN VALUES

A 0 return value indicates success; -1 indicates an error.

ERRORS
listen() will fail if:

[EBADF] The argument s is not a valid descriptor.
[ENOTS0CK] The argument s is not a socket.

[EOPNOTSUPP] The socket is not of a type that supports the operation listen().

SEE ALSO

accept(2), connect(2), socket(2), sysctl(3)

Systems/C C Library 301

POLL(2)
NAME

poll — synchronous I/O multiplexing

SYNOPSIS

#include <poll.h>
int

poll(struct pollfd fds[], nfds_t nfds, int timeout);

DESCRIPTION

The poll function examines a set of file descriptors to see if some of them are ready
for I/0O. The fds argument is a pointer to an array of pollfd structures as defined in
ipoll.h; (shown below). The nfds argument determines the size of the fds array.

struct pollfd {
int fd; /* file descriptor */

short events; /* events to look for */
short revents; /* events returned */
};

The fields of struct pollfd are as follows:

fd File descriptor to poll. If f£d is equal to -1 then revents
is cleared (set to zero), and that pollfd is not checked.

events Events to poll for. (See below.)

revents Events which may occur. (See below.)

The event bitmasks in events and revents have the following bits:

POLLIN Data other than high priority data may be read without
blocking.
POLLRDNORM Normal data may be read without blocking.

302 Systems/C C Library

POLLRDBAND Data with a non-zero priority may be read without

blocking.

POLLPRI High priority data may be read without blocking.

POLLOUT

POLLWRNORM Normal data may be written without blocking.

POLLWRBAND Data with a non-zero priority may be written without
blocking.

POLLERR An exceptional condition has occurred on the device or
socket. This flag is always checked, even if not present
in the events bitmask.

POLLHUP The device or socket has been disconnected. This flag is
always checked, even if not present in the events bitmask.
Note that POLLHUP and POLLOUT should never be
present in the revents bitmask at the same time.

POLLNVAL The file descriptor is not open. This flag is always

checked, even if not present in the events bitmask.

If timeout is neither zero nor INFTIM (-1), it specifies a maximum interval to wait for
any file descriptor to become ready, in milliseconds. If timeout is INFTIM (-1), the
poll blocks indefinitely. If timeout is zero, then poll will return without blocking.

RETURN VALUES

The poll system call returns the number of descriptors that are ready for 1/0, or
-1 if an error occurred. If the time limit expires, poll returns 0. If poll returns
with an error, including one due to an interrupted system call, the fds array will be
unmodified.

COMPATIBILITY

This implementation is an emulation based on the select(2) function.

ERRORS

An error return from poll() indicates:

[EFAULT] The fds argument points outside the process’s allocated
address space.

Systems/C C Library 303

[EINTR] A signal was delivered before the time limit expired and
before any of the selected events occurred.

[EINVAL] The specified time limit is negative.

SEE ALSO

accept(2), connect(2), kqueue(2), read(2), recv(2), select(2), send(2), write(2)

304 Systems/C C Library

RECV(2)
NAME

recv, recvfrom, recvisg - receive a message from a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

ssize_t
recv(int s, void *buf, size_t len, int flags)

ssize_t
recvfrom(int s, void *buf, size_t len, int flags,
struct sockaddr *from, int *fromlen)

ssize_t
recvmsg(int s, struct msghdr *msg, int flags)

DESCRIPTION

recvfrom() and recvmsg() are used to receive messages from a socket, and may
be used to receive data on a socket whether or not it is connection-oriented.

If from is non-nil, and the socket is not connection-oriented, the source address of
the message is filled in. fromlen is a value-result parameter, initialized to the size of
the buffer associated with from, and modified on return to indicate the actual size
of the address stored there.

The recv() call is normally used only on a connected socket (see connect(2)) and is
identical to recvfrom() with a nil from parameter. As it is redundant, it may not
be supported in future releases.

All three routines return the length of the message on successful completion. If
a message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from (see socket(2)).

If no messages are available at the socket, the receive call waits for a message to
arrive, unless the socket is nonblocking (see fentl(2)) in which case the value -1 is
returned and the external variable errno set to EAGAIN. The receive calls normally
return any data available, up to the requested amount, rather than waiting for
receipt of the full amount requested; this behavior is affected by the socket-level
options SO_RCVLOWAT and SO_RCVTIMEQ described in getsockopt(2).

Systems/C C Library 305

The select(2) call may be used to determine when more data arrive.

The flags argument to a recv call is formed by or’ing one or more of the values:

MSG_00B process out-of-band data
MSG_PEEK peek at incoming message
MSG_WAITALL wait for full request or error

The MSG_00B flag requests receipt of out-of-band data that would not be received
in the normal data stream. Some protocols place expedited data at the head of
the normal data queue, and thus this flag cannot be used with such protocols. The
MSG_PEEK flag causes the receive operation to return data from the beginning of
the receive queue without removing that data from the queue. Thus, a subsequent
receive call will return the same data. The MSG_WAITALL flag requests that the
operation block until the full request is satisfied. However, the call may still return
less data than requested if a signal is caught, an error or disconnect occurs, or the
next data to be received is of a different type than that returned.

The recvmsg() call uses a msghdr structure to minimize the number of di-

rectly supplied parameters. This structure has the following form, as defined in
<sys/socket.h>:

struct msghdr {

caddr_t msg_name; /* optional address */

u_int msg_namelen; /* size of address */

struct iovec *msg_iov; /* scatter/gather */
/* array */

u_int msg_iovlen; /* # elements in */
/* msg_iov *x/

caddr_t msg_control; /* ancillary data, */
/* see below */

u_int msg_controllen; /* ancillary data, */
/* buffer len */

int msg_flags; /* flags on */

/* received message */

};

Here msg name and msg namelen specify the destination address if the socket is
unconnected; msg name may be given as a null pointer if no names are desired or
required. msg_iov and msg_iovlen describe scatter gather locations, as discussed
in read(2). msg_control, which has length msg_controllen, points to a buffer for
other protocol control related messages or other miscellaneous ancillary data. The
messages are of the form:

306 Systems/C C Library

struct cmsghdr {

u_int cmsg_len; /* data byte count, */
/% including hdr */
int cmsg_level; /* originating x/
/* protocol x/
int cmsg_type; /* protocol-specific */

/* type */
/* followed by
u_char cmsg_datal]; */

};

As an example, one could use this to learn of changes in the data-stream in
XNS/SPP, or in ISO, to obtain user-connection-request data by requesting a recvmsg
with no data buffer provided immediately after an accept() call.

Process credentials can also be passed as ancillary data for AF_UNIX domain sockets
using a cmsg_type of SCM_CREDS. In this case, cmsg_data should be a structure of
type cmsgcred, which is defined in <sys/socket.h> as follows:

struct cmsgcred {

pid_t cmcred_pid; /* PID of =/

/* sending process */
uid_t cmcred_uid; /* real UID of */

/* sending process */
uid_t cmcred_euid; /* effective UID of */

/* sending process */
gid_t cmcred_gid; /* real GID of */

/* sending process */
short cmcred_groups; /* number or groups */

gid_t cmcred_groups[CMGROUP_MAX]; /* groups */
+;

[Note that AF_UNIX domain sockets are currently not supported in the Systems/C
TCP/IP library, as they are unsupported by the IBM TCP/IP implemention. This
information is provided for reference.]

The kernel will fill in the credential information of the sending process and deliver
it to the receiver.

The msg_flags field is set on return according to the message received. MSG_EOR
indicates end-of-record; the data returned completed a record (generally used with
sockets of type SOCK_SEQPACKET). MSG_TRUNC indicates that the trailing portion of a
datagram was discarded because the datagram was larger than the buffer supplied.
MSG_CTRUNC indicates that some control data were discarded due to lack of space
in the buffer for ancillary data. MSG_00B is returned to indicate that expedited or
out-of-band data were received.

Systems/C C Library 307

RETURN VALUES

These calls return the number of bytes received, or -1 if an error occurred. Note
that a return value of 0 indicates the connection has been closed (no bytes received.)

ERRORS

The calls fail if:

[EBADF] The argument s is an invalid descriptor.

[ENOTCONN] The socket is associated with a connection-oriented protocol and
has not been connected (see connect(2) and accept(2)).

[ENOTSOCK] The argument s does not refer to a socket.

[EAGAIN] The socket is marked non-blocking, and the receive operation would
block, or a receive timeout had been set, and the time-out expired
before data were received.

[EINTR] The receive was interrupted by delivery of a signal before any data
were available.

[EFAULT] The receive buffer pointer(s) point outside the process’s address
space.

SEE ALSO

getsockopt(2), read(2), select(2), socket(2)

308 Systems/C C Library

SELECT(2)
NAME

select - synchronous I/O multiplexing

SYNOPSIS

#include <sys/types.h>
#include <sys/time.h>
#include <unistd.h>

int
select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout)

FD_SET(fd, &fdset)
FD_CLR(fd, &fdset)
FD_ISSET(fd, &fdset)

FD_ZERO(&fdset)

DESCRIPTION

select() examines the I/O descriptor sets whose addresses are passed in readfds,
writefds, and exceptfds to see if some of their descriptors are ready for reading, are
ready for writing, or have an exceptional condition pending, respectively. The only
exceptional condition detectable is out-of-band data received on a socket. The first
nfds descriptors are checked in each set; i.e., the descriptors from 0 through nfds-1 in
the descriptor sets are examined. On return, select() replaces the given descriptor
sets with subsets consisting of those descriptors that are ready for the requested
operation. select() returns the total number of ready descriptors in all the sets.

The descriptor sets are stored as bit fields in arrays of integers. The following macros
are provided for manipulating such descriptor sets:

FD_ZERO (&fdset) initializes a descriptor set
fdset to the null set.

FD_SET(fd, &fdset) includes a particular de-
scriptor fd in fdset.

FD_CLR(fd, &fdset) removes fd from fdset.

Systems/C C Library 309

FD_ISSET(fd, &fdset) is non-zero if fd is a mem-
ber of fdset, zero other-
wise.

The behavior of these macros is undefined if a descriptor value is less than zero
or greater than or equal to FD_SETSIZE, which is normally at least equal to the
maxmum number of descriptors supported by the system.

If timeout is a non-nil pointer, it specifies a maximum interval to wait for the selection
to complete. If timeout is a NULL pointer, the select blocks indefinitely. To effect a
poll, the timeout argument should be non-NULL, pointing to a zero-valued timeval
structure.

Any of readfds, writefds, and exceptfds may be given as NULL pointers if no descriptors
are of interest.

RETURN VALUES

select() returns the number of ready descriptors that are contained in the descriptor
sets, or -1 if an error occurred. If the time limit expires, select() returns 0. If se-
lect() returns with an error, including one due to an interrupted call, the descriptor
sets will be unmodified.

ERRORS

An error return from select() indicates:

[EBADF] One of the descriptor sets specified an invalid descriptor.

[EINTR] A signal was delivered before the time limit expired and before any
of the selected events occurred.

[EINVAL] The specified time limit is invalid. One of its components is negative
or too large.

[EINVAL] nfds was invalid.

SEE ALSO

accept(2), connect(2), getdtablesize(2), gettimeofday(2), read(2), recv(2), send(2),
write(2)

310 Systems/C C Library

NOTES

The default size of FD_SETSIZE is currently 1024. In order to accommodate programs
which might potentially use a larger number of open files with select() , it is possible
to increase this size by having the program define FD_SETSIZE before the inclusion
of any header which includes <sys/types.h>.

If nfds is greater than the number of open files, select() is not guaranteed to examine
the unused file descriptors. For historical reasons, select() will always examine the
first 256 descriptors.

ISSUES

select() should probably return the time remaining from the original timeout, if
any, by modifying the time value in place. This may be implemented in future
versions of the system. Thus, it is unwise to assume that the timeout value will be
unmodified by the select() call.

Systems/C C Library 311

SELECTEX (2)
NAME

selectex - synchronous I/O multiplexing with extensions for message queues

SYNOPSIS

#include <sys/types.h>
#include <sys/time.h>
#include <unistd.h>

int

selectex(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout,

int *ecbptr)

DESCRIPTION

The selectex() call operates in a manner similar to select(2), except that it provides
an extension to allow for using an ECB that defines an event not described by the
descriptors in the readfds, writefds or exceptfds.

selectex() monitors activity on the file descriptors until a timeout occurs, or until
the ECB is posted.

See select(2) for more information and a description of the nfds, readfds, writefds,
exceptfds and timeout parameters and return values.

If non-NULL, ecbptr can be a pointer to a single ECB or a list of ECBs. If ecbptr is
NULL, selectex() is equivalent to select(2).

To specify a single ECB, the high-order bit of ecbptr must be ’0’. To specify a list
of up to 59 ECBS, the high-order bit of ecbptr must be ’1’. The high-order bit of
the last pointer in the list must be ’1’.

SEE ALSO

select(2)

312 Systems/C C Library

SEND(2)
NAME

send, sendto, sendmsg - send a message from a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

ssize_t
send(int s, const void *msg, size_t len, int flags)

ssize_t
sendto(int s, const void #*msg, size_t len, int flags,
const struct sockaddr *to, socklen_t tolen)

ssize_t
sendmsg(int s, const struct msghdr *msg, int flags)

DESCRIPTION

send(), sendto(), and sendmsg() are used to transmit a message to another
socket. send() may be used only when the socket is in a connected state, while
sendto() and sendmsg() may be used at any time.

The address of the target is given by to with tolen specifying its size. The length of
the message is given by len. If the message is too long to pass atomically through
the underlying protocol, the error EMSGSIZE is returned, and the message is not
transmitted.

No indication of failure to deliver is implicit in a send(). Locally detected errors
are indicated by a return value of -1.

If no messages space is available at the socket to hold the message to be transmitted,
then send() normally blocks, unless the socket has been placed in non-blocking /0
mode. The select(2) call may be used to determine when it is possible to send more
data.

The flags parameter may include one or more of the following;:

#define MSG_0OB 0x1 /* process out-of-band */
/* data */

Systems/C C Library 313

#define MSG_PEEK 0x2 /* peek at incoming */

/* message */

#define MSG_DONTROUTE 0x4 /* bypass routing, */

/* use direct interface */

#define MSG_EOR 0x8 /* data completes record */
#define MSG_EOF 0x100 /* data completes */

/* transaction */

The flag MSG_00B is used to send “out-of-band” data on sockets that support this
notion (e.g. SOCK_STREAM); the underlying protocol must also support “out-of-band”
data. MSG_EOR is used to indicate a record mark for protocols which support the
concept. MSG_EOF requests that the sender side of a socket be shut down, and that
an appropriate indication be sent at the end of the specified data; this flag is only
implemented for SOCK_STREAM sockets in the PF_INET protocol family, and is used
to implement Transaction TCP. [Note that the Systems/C library depends on the
IBM TCP/IP implementation, which may not implement this and other features.]
MSG_DONTROUTE is usually used only by diagnostic or routing programs.

See recv(2) for a description of the msghdr structure.

RETURN VALUES

The call returns the number of characters sent, or -1 if an error occurred.

ERRORS

send(), sendto(), and sendmsg() fail if:

[EBADF]

[EACCES]

[ENOTSOCK]
[EFAULT]

[EMSGSIZE]

[EAGAIN]

[ENOBUFS]

An invalid descriptor was specified.

The destination address is a broadcast address, and SO_BROADCAST
has not been set on the socket.

The argument s is not a socket.
An invalid user space address was specified for a parameter.

The socket requires that message be sent atomically, and the size of
the message to be sent made this impossible.

The socket is marked non-blocking and the requested operation
would block.

The system was unable to allocate an internal buffer. The operation
may succeed when buffers become available.

314 Systems/C C Library

[ENOBUFS] The output queue for a network interface was full. This generally
indicates that the interface has stopped sending, but may be caused
by transient congestion.

[EHOSTUNREACH] The remote host was unreachable.

ISSUES

These functions are implemented with the IBM TCP/IP interface. Not all facilities
described here may be available.

Because sendmsg() doesn’t necessarily block until the data has been transferred,
it is possible to transfer an open file descriptor across an AF_UNIX domain socket
(see recv(2)), then close() it before it has actu ally been sent, the result being that
the receiver gets a closed file descriptor. It is left to the application to implement
an acknowledgment mechanism to prevent this from happening.

SEE ALSO

getsockopt(2), recv(2), select(2), socket(2), write(2)

Systems/C C Library 315

__SETSOCKPARM(2)
NAME

_setsockparm - define IBM TCP/IP socket function parameters

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

void
__setsockparm(int opt, ...)

DESCRIPTION

__setsockparm() is used to provide low-level initialization options to the underlying
IBM TCP/IP implementation.

The call(s) to __setsockparm must be made before any other socket calls.
The opt parameter describes an option to set.

The following options are supported:

__SP_TCPNAME Defines the job name to be used during socket initializa-
tion. The value following the opt parameter is a pointer
to a null-terminated character string

__SP_ADSNAME Defines the address name to be used during socket ini-
tialization The value following the opt parameter is a
pointer to a null-terminated character string.

__SP_SUBTASK Defines the subtask name. The subtask name is a field
up to 8 characters which identifies the subtask. Useful
for address spaces that contain multiple subtasks.

EXAMPLE

This example defines the TCP job name to be "TCPIP" and the address name to be
"TS0001":

316 Systems/C C Library

"TCPIP";
"TSO00001";

char tcpname [9]
char adsname[9]

__setsockparm(__SP_TCPNAME, tcpname) ;
__setsockparm(__SP_ADSNAME, adsname);

SEE ALSO

See the IBM Communications Server: IP Application Programming Interface Guide
for a complete description of the valid values for the TCP/IP JOB and address
names.

Systems/C C Library 317

SOCKET(2)
NAME

socket - create an endpoint for communication

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
socket(int domain, int type, int protocol)

DESCRIPTION

socket() creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which communi-
cation will take place; this selects the protocol family which should be used. These
families are defined in the include file <sys/socket.h>.

The currently understood formats are

PF_LOCAL (Host-internal protocols, formerly called PF_UNIX),
PF_INET (ARPA Internet protocols),

PF_ISO (ISO protocols),

PF_CCITT (ITU-T protocols, like X.25),

PF_NS (Xerox Network Systems protocols)

[Note, the Systems/C TCP/IP implementation relies on the IBM TCP/IP imple-
mentation, which only provides PF_INET, PF_UNIX and PF_RAW. The other communi-
cation domains are provided for reference.]

These communication domains were previously named AF_UNIX, AF_INET, AF_ISO,
AF_CCITT and AF_NS. The older names are provided for compatibility.

The socket has the indicated type, which specifies the semantics of communication.
Currently defined types are:

e SOCK_STREAM

318 Systems/C C Library

SOCK_DGRAM

SOCK_RAW

SOCK_SEQPACKET

SOCK_RDM

[Note, the Systems/C TCP/IP implementation depends on the IBM implementa-
tion, which only provides SOCK_STREAM, SOCK_DGRAM and SOCK_RAW. Information on
the other socket types is included for reference.]

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte
streams. An out-of-band data transmission mechanism may be supported. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages of a
fixed (typically small) maximum length). A SOCK_SEQPACKET socket may provide
a sequenced, reliable, two-way connection-based data transmission path for data-
grams of fixed maximum length; a consumer may be required to read an entire
packet with each read system call. This facility is protocol specific, and presently
implemented only for PF_NS. SOCK_RAW sockets provide access to internal network
protocols and interfaces. The types SOCK_RAW, which is available only to the super-
user, and SOCK_RDM, which is planned, but not yet implemented, are not described
here.

The protocol specifies a particular protocol to be used with the socket. Normally
only a single protocol exists to support a particular socket type within a given
protocol family. However, it is possible that many protocols may exist, in which
case a particular protocol must be specified in this manner. The protocol number to
use is particular to the communication domain in which communication is to take
place. Some possible values for protocol are 0, IPPROTO_UDP or IPPROTO_TCP.

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a connected state before any data may be sent or received on it. A
connection to another socket is created with a connect(2) call. Once connected, data
may be transferred using read(2) and write(2) calls or some variant of the send(2)
and recv(2) calls. (Some protocol families, such as the Internet family, support the
notion of an “implied connect,” which permits data to be sent piggy-backed onto a
connect operation by using the sendto(2) call.) When a session has been completed a
close(2) may be performed. Out-of-band data may also be transmitted as described
in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM insure that data
is not lost or duplicated. If a piece of data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, then
the connection is considered broken and calls will indicate an error with -1 returns
and with ETIMEDOUT as the specific code in the global variable errno. The protocols
optionally keep sockets “warm” by forcing transmissions roughly every minute in
the absence of other activity. An error is then indicated if no response can be elicited
on an otherwise idle connection for a extended period (e.g. 5 minutes). A SIGPIPE

Systems/C C Library 319

signal is raised if a process sends on a broken stream; this causes naive processes,
which do not handle the signal, to exit. SOCK_SEQPACKET sockets employ the same
system calls as SOCK_STREAM sockets. The only difference is that read(2) calls will
return only the amount of data requested, and any remaining in the arriving packet
will be discarded. SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams
to correspondents named in send(2) calls. Datagrams are generally received with
recvirom(2), which returns the next datagram with its return address.

The operation of sockets is controlled by socket level options. These options are
defined in the file <sys/socket.h>. Setsockopt(2) and getsock opt(2) are used to
set and get options, respectively.

RETURN VALUES

A -1 is returned if an error occurs, otherwise the return value is a descriptor refer-
encing the socket.

ERRORS

The socket() call fails if:

[EPROTONOSUPPORT] The protocol type or the specified protocol is not supported
within this domain.

[EMFILE] The per-process descriptor table is full.

[ENFILE] The system file table is full.

[EACCES] Permission to create a socket of the specified type and/or protocol
is denied.

[ENOBUFS] Insufficient buffer space is available. The socket cannot be created

until sufficient resources are freed.

IMPLEMENTATION NOTES

Although many options are described here, only the ones available with IBM
TCP/IP are actually supported. Consult the IBM TCP /IP documentation for more
information.

SEE ALSO

accept(2), bind(2), connect(2), getpeername(2), getsockname(2), getsockopt(2),
ioctl(2), listen(2), read(2), recv(2), select(2), send(2), shutdown(2), socketpair(2),
write(2), getprotoent(3)

320 Systems/C C Library

SHUTDOWN(2)
NAME

shutdown - shut down part of a full-duplex connection

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
shutdown(int s, int how)

DESCRIPTION

The shutdown() call causes all or part of a full-duplex connection on the socket
associated with s to be shut down. If how is SHUT-RD (0), further receives will
be disallowed. If how is SHUT_WR (1), further sends will be disallowed. If how is
SHUT_RDWR (2), further sends and receives will be disallowed.

RETURN VALUES

A 0 is returned if the call succeeds, -1 if it fails.

ERRORS

The call succeeds unless:

[EBADF] s is not a valid descriptor.
[ENOTSOCK] s is a file, not a socket.

[ENOTCONN] The specified socket is not connected.

SEE ALSO

connect(2), socket(2)

Systems/C C Library 321

STANDARDS

The shutdown() function is expected to comply with IEEE P1003.1g (“POSIX”),
when finalized.

322 Systems/C C Library

TAKESOCKET(3)
NAME

takesocket - acquire a socket from another program

SYNOPSIS

#include <sys/types.h>
#include <socket.h>

int takesocket(struct clientid *clientid,int token);

DESCRIPTION

The takesocket() function acquires a socket from another program viathe token
passed from the other program. Typically, the other program passes its client ID and
givesocket token, and/or process id (PID), to your program through your program’s
startup parameter list.

clientid is a pointer to the clientid of the application from which you are taking a
socket.

token is the token generated by a givesocket() call, which represents the socket to
be taken.

If your program is using the PID to ensure integrity between givesocket() and
takesocket(), before issuing the takesocket() call, your program should set the
c_pid.pid field of the clientid structure to the PID of the giving program (i.e.
program that issued the givesocket() call). This identifies the process from which
the socket is to be taken. If the c_reserved.type field of the clientid structure
was set to SO_CLOSE on the givesocket() call, c_close.SockToken of the clientid
structure should be used as input to takesocket() instead of the normal socket
descriptor. See givesocket(2) for a description of the clientid structure.

RETURN VALUE

takesocket() returns the new socket descriptor, or -1 on error. If the return value
is -1, errno is set to:

[EACCES] The other application did not give the socket to this application.

[EBADF] The token parameter does not specify a valid token from the other
application, or the socket has already been taken.

Systems/C C Library 323

[EFAULT] The clientid parameter points outside the process’s allocated ad-
dress space.

[EINVAL] The clientid parameter does not specify a valid client identifier.
Either the client process cannot be found, or the client exists, but
has no outstanding “given” sockets.

[EMFILE] The file descriptor table is full.

SEE ALSO

getclientid(2), givesocket(2)

324 Systems/C C Library

Gen Library

Historically, the “gen” portion of a C library are those files which are automatically
generated, or which are generated in a platform-specific manner. For the Systems/C
library, the distinction isn’t as meaningful as it may be on other platforms.

Systems/C C Library 325

_ATOE(3)
NAME

__atoe, __etoa, __stratoe, __stretoa, __strnatoe, __strnetoa, __bcopy_atoe, __bcopy_etao
- ASCII/EBCDIC character translation functions

SYNOPSIS

#include <machine/atoe.h>

unsigned int __atoe(unsigned int char);

unsigned int __etoa(unsigned int char);
void __stratoe(unsigned char * string);

void __stretoa(unsigned char * string);

void __strnatoe(unsigned char #*string, int len);
void __strnetoa(unsigned char *string, int len);

void __bcopy_atoe(unsigned char *src, unsigned char *dst, int len);

void __bcopy_etoa(unsigned char *src, unsigned char *dst, int len);

DESCRIPTION

The __atoe() and __etoa() functions translate a value in the range 0-255 to/from
ASCII and EBCDIC. The translation table employed is the same used by the Sys-
tems/C compiler and utilties, and assumes the IBM 1047 code page.

The __stratoe() and __stretoa() functions apply the translation directly to a NUL-
terminate string.

The __strnatoe() and __strnetoa() functions apply the translation to a string; the
translation stops when either the NUL terminating character is discovered, or the
length len is reached.

The __bcopy_atoe() and __bcopy_etoa() functions copy len bytes from the src

address to the dst address, translating the bytes as they are copied. If len is zero,
no bytes are copied.

326 Systems/C C Library

SEE ALSO

beopy(3), strepy(3), strnepy(3)

Systems/C C Library 327

_TO_XX(3)
NAME

_to_bl, __to_b2, _to_b4, _to.dl, __tod2, _to.d4, __to_hl, __to_h2, __to_h4 - floating
point conversion functions

SYNOPSIS

These functions don’t appear in any header file, thus, the #pragma map statements
must be properly provided to use them.

#ifdef cplusplus

extern "C" {
#endif /* __cplusplus */

#pragma map(__to_bl, "@Q@TO@B1")
float __to_bl(unsigned int flags, void *input_p)

#pragma map(__to_b2, "Q@@TOG@B2")
double __to_b2(unsigned int flags, void *input_p)

#pragma map(__to_b4, "@Q@TOGB4")
long double __to_b4(unsigned int flags, void *input_p)

#pragma map(__to_dl, "@Q@TO@D1")
_Decimal32 __to_dl(unsigned int flags, void *input_p)

#pragma map(__to_d2, "@@TO@D2")
_Decimal64 __to_d2(unsigned int flags, void *input_p)

#pragma map(__to_d4, "@@TO@D4")
_Decimall28 __to_d4(unsigned int flags, void *input_p)

#pragma map(__to_hl, "Q@@TOQH1")
float __to_hl(unsigned int flags, void *input_p)

#pragma map(__to_h2, "@Q@TOGH2")
double __to_h2(unsigned int flags, void *input_p)

#pragma map(__to_h4, "Q@Q@TOQH4")
long double __to_h4(unsigned int flags, void *input_p)

#ifdef __cplusplus
3

328 Systems/C C Library

#endif /* __cplusplus */

DESCRIPTION

These functions convert the input floating point value addressed by input_p, return-
ing an IEEE (BFP), Decimal Floating Point (DFP) or Hexadecimal Floating point
(HFP) value. The __to_bl, __to_b2 and __to_b4 functions return IEEE (BFP)
values of the specified return type. The __to_d1, __to_d2 and __to_d4 return Dec-
imal Floating Point (DFP) values of the given sizes. The __to_hl, __to_h2 and
__to_h4 return Hexadecimal Floating Point (HFP) values of the given sizes. The
flags parameter provides flags indicating the type of the input value addressed by
mput_p.

These functions do not require any particular hardware architecture support.

The value of the flags parameter describes the input parameter and the requested
rounding mode of the result. These two values are OR’d together to create the
value. For the type of input parameter, one of the following values should be used:

0x000 HFP float

0x100 HFP double
0x200 HFP long double
0x500 BFP float

0x600 BFP double
0x700 BFP long double
0x800 DFP _Decimal32
0x900 DFP _Decimal64
0xA00 DFP _Decimall28

The following values should be used to indicate the rounding mode:

0x00 Round DFP values as indicated in fe_dec_getround().
0x01 Round BFP values as indicated by fegetround().
0x08 Round to Nearest Ties Even

0x09 Round Toward Zero

0x0A Round Toward +Infinity

Systems/C C Library 329

0x0B Rount Toward -Infinity

0x0C Round to Nearest, Ties Away from Zero
0x0D Round to Nearest, Ties Toward from Zero
0x0E Round Away from Zero

0xO0F Round Prepare for Shorter Precision

If the conversion specified in conv_flag is not valid a a value of 0.0 is returned.

SEE ALSO

An explanation of the rounding modes can be found in the z/Architecture Principles
of Operations.

fenv(3)

330 Systems/C C Library

ALARM(3)
NAME

alarm — set signal timer alarm

SYNOPSIS

#include <unistd.h>

unsigned int
alarm(unsigned int seconds);

DESCRIPTION

This interface is made obsolete by setitimer(2).

The alarm() function sets a timer to deliver the signal SIGALRM to the calling
process after the specified number of seconds. If an alarm has already been set with
alarm() but has not been delivered, another call to alarm() will supersede the
prior call. The request alarm(0) voids the current alarm and the signal SIGALRM
will not be delivered.

Due to setitimer(2) restriction the maximum number of seconds allowed is
100000000.

RETURN VALUES

The return value of alarm() is the amount of time left on the timer from a previous
call to alarm(). If no alarm is currently set, the return value is 0.

SEE ALSO

setitimer(2), sigaction(2), sigpause(2), sigvec(2), signal(3), sleep(3)

Systems/C C Library 331

ASSERT(3)
NAME

assert - expression verification macro

SYNOPSIS

#include <assert.h>

assert (expression)

DESCRIPTION

The assert() macro tests the given expression and if it is false, the calling process
is terminated. A diagnostic message is written to stderr and the function abort(3)
is called effectively terminating the program.

If expression is true, the assert() macro does nothing.

The assert() macro may be removed at compile time with the -DNDEBUG option,
see the -D option description in the compiler documentation.

DIAGNOSTICS

The following diagnostic message is written to stderr if expression is false:

"assertion \"Y%s\" failed: file \"%s\", line %d\n", \
"expression", __FILE LINE__

—_— -

SEE ALSO

abort(3)

332 Systems/C C Library

BITSTRING (3)
NAME

bit_alloc, bit_clear, bit_decl, bit_ffs, bit_nclear, bit_nset, bit_set, bitstr_size, bit_test
- bit-string manipulation macros

SYMNOPSIS

#include <bitstring.h>

bitstr_t *
bit_alloc(int nbits);

void
bit_decl(bitstr_t *name, int nbits);

void
bit_clear(bitstr_t *name, int bit);

void
bit_ffc(bitstr_t *name, int nbits, int *value);

void
bit_ffs(bitstr_t *name, int nbits, int *value);

void
bit_nclear(bitstr_t *name, int start, int stop);

void
bit_nset(bitstr_t *name, int start, int stop);

void
bit_set(bitstr_t *name, int bit);

int
bitstr_size(int nbits);

int
bit_test(bitstr_t *name, int bit);

DESCRIPTION

These macros operate on strings of bits.

Systems/C C Library 333

The macro bit_alloc() returns a pointer of type “bitstr_t *” to sufficient space
to store mbits bits, or NULL if no space is available.

The macro bit_decl() allocates sufficient space to store nbits bits on the stack.

The macro bitstr_size () returns the number of elements of type bitstr_t neces-
sary to store nbits bits. This is useful for copying bit strings.

The macros bit_clear() and bit_set() clear or set the zero-based numbered bit
bit, in the bit string name.

The bit nset() and bit_nclear() macros set or clear the zero-based numbered
bits from start through stop in the bit string name.

The bit_test () macro evaluates to non-zero if the zero-based numbered bit bit of
bit string name is set, and zero otherwise.

The bit_ffs() macro stores in the location referenced by wvalue the zero-based
number of the first bit set in the array of nbits bits referenced by name. If no bits
are set, the location referenced by value is set to -1.

The macro bit_ffc() stores in the location referenced by wvalue the zero-based
number of the first bit not set in the array of nbits bits referenced by name. If all

bits are set, the location referenced by wvalue is set to -1.

The arguments to these macros are evaluated only once and may safely have side
effects.

EXAMPLES

#include <limits.h>
#include <bitstring.h>

#define LPR_BUSY_BIT

0
#define LPR_FORMAT_BIT 1
#define LPR_DOWNLOAD_BIT 2
#define LPR_AVAILABLE_BIT 9
#define LPR_MAX_BITS 10

make_lpr_available()
{
bitstr_t bit_decl(bitlist, LPR_MAX_BITS);

bit_nclear(bitlist, 0, LPR_MAX_BITS - 1);

334 Systems/C C Library

if (!bit_test(bitlist, LPR_BUSY_BIT)) {
bit_clear(bitlist, LPR_FORMAT_BIT);
bit_clear(bitlist, LPR_DOWNLOAD_BIT);
bit_set(bitlist, LPR_AVAILABLE_BIT);

SEE ALSO

memory(3)

Systems/C C Library 335

CLOCK(3)
NAME

clock - determine processor time used

SYNOPSIS

#include <time.h>

clock_t
clock(void)

DESCRIPTION

The clock() function determines the amount of processor time used since the invo-
cation of the calling process, measured in CLOCKS_PER_SEC’s of a second.

RETURN VALUES

The clock() function returns the amount of time used unless an error occurs, in
which case the return value is -1.

STANDARDS

The clock() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

336 Systems/C C Library

CTERMID(3)
NAME

ctermid — generate terminal pathname

SYNOPSIS

#include <stdio.h>

char *
ctermid(char *buf);

char *
ctermid_r (char *buf);

DESCRIPTION

The ctermid() function generates a string, that, when used as a pathname, refers
to the current controlling terminal of the calling process.

If buf is the NULL pointer, a pointer to a static area is returned. Otherwise, the
pathname is copied into the memory referenced by buf. The argument bufis assumed

to be at least L_ctermid (as defined in the include file <stdio.h>) bytes long.

The ctermid_r() function provides the same functionality as ctermid() except
that if bufis a NULL pointer, NULL is returned.

The current implementation simply returns ‘/dev/tty’ when running under
OpenEdition. In any other environment, it returns the empty string.

RETURN VALUES

Upon successful completion, a non-NULL pointer is returned. Otherwise, a NULL
pointer is returned and the global variable errno is set to indicate the error.

ERRORS

The current implementation detects no error conditions.

Systems/C C Library 337

SEE ALSO

ttyname(3)

STANDARDS

The ctermid() function conforms to IEEE Std 1003.1-1988 (“POSIX.17).

ISSUES

By default the ctermid() function writes all information to an internal static object.
Subsequent calls to ctermid() will modify the same object.

338 Systems/C C Library

DIRECTORY (3)
NAME

opendir, readdir, rewinddir, closedir, dirfd - directory operations

SYNOPSIS

#include <sys/types.h>
#include <dirent.h>

DIR =*
opendir(const char *filename);

struct dirent *
readdir(DIR *dirp);

void
rewinddir (DIR *dirp);

int
closedir(DIR *dirp);

int
dirfd(DIR *dirp);

DESCRIPTION

The opendir() function opens the //HFS:-style directory named by filename, as-
sociates a directory stream with it and returns a pointer to be used to identify the
directory stream in subsequent operations. The pointer NULL is returned if file-
name cannot be accessed, or if it cannot malloc(3) enough memory to hold the
directory stream and related information.

The readdir() function returns a pointer to the next directory entry. It returns
NULL upon reaching the end of the directory.

The rewinddir() function resets the position of the named directory stream to the
beginning of the directory.

The closedir() function closes the named directory stream and frees the structure
associated with the dirp pointer, returning 0 on success. On failure, -1 is returned
and the global variable errno is set to indicate the error.

The dirfd() function returns the integer file descriptor associated with the named
directory stream, see open(2).

Systems/C C Library 339

Sample code which searches a directory for entry “name” is:

len = strlen(name);
dirp = opendir(".");
while ((dp = readdir(dirp)) != NULL)
if (dp->d_namlen == len && !strcmp(dp->d_name, name)) {
(void)closedir(dirp);
return FOUND;
}
(void)closedir(dirp);
return NOT_FOUND;

SEE ALSO

close(2), Iseek(2), open(2), read(2)

340 Systems/C C Library

DLOPEN(3)
NAME

dlopen, dlsym, dlfunc, dlerror, dlclose — programmatic interface to dynamic linking

SYNOPSIS

#include <dlfcn.h>

void *
dlopen(const char *path, int mode);

void *
dlsym(void * restrict handle, const char * restrict symbol);

dlfunc_t
dlfunc(void * restrict handle, const char * restrict symbol);

const char *
dlerror(void);

int
dlclose(void *handle);

DESCRIPTION

These functions provide a simple programmatic interface to the services of the
Dignus shared libraries. Operations are provided to add new shared objects to
a program’s address space, to obtain the address bindings of symbols defined by
such objects, and to remove such objects when their use is no longer required.

Contact Dignus for information regarding how to construct shared objects using the
the PLINK utility.

The dlopen() function provides access to the shared object in path, returning a
descriptor that can be used for later references to the object in calls to dlsym()
and dlclose(). If path was not in the address space prior to the call to dlopen(), it
is placed in the address space. If path has already been placed in the address space
in a previous call to dlopen(), it is not added a second time, although a reference
count of dlopen() operations on path is maintained. A null pointer supplied for
path is interpreted as a reference to the main executable of the process. The mode
argument controls the way in which external function references from the loaded
object are bound to their referents. It must contain one of the following values,
possibly ORed with additional flags which will be described subsequently:

Systems/C C Library 341

RTLD_NOW All external function references are bound imme-
diately by dlopen().

RTLD_NOW is used to ensure any undefined symbols are discovered during the call to
dlopen().

One of the following flags may be ORed into the mode argument:

RTLD_GLOBAL Symbols from this shared object and its directed
acyclic graph (DAG) of needed objects will be
available for resolving undefined references from
all other shared objects.

RTLD_LOCAL Symbols in this shared object and its DAG of
needed objects will be available for resolving un-
defined references only from other objects in the
same DAG. This is the default, but it may be
specified explicitly with this flag.

If dlopen() fails, it returns a null pointer, and sets an error condition which may
be interrogated with dlerror().

The dlsym() function returns the address binding of the symbol described in the
null-terminated character string symbol, as it occurs in the shared object identified
by handle. The symbols exported by objects added to the address space by dlopen()
can be accessed only through calls to dlsym(). Such symbols do not supersede any
definition of those sym bols already present in the address space when the object is
loaded, nor are they available to satisfy normal dynamic linking references.

If dlsym() is called with the special handle RTLD _DEFAULT, the search for the symbol
follows the algorithm used for resolving undefined symbols when objects are loaded.
The objects searched are as follows, in the given order:

1. The referencing object itself (or the object from which the call to
dlsym() is made.)

2. All objects loaded at program start-up.

3. All objects loaded via dlopen() with the RTLD_GLOBAL flag set in the

mode argument.

4. All objects loaded via dlopen() which are in needed-object DAGs
that also contain the referencing object.

If dlsym() is called with the special handle RTLD_NEXT, then the search for the
symbol is limited to the shared objects which were loaded after the one issuing
the call to dlsym(). Thus, if the function is called from the main program, all

342 Systems/C C Library

the shared libraries are searched. If it is called from a shared library, all subsequent
shared libraries are searched. RTLD_NEXT is useful for implementing wrappers around
library functions. For example, a wrapper function getpid() could access the “real”
getpid() with d1sym(RTLD_NEXT, "getpid"). (Actually, the dlfunc() interface,
below, should be used, since getpid() is a function and not a data object.)

If dlsym() is called with the special handle RTLD_SELF, then the search for the
symbol is limited to the shared object issuing the call to dlsym() and those shared
objects which were loaded after it.

The dlsym() function returns a null pointer if the symbol cannot be found, and
sets an error condition which may be queried with dlerror().

The dlerror() function returns a null-terminated character string describing the
last error that occurred during a call to dlopen(), dladdr(), dlinfo(), dlsym(),
dlfunc(), or dlclose(). If no such error has occurred, dlerror() returns a null
pointer. At each call to dlerror(), the error indication is reset. Thus in the case
of two calls to dlerror(), where the second call follows the first immediately, the
second call will always return a null pointer.

The dlclose() function deletes a reference to the shared object refer enced by handle.
If the reference count drops to 0, the object is removed from the address space,
and handle is rendered invalid. If dlclose() is successful, it returns a value of 0.
Otherwise it returns -1, and sets an error condition that can be interrogated with
dlerror().

NOTES

Shared objects require special compilation and linking procedures. Contact Dignus
for more information.

ERRORS

The dlopen(), dlsym(), and dlfunc() functions return a null pointer in the event
of errors. The dlclose() function returns 0 on success, or -1 if an error occurred.
Whenever an error has been detected, a message detailing it can be retrieved via a
call to dlerror().

SEE ALSO

PLINK in the Systems/C utilities manual.

Systems/C C Library 343

ERR(3)
NAME

€IT, VEIT, €ITC, VEITC, €IrX, VEIrx, warl, vwarn, warnc, vwarnc, warnx, vwarnx,
err_set_exit, err_set_file - formatted error messages

SYNOPSIS

#include <err.h>

void
err(int eval, const char *fmt, ...);

void
err_set_exit(void (*exitf) (int));

void
err_set_file(void *vfp);

void

errc(int eval, int code, const char *fmt, ...);
void

errx(int eval, const char *fmt, ...);

void

warn(const char *fmt, ...);

void

warnc (int code, const char *fmt, ...);

void

warnx(const char *fmt, ...);

#include <stdarg.h>

void
verr(int eval, const char *fmt, va_list args);

void
verrc(int eval, int code, const char *fmt, va_list args);

void
verrx(int eval, const char *fmt, va_list args);

344 Systems/C C Library

void
vwarn(const char *fmt, va_list args);

void
vwarnc(int code, const char *fmt, va_list args);

void
vwarnx (const char *fmt, va_list args);

DESCRIPTION

The err() and warn() family of functions display a formatted error message on the
standard error output, or on another file specified using the err_set_file() function.
In all cases, the last component of the program name, a colon character, and a
space are output. If the fmt argument is not NULL, the printf(3) -like formatted
error message is output. The output is terminated by a newline character.

The err(), errc(), verr(), verrc(), warn(), warnc(), vwarn(), and vwarnc()
functions append an error message obtained from strerror(3) based on a code or the
global variable errno, preceded by another colon and space unless the fmt argument
is NULL.

In the case of the errc(), verrc(), warnc(), and vwarnc() functions, the code
argument is used to look up the error message.

The err(), verr(), warn(), and vwarn() functions use the global variable errno
to look up the error message.

The errx() and warnx() functions do not append an error message.

The err(), verr(), errc(), verrc(), errx(), and verrx() functions do not return,
but exit with the value of the argument ewval. It is recommended that the standard
values defined in sysexits(3) be used for the value of eval. The err_set_exit()
function can be used to specify a function which is called before exit(3) to perform
any necessary cleanup; passing a null function pointer for exitf resets the hook to
do nothing. The err_set_file() function sets the output stream used by the other
functions. Its vfp argument must be either a pointer to an open stream (possibly
already converted to void *) or a null pointer (in which case the output stream is
set to standard error).

EXAMPLES

Display the current errno information string and exit:

Systems/C C Library 345

if ((p = malloc(size)) == NULL)
err(1, NULL);

if ((fd = open(file_name, O_RDONLY, 0)) == -1)
err(1, "%s", file_name);

Display an error message and exit:

if (tm.tm_hour < START_TIME)
errx(1l, "too early, wait until %s", start_time_string);

Warn of an error:

if ((fd = open(raw_device, O_RDONLY, 0)) == -1)
warnx("%s: %s: trying the block device",
raw_device, strerror(errno));
if ((fd = open(block_device, O_RDONLY, 0)) == -1)
err(1, "%s", block_device);

Warn of an error without using the global variable errno:

error = my_function(); /* returns a value from <errno.h> */
if (error !'= 0)
warnc (error, "my_function");

SEE ALSO

exit(3), fmtmsg(3), printf(3), strerror(3), sysexits(3)

346 Systems/C C Library

EXEC(3)
NAME

execl, execlp, execle, execv, execvp - execute a file

SYNOPSIS

#include <unistd.h>
extern char **environ;

int
execl(const char *path, const char *arg, ...);

int
execlp(const char *file, const char *arg, ...);

int
execle(const char #*path, const char *arg, ...);

int
execv(const char *path, char *const argv([]);

int
execvp(const char *file, char *const argv[]);

DESCRIPTION

The exec family of functions replaces the current process image with a new process
image. The functions described in this manual page are front-ends for the function
execve(2). (See the manual page for execve(2) for detailed information about the
replacement of the current process.)

The initial argument for these functions is the //HFS:-style pathname of a file which
is to be executed.

The const char *arg and subsequent ellipses in the execl(), execlp(), and exe-
cle() functions can be thought of as arg0, argl, ..., argn. Together they describe
a list of one or more pointers to nul-terminated strings that represent the argument
list available to the executed program. The first argument, by convention, should
point to the file name associated with the file being executed. The list of arguments
must be terminated by a NULL pointer.

Systems/C C Library 347

The execv(), and execvp() functions provide an array of pointers to nul-terminated
strings that represent the argument list available to the new program. The first
argument, by convention, should point to the file name associated with the file
being executed. The array of pointers must be terminated by a NULL pointer.

The execle() function also specify the environment of the executed process by
following the NULL pointer that terminates the list of arguments in the argument
list or the pointer to the argv array with an additional argument. This additional
argument is an array of pointers to nul-terminated strings and must be terminated
by a NULL pointer. The other functions take the environment for the new process
image from the external variable environ in the current process.

Some of these functions have special semantics.

The functions execlp() and execvp() will duplicate the actions of the shell in
searching for an executable file if the specified file name does not contain a slash
“/” character. The search path is the path specified in the environment by “PATH”
variable. If this variable isn’t specified, the default path is set according to the
_PATH DEFPATH definition in <paths.h>, which is set to “/usr/bin:/bin”. In addi-
tion, certain errors are treated specially.

If an error is ambiguous (for simplicity, we shall consider all errors except ENOEXEC as
being ambiguous here, although only the critical error EACCES is really ambiguous),
then these functions will act as if they stat the file to determine whether the file
exists and has suitable execute permissions. If it does, they will return immediately
with the global variable errno restored to the value set by execve(). Otherwise, the
search will be continued. If the search completes without performing a successful
execve() or terminating due to an error, these functions will return with the global
variable errno set to EACCES or ENOENT according to whether at least one file with
suitable execute permissions was found.

If the header of a file isn’t recognized (the attempted execve() returned ENOEXEC),
these functions will execute the shell with the path of the file as its first argument.
(If this attempt fails, no further searching is done.)

RETURN VALUES

If any of the exec() functions returns, an error will have occurred. The return value
is -1, and the global variable errno will be set to indicate the error.

ERRORS

The execl(), execle(), execlp() and execvp() functions may fail and set errno
for any of the errors specified for the library functions execve(2) and malloc(3).

The execv() function may fail and set errno for any of the errors specified for the
library function execve(2).

348 Systems/C C Library

SEE ALSO

execve(2)

STANDARDS

The execl(), execv(), execle(), execlp() and execvp() functions conform to
IEEE Std 1003.1-1988 (“POSIX.17).

Systems/C C Library 349

FMTCHECK (3)
NAME

fmtcheck - sanitizes user-supplied printf(3)-style format string

SYNOPSIS

#include <stdio.h>

const char *
fmtcheck(const char *fmt_suspect, const char *fmt_default);

DESCRIPTION

The fmtcheck() scans fmt_suspect and fmt_default to determine if fmi_suspect will
consume the same argument types as fmt_default and to ensure that fmi_suspect is
a valid format string.

The printf(3) family of functions cannot verify the types of arguments that they
are passed at run-time. In some cases, it is useful or necessary to use a user-
supplied format string with no guarantee that the format string matches the specified
arguments.

The fmtcheck() function was designed to be used in these cases, as in:

printf (fmtcheck(user_format, standard_format), argl, arg2);

In the check, field widths, fillers, precisions, etc. are ignored (unless the field width
or precision is an asterisk ‘*’ instead of a digit string). Also, any text other than
the format specifiers is completely ignored.

RETURN VALUES

If fmi_suspect is a valid format and consumes the same argument types as fmt_default,
then the fmtcheck() will return fmt_suspect. Otherwise, it will return fmt_default.

SEE ALSO

printf(3)

350 Systems/C C Library

ISSUES

The fmtcheck() function does not understand all of the conversions that printf(3)
does.

Systems/C C Library 351

FMTMSG (3)
NAME

fmtmsg - display a detailed diagnostic message

SYNOPSIS

#include <fmtmsg.h>

int
fmtmsg(long classification, const char x*label, int severity,
const char *text, const char *action, const char *tag);

DESCRIPTION

The fmtmsg() function displays a detailed diagnostic message, based on the sup-
plied arguments, to stderr and/or the system console.

The classification argument is the bitwise inclusive OR of zero or one of the manifest
constants from each of the classification groups below. The Output classification
group is an exception since both MM_PRINT and MM_CONSOLE may be specified.

Output

MM_PRINT Output should take place on stderr.

MM_CONSOLE Output should take place on the system console.

Source of Condition (Major)

MM_HARD The source of the condition is hardware related.
MM_SOFT The source of the condition is software related.
MM_FIRM The source of the condition is firmware related.

Source of Condition (Minor)

MM_APPL The condition was detected at the application level.
MM_UTIL The condition was detected at the utility level.
MM_OPSYS The condition was detected at the operating system level.

352 Systems/C C Library

Status

MM_RECOVER The application can recover from the condition.

MM_NRECQV The application is unable to recover from the condition.

Alternatively, the MM_NULLMC manifest constant may be used to specify no classifi-
cation.

The label argument indicates the source of the message. It is made up of two fields
separated by a colon (‘:”). The first field can be up to 10 bytes, and the second field
can be up to 14 bytes. The MM_NULLLBL manifest constant may be used to specify
no label.

The severity argument identifies the importance of the condition. One of the fol-
lowing manifest constants should be used for this argument.

MM_HALT The application has confronted a serious fault and is halting.
MM_ERROR The application has detected a fault.

MM_WARNING The application has detected an unusual condition, that could be
indicative of a problem.

MM_INFO The application is providing information about a non-error condi-
tion.
MM_NOSEV No severity level supplied.

The text argument details the error condition that caused the message. There is no
limit on the size of this character string. The MM_NULLTXT manifest constant may
be used to specify no text.

The action argument details how the error-recovery process should begin. Upon
output, fmtmsg() will prefix “TO FIX:” to the beginning of the action argument.
The MM_NULLACT manifest constant may be used to specify no action.

The tag argument should reference online documentation for the message. This
usually includes the label and a unique identifying number. An example tag is
“BSD:1s:168”. The MM_NULLTAG manifest constant may be used to specify no tag.

RETURN VALUES

The fmtmsg/() function returns MM_0K upon success, MM_NOMSG to indicate output to
stderr failed, MM_NOCON to indicate output to the system console failed, or MM_NOTOK
to indicate output to stderr and the system console failed.

Systems/C C Library 353

ENVIRONMENT

The MSGVERB (message verbosity) environment variable specifies which arguments
to fmtmsg() will be output to stderr, and in which order. MSGVERB should be
a colon (‘") separated list of identifiers. Valid identifiers include: label, severity,
text, action, and tag. If invalid identifiers are specified or incorrectly separated,
the default message verbosity and ordering will be used. The default ordering is
equivalent to a MSGVERB with a value of “label:severity:text:action:tag”.

EXAMPLES

The code:

fmtmsg (MM_UTIL | MM_PRINT, "BSD:1s", MM_ERROR,
"illegal option -- z", "refer to manual", "BSD:1s:001");

will output:

BSD:1s: ERROR: illegal option -- z
TO FIX: refer to manual BSD:1s:001

to stderr.

The same code, with MSGVERB set to “text:severity:action:tag”’, produces:

illegal option -- z: ERROR
TO FIX: refer to manual BSD:1s:001

STANDARDS

The fmtmsg() function conforms to IEEE Std 1003.1-2001 (“POSIX.1”).

ISSUES

Specifying MM_NULLMC for the classification argument makes little sense, since with-
out an output specified, fmtmsg() is unable to do anything useful.

In order for fmtmsg() to output to the system console, the effective user must
have appropriate permission to write to /dev/console. This means that on most
systems fmtmsg/() will return MM_NOCON unless the effective user is root, or has other
appropriate permissions.

354 Systems/C C Library

FNMATCH(3)

NAME

fnmatch - match filename or pathname

SYNOPSIS

#include <fnmatch.h>

int

fnmatch(const char *pattern, const char *string, int flags);

DESCRIPTION

The fnmatch() function matches patterns according to the rules used by the shell.
It checks the string specified by the string argument to see if it matches the pattern
specified by the pattern argument.

The flags argument modifies the interpretation of pattern and string. The value of
flags is the bitwise inclusive OR of any of the following constants, which are defined
in the include file <fnmatch.h>.

FNM_NOESCAPE

FNM_PATHNAME

FNM_PERIOD

’

Normally, every occurrence of a backslash (‘) followed by a character
in pattern is replaced by that character. This is done to negate any
special meaning for the character. If the FNM_NOESCAPE flag is set,
a backslash character is treated as an ordinary character.

Slash characters in string must be explicitly matched by slashes in
pattern. If this flag is not set, then slashes are treated as regular
characters.

Leading periods in string must be explicitly matched by periods
in pattern. If this flag is not set, then leading periods are treated
as regular characters. The definition of “leading” is related to the
specification of FNM_PATHNAME. A period is always “leading” if it is
the first character in string. Additionally, if FNM_PATHNAME is set, a
period is leading if it immediately follows a slash.

FNM_LEADING_DIR Ignore “/*” rest after successful pattern matching.

FNM_CASEFOLD

Ignore case distinctions in both the pattern and the string.

Systems/C C Library 355

RETURN VALUES

The fnmatch() function returns zero if string matches the pattern specified by
pattern, otherwise, it returns the value FNM_NOMATCH.

SEE ALSO

glob(3), regex(3)

STANDARDS

The fnmatch() function conforms to IEEE Std 1003.2 (“POSIX.2").

ISSUES

The pattern ‘*’ matches the empty string, even if FNM_PATHNAME is specified.

356 Systems/C C Library

FTOK(3)
NAME

ftok - create IPC identifier from //HFS:-style path name

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>

key_t
ftok(const char *path, int id);

DESCRIPTION

The ftok() function attempts to create a unique key suitable for use with the
msgget(3), semget(2) and shmget(2) functions given the //HFS:-style path of an
existing file and a user-selectable id.

The specified path must specify an existing HFS file that is accessible to the calling
process or the call will fail. Also, note that links to files will return the same key,
given the same id.

RETURN VALUES

The ftok() function will return -1 if path does not exist, is not an HFS file, or if it
cannot be accessed by the calling process.

ISSUES

The returned key is computed based on the device minor number and inode of the
specified path in combination with the lower 8 bits of the given id. Thus it is quite
possible for the routine to return duplicate keys.

Systems/C C Library 357

GETCWD(3)
NAME

getcwd, getwd — get working directory pathname

SYNOPSIS

#include <unistd.h>

char *
getcwd(char *buf, size_t size);

char *
getwd(char *buf);

DESCRIPTION

The getcwd() function copies the absolute pathname of the current working di-
rectory into the memory referenced by buf and returns a pointer to buf. The size
argument is the size, in bytes, of the array referenced by buf.

If buf is NULL, space is allocated as necessary to store the pathname. This space
may later be free(3)’d.

The function getwd() is a compatibility routine which calls getcwd() with its buf
argument and a size of MAXPATHLEN (as defined in the include file <sys/param.h>).
Obviously, buf should be at least MAXPATHLEN bytes in length.

RETURN VALUES

Upon successful completion, a pointer to the pathname is returned. Otherwise a
NULL pointer is returned and the global variable errno is set to indicate the error.
In addition, getwd() copies the error message associated with errno into the memory
referenced by buf.

ERRORS

The getcwd() function will fail if:

[EACCES] Read or search permission was denied for a component of the path-
name.

358 Systems/C C Library

[EINVAL]
[ENOENT]
[ENOMEM]

[ERANGE]

The size argument is zero.

A component of the pathname no longer exists.

Insufficient memory is available.

The size argument is greater than zero but smaller than the length

of the pathname plus 1.

Systems/C C Library 359

GETCONTEXT(3)
NAME

getcontext, setcontext — get and set user thread context

SYNOPSIS

#include <ucontext.h>

int
getcontext (ucontext_t *ucp);

int
setcontext (const ucontext_t *ucp);

DESCRIPTION

The getcontext() function saves the current thread’s execution context in the
structure pointed to by wcp. This saved context may then later be restored by
calling setcontext().

The setcontext() function makes a previously saved thread context the current
thread context, i.e., the current context is lost and setcontext() does not return.
Instead, execution continues in the context specified by ucp, which must have been
previously initialized by a call to getcontext(), makecontext(3), or by being passed
as an argument to a signal handler (see sigaction(2)).

If uep was initialized by getcontext(), then execution continues as if the original
getcontext() call had just returned (again).

If ucp was initialized by makecontext(3), execution continues with the invoca-
tion of the function specified to makecontext(3). When that function returns,
ucp->uc_link determines what happens next: if ucp->uc_link is NULL, the pro-
cess exits; otherwise, setcontext (ucp->uc_link) is implicitly invoked.

If ucp was initialized by the invocation of a signal handler, execution continues at
the point the thread was interrupted by the signal.

RETURN VALUES

If successful, getcontext() returns zero and setcontext() does not return; other-
wise -1 is returned.

360 Systems/C C Library

ERRORS

No errors are defined for getcontext() or setcontext().

IMPLEMENTATION NOTES

The getcontext() and setcontext() functions take advantage of the EXTRACT
PSW (EPSW) and RESUME PROGRAM (RP) instructions. These are available in all
z/Architecture and most ESA /390 environments. These functions will not oper-
ate in environments that don’t provide those instructions.

SEE ALSO

sigaction(2), sigaltstack(2), makecontext(3), ucontext(3)

Systems/C C Library 361

GETGRENT(3)

getgrent, getgrnam, getgrgid, setgroupent, setgrent, endgrent - group database op-
erations

SYNOPSIS

#include <sys/types.h>
#include <grp.h>

struct group *
getgrent (void) ;

struct group *
getgrnam(const char *name);

struct group *
getgrgid(gid_t gid);

int
setgroupent (int stayopen) ;

int
setgrent (void) ;

void
endgrent (void) ;

DESCRIPTION

These functions operate on the group database. Each entry of the database is
mapped to the structure group found in the include file <grp.h>:

struct group {

char *gr_name; /* group name */
char *gr_passwd; /* group password */
int gr_gid; /* group id */

char **gT_mem; /* group members */

};

The functions getgrnam() and getgrgid() search the group database for the given
group name pointed to by name or the group id specifeid by gid, respectively, re-
turning the first one encountered. Identical group names or group gids may result
in undefined behavior.

362 Systems/C C Library

The getgrent() function sequentially reads the group database and is intended for
programs that wish to step through the complete list of groups.

The setgroupent() function opens the database, or rewinds it if it is already open.
It is provided for compatibility with popular UNIX systems.

The setgrent() function resets the data base to the beginning so that subsequent
calls to getgrent() start from the beginning.

The endgrent() function resets the data base to the beginning.
RETURN VALUES

The functions getgrent(), getgrnam(), and getgrgid(), return a pointer to the
group entry if successful; if end-of-file is reached or an error occurs a NULL pointer
is returned. The functions setgroupent() and setgrent() return the value 1 if
successful, otherwise the value 0 is returned. The function endgrent() has no
return value.

SEE ALSO

getpwent(3)

NOTES

The functions getgrent(), getgrnam() and getgrgid() leave their results in an
internal static object and return a pointer to that object. Subsequent calls to the
same function will modify the same object.

Systems/C C Library 363

GETPROGNAME(3)
NAME

getprogname, setprogname - get or set the program name

SYNOPSIS

#include <stdlib.h>

const char *
getprogname (void) ;

void
setprogname (const char *progname) ;

DESCRIPTION

The getprogname() and setprogname() functions manipulate the name of the
current program. They are used by error-reporting routines to produce consistent
output.

The getprogname() function returns the name of the program. If the name has
not been set yet, it will return NULL.

The setprogname() function sets the name of the program to be the last compo-
nent of the progname argument. Since a pointer to the given string is kept as the
program name, it should not be modified for the rest of the program’s lifetime.

At program start-up, the Systems/C runtime attempts to determine, from the oper-
ating system, the name of the program. If the name can be determined, the name of
the program is set by the start-up code that is run before main(); thus, running set-
progname() is not always necessary. Programs that desire maximum portability
should still call it. On some operating systems, these functions may be implemented
in a portability library. Calling setprogname() allows the aforementioned systems
to learn the program name without modifications to the start-up code.

364 Systems/C C Library

GETPWENT(3)

NAME

getpwent, getpwnam, getpwuid, setpassent, setpwent, endpwent - password database

operations

SYNOPSIS

#include <sys/types.h>
#include <pwd.h>

struct passwd *
getpwent (void) ;

struct passwd *
getpwnam(const char *login) ;

struct passwd *
getpwuid(uid_t uid);

int
setpassent (int stayopen);

void
setpwent (void) ;

void
endpwent (void) ;

DESCRIPTION

These functions operate on the OpenEdition password database. Each entry in
the password database is mapped to the structure passwd found in the include file

<pwd.h>:

struct passwd {
char *pw_name;
char *pw_passwd;
uid_t pw_uid;
gid_t pw_gid;
time_t pw_change;
char *pw_class;

/%
/*
/*
/*
/*
/*

user name */

encrypted password */
user uid */

user gid */

password change time */
user access class */

Systems/C C Library 365

char *pwW_gecos; /* Honeywell login info */

char *pw_dir; /* home directory */

char *pw_shell; /* default shell =*/

time_t pw_expire; /* account expiration */
int pw_fields; /* internal: fields filled

};
The functions getpwnam() and getpwuid() search the password database for the
given login name or user uid, respectively, always returning the first one encountered.

The getpwent() function sequentially reads the password database and is intended
for programs that wish to process the complete list of users.

The setpassent() function is provided for compatibility with popular UNIX plat-
forms. It causes getpwent() to “rewind” to the beginning of the database.

The setpwent () function resets the database so that the next call to getpwent()
starts over at the beginning.

The endpwent() function is used to indicate the end of database access. It also
resets the database so that the next call to getpwent () starts over at the beginning.

Because of how passwords are managed on OS/390 and z/OS, the password field of
the returned structure will always point to the string "*".

RETURN VALUES

The functions getpwent(), getpwnam(), and getpwuid(), return a valid pointer
to a passwd structure on success and a NULL pointer if the end of the database is
reached or an error occurs. The setpassent() function returns 0 on failure and 1
on success. The endpwent() and setpwent() functions have no return value.

SEE ALSO

getlogin(2), getgrent(3)

ISSUES

The functions getpwent(), getpwnam(), and getpwuid(), leave their results in
an internal static object and return a pointer to that object. Subsequent calls to
the same function will modify the same object.

366 Systems/C C Library

in */

GLOB(3)
NAME

glob, globfree - generate //HFS: pathnames matching a pattern

SYNOPSIS

#include <glob.h>

int
glob(const char *pattern, int flags, int (*errfunc) (const char *, int),
glob_t *pglob);

void
globfree(glob_t *pglob);

DESCRIPTION

The glob() function is a pathname generator that implements the rules for file name
pattern matching used by the shell.

The include file <glob.h> defines the structure type glob_t, which contains at least
the following fields:

typedef struct {

int gl_pathc; /* count of total paths so far */
int gl_matchc; /* count of paths matching pattern */
int gl_offs; /* reserved at beginning of gl_pathv */
int gl_flags; /* returned flags */
char **gl_pathv; /* list of paths matching pattern */

} glob_t;

The argument pattern is a pointer to an //HFS:-style pathname pattern to be ex-
panded. The glob() argument matches all accessible pathnames against the pattern
and creates a list of the pathnames that match. In order to have access to a path-
name, glob() requires search permission on every component of a path except the
last and read permission on each directory of any filename component of pattern
that contains any of the special characters “*’, ‘?” or ‘[".

The glob() argument stores the number of matched pathnames into the gl_pathc
field, and a pointer to a list of pointers to pathnames into the gl_pathv field. The
first pointer after the last pathname is NULL. If the pattern does not match any
pathnames, the returned number of matched paths is set to zero.

Systems/C C Library 367

It is the caller’s responsibility to create the structure pointed to by pglob. The
glob() function allocates other space as needed, including the memory pointed to

by gl_pathv.

The argument flags s used to modify the behavior of glob(). The value of flags is
the bitwise inclusive OR of any of the following values defined in <glob.h>:

GLOB_APPEND

GLOB_DOOFFS

GLOB_ERR

GLOB_MARK

GLOB_NOCHECK

GLOB_NOESCAPE

GLOB_NOSORT

Append pathnames generated to the ones from a previous call (or
calls) to glob(). The value of gl_pathc will be the total matches
found by this call and the previous call(s). The pathnames are ap-
pended to, not merged with the pathnames returned by the previous
call(s). Between calls, the caller must not change the setting of the
GLOB_DOOFFS flag, nor change the value of gl_offs when GLOB_DOOFFS
is set, nor (obviously) call globfree() for pglob.

Make use of the gl_offs field. If this flag is set, gl_offs is used
to specify how many NULL pointers to prepend to the beginning of
the gl_pathv field. In other words, gl_pathv will point to gl_offs
NULL pointers, followed by gl_pathc pathname pointers, followed by
a NULL pointer.

Causes glob() to return when it encounters a directory that it can-
not open or read. Ordinarily, glob() continues to find matches.

Each pathname that is a directory that matches pattern has a slash
appended.

If pattern does not match any pathname, then glob() returns a list
consisting of only pattern, with the number of total pathnames set
to 1, and the number of matched pathnames set to 0. The effect of
backslash escaping is present in the pattern returned.

’

By default, a backslash (‘) character is used to escape the following
character in the pattern, avoiding any special interpretation of the
character. If GLOB_NOESCAPE is set, backslash escaping is disabled.

By default, the pathnames are sorted in ascending order; this flag
prevents that sorting (speeding up glob()).

The following values may also be included in flags, however, they are non-standard
extensions to IEEE Std 103.2 (“POSIX.27).

GLOB_ALTDIRFUNC The following additional fields in the pglob structure have been

initialized with alternate functions for glob() to use to open, read,
and close directories and to get stat information on names found in
those directories.

368 Systems/C C Library

void *(xgl_opendir) (const char * name);

struct dirent *(*gl_readdir) (void *);

void (*gl_closedir) (void *);

int (*gl_lstat) (const char *name, struct stat *st);
int (*gl_stat) (const char *name, struct stat *st);

i

GLOB_BRACE Pre-process the pattern string to expand ‘pat,pat,...” strings like
csh(1). The pattern ¢ is left unexpanded for historical reasons (and
csh(1) does the same thing to ease typing of find(1) patterns).

GLOB_MAGCHAR Set by the glob() function if the pattern included globbing char-
acters. See the description of the usage of the gl _matchc structure
member for more details.

GLOB_NOMAGIC Is the same as GLOB_NOCHECK but it only appends the pattern if it
does not contain any of the special characters “*7 “?”7 or “[”.
GLOB_NOMAGIC is provided to simplify implementing the historic
csh(1) globbing behavior and should probably not be used anywhere
else.

GLOB_TILDE Expand patterns that start with ¢’ to user name home directories.

GLOB_LIMIT Limit the total number of returned pathnames to the value pro-
vided in gl_matchc (default ARG_MAX). This option should be set for
programs that can be coerced into a denial of service attack via
patterns that expand to a very large number of matches, such as a
long string of “*/../*/..".

If, during the search, a directory is encountered that cannot be opened or read
and errfunc is non-NULL, glob() calls (xerrfunc) (path, errno). This may be
unintuitive: a pattern like “*/Makefile’ will try to stat(2) ‘foo/Makefile’ even if ‘foo’
is not a directory, resulting in a call to errfunc. The error routine can suppress
this action by testing for ENOENT and ENOTDIR; however, the GLOB_ERR flag will still
cause an immediate return when this happens.

If errfunc returns non-zero, glob() stops the scan and returns GLOB_ABORTED after
setting gl_pathc and gl_pathv to reflect any paths already matched. This also happens
if an error is encountered and GLOB_ERR is set in flags, regardless of the return value
of errfunc, if called. If GLOB_ERR is not set and either errfunc is NULL or errfunc
returns zero, the error is ignored.

The globfree() function frees any space associated with pglob from a previous call(s)
to glob().

RETURN VALUES

On successful completion, glob() returns zero. In addition the fields of pglob contain
the values described below:

Systems/C C Library 369

gl_patch

gl matchc

gl flags

gl_pathv

contains the total number of matched pathnames so far. This
includes other matches from previous invocations of glob() if
GLOB_APPEND was specified.

contains the number of matched pathnames in the current invoca-
tion of glob().

contains a copy of the flags argument with the bit GLOB_MAGCHAR set
if pattern contained any of the special characters “*7 “?” or [,
cleared if not.

contains a pointer to a NULL-terminated list of matched pathnames.
However, if gl _pathc is zero, the contents of gl _pathv are unde-

fined.

If glob() terminates due to an error, it sets the global variable errno and returns one
of the following non-zero constants, which are defined in the include file <glob.h>:

GLOB_NOSPACE

GLOB_ABORTED

GLOB_NOMATCH

An attempt to allocate memory failed, or if errno was 0 GLOB_LIMIT
was specified in the flags and pglob->gl matchc or more patterns
were matched.

The scan was stopped because an error was encountered and either
GLOB_ERR was set or (xerrfunc) () returned non-zero.

The pattern did not match a pathname and GLOB_NOCHECK was not
set.

The arguments pglob->gl pathc and pglob->gl pathv are still set as specified

above.

EXAMPLES

A rough equivalent of ‘Is -1 *.c *.h’ can be obtained with the following code:

glob_t g;

g.gl_offs = 2;

glob("*.c", GLOB_DOOFFS, NULL, &g);

glob("*.h", GLOB_DOOFFS | GLOB_APPEND, NULL, &g);
g.gl_pathv[0] = "1s";

g.gl_pathv[1]

||_1ll ;

execvp("ls", g.gl_pathv);

SEE ALSO

fnname(3), regexp(3)

370 Systems/C C Library

STANDARDS

The glob() function is expected to be IEEE Std 1003.2 (“POSIX.2”) compati-
ble with the exception that the flags GLOB_ALTDIRFUNC, GLOB_BRACE, GLOB_LIMIT,
GLOB_MAGCHAR, GLOB_NOMAGIC, and GLOB_TILDE, and the fields gl matchc and
gl_flags should not be used by applications striving for strict POSIX conformance.

ISSUES

Patterns longer than MAXPATHLEN may cause unchecked errors.

The glob() argument may fail and set errno for any of the errors specified for the
library routines stat(2), closedir(3), opendir(3), readdir(3), malloc(3), and free(3).

Systems/C C Library 371

HCREATE(3)
NAME

hcreate, hdestroy, hsearch — manage hash search table

SYNOPSIS

#include <search.h>

int
hcreate(size_t nel);

void
hdestroy(void) ;

ENTRY =*
hsearch (ENTRY item, ACTION action);

DESCRIPTION

The hcreate(), hdestroy(), and hsearch() functions manage hash search tables.

The hcreate() function allocates sufficient space for the table, and the application
should ensure it is called before hsearch() is used. The nel argument is an estimate
of the maximum number of entries that the table should contain. This number may
be adjusted upward by the algorithm in order to obtain certain mathematically
favorable circumstances.

The hdestroy() function disposes of the search table, and may be followed by
another call to hcreate(). After the call to hdestroy(), the data can no longer be
considered accessible. The hdestroy() function calls free(3) for each comparison
key in the search table but not the data item associated with the key.

The hsearch() function is a hash-table search routine. It returns a pointer into
a hash table indicating the location at which an entry can be found. The item
argument is a structure of type ENTRY (defined in the <search.h> header) containing
two pointers: item.key points to the comparison key (a char #), and item.data
(a void *) points to any other data to be associated with that key. The comparison
function used by hsearch() is strcmp(3). The action argument is a member of
an enumeration type ACTION indicating the disposition of the entry if it cannot be
found in the table. ENTER indicates that the item should be inserted in the table at
an appropriate point. FIND indicates that no entry should be made. Unsuccessful
resolution is indicated by the return of a NULL pointer.

372 Systems/C C Library

The comparison key (passed to hsearch() as item.key) must be allocated using
malloc(3) if action is ENTER and hdestroy() is called.

RETURN VALUES

The hcreate() function returns 0 if it cannot allocate sufficient space for the table;
otherwise, it returns non-zero.

The hdestroy() function does not return a value.

The hsearch() function returns a NULL pointer if either the action is FIND and the
item could not be found or the action is ENTER and the table is full.

ERRORS

The hcreate() and hsearch() functions may fail if:

[ENOMEM] Insufficient storage space is available.

EXAMPLES

The following example reads in strings followed by two numbers and stores them in
a hash table, discarding duplicates. It then reads in strings and finds the matching
entry in the hash table and prints it out.

#include <stdio.h>
#include <search.h>
#include <string.h>
#include <stdlib.h>

struct info { /* This is the info stored in the table */
int age, room; /* other than the key. */

};

#define NUM_EMPL 5000 /* # of elements in search table. */

int

main(void)

{

char str[BUFSIZ]; /* Space to read string */

struct info info_space[NUM_EMPL]; /* Space to store employee info. */
struct info *info_ptr = info_space; /* Next space in info_space. */
ENTRY item;

Systems/C C Library 373

ENTRY *found_item; /* Name to look for in table. */
char name_to_find[30];
int 1 = 0;

/* Create table; no error checking is performed. */
(void) hcreate (NUM_EMPL);

while (scanf ("%s%d%d", str, &info_ptr->age,
&info_ptr->room) != EOF && i++ < NUM_EMPL) {
/* Put information in structure, and structure in item. */
item.key = strdup(str);
item.data = info_ptr;
info_ptr++;
/* Put item into table. */
(void) hsearch(item, ENTER);

/* Access table. */
item.key = name_to_find;
while (scanf("%s", item.key) != EOF) {
if ((found_item = hsearch(item, FIND)) != NULL) {
/* If item is in the table. */
(void)printf ("found %s, age = %d, room = %d\n",
found_item->key,
((struct info *)found_item->data)->age,
((struct info *)found_item->data)->room);
} else
(void)printf("no such employee %s\n", name_to_find);
}
hdestroy();
return O;

}

SEE ALSO

bsearch(3), Isearch(3), malloc(3), stremp(3), tsearch(3)

STANDARDS

The hcreate(), hdestroy(), and hsearch() functions conform to X/Open Porta-
bility Guide Issue 4.2 (“XPG4.27).

374 Systems/C C Library

ISSUES

The interface permits the use of only one hash table at a time.

Systems/C C Library 375

ISATTY (3)
NAME

isatty - determine if a file descriptor is associated with a terminal

SYNOPSIS

#include <unistd.h>
int

isatty(int f£d);

DESCRIPTION

The isatty() function determines if the file descriptor fd refers to a valid terminal
type device.

If the file descriptor is associated with a DD that is allocated to a terminal, or if the
file descriptor is associated with an OpenEdition I/O descriptor that represents a
tty, isatty() returns a non-zero value (“true”).

RETURN VALUES

isatty() returns 0 if the descriptor fd is not associated with a terminal, non-zero
otherwise.

376 Systems/C C Library

LSEARCH(3)
NAME

Isearch, lfind - linear searching routines

SYNOPSIS

#include <sys/types.h>

char *
lsearch(const void *key, const void *base, size_t #*nelp, size_t width,
int (*compar) (void *, void *));

char *
1find(const void #*key, const void *base, size_t *nelp, size_t width,
int (*compar) (void *, void *));

DESCRIPTION

This interface was obsolete before it was written.
The functions Isearch(), and lfind() provide basic linear searching functionality.

Base is the pointer to the beginning of an array. The argument nelp is the current
number of elements in the array, where each element is width bytes long. The compar
function is a comparison routine which is used to compare two elements. It takes
two arguments which point to the key object and to an array member, in that order,
and must return an integer less than, equivalent to, or greater than zero if the key
object is considered, respectively, to be less than, equal to, or greater than the array
member.

The Isearch() and lfind() functions return a pointer into the array referenced by
base where key is located. If key does not exist, lfind() will return a NULL pointer
and lsearch() will add it to the array. When an element is added to the array by
Isearch() the location referenced by the argument nelp is incremented by one.

SEE ALSO

bsearch(3)

Systems/C C Library 377

MAKECONTEXT(3)
NAME

makecontext, swapcontext — modify and exchange user thread contexts

SYNOPSIS

#include <ucontext.h>

void
makecontext (ucontext_t *ucp, void (*func)(void), int argc, ...);

int
swapcontext (ucontext_t *oucp, const ucontext_t *ucp);

DESCRIPTION

The makecontext() function modifies the user thread context pointed to by ucp,
which must have previously been initialized by a call to getcontext(3) and had a
stack allocated for it. The context is modified so that it will continue execution by
invoking func() with the arguments provided. The argec argument must be equal to
the number of additional arguments provided to makecontext() and also equal to
the number of arguments to func(), or else the behavior is undefined.

The ucp->uc_link argument must be initialized before calling makecontext() and
determines the action to take when func() returns: if equal to NULL, the process
exits; otherwise, setcontext (ucp->uc_link) is implicitly invoked.

The swapcontext() function saves the current thread context in *oucp and makes
*ucp the currently active context.

RETURN VALUES

If successful, swapcontext() returns zero; otherwise -1 is returned and the global
variable errno is set appropriately.

ERRORS
The swapcontext() function will fail if:

[ENOMEM] There is not enough stack space in ucp to complete the operation.

378 Systems/C C Library

SEE ALSO

setcontext(3), ucontext(3)

Systems/C C Library 379

NICE(3)
NAME

nice - set program scheduling priority

SYNOPSIS

#include <unistd.h>
int

nice(int incr);

DESCRIPTION

This interface is obsoleted by setpriority(2).

The nice() function obtains the scheduling priority of the process from the system
and sets it to the priority value specified in incr. The priority is a value in the range
-20 to 19. The default priority is 0; lower priorities cause more favorable scheduling.
Only the super-user may lower priorities.

Children inherit the priority of their parent processes via fork(2).

SEE ALSO

fork(2), setpriority(2)

380 Systems/C C Library

POPEN(3)
NAME

popen, pclose - process 1/0O

SYNOPSIS

#include <stdio.h>

FILE *
popen(const char *command, const char *type);

int
pclose(FILE *stream);

DESCRIPTION

The popen() function “opens” a process by creating a pipe, forking, and invoking
the shell. Since a pipe is by definition unidirectional, the type argument may specify
only reading or writing, not both; the resulting stream is correspondingly read-only
or write-only.

The command argument is a pointer to a null-terminated string containing a shell
command line. This command is passed to /bin/sh using the —c flag; interpretation,
if any, is performed by the shell. The mode argument is a pointer to a null-terminated
string which must be either "r" for reading or "w" for writing.

The return value from popen() is a normal standard I/O stream in all respects
save that it must be closed with pclose() rather than fclose(3). Writing to such
a stream writes to the standard input of the command; the command’s standard
output is the same as that of the process that called popen(), unless this is altered
by the command itself. Conversely, reading from a “popened” stream reads the
command’s standard output, and the command’s standard input is the same as
that of the process that called popen().

Note that output popen() streams are fully buffered by default.

The pclose() function waits for the associated process to terminate and returns the
exit status of the command as returned by waitpid(2).

RETURN VALUE

The popen() function returns NULL if the fork(2) or pipe(2) calls fail, or if it cannot
allocate memory.

Systems/C C Library 381

The pclose() function returns -1 if stream is not associated with a “popened”
command, if stream is already “pclosed”, or if waitpid(2) returns an error.

ERRORS

The popen() function does not reliably set errno.

SEE ALSO

fork(2), pipe(2), fllush(3), fclose(3), fopen(3), stdio(3), system(3)

ISSUES

Since the standard input of a command opened for reading shares its seek offset with
the process that called popen(), if the original process has done a buffered read,
the command’s input position may not be as expected. Similarly, the output from
a command opened for writing may become intermingled with that of the original
process. The latter can be avoided by calling fflush(3) before popen().

Failure to execute the shell is indistinguishable from the shell’s failure to execute
command, or an immediate exit of the command. The only hint is an exit status of
127.

The popen() argument always calls sh.

382 Systems/C C Library

POSIX_SPAWN(3)
NAME

posix_spawn, posix_spawnp - Spawn a process

SYNOPSIS

#include <spawn.h>

int

posix_spawn(pid_t *restrict pid, const char *restrict path,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp, char *const argv[restrict],
char *const envp[restrict]);

int

posix_spawnp(pid_t *restrict pid, const char *restrict file,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp, char *const argv[restrict],
char *const envpl[restrict]);

DESCRIPTION

The posix_spawn() and posix_spawnp() functions create a new process (child
process) from the specified process image. The new process image is constructed
from a regular executable file called the new process image file.

When a C program is executed as the result of this call, it is entered as a C-language
function call as follows:

int main(int argc, char *argv([]);

where argc is the argument count and argv is an array of character pointers to the
arguments themselves. In addition, the variable:

extern char **environ;

points to an array of character pointers to the environment strings.

The argument argv is an array of character pointers to null-terminated strings.
The last member of this array is a null pointer and is not counted in argc. These

Systems/C C Library 383

strings constitute the argument list available to the new process image. The value in
argv [0] should point to a filename that is associated with the process image being
started by the posix_spawn() or posix_spawnp() function.

The argument envp is an array of character pointers to null-terminated strings.
These strings constitute the environment for the new process image. The environ-
ment array is terminated by a null pointer.

The path argument to posix_spawn() is a pathname that identifies the new process
image file to execute.

The file parameter to posix_spawnp() is used to construct a pathname that iden-
tifies the new process image file. If the file parameter contains a slash character, the
file parameter is used as the pathname for the new process image file. Otherwise,
the path prefix for this file is obtained by a search of the directories passed as the
environment variable “PATH”. If this variable is not specified, the default path is set
according to the _PATH DEFPATH definition in jpaths.h;, which is set to

“/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin”.

If file_actions is a null pointer, then file descriptors open in the calling process remain
open in the child process, except for those whose close-on-exec flag FD_CLOEXEC
is set (see fentl()). For those file descriptors that remain open, all attributes of
the corresponding open file descriptions, including file locks (see fentl()), remain
unchanged.

If file_actions is not NULL, then the file descriptors open in the child process are those
open in the calling process as modified by the spawn file actions object pointed to
by file_actions and the FD_CLOEXEC flag of each remaining open file descriptor after
the spawn file actions have been processed. The effective order of processing the
spawn file actions are:

The set of open file descriptors for the child process initially are
the same set as is open for the calling process. All attributes of
the corresponding open file descriptions, including file locks (see
fcntl()), remain unchanged.

The signal mask, signal default actions, and the effective user and
group IDs for the child process are changed as specified in the at-
tributes object referenced by attrp.

The file actions specified by the spawn file actions object are per-
formed in the order in which they were added to the spawn file
actions object.

4. Any file descriptor that has its FD_CLOEXEC flag set (see fcntl()) is
closed.

384 Systems/C C Library

All non-posix file descriptors are closed and unavailable to the child process.

The posix_spawnattr_t spawn attributes object type is defined in <spawn.h>. It
contains the attributes defined below.

If the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of the object
referenced by attrp, and the spawn-pgroup attribute of the same object is non-zero,
then the child’s process group is as specified in the spawn-pgroup attribute of the
object referenced by attrp.

As a special case, if the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags at-
tribute of the object referenced by atirp, and the spawn-pgroup attribute of the
same object is set to zero, then the child is in a new process group with a process
group ID equal to its process ID.

If the POSIX_SPAWN_SETPGROUP flag is not set in the spawn-flags attribute of the
object referenced by attrp, the new child process inherits the parent’s process group.

The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced
by attrp governs the effective user ID of the child process. If this flag is not set,
the child process inherits the parent process’ effective user ID. If this flag is set, the
child process’ effective user ID is reset to the parent’s real user ID. In either case, if
the set-user-ID mode bit of the new process image file is set, the effective user ID of
the child process becomes that file’s owner ID before the new process image begins
execution.

The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced
by attrp also governs the effective group ID of the child process. If this flag is not
set, the child process inherits the parent process’ effective group ID. If this flag is
set, the child process’ effective group ID is reset to the parent’s real group ID. In
either case, if the set-group-ID mode bit of the new process image file is set, the
effective group ID of the child process becomes that file’s group ID before the new
process image begins execution.

If the POSIX_SPAWN_SETSIGMASK flag is set in the spawn-flags attribute of the object
referenced by attrp, the child process initially has the signal mask specified in the
spawn-sigmask attribute of the object referenced by attrp.

If the POSIX_SPAWN_SETSIGDEF flag is set in the spawn-flags attribute of the object
referenced by attrp, the signals specified in the spawn-sigdefault attribute of the
same object is set to their default actions in the child process. Signals set to the
default action in the parent process is set to the default action in the child process.

Signals set to be caught by the calling process is set to the default action in the
child process.

Signals set to be ignored by the calling process image is set to be ignored by the
child process, unless otherwise specified by the POSIX_SPAWN_SETSIGDEF flag being
set in the spawn-flags attribute of the object referenced by atirp and the signals
being indicated in the spawn-sigdefault attribute of the object referenced by attrp.

Systems/C C Library 385

If the value of the attrp pointer is NULL, then the default values are used.

All process attributes, other than those influenced by the attributes set in the object
referenced by attrp as specified above or by the file descriptor manipulations specified
in file_actions, appear in the new process image as though vfork() had been called
to create a child process and then execve() had been called by the child process to
execute the new process image.

The implementation uses vfork(), thus the fork handlers are not run when
posix_spawn() or posix_spawnp() is called.

RETURN VALUES

Upon successful completion, posix_spawn() and posix_spawnp() return the pro-
cess ID of the child process to the parent process, in the variable pointed to by a
non-NULL pid argument, and return zero as the function return value. Otherwise,
no child process is created, no value is stored into the variable pointed to by pid,
and an error number is returned as the function return value to indicate the error.
If the pid argument is a null pointer, the process ID of the child is not returned to
the caller.

ERRORS

If posix_spawn() and posix_spawnp() fail for any of the reasons
that would cause vfork() or one of the exec to fail, an error value
is returned as described by vfork() and exec, respectively (or, if
the error occurs after the calling process successfully returns, the
child process exits with exit status 127).

If POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute
of the object referenced by attrp, and posix_spawn() or
posix_spawnp() fails while changing the child’s process group, an
error value is returned as described by setpgid() (or, if the error oc-
curs after the calling process successfully returns, the child process
exits with exit status 127).

If the file_actions argument is not NULL, and specifies any dup2 or
open actions to be performed, and if posiz_spawn() or posiz_spawnp()
fails for any of the reasons that would cause dup2() or open() to
fail, an error value is returned as described by dup2() and open(),
respectively (or, if the error occurs after the calling process success-
fully returns, the child process exits with exit status 127).

An open file action may, by itself, result in any of the errors described by dup2(),
in addition to those described by open(). This implementation ignores any errors
from close(), including trying to close a descriptor that is not open.

386 Systems/C C Library

SEE ALSO

close(2), dup2(2), execve(2), fentl(2), open(2), setpgid(2), vfork(2),
posix_spawn_file_actions_addclose(3), posix_spawn_file_actions_adddup2(3),
posix_spawn _file_actions_addopen(3), posix_spawn _file_actions_destroy(3),
posix_spawn_file_actions_init(3), posix_spawnattr_destroy(3),
posix_spawnattr_getflags(3), posix_spawnattr_getpgroup(3),
posix_spawnattr_getsigdefault(3), posix_spawnattr_getsigmask(3),
posix_spawnattr_init(3), posix_spawnattr_setflags(3), posix_spawnattr_setpgroup(3),

posix_spawnattr_setsigdefault(3), posix_spawnattr_setsigmask(3)

STANDARDS

The posix_spawn() and posix_spawnp() functions conform to IEEE Std 1003.1-
2001 (“POSIX.1”), except that they ignore all errors from close(). A future update
of the Standard is expected to require that these functions not fail because a file
descriptor to be closed (via posix_spawn_file_actions_addclose()) is not open.

The optional scheduling related functions described in the standard are not available
on z/0S and not implemented.

Systems/C C Library 387

POSIX_SPAWNATTR_GETFLAGS(3)
NAME

posix_spawnattr_getflags, posix_spawnattr_setflags - get and set the spawn-flags at-
tribute of a spawn attributes object

SYNOPSIS

#include <spawn.h>

int

posix_spawnattr_getflags(const posix_spawnattr_t *restrict attr,
short *restrict flags);

int

posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags);

DESCRIPTION

The posix_spawnattr_getflags() function obtains the value of the spawn-flags
attribute from the attributes object referenced by attr.

The posix_spawnattr_setflags() function sets the spawn-flags attribute in an ini-
tialized attributes object referenced by attr.

The spawn-flags attribute is used to indicate which process attributes are
to be changed in the new process image when invoking posix_spawn() or
posix_spawnp(). It is the bitwise-inclusive OR of zero or more of the following
flags (see posix_spawn()):

POSIX_SPAWN_RESETIDS

POSIX_SPAWN_SETPGROUP

POSIX_SPAWN_SETSIGDEF

POSIX_SPAWN_SETSIGMASK

These flags are defined in <spawn.h>. The default value of this attribute is as if no
flags were set.

388 Systems/C C Library

RETURN VALUES

The posix_spawnattr_getflags() and posix_spawnattr_setflags() functions re-
turn zero.

SEE ALSO

posix_spawn(3), posix_spawnattr_destroy(3), posix_spawnattr_init(3),
posix_spawnp(3)

STANDARDS

The posix_spawnattr_getflags() and posix_spawnattr_setflags() functions
conform to IEEE Std 1003.1-2001 (“POSIX.17).

Systems/C C Library 389

POSIX_SPAWNATTR_GETPGROUP(3)
NAME

posix_spawnattr_getpgroup, posix_spawnattr_setpgroup - get and set the spawn-
pgroup attribute of a spawn attributes object

SYNOPSIS

#include <spawn.h>

int

posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict attr,
pid_t *restrict pgroup);

int

posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup);

DESCRIPTION

The posix_spawnattr_getpgroup() function obtains the value of the spawn-
pgroup attribute from the attributes object referenced by attr.

The posix_spawnattr_setpgroup() function sets the spawn-pgroup attribute in
an initialized attributes object referenced by attr.

The spawn-pgroup attribute represents the process group to be joined by the new
process image in a spawn operation (if POSIX_SPAWN_SETPGROUP is set in the spawn-
flags attribute). The default value of this attribute is zero.

RETURN VALUES

The posix_spawnattr_getpgroup() and posix_spawnattr_setpgroup() func-
tions return zero.

SEE ALSO

posix_spawn(3), posix_spawnattr_destroy(3), posix_spawnattr_init(3),
posix_spawnp(3)

390 Systems/C C Library

STANDARDS

The posix_spawnattr_getpgroup() and posix_spawnattr_setpgroup() func-
tions conform to IEEE Std 1003.1-2001 (“POSIX.17).

Systems/C C Library 391

POSIX_SPAWNATTR _GETSIGDEFAULT(3)
NAME

posix_spawnattr_getsigdefault, posix_spawnattr_setsigdefault - get and set the
spawn-sigdefault attribute of a spawn attributes object

SYNOPSIS

#include <spawn.h>

int
posix_spawnattr_getsigdefault(const posix_spawnattr_t *restrict attr,
sigset_t *restrict sigdefault);

int

posix_spawnattr_setsigdefault(posix_spawnattr_t *attr,
const sigset_t *restrict sigdefault);

DESCRIPTION

The posix_spawnattr_getsigdefault() function obtains the value of the spawn-
sigdefault attribute from the attributes object referenced by attr.

The posix_spawnattr_setsigdefault() function sets the spawn-sigdefault at-
tribute in an initialized attributes object referenced by attr.

The spawn-sigdefault attribute represents the set of signals to be forced to default
signal handling in the new process image (if POSIX_SPAWN_SETSIGDEF is set in the
spawn-flags attribute) by a spawn operation. The default value of this attribute is
an empty signal set.

RETURN VALUES

The posix_spawnattr_getsigdefault() and posix_spawnattr_setsigdefault()
functions return zero.

SEE ALSO

posix_spawn(3), posix_spawnattr_destroy(3), posix_spawnattr_getsigmask(3),
posix_spawnattr_init(3), posix_spawnattr_setsigmask(3), posix_spawnp(3)

392 Systems/C C Library

STANDARDS

The posix_spawnattr_getsigdefault() and posix_spawnattr_setsigdefault()
functions conform to IEEE Std 1003.1-2001 (“POSIX.17).

Systems/C C Library 393

POSIX_SPAWNATTR_GETSIGMASK(3)
NAME

posix_spawnattr_getsigmask, posix_spawnattr_setsigmask - get and set the spawn-
sigmask attribute of a spawn attributes object

SYNOPSIS

#include <spawn.h>

int

posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict attr,
sigset_t *restrict sigmask);

int

posix_spawnattr_setsigmask(posix_spawnattr_t *attr,
const sigset_t *restrict sigmask);

DESCRIPTION

The posix_spawnattr_getsigmask() function obtains the value of the spawn-
sigmask attribute from the attributes object referenced by attr.

The posix_spawnattr_setsigmask() function sets the spawn-sigmask attribute in
an initialized attributes object referenced by attr.

The spawn-sigmask attribute represents the signal mask in effect in the new process
image of a spawn operation (if POSIX_SPAWN_SETSIGMASK is set in the spawn-flags
attribute). The default value of this attribute is unspecified.

RETURN VALUES

The posix_spawnattr_getsigmask() and posix_spawnattr_setsigmask() func-
tions return zero.

SEE ALSO

posix_spawn(3), posix_spawnattr_destroy(3), posix_spawnattr_getsigmask(3),
posix_spawnattr_init(3), posix_spawnattr_setsigmask(3), posix_spawnp(3)

394 Systems/C C Library

STANDARDS

The posix_spawnattr_getsigmask() and posix_spawnattr_setsigmask() func-
tions conform to IEEE Std 1003.1-2001 (“POSIX.17).

Systems/C C Library 395

POSIX_SPAWNATTR_INIT(3)
NAME

posix_spawnattr_init, posix_spawnattr_destroy - initialize and destroy spawn at-
tributes object

SYNOPSIS

#include <spawn.h>

int
posix_spawnattr_init(posix_spawnattr_t * attr);

int
posix_spawnattr_destroy(posix_spawnattr_t * attr);

DESCRIPTION

The posix_spawnattr_init() function initializes a spawn attributes object attr with
the default value for all of the individual attributes used by the implementation.
Initializing an already initialized spawn attributes object may cause memory to be
leaked.

The posix_spawnattr_destroy() function destroys a spawn attributes object. A
destroyed attr attributes object can be reinitialized using posix_spawnattr_init().
The object should not be used after it has been destroyed.

A spawn attributes object is of type posix_spawnattr_t (defined in <spawn.h>) and
is used to specify the inheritance of process attributes across a spawn operation.

The resulting spawn attributes object (possibly modified by setting individ-
ual attribute values), is used to modify the behavior of posix_spawn() or
posix_spawnp(). After a spawn attributes object has been used to spawn a pro-
cess by a call to a posix_spawn() or posix_spawnp(), any function affecting the
attributes object (including destruction) will not affect any process that has been
spawned in this way.

RETURN VALUES

Upon successful completion, posix_spawnattr_init() and
posix_spawnattr_destroy() return zero; otherwise, an error number is
returned to indicate the error.

396 Systems/C C Library

ERRORS

The posix_spawnattr_init() function will fail if:

[ENOMEM] Insufficient memory exists to initialize the spawn attributes object.

SEE ALSO

posix_spawn(3), posix_spawnp(3)

STANDARDS

The posix_spawnattr_init() and posix_spawnattr_destroy() functions conform
to IEEE Std 1003.1-2001 (“POSIX.17).

Systems/C C Library 397

POSIX_SPAWN _FILE_ACTIONS_ADDOPEN(3)
NAME

posix_spawn_file_actions_addopen, posix_spawn_file_actions_adddup2,
posix_spawn_file_actions_addclose - add open, dup2 or close action to spawn file
actions object

LIBRARY Standard C Library (libe, -lc)

SYNOPSIS

#include <spawn.h>

int
posix_spawn_file_actions_addopen(posix_spawn_file_actions_t * file_actions,
int fildes, const char *restrict path, int oflag, mode_t mode);

int
posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t * file_actions,
int fildes, int newfildes);

int
posix_spawn_file_actions_addclose(posix_spawn_file_actions_t * file_actions,
int fildes);

DESCRIPTION

These functions add an open, dup2 or close action to a spawn file actions object.

A spawn file actions object is of type posix spawn file actions_t (defined in
<spawn.h>) and is used to specify a series of actions to be performed by a
posix_spawn() or posix_spawnp() operation in order to arrive at the set of open
file descriptors for the child process given the set of open file descriptors of the
parent.

A spawn file actions object, when passed to posix_spawn() or posix_spawnp(),
specify how the set of open file descriptors in the calling process is transformed into a
set of potentially open file descriptors for the spawned process. This transformation
is as if the specified sequence of actions was performed exactly once, in the context
of the spawned process (prior to execution of the new process image), in the order
in which the actions were added to the object; additionally, when the new process
image is executed, any file descriptor (from this new set) which has its FD_CLOEXEC
flag set is closed (see posix_spawn()).

398 Systems/C C Library

The posix_spawn_file_actions_addopen() function adds an open action to the
object referenced by file_actions that causes the file named by path to be opened (as
if

open(path, oflag, mode)

had been called, and the returned file descriptor, if not fildes, had been changed to
fildes) when a new process is spawned using this file actions object. If fildes was
already an open file descriptor, it is closed before the new file is opened.

The string described by path is copied by the
posix_spawn file_actions_addopen() function.

The posix_spawn_file_actions_adddup2() function adds a dup2 action to the
object referenced by file_actions that causes the file descriptor fildes to be duplicated
as newfildes (as if

dup2(fildes, newfildes)

had been called) when a new process is spawned using this file actions object, except
that the FD_CLOEXEC flag for newfildes is cleared even if fildes is equal to newfildes.
The difference from dup2() is useful for passing a particular file descriptor to a
particular child process.

The posix_spawn _file_actions_addclose() function adds a close action to the ob-
ject referenced by file_actions that causes the file descriptor fildes to be closed (as
if

close(fildes)

had been called) when a new process is spawned using this file actions object.

RETURN VALUES

Upon successful completion, these functions return zero; otherwise, an error number
is returned to indicate the error.

ERRORS
These functions fail if:

[EBADF] The value specified by fildes or newfildes is negative.

[ENOMEM] Insufficient memory exists to add to the spawn file actions object.

Systems/C C Library 399

SEE ALSO

close(2), manrefdup22, manrefopen2, manrefposix_spawn3,
posix_spawn_file_actions_destroy(3), manrefposix_spawn_file_actions_init3,
posix_spawnp(3)

STANDARDS

The posix_spawn_file_actions_addopen(),
posix_spawn_file_actions_adddup2() and
posix_spawn_file_actions_addclose() functions conform to IEEE

Std 1003.1-2001 (“POSIX.1”), with the exception of the behavior of
posix_spawn_file_actions_adddup2() if fildes is equal to newfildes (clearing
FD_CLOEXEC). A future update of the Standard is expected to require this behavior.

400 Systems/C C Library

POSIX_SPAWN _FILE_ACTIONS_INIT(3)
NAME

posix_spawn_file_actions_init, posix_spawn_file_actions_destroy - initialize and de-
stroy spawn file actions object

SYNOPSIS

#include <spawn.h>

int
posix_spawn_file_actions_init(posix_spawn_file_actions_t * file_actions);
int

posix_spawn_file_actions_destroy(posix_spawn_file_actions_t * file_actions);

DESCRIPTION

The posix_spawn _file_actions_init() function initialize the object referenced by
file_actions to contain no file actions for posix_spawn() or posix_spawnp(). Ini-
tializing an already initialized spawn file actions object may cause memory to be
leaked.

The posix_spawn _file_actions_destroy() function destroy the object referenced
by file_actions; the object becomes, in effect, uninitialized. A destroyed spawn file
actions object can be reinitialized using posix_spawn_file_actions_init(). The
object should not be used after it has been destroyed.

RETURN VALUES

Upon successful completion, these functions return zero; otherwise, an error number
is returned to indicate the error.

ERRORS

The posix_spawn _file_actions_init() function will fail if:

[ENOMEM] Insufficient memory exists to initialize the spawn file actions object.

Systems/C C Library 401

SEE ALSO

posix_spawn(3), posix_spawn_file_actions_addclose(3),
posix_spawn_file_actions_adddup2(3), posix_spawn_file_actions_addopen(3),
posix_spawnp(3)

STANDARDS The posix_spawn_file_actions_init() and
posix_spawn file_actions _destroy() functions conform to IEEE Std
1003.1-2001 (“POSIX.17).

402 Systems/C C Library

PSELECT(3)
NAME

pselect — synchronous I/O multiplexing a la POSIX.1g

SYNOPSIS

#include <sys/select.h>

int pselect(int nfds,
fd_set * restrict readfds, fd_set * restrict writefds,
fd_set * restrict exceptfds,
const struct timespec * restrict timeout,
const sigset_t * restrict newsigmask);

DESCRIPTION

The pselect() function was introduced by IEEE Std 1003.1g-2000 (“POSIX.1”) as
a slightly stronger version of select(2). The nfds, readfds, writefds, and exceptfds
arguments are all identical to the analogous arguments of select(). The time-
out argument in pselect() points to a const struct timespec rather than the
(modifiable) struct timeval used by select(); as in select(), a null pointer may
be passed to indicate that pselect() should wait indefinitely.i Finally, newsigmask
specifies a signal mask which is set while waiting for input. When pselect() returns,
the original signal mask is restored.

See select(3) for a more detailed discussion of the semantics of this interface, and
for macros used to manipulate the £d_set data type.

IMPLEMENTATION NOTES

The pselect() function is implemented in the C library as a wrapper around se-
lect().

RETURN VALUES

The pselect() function returns the same values and under the same conditions as
select().

Systems/C C Library 403

ERRORS

The pselect() function may fail for any of the reasons documented for select(3) and
(if a signal mask is provided) sigprocmask(2).

SEE ALSO

poll(2), select(3), sigprocmask(2)

STANDARDS

The pselect() function conforms to IEEE Std 1003.1-2001 (“POSIX.17).

404 Systems/C C Library

PSIGNAL(3)
NAME

psignal, strsignal, sys_siglist, sys_signame - system signal messages

SYNOPSIS

#include <signal.h>

void
psignal (unsigned sig, const char *s);

extern const char * const sys_siglist[];
extern const char * const sys_signamel[];

#include <string.h>

char *
strsignal(int sig);

DESCRIPTION

The psignal() and strsignal() functions locate the descriptive message string for
a signal number.

The strsignal() function accepts a signal number argument sig and returns a pointer
to the corresponding message string.

The psignal() function accepts a signal number argument sig and writes it to the
standard error file descriptor. If the argument s is non-NULL and does not point
to the null character, s is written to the standard error file descriptor prior to the
message string, immediately followed by a colon and a space. If the signal number
is not recognized, the string "Unknown signal" is produced.

The message strings can be accessed directly through the external array
sys_siglist, indexed by recognized signal numbers. The external array
sys_signame is used similarly and contains short, lower-case abbreviations for sig-
nals which are useful for recognizing signal names in user input. The defined variable
NSIG contains a count of the strings in sys_siglist and sys_signame.

SEE ALSO

perror(3), strerror(3)

Systems/C C Library 405

PTSNAME(3)
NAME

ptsname - get the pathname of a slave pty (pseudo-terminal)

SYNOPSIS

#include <stdlib.h>

char *ptsname(int filedes);

DESCRIPTION

ptsname() returns the name of the slave pseudo-terminal associated with a master
terminal device referenced by the open filedes.

The minor numbers of the slave and master device will be the same.

RETURN VALUE

If successful, ptsname() returns the NUL-terminated name of the complete path
name of the slave device, otherwise a NULL pointer is returned and the global variable
errno is set to indicate the error.

ERRORS

As well as the errors described in stat(2), ptsname() will fail if:

[ENOTTY] filedes is not associated with a tty or does not represent a master
pty.
[ENOTTY] The associated slave device was not present in the system, indicating

a configuration error.

SEE ALSO

grantpt(2), unlockpt(2)

406 Systems/C C Library

ISSUES

The ptsname() function leaves its result in an internal static object and returns a
pointer to that object. Subsequent calls to ptsname() will modify the same object.

Systems/C C Library 407

PAUSE(3)
NAME

pause — stop until signal

SYNOPSIS

#include <unistd.h>

int
pause(void) ;

DESCRIPTION

Pause() is made obsolete by sigsuspend(2).

The pause() function forces a process to pause until a signal is received from either
the kill(2) function or an interval timer. Upon termination of a signal handler started
during a pause(), the pause() call will return.

RETURN VALUES

Always returns -1.

IMPLEMENTATION NODES

The pause() function requires POSIX signals. If POSIX signals are not availble,
pause() immediately returns a -1 with errno set to ENOSYS.

ERRORS

The pause() function always returns -1 and sets the errno value to:

[EINTR] The call was interrupt.
[ENOSYS] POSIX signals were not available.
SEE ALSO

kill(2), select(2), sigsuspend(2)

408 Systems/C C Library

QUEUE(3)
NAME

SLIST_EMPTY, SLIST_ENTRY, SLIST_FIRST, SLIST_FOREACH,
SLIST_HEAD,

SLIST_INIT, SLIST_INSERT_AFTER, SLIST_INSERT_HEAD, SLIST_NEXT,
SLIST_REMOVE_HEAD, SLIST_REMOVE, STAILQ_EMPTY, STAILQ_ENTRY,
STAILQ_FIRST, STAILQ_ FOREACH, STAILQ_HEAD, STAILQ_INIT,
STAILQ_INSERT_AFTER, STAILQ_INSERT_HEAD, STAILQ_INSERT _TAIL,

STAILQ_LAST, STAILQ_NEXT, STAILQ REMOVE_HEAD,
STAILQ_REMOVE, LIST_EMPTY, LIST_ENTRY, LIST_FIRST,
LIST.FOREACH, LIST_HEAD, LISTINIT, LIST.INSERT _AFTER,
LIST_INSERT_BEFORE, LIST_INSERT_HEAD, LIST_NEXT,

LIST_REMOVE, TAILQ_EMPTY, TAILQ_ENTRY, TAILQ_FIRST,
TAILQ_FOREACH, TAILQ_.FOREACH_REVERSE, TAILQ_HEAD, TAILQ_INIT,
TAILQ_INSERT_AFTER, TAILQINSERT_BEFORE, TAILQ_INSERT_HEAD,
TAILQ_INSERT_TAIL, TAILQ_LAST, TAILQ_NEXT, TAILQ_PREV,
TAILQ_REMOVE, CIRCLEQ_EMPTY, CIRCLEQ_ENTRY, CIRCLEQ_FIRST,
CIRCLEQ_FOREACH, CIRCLEQ_FOREACH_REVERSE, CIRCLEQ_HEAD,
CIRCLEQ_NIT, CIRCLEQ_INSERT_AFTER, CIRCLEQ_INSERT _BEFORE,
CIRCLEQ_INSERT_HEAD, CIRCLEQ_INSERT_TAIL, CIRCLE_LAST, CIR-
CLENEXT, CIRCLE_PREV, CIRCLEQREMOVE - implementations of
singly-linked lists, singly-linked tail queues, lists, tail queues, and circular queues

SYNOPSIS

#include <sys/queue.h>

SLIST_EMPTY (SLIST_HEAD *head);

SLIST_ENTRY(TYPE) ;

SLIST_FIRST(SLIST_HEAD *head);

SLIST_FOREACH(TYPE *var, SLIST_HEAD *head, SLIST_ENTRY NAME);
SLIST_HEAD (HEADNAME, TYPE);

SLIST_INIT(SLIST_HEAD *head);

SLIST_INSERT_AFTER(TYPE *listelm, TYPE *elm, SLIST_ENTRY NAME);
SLIST_INSERT_HEAD(SLIST_HEAD *head, TYPE *elm, SLIST_ENTRY NAME);

SLIST_NEXT(TYPE *elm, SLIST_ENTRY NAME);

Systems/C C Library 409

SLIST_REMOVE_HEAD (SLIST_HEAD ¥head, SLIST_ENTRY NAME);
SLIST_REMOVE(SLIST_HEAD *head, TYPE *elm, TYPE, SLIST_ENTRY NAME);
STAILQ_EMPTY (STAILQ_HEAD *head);

STAILQ_ENTRY (TYPE) ;

STAILQ_FIRST(STAILQ_HEAD *head);

STAILQ_FOREACH(TYPE *var, STAILQ_HEAD *head, STAILQ_ENTRY NAME);
STAILQ_HEAD (HEADNAME, TYPE);

STAILQ_INIT(STAILQ_HEAD *head);

STAILQ_INSERT_AFTER(STAILQ_HEAD *head, TYPE *listelm, TYPE *elm,
STAILQ_ENTRY NAME) ;

STAILQ_INSERT_HEAD(STAILQ_HEAD *head, TYPE *elm, STAILQ_ENTRY NAME);
STAILQ_INSERT_TAIL(STAILQ_HEAD *head, TYPE *elm, STAILQ_ENTRY NAME);
STAILQ_LAST(STAILQ_HEAD *head);

STAILQ_NEXT(TYPE *elm, STAILQ_ENTRY NAME);

STAILQ_REMOVE_HEAD (STAILQ_HEAD *head, STAILQ_ENTRY NAME);
STAILQ_REMOVE(STAILQ_HEAD *head, TYPE *elm, TYPE, STAILQ_ENTRY NAME);
LIST_EMPTY (LIST_HEAD *head);

LIST_ENTRY (TYPE) ;

LIST_FIRST(LIST_HEAD *head);

LIST_FOREACH(TYPE *var, LIST_HEAD *head, LIST_ENTRY NAME);

LIST_HEAD (HEADNAME, TYPE);

LIST_INIT(LIST_HEAD *head);

LIST_INSERT_AFTER(TYPE *listelm, TYPE *elm, LIST_ENTRY NAME);

LIST_INSERT_BEFORE(TYPE *listelm, TYPE *elm, LIST_ENTRY NAME);

410 Systems/C C Library

LIST_INSERT_HEAD(LIST_HEAD xhead, TYPE *elm, LIST_ENTRY NAME);
LIST_NEXT(TYPE *elm, LIST_ENTRY NAME);

LIST_REMOVE(TYPE *elm, LIST_ENTRY NAME);

TAILQ_EMPTY (TAILQ_HEAD *head);

TAILQ_ENTRY (TYPE) ;

TAILQ_FIRST(TAILQ_HEAD *head);

TAILQ_FOREACH(TYPE #var, TAILQ_HEAD *head, TAILQ_ENTRY NAME);

TAILQ_FOREACH_REVERSE(TYPE *var, TAILQ_HEAD *head, HEADNAME,
TAILQ_ENTRY NAME);

TAILQ_HEAD (HEADNAME, TYPE);
TAILQ_INIT(TAILQ_HEAD *head);

TAILQ_INSERT_AFTER(TAILQ_HEAD xhead, TYPE xlistelm, TYPE *elm,
TAILQ_ENTRY NAME);

TAILQ_INSERT_BEFORE(TYPE *listelm, TYPE *elm, TAILQ_ENTRY NAME);
TATILQ_INSERT_HEAD(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME);
TATILQ_INSERT_TAIL(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME);
TAILQ_LAST(TAILQ_HEAD *head, HEADNAME) ;

TAILQ_NEXT(TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_PREV(TYPE *elm, HEADNAME, TAILQ_ENTRY NAME);
TAILQ_REMOVE(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME);
CIRCLEQ_EMPTY(CIRCLEQ_HEAD *head);

CIRCLEQ_ENTRY(TYPE);

CIRCLEQ_FIRST(CIRCLEQ_HEAD *head);

CIRCLEQ_FOREACH(TYPE *var, CIRCLEQ_HEAD ¥head, CIRCLEQ_ENTRY NAME);

Systems/C C Library 411

CIRCLEQ_FOREACH_REVERSE(TYPE *var, CIRCLEQ_HEAD xhead,
CIRCLEQ_ENTRY NAME) ;

CIRCLEQ_HEAD (HEADNAME, TYPE);
CIRCLEQ_INIT(CIRCLEQ_HEAD xhead);

CIRCLEQ_INSERT_AFTER(CIRCLEQ_HEAD *head, TYPE *listelm, TYPE *elm,
CIRCLEQ_ENTRY NAME);

CIRCLEQ_INSERT_BEFORE(CIRCLEQ_HEAD *head, TYPE *listelm, TYPE *elm,
CIRCLEQ_ENTRY NAME) ;

CIRCLEQ_INSERT_HEAD(CIRCLEQ_HEAD x*head, TYPE *elm, CIRCLEQ_ENTRY NAME);
CIRCLEQ_INSERT_TAIL(CIRCLEQ_HEAD xhead, TYPE *elm, CIRCLEQ_ENTRY NAME);
CIRCLEQ_LAST(CIRCLEQ_HEAD #head);

CIRCLEQ_NEXT(TYPE *elm, CIRCLEQ_ENTRY NAME);

CIRCLE_PREV(TYPE *elm, CIRCLEQ_ENTRY NAME) ;

CIRCLEQ_REMOVE(CIRCLEQ_HEAD *head, TYPE *elm, CIRCLEQ_ENTRY NAME);

DESCRIPTION

These macros define and operate on five types of data structures: singly-linked lists,
singly-linked tail queues, lists, tail queues, and circular queues. All five structures
support the following functionality:

Insertion of a new entry at the head of the list.
Insertion of a new entry after any element in the list.
O(1) removal of an entry from the head of the list.

O(n) removal of any entry in the list.

Bl A

Forward traversal through the list.

Singly-linked lists are the simplest of the five data structures and support only the
above functionality. Singly-linked lists are ideal for applications with large datasets
and few or no removals, or for implementing a LIFO queue.

Singly-linked tail queues add the following functionality:

1. Entries can be added at the end of a list.

412 Systems/C C Library

However:

1. All list insertions must specify the head of the list.
2. Each head entry requires two pointers rather than one.

3. Code size is about 15

Singly-linked tailgs are ideal for applications with large datasets and few or no
removals, or for implementing a FIFO queue.

All doubly linked types of data structures (lists, tail queues, and circle queues)
additionally allow:

1. Insertion of a new entry before any element in the list.

2. O(1) removal of any entry in the list.

However:

1. Each elements requires two pointers rather than one.

2. Code size and execution time of operations (except for removal) is about twice
that of the singly-linked data-structures.

Linked lists are the simplest of the doubly linked data structures and support only
the above functionality over singly-linked lists.

Tail queues add the following functionality:

1. Entries can be added at the end of a list.
2. They may be traversed backwards, from tail to head.

However:

1. All list insertions and removals must specify the head of the list.
2. Each head entry requires two pointers rather than one.

3. Code size is about 15

Circular queues add the following functionality:

1. Entries can be added at the end of a list.
2. They may be traversed backwards, from tail to head.

Systems/C C Library 413

However:

. All list insertions and removals must specify the head of the list.
. Each head entry requires two pointers rather than one.
. The termination condition for traversal is more complex.

. Code size is about 40

=~ W N =

In the macro definitions, TYPF is the name of a user defined structure, that must
contain a field of type SLIST_ENTRY, STAILQ_ENTRY, LIST_ENTRY, TAILQ_ENTRY, or
CIRCLEQ_ENTRY, named NAME. The argument HEADNAME is the name of a user
defined structure that must be declared using the macros SLIST_HEAD, STAILQ_HEAD,
LIST HEAD, TAILQ _HEAD, or CIRCLEQ_HEAD. See the examples below for further ex-
planation of how these macros are used.

SINGLY-LINKED LISTS

A singly-linked list is headed by a structure defined by the SLIST_HEAD macro. This
structure contains a single pointer to the first element on the list. The elements are
singly linked for minimum space and pointer manipulation overhead at the expense
of O(n) removal for arbitrary elements. New elements can be added to the list after
an existing element or at the head of the list. An SLIST_HEAD structure is declared
as follows:

SLIST_HEAD (HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPF is the
type of the elements to be linked into the list. A pointer to the head of the list can
later be declared as:

struct HEADNAME xheadp;

(The names head and headp are user selectable.)
The macro SLIST_EMPTY evaluates to true if there are no elements in the list.
The macro SLIST_ENTRY declares a structure that connects the elements in the list.

The macro SLIST_FIRST returns the first element in the list of NULL if the list is
empty.

The macro SLIST FOREACH traverses the list referenced by head in the forward di-
rection, assigning each element in turn to var

The macro SLIST_INIT initializes the list referenced by head.

414 Systems/C C Library

The macro SLIST_INSERT_HEAD inserts the new element elm at the head of the list.

The macro SLIST_INSERT_AFTER inserts the new element elm after the element lis-
telm

The macro SLIST_NEXT returns the next element in the list.

The macro SLIST_REMOVE_HEAD removes the element elm from the head of the list.
For optimum efficiency, elements being removed from the head of the list should
explicitly use this macro instead of the generic SLIST_REMOVE macro.

The macro SLIST_REMOVE removes the element elm from the list

SINGLY-LINKED LIST EXAMPLE

SLIST_HEAD(slisthead, entry) head;
struct slisthead *headp; /* Singly-linked List head. */
struct entry {

SLIST_ENTRY(entry) entries; /* Singly-linked List. */
} *nl, *n2, *n3, *unp;
SLIST_INIT(&head); /* Initialize the list. */

nl = malloc(sizeof (struct entry)); /* Insert at the head. */
SLIST_INSERT_HEAD(&head, nl, entries);

n2 = malloc(sizeof (struct entry)); /* Insert after. */
SLIST_INSERT_AFTER(nl, n2, entries);

SLIST_REMOVE(&head, n2, entry, entries);/* Deletion. */
free(n2);

n3 = SLIST_FIRST(&head);
SLIST_REMOVE_HEAD (&head, entries); /* Deletion. */
free(n3);

/* Forward traversal. */
SLIST_FOREACH(np, &head, entries)
np-> ...

while (!SLIST_EMPTY(&head)) { /* List Deletion. */
nl = SLIST_FIRST(&head);
SLIST_REMOVE_HEAD (&head, entries);
free(nl);

Systems/C C Library 415

SINGLY-LINKED TAIL QUEUES

A singly-linked tail queue is headed by a structure defined by the STAILQ_HEAD
macro. This structure contains a pair of pointers, one to the first element in the tail
queue and the other to the last element in the tail queue. The elements are singly
linked for minimum space and pointer manipulation overhead at the expense of O(n)
removal for arbitrary elements. New elements can be added to the tail queue after
an existing element, at the head of the tail queue, or at the end of the tail queue.
A STAILQ_HEAD structure is declared as follows:

STAILQ_HEAD (HEADNAME, TYPE) head;

where HEADNADME is the name of the structure to be defined, and TYPF is the
type of the elements to be linked into the tail queue. A pointer to the head of the
tail queue can later be declared as:

struct HEADNAME xheadp;

(the names head and headp are user selectable.)
The macro STAILQ_EMPTY evaluates to true if there are no items on the tail queue.

The macro STAILQ_ENTRY declares a structure that connects the elements in the tail
queue.

The macro STAILQ_FIRST returns the first item on the tail queue or NULL if the tail
queue is empty.

The macro STAILQ_FOREACH traverses the tail queue referenced by head in the for-
ward direction, assigning each element in turn to var.

The macro STAILQ_INIT initializes the tail queue referenced by head.

The macro STAILQ_INSERT_HEAD inserts the new element elm at the head of the tail
queue.

The macro STAILQ_INSERT_TAIL inserts the new element elm at the end of the tail
queue.

The macro STAILQ_INSERT_AFTER inserts the new element elm after the element
listelm.

The macro STAILQ_LAST returns the last item on the tail queue. If the tail queue is
empty the return value is undefined.

The macro STAILQ_NEXT returns the next item on the tail queue, or NULL this item
is the last.

416 Systems/C C Library

The macro STAILQ_REMOVE_HEAD removes the element elm from the head of the
tail queue. For optimum efficiency, elements being removed from the head of the
tail queue should use this macro explicitly rather than the generic STAILQ_REMOVE

macro.

The macro STAILQ_REMOVE removes the element elm from the tail queue.

SINGLY-LINKED TAIL QUEUE EXAMPLE

STAILQ_HEAD(stailhead, entry) head;
struct stailhead *headp;
struct entry {

STAILQ_ENTRY(entry) entries;
} *nl, *n2, *n3, *np;

STAILQ_INIT(&head);

nl = malloc(sizeof (struct entry));
STAILQ_INSERT_HEAD (&head, nl, entries);

nl = malloc(sizeof (struct entry));
STAILQ_INSERT_TAIL(&head, nl, entries);

n2 = malloc(sizeof (struct entry));

/*

/*

/*

/*

/*

/%

Singly-linked tail queue head.

Tail queue. */

Initialize the queue. */

Insert at the head. */

Insert at the tail. */

Insert after. */

STAILQ_INSERT_AFTER(&head, nl, n2, entries);

/*

STAILQ_REMOVE(&head, n2, entry, entries);

free(n2);

n3 = STAILQ_FIRST(&head);
STAILQ_REMOVE_HEAD (&head, entries);
free(n3);

STAILQ_FOREACH(np, &head, entries)
np-> ...

while (!STAILQ_EMPTY(&head)) {
nl = STAILQ_HEAD(&head);

STAILQ_REMOVE_HEAD(&head, entries);

free(nl);

/*

/*

/*

Deletion. */

Deletion from the head */

Forward traversal. */

TailQ Deletion. */

Systems/C C Library 417

*/

/* Faster TailQ Deletion. */

nl = STAILQ_FIRST(&head);
while (n1 != NULL) {

n2 = STAILQ_NEXT(nl, entries);

free(nl);

nl = n2;
}
STAILQ_INIT (&head);

LISTS

A list is headed by a structure defined by the LIST_HEAD macro. This structure
contains a single pointer to the first element on the list. The elements are doubly
linked so that an arbitrary element can be removed without traversing the list.
New elements can be added to the list after an existing element, before an existing
element, or at the head of the list. A LIST_HEAD structure is declared as follows:

LIST_HEAD (HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPF is the
type of the elements to be linked into the list. A pointer to the head of the list can
later be declared as:

struct HEADNAME xheadp;

(The names head and headp are user selectable.)
The macro LIST_EMPTY valuates to true if their are no elements in the list.
The macro LIST_ENTRY declares a structure that connects the elements in the list.

The macro LIST_FIRST returns the first element in the list or NULL if the list is
empty.

The macro LIST_FOREACH traverses the list referenced by head in the forward direc-
tion, assigning each element in turn to wvar.

The macro LIST_INIT initializes the list referenced by head.
The macro LIST_INSERT_HEAD inserts the new element elm at the head of the list.
The macro LIST_INSERT_AFTER inserts the new element elm after the element listelm.

The macro LIST_INSERT_BEFORE inserts the new element elm before the element
listelm.

The macro LIST_NEXT returns the next element in the list, or NULL if this is the last.

The macro LIST_REMOVE removes the element elm from the list.

418 Systems/C C Library

LIST EXAMPLE

LIST_HEAD(listhead, entry) head;
struct listhead *headp; /* List head. */
struct entry {

LIST_ENTRY(entry) entries; /* List. */
} *nl, *n2, *n3, *unp;
LIST_INIT(&head); /* Initialize the list. */

nl = malloc(sizeof (struct entry)); /* Insert at the head. */
LIST_INSERT_HEAD(&head, nl, entries);

n2 = malloc(sizeof (struct entry)); /* Insert after. */
LIST_INSERT_AFTER(nl1, n2, entries);

n3 = malloc(sizeof (struct entry)); /* Insert before. */
LIST_INSERT_BEFORE(n2, n3, entries);

LIST_REMOVE(n2, entries); /* Deletion. */
free(n2);

/* Forward traversal. */
LIST_FOREACH(np, &head, entries)
np-> ...

while (!LIST_EMPTY(&head)) { /* List Deletion. */
nl = LIST_FIRST (&head);
LIST_REMOVE(nl, entries);
free(nl);

nl = LIST_FIRST(&head); /* Faster List Delete. */
while (n1 !'= NULL) {
n2 = LIST_NEXT(nl, entries);
free(nl);
nl = n2;
}
LIST_INIT(&head);

TAIL QUEUES

A tail queue is headed by a structure defined by the TAILQ_HEAD macro. This
structure contains a pair of pointers, one to the first element in the tail queue and

Systems/C C Library 419

the other to the last element in the tail queue. The elements are doubly linked so
that an arbitrary element can be removed without traversing the tail queue. New
elements can be added to the tail queue after an existing element, before an existing
element, at the head of the tail queue, or at the end of the tail queue. A TAILQ_HEAD
structure is declared as follows:

TAILQ_HEAD (HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPF is the
type of the elements to be linked into the tail queue. A pointer to the head of the
tail queue can later be declared as:

struct HEADNAME xheadp;

(The names head and headp are user selectable.)
The macro TAILQ_EMPTY evaluates to true if there are no items on the tail queue.

The macro TAILQ_ENTRY declares a structure that connects the elements in the tail
queue.

The macro TAILQ_FIRST returns the first item on the tail queue or NULL if the tail
queue is empty.

The macro TATILQ_FOREACH traverses the tail queue referenced by head in the forward
direction, assigning each element in turn to wvar.

The macro TAILQ_FOREACH REVERSE traverses the tail queue referenced by head in
the reverse direction, assigning each element in turn to var.

The macro TAILQ_INIT initializes the tail queue referenced by head.

The macro TAILQ_INSERT_HEAD inserts the new element elm at the head of the tail
queue.

The macro TAILQ_INSERT_TAIL inserts the new element elm at the end of the tail
queue.

The macro TAILQ_INSERT_AFTER inserts the new element elm after the element lis-
telm.

The macro TAILQ_INSERT_BEFORE inserts the new element elm before the element
listelm.

The macro TAILQ_LAST returns the last item on the tail queue. If the tail queue is
empty the return value is undefined.

420 Systems/C C Library

The macro TAILQ_NEXT returns the next item on the tail queue, or NULL if this item

is the last.

The macro TAILQ_PREV returns the previous item on the tail queue, or NULL if this

item is the first.

The macro TAILQ_REMOVE removes the element elm

TAIL QUEUE EXAMPLE

TAILQ_HEAD(tailhead, entry) head;
struct tailhead *headp; /*
struct entry {

TAILQ_ENTRY (entry) entries; /*
} *nl, *n2, *n3, *np;

TAILQ_INIT(&head); /*

nl = malloc(sizeof (struct entry)); /*
TAILQ_INSERT_HEAD(&head, nl, entries);

nl = malloc(sizeof (struct entry)); /*
TAILQ_INSERT_TAIL(&head, nl, entries);

n2 = malloc(sizeof (struct entry)); /*
TAILQ_INSERT_AFTER(&head, nl, n2, entries);

n3 = malloc(sizeof (struct entry)); /*
TAILQ_INSERT_BEFORE(n2, n3, entries);

TAILQ_REMOVE(&head, n2, entries); /*
free(n2);
/*
TAILQ_FOREACH(np, &head, entries)
np-> ...
/%
TAILQ_FOREACH_REVERSE(np, &head, tailhead,
np-> ...

/*
while (!TAILQ_EMPTY (head)) {
nl = TAILQ_FIRST(&head);
TAILQ_REMOVE(&head, nl, entries);
free(nl);

/*

from the tail queue.

Tail queue head. */

Tail queue. */

Initialize the queue. */

Insert at the head. */

Insert at the tail. */

Insert after. */

Insert before. */

Deletion. */

Forward traversal. */
Reverse traversal. */
entries)

TailQ Deletion. */

Faster TailQ Deletion. */

Systems/C C Library 421

nl = TAILQ_FIRST (&head) ;

while (n1 != NULL) {
n2 = TAILQ_NEXT(nl, entries);
free(nl);
nl = n2;

}

TAILQ_INIT (&head);

CIRCULAR QUEUES

A circular queue is headed by a structure defined by the CIRCLEQ_HEAD macro. This
structure contains a pair of pointers, one to the first element in the circular queue and
the other to the last element in the circular queue. The elements are doubly linked
so that an arbitrary element can be removed without traversing the queue. New
elements can be added to the queue after an existing element, before an existing
element, at the head of the queue, or at the end of the queue. A CIRCLEQ_HEAD
structure is declared as follows:

CIRCLEQ_HEAD (HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPF is the
type of the elements to be linked into the circular queue. A pointer to the head of
the circular queue can later be declared as:

struct HEADNAME xheadp;

(The names head and headp are user selectable.)
The macro CIRCLEQ_EMPTY evaluates to true if there are no items on the circle queue.

The macro CIRCLEQ_ENTRY declares a structure that connects the elements in the
circular queue.

The macro CIRCLEQ_FIRST returns the first item on the circle queue.

The macro CICRLEQ_FOREACH traverses the circle queue referenced by head in the
forward direction, assigning each element in turn to var.

The macro CICRLEQ_FOREACH_REVERSE traverses the circle queue referenced by head
in the reverse direction, assigning each element in turn to var.

The macro CIRCLEQ_INIT initializes the circular queue referenced by head.

The macro CIRCLEQ_INSERT_HEAD inserts the new element elm at the head of the
circular queue.

422 Systems/C C Library

The macro CIRCLEQ_INSERT_TAIL inserts the new element elm at the end of the
circular queue.

The macro CIRCLEQ_INSERT_AFTER inserts the new element elm after the element
listelm.

The macro CIRCLEQ_INSERT_BEFORE inserts the new element elm before the element
listelm.

The macro CIRCLEQ_LAST returns the last item on the circle queue.
The macro CIRCLEQ_NEXT returns the next item on the circle queue.
The macro CIRCLEQ_PREV returns the previous item on the circle queue.

The macro CIRCLEQ_REMOVE removes the element elm from the circular queue.

CIRCULAR QUEUE EXAMPLE

CIRCLEQ_HEAD(circleq, entry) head;
struct circleq *headp; /* Circular queue head. */
struct entry {

CIRCLEQ_ENTRY (entry) entries; /* Circular queue. */

} *nl, *n2, *np;

CIRCLEQ_INIT(&head) ; /* Initialize the circular queue.

nl = malloc(sizeof (struct entry)); /* Insert at the head. */
CIRCLEQ_INSERT_HEAD (&head, nl, entries);

nl = malloc(sizeof (struct entry)); /* Insert at the tail. */
CIRCLEQ_INSERT_TAIL(&head, nl, entries);

n2 = malloc(sizeof (struct entry)); /* Insert after. */
CIRCLEQ_INSERT_AFTER(&head, nl, n2, entries);

n2 = malloc(sizeof (struct entry)); /* Insert before. */
CIRCLEQ_INSERT_BEFORE(&head, nl, n2, entries);

CIRCLEQ_REMOVE (&head, nl, entries); /* Deletion. */
free(nl);
/* Forward traversal. */
CIRCLEQ_FOREACH(np, &head, entries)
np-> ...
/* Reverse traversal. */

Systems/C C Library 423

*/

CIRCLEQ_FOREACH_REVERSE(np, &head, entries)
np-> ...
/* CircleQ Deletion. */
while (CIRCLEQ_FIRST(&head) != (void *)&head) {
nl = CIRCLEQ_HEAD (&head);
CIRCLEQ_REMOVE(&head, nl, entries);
free(nl);

/* Faster CircleQ Deletion.

nl = CIRCLEQ_FIRST(&head);

while (n1 != (void *)&head) {
n2 = CIRCLEQ_NEXT(nl, entries);
free(nl);
nl = n2;

}

CIRCLEQ_INIT (&head) ;

424 Systems/C C Library

*/

RAISE(3)
NAME

raise - send a signal to the current program or process

SYNOPSIS

#include <signal.h>

int
raise(int sig);

DESCRIPTION

The raise() function sends the signal sig to the current process.

When running under OpenEdition, raise() is the same as kill(getpid(), szg).

RETURN VALUES

The raise() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The raise() function may fail and set errno for any of the errors specified for the
library functions getpid(2) and kill(2).

STANDARDS

The raise() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 425

SEM_DESTROY (3)
NAME

sem_destroy — destroy an unnamed semaphore

SYNOPSIS

#include <semaphore.h>

int
sem_destroy(sem_t *sem) ;

DESCRIPTION

The sem_destroy() function destroys the unnamed semaphore pointed to by sem.
After a successful call to sem_destroy(), sem is unusable until reinitialized by
another call to sem_init(3).

RETURN VALUES

The sem_destroy() function returns the value 0 if successful; otherwise the value
-1 is returned and the global variable errno is set to indicate the error.

ERRORS

The sem_destroy() function will fail if:

[EINVAL] The sem argument points to an invalid semaphore.

[EBUSY] There are currently threads blocked on the semaphore that sem
points to.

SEE ALSO

sem_init(3)

STANDARDS

The sem_destroy() function conforms to ISO/IEC 9945-1:1996 (“POSIX.17).

426 Systems/C C Library

SEM_GETVALUE(3)

NAME

sem_getvalue — get the value of a semaphore

SYNOPSIS

#include <semaphore.h>

int
sem_getvalue(sem_t * restrict sem, int * restrict sval);

DESCRIPTION

The sem_getvalue() function sets the variable pointed to by sval to the cur-
rent value of the semaphore pointed to by sem, as of the time that the call to
sem _getvalue() is actually run.

RETURN VALUES

The sem_getvalue() function returns the value 0 if successful; otherwise the value
-1 is returned and the global variable errno is set to indicate the error.

ERRORS

The sem_getvalue() function will fail if:

[EINVAL] The sem argument points to an invalid semaphore.

SEE ALSO

sem_post(3), sem_trywait(3), sem_wait(3)

Systems/C C Library 427

STANDARDS

The sem_getvalue() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1").

The value of the semaphore is never negative, even if there are threads blocked on
the semaphore. POSIX is somewhat ambiguous in its wording with regard to what
the value of the semaphore should be if there are blocked waiting threads, but this
behavior is conformant, given the wording of the specification.

428 Systems/C C Library

SEM_INIT(3)
NAME

sem_init — initialize an unnamed semaphore

SYNOPSIS

#include <semaphore.h>
int

sem_init(sem_t *sem, int pshared, unsigned int value);

DESCRIPTION

The sem_init() function initializes the unnamed semaphore pointed to by sem to
have the value value. A non-zero value for pshared specifies a shared semaphore that
can be used by multiple processes, which this implementation is not capable of.

Following a successful call to sem_init(), sem can be used as an argument in sub-
sequent calls to sem_wait(3), sem_trywait(3), sem_post(3), and sem_destroy(3). The
sem argument is no longer valid after a successful call to sem_destroy(3).

RETURN VALUES

The sem_init() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The sem_init() function will fail if:

[EINVAL] The value argument exceeds SEM_VALUE MAX.
[ENOSPC] Memory allocation error.

[EPERM] Unable to initialize a shared semaphore.
SEE ALSO

sem_destroy(3), sem_getvalue(3), sem_post(3), sem_trywait(3), sem_wait(3)

Systems/C C Library 429

STANDARDS

The sem_init() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”).

This implementation does not support shared semaphores, and reports this fact by
setting errno to EPERM. This is perhaps a stretch of the intention of POSIX, but
is compliant, with the caveat that sem_init() always reports a permissions error
when an attempt to create a shared semaphore is made.

430 Systems/C C Library

SEM_OPEN(3)

NAME

sem_open, sem_close, sem_unlink — named semaphore operations

SYNOPSIS

#include <semaphore.h>

sem_t *

sem_open(const char *name, int oflag, ...);

int

sem_close(sem_t *sem);

int

sem_unlink(const char *name);

DESCRIPTION

The sem _open() function creates or opens the named semaphore specified by
name. The returned semaphore may be used in subsequent calls to sem_getvalue(3),
sem_wait(3), sem_trywait(3), sem_post(3), and sem_close()(.)

The following bits may be set in the oflag argument:

0_CREAT

0_EXCL

Create the semaphore if it does not already exist.

The third argument to the call to sem_open() must be of
type mode_t and specifies the mode for the semaphore. Only
the S_IWUSR, S_IWGRP, and S_IWOTH bits are examined; it is
not possible to grant only “read” permission on a semaphore.
The mode is modified according to the process’s file creation
mask; see umask(2).

The fourth argument must be an unsigned int and specifies
the initial value for the semaphore, and must be no greater
than SEM_VALUE_MAX.

Create the semaphore if it does not exist. If the semaphore

already exists, sem_open() will fail. This flag is ignored
unless 0_CREAT is also specified.

Systems/C C Library 431

The sem_close() function closes a named semaphore that was opened by a call to
sem _open().

The sem_unlink() function removes the semaphore named name. Resources al-
located to the semaphore are only deallocated when all processes that have the
semaphore open close it.

RETURN VALUES

If successful, the sem_open() function returns the address of the opened semaphore.
If the same name argument is given to multiple calls to sem_open() by the same
process without an intervening call to sem_close(), the same address is returned
each time. If the semaphore cannot be opened, sem_open() returns SEM_FAILED
and the global variable eaerrno is set to indicate the error.

The sem_close() and sem_unlink() functions return the value 0 if successful; oth-
erwise the value -1 is returned and the global variable errno is set to indicate the
error.

ERRORS

The sem_open() function will fail if:

[EACCESS] The semaphore exists and the permissions specified by oflag at the
time it was created deny access to this process.

[EACCESS] The semaphore does not exist, but permission to create it is denied.

[EEXIST] 0_CREAT and 0_EXCL are set but the semaphore already exists.

[EINTR] The call was interrupted by a signal.

[EINVAL] The sem_open() operation is not supported for the given name.

[EINVAL] The value argument is greater than SEM_VALUE_MAX.

[ENAMETOOLONG] The name argument is too long.

[ENFILE] The system limit on semaphores has been reached.
[ENOENT] 0_CREAT is set but the named semaphore does not exist.
[ENOSPC] There is not enough space to create the semaphore.

The sem_close() function will fail if:

[EINVAL] The sem argument is not a valid semaphore.

432 Systems/C C Library

The sem_unlink() function will fail if:

[EACCESS] Permission is denied to unlink the semaphore.
[ENAMETOOLONG] The specified name is too long.

[ENOENT] The named semaphore does not exist.

SEE ALSO

close(2), open(2), wumask(2), unlink(2), sem getvalue(3), sem_post(3),
sem_trywait(3), sem_wait(3)

STANDARDS

The sem_open(), sem_close(), and sem_unlink() functions conform to ISO/IEC
9945-1:1996 (“POSIX.17).

ISSUES

This implementation places strict requirements on the value of name: it must begin
with a slash (‘/’), contain no other slash characters, and be less than 14 characters
in length not including the terminating null character.

This implementation creates a file in the /tmp directory, which may clash with other
processes using the same name.

Systems/C C Library 433

SEM_POST(3)
NAME

sem_post — increment (unlock) a semaphore

SYNOPSIS
#include <semaphore.h>

int
sem_post (sem_t *sem);

DESCRIPTION

The sem_post() function increments (unlocks) the semaphore pointed to by sem.
If there are threads blocked on the semaphore when sem_post() is called, then
a thread that has been blocked on the semaphore will be allowed to return from
sem_wait().

The sem_post() function is signal-reentrant and may be called within signal han-
dlers.

RETURN VALUES

The sem_post() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The sem_post() function will fail if:

[EINVAL] The sem argument points to an invalid semaphore.

SEE ALSO

sem_getvalue(3), sem_trywait(3), sem_wait(3)

434 Systems/C C Library

STANDARDS

The sem_post() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”).

SEM_TIMEDWAIT(3)
NAME

sem_timedwait - lock a semaphore

SYNOPSIS

#include <semaphore.h>
#include <time.h>

int
sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);

DESCRIPTION

The sem_timedwait() function locks the semaphore referenced by sem, as in the
sem_wait(3) function. However, if the semaphore cannot be locked without waiting
for another process or thread to unlock the semaphore by performing a sem_post(3)
function, this wait will be terminated when the specified timeout expires.

The timeout will expire when the absolute time specified by abs_timeout passes, as
measured by the clock on which timeouts are based (that is, when the value of that
clock equals or exceeds abs_timeout), or if the absolute time specified by abs_timeout
has already been passed at the time of the call.

Note that the timeout is based on the CLOCK_REALTIME clock.

The validity of the abs_timeout is not checked if the semaphore can be locked im-
mediately.

RETURN VALUES

The sem_timedwait() function returns zero if the calling process successfully per-
formed the semaphore lock operation on the semaphore designated by sem. If the
call was unsuccessful, the state of the semaphore is unchanged, and the function
returns a value of -1 and sets the global variable errno to indicate the error.

Systems/C C Library 435

ERRORS

The sem_timedwait() function will fail if:

[EINVAL] The sem argument does not refer to a valid semaphore, or the pro-
cess or thread would have blocked, and the abs_timeout parameter
specified a nanoseconds field value less than zero or greater than or
equal to 1000 million.

[ETIMEDOUT] The semaphore could not be locked before the specified timeout
expired.

[EINTR] A signal interrupted this function.

SEE ALSO

sem_post(3), sem_trywait(3), sem_wait(3)

STANDARDS

The sem_timedwait() function conforms to IEEE Std 1003.1-2004 (“POSIX.1").

436 Systems/C C Library

SEM_WAIT(3)
NAME

sem_wait, sem_trywait — decrement (lock) a semaphore

SYNOPSIS

#include <semaphore.h>

int
sem_wait(sem_t *sem) ;

int
sem_trywait(sem_t *sem);

DESCRIPTION

The sem_wait() function decrements (locks) the semaphore pointed to by sem, but
blocks if the value of sem is zero, until the value is non-zero and the value can be
decremented.

The sem_trywait() function decrements (locks) the semaphore pointed to by sem
only if the value is non-zero. Otherwise, the semaphore is not decremented and an
error is returned.

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

The sem_wait() and sem_trywait() functions will fail if:
[EINVAL] The sem argument points to an invalid semaphore.
Additionally, sem_trywait() will fail if:

[EAGAIN] The semaphore value was zero, and thus could not be decremented.

Systems/C C Library 437

SEE ALSO

sem_getvalue(3), sem_post(3)

STANDARDS

The sem_wait() and sem_trywait() functions conform to ISO/IEC 9945-1:1996
(“POSIX.17).

438 Systems/C C Library

SIGNAL(3)
NAME

signal — simplified software signal facilities

SYNOPSIS

#include <signal.h>

void (*signal(int sig, void (*func) (int))) (int);

or in Dignus’s equivalent but easier to read typedef’d version:

typedef void (*sig_t) (int); sig_t
signal(int sig, sig_t func);

DESCRIPTION

This signal() facility is a simplified interface to the more general sigaction(2) facility.

Signals allow the manipulation of a process from outside its domain as well as
allowing the process to manipulate itself or copies of itself (children). There are
two general types of signals: those that cause termination of a process and those
that do not. Signals which cause termination of a program might result from an
irrecoverable error or might be the result of a user at a terminal typing the ‘interrupt’
character. Signals are used when a process is stopped because it wishes to access its
control terminal while in the background. Signals are optionally generated when a
process resumes after being stopped, when the status of child processes changes, or
when input is ready at the control terminal. Most signals result in the termination
of the process receiving them if no action is taken; some signals instead cause the
process receiving them to be stopped, or are simply discarded if the process has not
requested otherwise. Except for the SIGKILL and SIGSTOP signals, the signal()
function allows for a signal to be caught, to be ignored, or to generate an interrupt.
These signals are defined in the file <signal.h>:

No Name Default Action Description

1 SIGHUP terminate process terminal line hangup
2 SIGINT terminate process interrupt program

3 SIGQUIT create core image quit program

4 SIGILL create core image illegal instruction
5 SIGTRAP create core image trace trap

Systems/C C Library 439

© 00 N O

11
12
13
14
15
16

17

18

19
20
21

22

23

24

25

26

27

28
29
30
31
32
33
34
35
37
38
39
40
51
52

440 Systems/C C Library

SIGABRT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGURG

SIGSTOP

SIGTSTP

SIGCONT
SIGCHLD
SIGTTIN

SIGTTOU

SIGIO

SIGXCPU

SIGXFSZ

SIGVTALRM

SIGPROF

SIGWINCH
SIGINFO
SIGUSR1
SIGUSR2
SIGTHR
SIGDANGER
SIGTHSTOP
SIGTHCONT
SIGTRACE
SIGDCE
SIGDUMP
SIGABND
SIGPOLL
SIGIOERR

create core image
create core image
create core image
terminate process
create core image
create core image
create core image
terminate process
terminate process
terminate process
discard signal

stop process
stop process

discard signal
discard signal
stop process

stop process
discard signal
terminate process
terminate process
terminate process
terminate process

discard signal

discard signal

terminate process
terminate process
terminate process
terminate process
terminate process
terminate process
terminate process
terminate process
terminate process
terminate process
terminate process
terminate process

abort program (formerly SIGIOT)
emulate instruction executed
floating-point exception

kill program

bus error

segmentation violation
non-existent system call invoked
write on a pipe with no reader
real-time timer expired
software termination signal
urgent condition present on
socket

stop (cannot be caught or
ignored)

stop signal generated from
keyboard

continue after stop

child status has changed
background read attempted from
control terminal

background write attempted to
control terminal

I/0 is possible on a descriptor
(see \manref{fcntl}{2})

cpu time limit exceeded (see
\manref{setrlimit}{2})

file size limit exceeded (see
\manref{setrlimit}{2}))
virtual time alarm (see
setitimer(2) - unavailable)
profiling timer alarm (see
setitimer(2) - unavailable)
Window size change

status request from keyboard
User defined signal 1

User defined signal 2

thread interrupt

thread interrupt
thread interrupt

ABEND encountered

The sig argument specifies which signal was received. The func procedure allows a
user to choose the action upon receipt of a signal. To set the default action of the
signal to occur as listed above, func should be SIG_DFL. A SIG_DFL resets the default
action. To ignore the signal func should be SIG_IGN. This will cause subsequent
instances of the signal to be ignored and pending instances to be discarded. If
SIG_IGN is not used, further occurrences of the signal are automatically blocked and
func is called.

The handled signal is unblocked when the function returns and the process continues
from where it left off when the signal occurred. Unlike previous signal facilities, the
handler func() remains installed after a signal has been delivered.

For some system calls, if a signal is caught while the call is executing and the
call is prematurely terminated, the call is automatically restarted. (The handler is
installed using the SA_RESTART flag with sigaction(2).)

When a process which has installed signal handlers forks, the child process inherits
the signals. All caught signals may be reset to their default action by a call to the
execve(2) function; ignored signals remain ignored.

If a process explicitly specifies SIG_IGN as the action for the signal SIGCHLD, the
system will not create zombie processes when children of the calling process exit.
As a consequence, the system will discard the exit status from the child processes.
If the calling process subsequently issues a call to wait(2) or equivalent, it will block
until all of the calling process’s children terminate, and then return a value of -1
with errno set to ECHILD.

See sigaction(2) for a list of functions that are considered safe for use in signal
handlers.

RETURN VALUES

The previous action is returned on a successful call. Otherwise, SIG_ERR is returned
and the global variable errno is set to indicate the error.

ERRORS

The signal() function will fail and no action will take place if one of the following
occur:

errlist
[EINVAL] The sig argument is not a valid signal number.
[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL,

SIGSTOP or SIGABND.

Systems/C C Library 441

IMPLEMENTATION

signal() is implemented using the sigaction(2) facility.

For more information about POSIX signals and how that interacts with the Dignus
runtime environment, see sigaction(2).

SEE ALSO

kill(1), kill(2), ptrace(2), sigaction(2), sigaltstack(2), sigprocmask(2), sigsuspend(2),
wait(2), fpsetmask(3), setjmp(3), siginterrupt(3), tty(4)

442 Systems/C C Library

SIGSETOPS(3)
NAME

sigemptyset, sigfillset, sigaddset, sigdelset, sigismember — manipulate signal sets

SYNOPSIS

#include <signal.h>

int
sigemptyset(sigset_t *set);

int
sigfillset(sigset_t *set);

int
sigaddset(sigset_t *set, int signo);

int
sigdelset(sigset_t *set, int signo);

int
sigismember (const sigset_t *set, int signo);

DESCRIPTION

These functions manipulate signal sets stored in a sigset_t. Either sigemptyset()
or sigfillset() must be called for every object of type sigset_t before any other
use of the object.

The sigemptyset() function initializes a signal set to be empty.
The sigfillset() function initializes a signal set to contain all signals.
The sigdelset() function deletes the specified signal signo from the signal set.

The sigismember() function returns whether a specified signal signo is contained
in the signal set.

RETURN VALUES

The sigismember() function returns 1 if the signal is a member of the set, 0
otherwise. The other functions return 0 upon success. A -1 return value indicates
an error occurred and the global variable errno is set to indicate the reason.

Systems/C C Library 443

ERRORS

These functions could fail if one of the following occurs:

[EINVAL] signo has an invalid value.

SEE ALSO

kill(2), sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2)

STANDARDS

These functions are defined by IEEE Std 1003.1-1988 (“POSIX.1”).

444 Systems/C C Library

SETJMP(3)
NAME

sigsetjmp, siglongjmp, setjmp, longjmp, _setjmp, _longjmp - non-local jumps

SYNOPSIS

#include <setjmp.h>

int
sigsetjmp(sigjmp_buf env, int savemask);

void
siglongjmp(sigjmp_buf env, int val);

int
setjmp(jmp_buf env);

void
longjmp(jmp_buf env, int val);

int
_setjmp(jmp_buf env);

void
_longjmp(jmp_buf env, int val);

DESCRIPTION

The sigsetjmp(), setjmp(), and _setjmp() functions save their calling environ-
ment in env. Each of these functions returns 0.

The corresponding longjmp() functions restore the environment saved by their
most recent respective invocations of the setjmp() function. They then return so
that program execution continues as if the corresponding invocation of the setjmp()
call had just returned the value specified by wval, instead of 0.

Pairs of calls may be intermixed, i.e., both sigsetjmp() and siglongjmp() and
setjmp() and longjmp() combinations may be used in the same program, however,
individual calls may not, e.g. the env argument to setjmp() may not be passed to

siglongjmp().

The longjmp() routines may not be called after the routine which called the
setjmp() routines returns.

Systems/C C Library 445

All accessible objects have values as of the time longjmp() routine was called,
except that the values of objects of automatic storage invocation duration that
do not have the volatile type and have been changed between the setjmp()
invocation and longjmp() call are indeterminate.

The setjmp()/longjmp() pairs save and restore the signal mask while
_setjmp()/-longjmp() pairs save and restore only the register set and the stack.
(See sigprocmask(2).)

The sigsetjmp()/siglongjmp() function pairs save and restore the signal mask if

the argument savemask is non-zero, otherwise only the register set and the stack are
saved.

SEE ALSO

sigaction(2), sigaltstack(2), signal(3)

STANDARDS

The setjmp() and longjmp() functions conform to ISO/IEC 9899:1990 (“ISO
C90”). The sigsetjmp() and siglongjmp() functions conform to IEEE Std 1003.1-
1988 (“POSIX.17).

446 Systems/C C Library

SLEEP(3)
NAME

sleep — suspend process execution for an interval measured in seconds

SYNOPSIS

#include <unistd.h>

unsigned int
sleep(unsigned int seconds);

DESCRIPTION

The sleep() function suspends execution of the calling process until either seconds
seconds have elapsed or a signal is delivered to the process and its action is to invoke
a signal-catching function or to terminate the process. System activity may lengthen
the sleep by an indeterminate amount.

In the USS/POSIX environment, this function is implemented directly via the
BPX1SLP/BPX4SLP functions, in a batch or TSO environment this function is
implemented with a select() call with a specified timeout value. This allows for use
of the SIGALRM signal in USS/POSIX environments.

RETURN VALUES

In USS/POSIX environments, if the sleep() function returns because the requested
time has elapsed, the value returned will be zero. If the sleep() function returns
due to the delivery of a signal, the value returned will be the unslept amount (the
requested time minus the time actually slept) in seconds.

In batch or TSO environments, sleep() always returns 0.

STANDARDS

The sleep() function conforms to ISO/IEC 9945-1:1990 (“POSIX.17).

Systems/C C Library 447

SYSCONF(3)
NAME

sysconf - get configurable system variables

SYNOPSIS

#include <unistd.h>

long
sysconf (int name) ;

DESCRIPTION

This interface is defined by IEEE Std 1003.1-1988 (“POSIX.1”). This implementa-
tion does not support all of the POSIX-defined function, but a limited subset.

The sysconf() function provides a method for applications to determine the current
value of a configurable system limit or option variable. The name argument specifies
the system variable to be queried. Symbolic constants for each name value are found
in the include file <unistd.h>.

The available values in this implementation are:

_SC_CHILD_MAX Returns zero for the Systems/C runtime.
_SC_CLK_TCK The frequency of the statistics clock in ticks per second.

_SC_OPEN_MAX The maximum number of open files.

RETURN VALUES

If the call to sysconf() is not successful, -1 is returned and errno is set appropri-
ately. Otherwise, if the variable is associated with functionality that is not sup-
ported, -1 is returned and errno is not modified. Otherwise, the current variable
value is returned.

ERRORS

The sysconf() function may fail and set errno if the library cannot determine a
value. In addition, the following error may be reported:

[EINVAL] The value of the name argument is invalid.

448 Systems/C C Library

SEE ALSO

getdtablesize(2)

ISSUES

The Systems/C sysconf() implementation is not POSIX conforming.

Systems/C C Library 449

TCGETPGRP(3)
NAME

tcgetpgrp - get foreground process group ID

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

pid_t
tcgetpgrp(int fd);

DESCRIPTION

The tcgetpgrp() function returns the value of the process group ID of the fore-
ground process group associated with the terminal device. If there is no foreground
process group, tcgetpgrp() returns an invalid process ID.

ERRORS

If an error occurs, tcgetpgrp() returns -1 and the global variable errno is set to
indicate the error, as follows:

[EBADF] The fd argument is not a valid file descriptor.

[ENOTTY] The calling process does not have a controlling termi nal or the
underlying terminal device represented by fd is not the controlling
terminal.

SEE ALSO

setpgid(2), setsid(2), tesetpgrp(3)

STANDARDS

The tcgetpgrp() function is expected to be compliant with the IEEE Std 1003.1-
1988 (“POSIX.1”) specification.

450 Systems/C C Library

TCSENDBREAK (3)
NAME

tesendbreak, tedrain, tcflush, teflow - line control functions

SYNOPSIS

#include <termios.h>

int

tcdrain(int fd);

int

tcflow(int fd, int action);
int

tcflush(int fd, int action);

int
tcsendbreak(int fd, int len);

DESCRIPTION

The tedrain() function waits until all output written to the terminal referenced by
fd has been transmitted to the terminal.

The tcflow() function suspends transmission of data to or the reception of data
from the terminal referenced by fd depending on the value of action. The value of
action must be one of the following:

TCOFF Suspend output.
TCOON Restart suspended output.
TCIOFF Transmit a STOP character, which is intended to cause the terminal

to stop transmitting data to the system.

TCION Transmit a START character, which is intended to cause the termi-
nal to start transmitting data to the system.

The tcflush() function discards any data written to the terminal referenced by
fd which has not been transmitted to the terminal, or any data received from the
terminal but not yet read, depending on the value of action. The value of action
must be one of the following:

Systems/C C Library 451

TCIFLUSH Flush data received but not read.

TCOFLUSH Flush data written but not transmitted.
TCIOFLUSH Flush both data received but not read and data written but not
transmitted.

The tcsendbreak() function transmits a continuous stream of zero-valued bits for
the specified len to the terminal referenced by fd.

RETURN VALUES

Upon successful completion, all of these functions return a value of zero.

ERRORS

If any error occurs, a value of -1 is returned and the global variable errno is set to
indicate the error, as follows:

[EBADF] The fd argument is not a valid file descriptor.
[EINVAL] The action argument is not a proper value.
[ENOTTY] The file associated with fd is not a terminal.
[EINTR] A signal interrupted the tedrain() function.
SEE ALSO

tesetattr(3)

STANDARDS

The tcsendbreak(), tcdrain(), tcflush() and tcflow() functions are expected to
be compliant with the IEEE Std 1003.1-1988 (“POSIX.1”) specification.

452 Systems/C C Library

TCSETATTR(3)
NAME

cfgetispeed, cfsetispeed, cfgetospeed, cfsetospeed, cfsetspeed, cfmakeraw, tcgetattr,
tcsetattr - manipulating the termios structure

SYNOPSIS

#include <termios.h>

speed_t

cfgetispeed(const struct termios *t);

int

cfsetispeed(struct termios *t, speed_t speed);
speed_t

cfgetospeed(const struct termios *t);

int

cfsetospeed(struct termios *t, speed_t speed);
int

cfsetspeed(struct termios *t, speed_t speed);
void

cfmakeraw(struct termios *t);

int

tcgetattr(int fd, struct termios *t);

int
tcsetattr(int fd, int action, const struct termios *t);

DESCRIPTION

The cfmakeraw(), tcgetattr() and tcsetattr() functions are provided for getting
and setting the termios structure.

The cfgetispeed(), cfsetispeed(), cfgetospeed(), cfsetospeed() and cfset-
speed() functions are provided for getting and setting the baud rate values in
the termios structure. The effects of the functions on the terminal as described
below do not become effective, nor are all errors detected, until the tcsetattr()

Systems/C C Library 453

function is called. Certain values for baud rates set in the termios structure and
passed to tcsetattr() have special meanings. These are discussed in the portion of
the manual page that describes the tcsetattr() function.

GETTING AND SETTING THE BAUD RATE

The input and output baud rates are found in the termios structure. The unsigned
integer speed_t is typedef’d in the include file <termios.h>. The value of the integer
corresponds directly to the baud rate being represented, however, the following
symbolic values are defined.

#define BO 0
#define B50 50
#define B75 75

#define B110 110
#define B134 134
#define B150 150
#define B200 200
#define B300 300
#define B600 600
#define B1200 1200
#define B1800 1800
#define B2400 2400
#define B4800 4800
#define B9600 9600
#define B19200 19200
#define B38400 38400
#ifndef _POSIX_SOURCE
#define EXTA 19200
#define EXTB 38400
#endif /*_POSIX_SOURCE */

The cfgetispeed() function returns the input baud rate in the termios structure
referenced by tp.

The cfsetispeed() function sets the input baud rate in the termios structure refer-
enced by tp to speed.

The cfgetospeed() function returns the output baud rate in the termios structure
referenced by tp.

The cfsetospeed() function sets the output baud rate in the termios structure
referenced by tp to speed.

The cfsetspeed() function sets both the input and output baud rate in the termios
structure referenced by tp to speed.

454 Systems/C C Library

Upon successful completion, the functions cfsetispeed(), cfsetospeed(), and cf-
setspeed() return a value of 0. Otherwise, a value of -1 is returned and the global
variable errno is set to indicate the error.

GETTING AND SETTING THE TERMIOS STATE

This section describes the functions that are used to control the general terminal
interface. Unless otherwise noted for a specific command, these functions are re-
stricted from use by background processes. Attempts to perform these operations
shall cause the process group to be sent a SIGTTOU signal. If the calling process
is blocking or ignoring SIGTTOU signals, the process is allowed to perform the
operation and the SIGTTOU signal is not sent.

In all the functions, although fd is an open file descriptor, the functions affect the
underlying terminal file, not just the open file description associated with the par-
ticular file descriptor.

The cfmakeraw() function sets the flags stored in the termios structure to a state
disabling all input and output processing, giving a “raw I/O path”. It should be
noted that there is no function to reverse this effect. This is because there are a
variety of processing options that could be re-enabled and the correct method is for
an application to snapshot the current terminal state using the function tcgetattr(),
setting raw mode with cfmakeraw() and the subsequent tcsetattr(), and then
using another tcsetattr() with the saved state to revert to the previous terminal
state.

The tcgetattr() function copies the parameters associated with the terminal ref-
erenced by fd in the termios structure referenced by tp. This function is allowed
from a background process, however, the terminal attributes may be subsequently
changed by a foreground process.

The tcsetattr() function sets the parameters associated with the terminal from the
termios structure referenced by tp. The action field is created by or’ing the following
values, as specified in the include file <termios.h>.

TCSANOW The change occurs immediately

TCSADRAIN The change occurs after all output written to fd has been trans-
mitted to the terminal. This value of action should be used when
changing parameters that affect output.

TCSAFLUSH The change occurs after all output written to fd has been transmit-
ted to the terminal. Additionally, any input that has been received
but not read is discarded.

TCSASOFT If this value is or’ed into the action value, the values of c_cflag,
c_ispeed, and c_ospeedfields are ignored.

Systems/C C Library 455

The 0 baud rate is used to terminate the connection. If 0 is specified as the output
speed to the function tcsetattr(), modem control will no longer be asserted on the
terminal, disconnecting the terminal.

If zero is specified as the input speed to the function tcsetattr(), the input baud
rate will be set to the same value as that specified by the output baud rate.

If tesetattr() is unable to make any of the requested changes, it returns -1 and sets
errno. Otherwise, it makes all of the requested changes it can. If the specified input
and output baud rates differ and are a combination that is not supported, neither
baud rate is changed.

Upon successful completion, the functions tcgetattr() and tcsetattr() return a
value of 0. Otherwise, they return -1 and the global variable errno is set to indicate
the error, as follows:

[EBADF] The fd argument to tcgetattr() or tcsetattr() was not a valid file
descriptor.

[EINTR] The tcsetattr() function was interuppted by a signal.

[EINVAL] The action argument to the tcsetattr() function was not valid,

or an attempt was made to change an attribute represented in the
termios structure to an unsupported value.

[ENOTTY] The file associated with the fd argument to tcgetattr() or tcse-
tattr() is not a terminal.

SEE ALSO

tesendbreak(3)

STANDARDS

The cfgetispeed(), cfsetispeed(), cfgetospeed(), cfsetospeed(), tcgetattr()
and tcsetattr() functions are expected to be compliant with the IEEE Std 1003.1-
1988 (“POSIX.1") specification. The cfmakeraw() and cfsetspeed() functions,
as well as the TCSASOFT option to the tcsetattr() function are extensions to the
IEEE Std 1003.1-1988 (“POSIX.1”) specification.

456 Systems/C C Library

TCSETPGRP(3)
NAME

tcsetpgrp - set foreground process group 1D

SYNOPSIS

#include <sys/types.h>

#include <unistd.h>

int

tcsetpgrp(int fd, pid_t pgrp_id);

DESCRIPTION

If the process has a controlling terminal, the tcsetpgrp() function sets the fore-
ground process group ID associated with the terminal device to pgrp_id. The termi-
nal device associated with fd must be the controlling terminal of the calling process
and the controlling terminal must be currently associated with the session of the
calling process. The value of pgrp_id must be the same as the process group ID of a
process in the same session as the calling process.

RETURN VALUES

The tcsetpgrp() function returns the value 0 if successful; otherwise the value -1
is returned and the global variable errno is set to indicate the error.

ERRORS

The tcsetpgrp() function will fail if:

[EBADF] The fd argument is not a valid file descriptor.
[EINVAL] An invalid value of pgrp_id was specified.
[ENOTTY] The calling process does not have a controlling terminal, or the file

represented by fd is not the controlling terminal, or the control-
ling terminal is no longer associated with the session of the calling
process.

[EPERM] The pgrp_id argument does not match the process group ID of a
process in the same session as the calling process.

Systems/C C Library 457

SEE ALSO

setpgid(2), setsid(2), tcgetpgrp(3)

STANDARDS

The tcsetpgrp() function is expected to be compliant with the IEEE Std 1003.1-
1988 (“POSIX.1”) specification.

458 Systems/C C Library

THRD_CREATE(3)
NAME

call_once, cnd_broadcast, cnd_destroy, cnd_init, cnd_signal, cnd_timedwait,
cnd_wait, mtx_destroy, mtx_init, mtx_lock, mtx_timedlock, mtx_trylock, mtx_unlock,
thrd_create, thrd_current, thrd_detach, thrd_equal, thrd_exit, thrd_join, thrd_sleep,
thrd_yield, tss_create, tss_delete, tss_get, tss_set - C11 threads interface

SYNOPSIS

#include <threads.h>

void
call_once(once_flag *flag, void (*func)(void));

int
cnd_broadcast(cnd_t *cond);

void

cnd_destroy(cnd_t *cond) ;
int

cnd_init(cnd_t *cond);

int

cnd_signal(cnd_t *cond);

int

cnd_timedwait(cnd_t * restrict cond, mtx_t * restrict mtx,

const struct timespec * restrict ts);

int
cnd_wait(cnd_t *cond, mtx_t *mtx);

void
mtx_destroy(mtx_t *mtx);

int
mtx_init(mtx_t *mtx, int type);

int
mtx_lock(mtx_t *mtx);

int
mtx_timedlock(mtx_t * restrict mtx, const struct timespec * restrict ts);

Systems/C C Library 459

int
mtx_trylock(mtx_t *mtx);

int
mtx_unlock(mtx_t *mtx);

int
thrd_create(thrd_t *thr, int (*func)(void *), void *arg);

thrd_t
thrd_current (void) ;

int
thrd_detach(thrd_t thr);

int
thrd_equal (thrd_t thr0O, thrd_t thril);

_Noreturn void
thrd_exit(int res);

int
thrd_join(thrd_t thr, int *res);

int
thrd_sleep(const struct timespec *duration, struct timespec *remaining);

void
thrd_yield(void);

int
tss_create(tss_t *key, void (*dtor) (void *));

void
tss_delete(tss_t key);

void *
tss_get(tss_t key);

int
tss_set(tss_t key, void *val);

460 Systems/C C Library

DESCRIPTION

As of ISO/IEC 9899:2011 (“ISO C11”), the C standard includes an APT for writing
multithreaded applications. Since POSIX.1 already includes a threading API that
is used by virtually any multithreaded application, the interface provided by the C
standard can be considered superfluous.

In this implementation, the threading interface is therefore implemented as a light-
weight layer on top of existing interfaces. The functions to which these routines are
mapped, are listed in the following table. Please refer to the documentation of the
POSIX equivalent functions for more information.

Function POSIX equivalent

call once() pthread_once(3)
cnd_broadcast() pthread_cond_broadcast(3)
cnd_destroy() pthread_cond_destroy(3)
cnd_init() pthread_cond_init(3)

cnd _signal() pthread_cond_ signal(3)
cnd_timedwait() pthread_cond_timedwait(3)
cnd_wait() pthread_cond_wait(3)
mtx_destroy() pthread mutex_destroy(3)
mtx_init() pthread_mutex_init(3)
mtx_lock() pthread mutex_lock(3)
mtx_timedlock() pthread_mutex_timedlock(3)
mtx_trylock() pthread mutex_trylock(3)
mtx_unlock() pthread_mutex_unlock(3)
thrd_create() pthread_create(3)
thrd_current() pthread_self(3)
thrd_detach() pthread_detach(3)
thrd_equal() pthread_equal(3)

thrd_exit() pthread_exit(3)

thrd_join() pthread_join(3)

thrd_sleep() nanosleep(2)

Systems/C C Library 461

thrd_yield() pthread_yield(3)

tss_create() pthread key_create(3)
tss_delete() pthread key_delete(3)
tss_get() pthread_getspecific(3)

tss_set() pthread_setspecific(3)

DIFFERENCES WITH POSIX EQUIVALENTS

The thrd_exit() function returns an integer value to the thread calling thrd_join(),
whereas the pthread_exit() function uses a pointer.

The mutex created by mtx_init() can be of type mtx plain or mtx_timed to dis-
tinguish between a mutex that supports mtx_timedlock(). This type can be or’d
with mtx_recursive to create a mutex that allows recursive acquisition. These
properties are normally set using pthread _mutex_init()’s attr parameter.

RETURN VALUES

If successful, the cnd_broadcast(), cnd_init(), cnd_signal(), cnd_timedwait(),
cnd_wait(), mtx_init(), mtx_lock(), mtx_timedlock(), mtx_trylock(),
mtx_unlock(), thrd create(), thrd _detach(), thrd_equal(), thrd_ join(),
thrd_sleep(), tss_create() and tss_set() functions return thrd success. Oth-
erwise an error code will be returned to indicate the error.

The thrd_current() function returns the thread ID of the calling thread.

The tss_get() function returns the thread-specific data value associated with the
given key. If no thread-specific data value is associated with key, then the value
NULL is returned.

ERRORS

The cnd_init() and thrd_create() functions will fail if:
thrd_nonmem The system has insufficient memory.
The cnd_timedwait() and mtx_timedlock() functions will fail if:

thrd_timedout The system time has reached or exceeded the time specified in ts
before the operation could be completed.

462 Systems/C C Library

The mtx_trylock() function will fail if:

thrd_busy The mutex is already locked.

In all other cases, these functions may fail by returning general error code
thrd_error.

SEE ALSO

nanosleep(2), pthread(3)

STANDARDS

These functions are expected to conform to ISO/IEC 9899:2011 (“ISO C117”).

Systems/C C Library 463

TIME(3)
NAME

time - get time of day

SYNOPSIS

#include <time.h>

time_t
time(time_t *tloc)

DESCRIPTION

The time() function returns the value of time in seconds since 0 hours, 0 minutes,
0 seconds, January 1, 1970, Coordinated Universal Time.

A copy of the time value may be saved to the area indicated by the pointer tloc. If
tloc is a NULL pointer, no value is stored.

Upon successful completion, time() returns the value of time. There is no error
value as a value of -1 seconds would be the last second of the year 1969.

SEE ALSO

gettimeofday(2), ctime(3)

464 Systems/C C Library

TIMES(3)
NAME

times - process times

SYNOPSIS

#include <sys/times.h>

clock_t
times(struct tms *tp);

DESCRIPTION

This interface is obsoleted by getrusage(2) and gettimeofday(2).

The times() function returns the value of time in CLK_TCK’s of a second since 0
hours, 0 minutes, 0 seconds, January 1, 1970, Coordinated Universal Time.

It also fills in the structure pointed to by ¢p with time-accounting information.

The tms structure is defined as follows:

struct tms {
clock_t tms_utime;
clock_t tms_stime;
clock_t tms_cutime;
clock_t tms_cstime;

};
The elements of this structure are defined as follows:

tms_utime The CPU time charged for the execution of user instructions.

tms_stime The CPU time charged for execution by the system on behalf of the
process.

tms_cutime The sum of the tms_utimes and tms_cutimes of the child processes.

tms_cstime The sum of the tms_stimes and tms_cstimes of the child processes.

All times are in CLK_TCK'’s of a second.

If an error occurs, times() returns the value ((clock_t)-1), and sets errno to
indicate the error.

Systems/C C Library 465

ERRORS

The times() function may fail and set the global variable errno for any of the errors
specified for the library routines getrusage(2) and gettimeofday(2).

SEE ALSO

getrusage(2), gettimeofday(2), wait(2)

STANDARDS

The times() function conforms to IEEE Std 1003.1-1988 (“POSIX.1”) as closely as
the host system allows.

466 Systems/C C Library

TIMEZONE(3)
NAME

timezone - return the timezone abbreviation

SYNOPSIS

char x*
timezone(int zone, int dst);

DESCRIPTION

This interface is for compatibility only; it is impossible to reliably map timezone’s
arguments to a time zone abbreviation. See ctime(3).

The timezone() function returns a pointer to a time zone abbreviation for the
specified zone and dst values. Zone is the number of minutes west of GMT and dst
is non-zero if daylight savings time is in effect.

SEE ALSO

ctime(3)

Systems/C C Library 467

TPUT(3)
NAME

__tput - issue the TPUT macro

SYNOPSIS

#include <machine/tput.h>
void
__tput(int len, char *buffer)

DESCRIPTION

The __tput() function invokes the z/OS TPUT macro, passing the given length len
and buffer address buffer.

Consult the IBM documentation for the TPUT macro for more information.

468 Systems/C C Library

TRACEBACK(3)
NAME

__traceback - provide a function traceback

SYNOPSIS

#include <stdio.h>
#include <machine/trcback.h>

void
__traceback(FILE *f);

void
_tbfrom(void *stack_ptr, void message(char *, void *), void *user_data);

DESCRIPTION

The __traceback() function provides a function-level traceback of the call stack
from the calling function.

__traceback() writes the traceback on the file descriptor specified by f. The trace-
back information is kept in the Systems/C pre-prologue area. The __traceback()
function walks the stack frame backwards, printing the name found in the per-
prologue area.

The __tbfrom() function provides a user-controlled mechanism to access the trace-
back. The __tbfrom() function will invoke the message function for each line of
traceback information generated. The first parameter to the message function will be
a NUL-terminated character string. The 2nd parameter will be the value of user_data
passed into __tbfrom(). The stack_ptr parameter to __tbfrom() is the stack pointer
where the traceback should begin. Typically this is the current register 13.

Note that invoking __traceback() or __tbfrom() with a SIGSEGV or SIGABND sig-
nal handler can be dangerous as the stack may be corrupted. __traceback() and
__tbfrom() require a reasonable stack to ”walk-back” and retrieve the function
names. A corrupt stack will cause these functions to possibly dereference invalid
memory, or have other issues. Therefor, use of these functions within a corrupted
stack environment may cause further SIGSEGV or other events.

For example, the __traceback() function can be implemented as:

#include <machine/trcback.h>

Systems/C C Library 469

#include <stdio.h>
#include <stdlib.h>

/%

* one_line()

* Print one line to the the FILE pointer
* passed in a user-data

*% /

static void

one_line(char *mess, void *user)

{
FILE *fp;
fp = (FILE *)user;
fprintf (fp, "%s\n", mess);
fflush(£p) ;
}
void
traceback (FILE *f)
{
__register(13) void *rl13; /* current stack pointer */
__tbfrom(rl3, one_line, f);
}
SEE ALSO

funopen(3), fopen(3)

470 Systems/C C Library

TSEARCH(3)
NAME

tsearch, tfind, tdelete, twalk — manipulate binary search trees

SYNOPSIS

#include <search.h>

void *
tdelete(const void *key, void **rootp,
int (*compar) (const void *, const void *));

void *
tfind(const void *key, void **rootp,
int (*compar) (const void *, const void *));

void *
tsearch(const void *key, void **rootp,
int (*compar) (const void *, const void *));

void
twalk(const void *root, void (*compar) (const void *, VISIT, int));

DESCRIPTION

The tdelete(), tfind(), tsearch(), and twalk() functions manage binary search
trees based on algorithms T and D from Knuth (6.2.2). The comparison function
passed in by the user has the same style of return values as stremp(3).

tfind() searches for the datum matched by the argument key in the binary tree
rooted at rootp, returning a pointer to the datum if it is found and NULL if it is not.

tsearch() is identical to tfind() except that if no match is found, key is inserted
into the tree and a pointer to it is returned. If rootp points to a NULL value a new
binary search tree is created.

tdelete() deletes a node from the specified binary search tree and returns a pointer
to the parent of the node to be deleted. It takes the same arguments as tfind() and
tsearch(). If the node to be deleted is the root of the binary search tree, rootp will
be adjusted.

twalk() walks the binary search tree rooted in root and calls the function action on
each node. Action is called with three arguments: a pointer to the current node,

Systems/C C Library 471

a value from the enum typedef enum { preorder, postorder, endorder, leaf
} VISIT; specifying the traversal type, and a node level (where level zero is the
root of the tree).

SEE ALSO

bsearch(3), hsearch(3), lsearch(3)

RETURN VALUES

The tsearch() function returns NULL if allocation of a new node fails (usually due
to a lack of free memory).

tfind(), tsearch(), and tdelete() functions return NULL if rootp is NULL or the
datum cannot be found.

The twalk() function returns no value.

472 Systems/C C Library

TTYNAME(3)
NAME

ttyname - get name of associated terminal (tty) from file descriptor

SYNOPSIS

#include <unistd.h>

char *
ttyname (int fd);

DESCRIPTION

The ttyname() function operates on the system file descriptors for terminal type
devices. These descriptors are not related to the standard 1/O FILE typedef, but
refer to the special device files found in /dev and named /dev/ttyzz

The ttyname() function gets the related device name of a file descriptor for which
isatty() is true, and the file descriptor is associated with an //HFS:-style file.
isatty() can return true for non-//HFS: files when the DCB indicates that the file is
associated with a TSO terminal.

RETURN VALUES

The ttyname() function returns the null terminated name if the device is found
and isatty() is true, and the file descriptor is an //HFS:-style file; otherwise a NULL
pointer is returned.

ISSUES

The ttyname() function leaves its result in an internal static object and returns a
pointer to that object. Subsequent calls to ttyname() will modify the same object.

Systems/C C Library 473

UCONTEXT(3)
NAME

ucontext — user thread context

SYNOPSIS

#include <ucontext.h>

DESCRIPTION

The ucontext_t type is a structure type suitable for holding the context for a user
thread of execution. A thread’s context includes its stack, saved registers, and list
of blocked signals.

The ucontext_t structure contains at least these fields:

ucontext_t *uc_link context to assume when this one returns
sigset_t uc_sigmask signals being blocked
stack_t uc_stack stack area

mcontext_t uc_mcontext saved registers

The uc_link field points to the context to resume when this context’s entry point
function returns. If wc_link is equal to NULL, then the program exits when this
context returns.

The uc_mcontext field is machine-dependent and should be treated as opaque by
portable applications.

The following functions are defined to manipulate ucontext_t structures:

int getcontext(ucontext_t *);

int setcontext(const ucontext_t *);

void makecontext (ucontext_t *, void (%) (void), int, ...);
int swapcontext(ucontext_t *, const ucontext_t *);

SEE ALSO

sigaltstack(2), getcontext(3), makecontext(3)

474 Systems/C C Library

UNAME(3)
NAME

uname - get system identification

SYNOPSIS

#include <sys/utsname.h>
int

uname (struct utsname *name) ;

DESCRIPTION

The uname() function stores nul-terminated strings of information identifying the
current system into the structure referenced by name.

The utsname struction is defined in the <sys/utsname.h> header file, and contains
the following members:

sysname Name of the operating system implementation.
nodename Network name of this machine.

release Release level of the operating system.

version Version level of the operating system.

machine Machine hardware platform.

RETURN VALUES

The unname() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

The only error value possible from uname() is ENOSYS, which can occur if OpenEdi-
tion services are not available.

STANDARDS

The uname() function conforms to IEEE Std 1003.1-1988 (“POSIX.1”) as closely
as the host system allows.

Systems/C C Library 475

USLEEP(3)
NAME

usleep — suspend process execution for an interval measured in microseconds

SYNOPSIS

#include <unistd.h>

int
usleep(useconds_t microseconds);

DESCRIPTION

The usleep() function suspends execution of the calling process until either mi-
croseconds microseconds have elapsed or a signal is delivered to the process and its
action is to invoke a signal-catching function or to terminate the process. System
activity may lengthen the sleep by an indeterminate amount.

This function is implemented using nanosleep(2) by pausing for microseconds mi-
croseconds or until a signal occurs. Consequently, in this implementation, sleeping
has no effect on the state of process timers, and there is no special handling for
SIGALRM.

RETURN VALUES

The usleep() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS
The usleep() function will fail if:

[EINTR] A signal was delivered to the process and its action was to invoke a
signal-catching function.

SEE ALSO

nanosleep(2), sleep(3)

476 Systems/C C Library

UTIME(3)
NAME

utime - set //HFS:-style file times

SYNOPSIS

#include <sys/types.h>
#include <utime.h>

int
utime(const char *file, const struct utimbuf *timep);

DESCRIPTION

This interface is obsoleted by utimes(2).

The utime() function sets the access and modification times of the named file from
the structures in the argument array timep.

If the times are specified (the timep argument is non-NULL) the caller must be the
owner of the file or be the super-user.

If the times are not specified (the timep argument is NULL) the caller must be the
owner of the file, have permission to write the file, or be the super-user.

ERRORS

The utime() function may fail and set errno for any of the errors specified for the
library function utimes(2).

SEE ALSO

stat(2), utimes(2)

STANDARDS

The utime() function conforms to IEEE Std 1003.1-1988 (“POSIX.1”).

Systems/C C Library 477

WORDEXP (3)
NAME

wordexp - perform shell-style word expansions

SYNOPSIS

#include <wordexp.h>

int
wordexp(const char * restrict words, wordexp_t * restrict we, int flags);

void
wordfree (wordexp_t *we);

DESCRIPTION

The wordexp() function performs shell-style word expansion on words and places
the list of words into the we_wordv member of we, and the number of words into
we_wordc.

The flags argument is the bitwise inclusive OR, of any of the following constants:

WRDE_APPEND Append the words to those generated by a previous call to word-
exp().
WRDE_DOQFFS As many NULL pointers as are specified by the we_offs member

of we are added to the front of we_wordv.

WRDE_NOCMD Disallow command substitution in words. See the note in ISSUES
before using this.

WRDE_REUSE The we argument was passed to a previous successful call to
wordexp() but has not been passed to wordfree(). The im-
plementation may reuse the space allocated to it.

WRDE_SHOWERR Do not redirect shell error messages to /dev/null.

WRDE_UNDEF Report error on an attempt to expand an undefined shell variable.

The wordexp_t structure is defined in <wordexp.h> as:

478 Systems/C C Library

typedef struct {

size_t we_wordc; /* count of words matched */

char *x*we_wordv; /* pointer to list of words */

size_t we_offs; /* slots to reserve in we_wordv */
} wordexp_t;

The wordfree() function frees the memory allocated by wordexp().

IMPLEMENTATION NOTES

The wordexp() function is implemented as a wrapper around an invocation of the
POSIX shell.

RETURN VALUES

The wordexp() function returns zero if successful, otherwise it returns one of the
following error codes:

WRDE_BADCHAR The words argument contains one of the following unquoted char-
acters: <new1ine>, cla’ t&?’ 4;7, 4<77 c>7’ 4(7’ 4)7’ 4{7’ c}a‘

WRDE_BADVAL An attempt was made to expand an undefined shell variable and
WRDE_UNDEF is set in flags.

WRDE_CMDSUB An attempt was made to use command substitution and
WRDE_NOCMD is set in flags.

WRDE_NOSPACE Not enough memory to store the result.

WRDE_NOSYS Functionality not supported on this system, errno will also be
set to ENOSYS enough memory to store the result.

WRDE_SYNTAX Shell syntax error in words.

The wordfree() function returns no value.

ENVIRONMENT

IFS Field separator.

Systems/C C Library 479

EXAMPLES

Invoke the editor on all .c files in the current directory and /etc/motd (error checking
omitted):

wordexp_t we;

wordexp ("${EDITOR:-vi} *.c /etc/motd", &we, 0);
execvp(we.we_wordv[0], we.we_wordv);

DIAGNOSTICS

Diagnostic messages from the shell are written to the standard error output if
WRDE_SHOWERR is set in flags.

SEE ALSO

fnmatch(3), glob(3), popen(3), system(3)

STANDARDS

The wordexp() and wordfree() functions conform to IEEE Std 1003.1-2001
(“POSIX.17).

ISSUES

Do not pass untrusted user data to wordexp(), regardless of whether the
WRDE_NOCMD flag is set. The wordexp() function attempts to detect input that
would cause commands to be executed before passing it to the shell but it does not
use the same parser so it may be fooled.

The current wordexp() implementation does not recognize multibyte characters,
since the shell (which it invokes to perform expansions) does not.

480 Systems/C C Library

WTO(3)
NAME

__wto - issue the WTO macro

SYNOPSIS

#include <machine/wto.h>
void
__wto(int len, char *buffer)

DESCRIPTION

The __wto() function invokes the z/OS WTO macro, passing the given length len
and buffer address buffer.

Consult the IBM documentation for the WTO macro for more information.

Systems/C C Library 481

Locale Library

The locale library provides functions for manipulating character values in a locale
specific fashion. It provides functions that define the locale, test various character
values for belong to specific classes of characters and formatting various items based
on the locale setting.

482 Systems/C C Library

BTOWC(3)
NAME

btowc, wctob - convert between wide and single-byte characters

SYNOPSIS

#include <wchar.h>

wint_t
btowc(int c);

int
wctob(wint_t c);

DESCRIPTION

The btowc() function converts a single-byte character into a correspond- ing wide
character. If the character is EOF or not valid in the initial shift state, btowc()
returns WEOF.

The wctob() function converts a wide character into a corresponding sin- gle-byte
character. If the wide character is WEOF or not able to be rep- resented as a single
byte in the initial shift state, wctob() returns WEOF.

SEE ALSO

mbrtowc(3), multibyte(3), wertomb(3)

STANDARDS

The btowc() and wctob() functions conform to IEEE Std 1003.1-2001
(“POSIX.17).

Systems/C C Library 483

CTYPE(3)
NAME

isalnum, isalpha, isascii, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, isxdigit, toascii tolower, toupper, - character classification macros

SYNOPSIS

#include <ctype.h>

int
isalnum(int c)

int
isalpha(int c)

int
isascii(int c)

int
iscntrl(int c)

int
isdigit(int c)

int
isgraph(int c)

int
islower (int c)

int
isprint (int c)

int
ispunct (int c)

int
isspace(int c)

int
isupper (int c)

int
isxdigit(int c)

484 Systems/C C Library

int
toascii(int c)

int
tolower (int c)

int
toupper(int c)

DESCRIPTION

The above functions perform character tests and conversions on the integer c. They
are available as macros, defined in the include file jctype.h;, or as true functions in
the C library. See the specific manual pages for more information.

SEE ALSO

isalnum(3), isalpha(3), isascii(3), isblank(3), iscntrl(3), isdigit(3), isgraph(3),
islower(3), isprint(3), ispunct(3), isspace(3), isupper(3), isxdigit(3), toascii(3),
tolower(3), toupper(3)

STANDARDS

These functions, except for isblank(), toupper(), tolower() and toascii(), con-
form to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 485

ISALNUM(3)
NAME

isalnum - alphanumeric character test

SYNOPSIS

#include <ctype.h>

int
isalnum(int c)

DESCRIPTION

The isalnum() function tests for any character for which isalpha(3) or isdigit(3) is
true.

RETURN VALUES

The isalnum() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3), isalpha(3), isdigit(3)

STANDARDS

The isalnum() function conforms to ISO/IEC 9899:1990 (“ISO C907).

486 Systems/C C Library

ISALPHA (3)
NAME

isalpha - alphabetic character test

SYNOPSIS
#include <ctype.h>

int
isalpha(int c)

DESCRIPTION

The isalpha() function tests for any character for which isupper(3) or slower(3) is

true.

RETURN VALUES

The isalpha() function returns zero if the character tests false and returns non-zero

if the character tests true.

SEE ALSO

ctype(3), islower(3), isupper(3)

STANDARDS

The isalpha() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 487

ISASCII(3)
NAME

isascii - test for ASCII character

SYNOPSIS

#include <ctype.h>

int
isascii(int c)

DESCRIPTION

The isascii() function tests for an ASCII character, based on the EBCDIC character
set. That is, isascii returns a non-zero value for any EBCDIC character which, when
converted to ASCII, would have a value less than or equal to 0177.

The conversion from EBCDIC to ASCII follows the C compiler’s conversion table.

SEE ALSO

ctype(3),

STANDARDS

The isascii() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

488 Systems/C C Library

ISBLANK(3)
NAME

isblank - space or tab character test

SYNOPSIS

#include <ctype.h>

int
isblank(int c)

DESCRIPTION

The isblank() function tests for a space or tab character.

RETURN VALUES

The isblank() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3)

Systems/C C Library 489

ISCNTRL(3)
NAME

iscntrl - control character test

SYNOPSIS

#include <ctype.h>

int
iscntrl(int c)

DESCRIPTION

The iscntrl() function tests for any control character.

RETURN VALUES

The iscntrl() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3),

STANDARDS

The iscntrl() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

490 Systems/C C Library

ISDIGIT(3)
NAME

isdigit - decimal-digit character test

SYNOPSIS

#include <ctype.h>
int

isdigit(int c)
DESCRIPTION

The isdigit() function tests for any decimal-digit character.

RETURN VALUES

The isdigit() function returns zero if the character tests false and returns non-zero
If the character tests true.

SEE ALSO

ctype(3),

STANDARDS

The isdigit() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 491

ISGRAPH(3)
NAME

isgraph - printing character test (space character exclusive)

SYNOPSIS

#include <ctype.h>

int
isgraph(int c)

DESCRIPTION

The isgraph() function tests for any printing character except space.

RETURN VALUES

The isgraph() function returns zero if the character tests false and returns non-zero
If the character tests true.

SEE ALSO

ctype(3),

STANDARDS

The isgraph() function conforms to ISO/IEC 9899:1990 (“ISO C907).

492 Systems/C C Library

ISLOWER(3)
NAME

islower - lower-case character test

SYNOPSIS

#include <ctype.h>

int
islower(int c)

DESCRIPTION

The islower() function tests for any lower-case letters.

RETURN VALUES

The islower() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3),

STANDARDS

The islower() function conforms to ISO/TEC 9899:1990 (“ISO C90”).

Systems/C C Library 493

ISPRINT(3)
NAME

isprint - printing character test (space character inclusive)

SYNOPSIS

#include <ctype.h>

int
isprint(int c)

DESCRIPTION

The isprint() function tests for any printing character including space (*).

RETURN VALUES

The isprint() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3),

STANDARDS

The isprint() function conforms to ISO/IEC 9899:1990 (“ISO C907).

494 Systems/C C Library

ISPUNCT(3)
NAME

ispunct - punctuation character test

SYNOPSIS

#include <ctype.h>

int
ispunct(int c)

DESCRIPTION

The ispunct() function tests for any printing character except for space (*’) or a
character for which isalnum(3) is true.

RETURN VALUES

The ispunct() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3),

STANDARDS

The ispunct() function conforms to ISO/IEC 9899:1990 (“ISO C907).

Systems/C C Library 495

ISSPACE(3)
NAME

isspace - white-space character test

SYNOPSIS

#include <ctype.h>

int
isspace(int c)

DESCRIPTION

The isspace() function tests for the standard white-space characters.

RETURN VALUES

The isspace() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3),

STANDARDS

The isspace() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

496 Systems/C C Library

ISUPPER(3)
NAME

isupper - upper-case character test

SYNOPSIS

#include <ctype.h>

int
isupper(int c)

DESCRIPTION

The isupper() function tests for any upper-case letter.

RETURN VALUES

The isupper() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3)

STANDARDS

The isupper() function conforms to ISO/TEC 9899:1990 (“ISO C90”).

Systems/C C Library 497

ISWALNUM(3)
NAME

iswalnum, iswalpha, iswascii, iswblank, iswcntrl, iswdigit, iswgraph, iswhexnum-
ber, iswideogram, iswlower, iswnumber, iswphonogram, iswprint, iswpunct, iswrune,
iswspace, iswspecial, iswupper, iswxdigit - wide character classification utilities

SYNOPSIS

#include <wctype.h>
int
iswalnum(wint_t wc);
int
iswalpha(wint_t wc);

int
iswascii(wint_t wc);

int
iswblank(wint_t wc);

int
iswentrl(wint_t wc);

int
iswdigit(wint_t wc);

int
iswgraph(wint_t wc);

int
iswhexnumber (wint_t wc);

int
iswideogram(wint_t wc);

int
iswlower(wint_t wc);

int
iswnumber (wint_t wc);

int
iswphonogram(wint_t wc) ;

498 Systems/C C Library

int
iswprint(wint_t wc);

int
iswpunct (wint_t wc);

int
iswrune(wint_t wc);

int
iswspace(wint_t wc);

int
iswspecial(wint_t wc);

int
iswupper(wint_t wc);

int
iswxdigit (wint_t wc);

DESCRIPTION

The above functions are character classification utility functions, for use with wide
character (wchar_t or wint_t). See the description for the similarly-named single
byte classfunctions (e.g. isalnum(3)) for details.

RETURN VALUES

The functions return zero if the character tests false and return non-zero if the
character tests true.

SEE ALSO

isalnum(3), isalpha(3), isascii(3), isblank(3), iscntrl(3), isdigit(3), isgraph(3),
ishexnumber(3), isideogram(3), islower(3), isnumber(3), isphonogram(3), isprint(3),
ispunct(3), isrune(3), isspace(3), isspecial(3), isupper(3), isxdigit(3), wctype(3)

STANDARDS

These functions functions conform to ISO/IEC 9899:1999 (“ISO C997), ex-
cept iswascii(), iswhexnumber(), iswideogram(), iswnumber(), iswphono-

Systems/C C Library 499

gram(), iswrune() and iswspecial(), which are Systems/C extensions.

CAVEATS

The result of these functions is undefined unless the argument is WEOF or a valid
wchar_t value for the current locale.

500 Systems/C C Library

ISXDIGIT (3)
NAME

isxdigit - hexadecimal-digit character test

SYNOPSIS

#include <ctype.h>

int
isxdigit(int c)

DESCRIPTION

The isxdigit() function tests for any hexadecimal-digit character.

RETURN VALUES

The isxdigit() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3)

STANDARDS

The isxdigit() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 501

MBLEN(3)
NAME

mblen - get number of bytes in a character

SYNOPSIS

#include <stdlib.h>
int

mblen(const char *mbchar, size_t nbytes);

DESCRIPTION

The mblen() function computes the length in bytes of a multibyte character mbchar
according to the current conversion state. Up to nbytes bytes are examined.

A call with a null mbchar pointer returns nonzero if the current locale requires shift

states, zero otherwise; if shift states are required, the shift state is reset to the initial
state.

RETURN VALUES

If mbchar is NULL, the mblen() function returns nonzero if shift states are supported,
zero otherwise.

Otherwise, if mbchar is not a null pointer, mblen() either returns 0 if mbchar
represents the null wide character, or returns the number of bytes processed in
mbchar, or returns -1 if no multibyte character could be recognized or converted. In
this case, mblen()’s internal conversion state is undefined.

ERRORS

The mblen() function will fail if:

EILSEQ An invalid multibyte sequence was detected.

EINVAL The internal conversion state is not valid.

502 Systems/C C Library

SEE ALSO

mbrlen(3), mbtowe(3), multibyte(3)

STANDARDS

The mblen() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 503

MBRLEN(3)
NAME

mbrlen - get number of bytes in a character (restartable)

SYNOPSIS

#include <wchar.h>

size_t
mbrlen(const char * restrict s, size_t n, mbstate_t * restrict ps);

DESCRIPTION

The mbrlen() function inspects at most n bytes pointed to by s to determine the
number of bytes needed to complete the next multibyte character.

The mbstate_t argument, ps, is used to keep track of the shift state. If it is NULL,
mbrlen() uses an internal, static mbstate_t object, which is initialized to the initial
conversion state at program startup.

It is equivalent to:
mbrtowc (NULL, s, n, ps);

Except that when ps is a NULL pointer, mbrlen() uses its own static, internal
mbstate_t object to keep track of the shift state.

RETURN VALUES

The mbrlen() functions returns:

0 The next n or fewer bytes represent the null wide character (L’
07). item[>0] The next n or fewer bytes represent a valid charac-
ter, mbrlen() returns the number of bytes used to complete the
multibyte character.

EFAULT locale was NULL.

(size_t)-2 The next n contribute to, but do not complete, a valid multibyte
character sequence, and all n bytes have been processed.

(size_t)-1 An encoding error has occurred. The next n or fewer bytes do
not contribute to a valid multibyte character.

504 Systems/C C Library

EXAMPLES
A function that calculates the number of characters in a multibyte character string:

size_t

nchars(const char *s)

{
size_t charlen, chars;
mbstate_t mbs;

chars = 0;
memset (&mbs, 0, sizeof (mbs));
while ((charlen = mbrlen(s, MB_CUR_MAX, &mbs)) != 0 &&
charlen !'= (size_t)-1 && charlen !'= (size_t)-2) {
s += charlen;

chars++;
}
return (chars);
}
ERRORS

The mbrlen() function will fail if:

EILSEQ An invalid multibyte sequence was detected.
EINVAL The conversion state is invalid.
SEE ALSO

mblen(3), mbrtowc(3), multibyte(3)

STANDARDS

The mbrlen() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 505

MBRTOWC(3)
NAME

mbrtowc - convert a character to a wide-character code (restartable)

SYNOPSIS

#include <wchar.h>

size_t
mbrtowc(wchar_t * restrict pwc, const char * restrict s, size_t n,
mbstate_t * restrict ps);

DESCRIPTION

The mbrtowc() function inspects at most n bytes pointed to by s to determine the
number of bytes needed to complete the next multibyte character. If a character
can be completed, and pwc is not NULL, the wide character which is represented by
s is stored in the wchar_t it points to.

If s is NULL, mbrtowc() behaves as if pwec was NULL, s was an empty string ("")
and n was 1.

The mbstate_t argument, ps, is used to keep track of the shift state. If it is NULL,
mbrtowc() uses an internal, static mbstate_t object, which is initialized to the
initial conversion state at program startup.

RETURN VALUES

The mbrtowc() function returns:

0 The next n or fewer bytes represent the null wide character (L’
07%).

>0 The next n or fewer bytes represent a valid character, mbrtowc()
returns the number of bytes used to complete the multibyte char-
acter.

(size_t)-2 The next n contribute to, but do not complete, a valid multibyte

character sequence, and all n bytes have been processed.

(size t)-1 An encoding error has occurred. The next n or fewer bytes do
not contribute to a valid multibyte character.

506 Systems/C C Library

ERRORS

The mbrtowc() function will fail if:

EILSEQ An invalid multibyte sequence was detected.
EINVAL The conversion state is invalid.
SEE ALSO

mbtowc(3), multibyte(3), setlocale(3), wertomb(3)

STANDARDS

The mbrtowc() function conforms to ISO/IEC 9899:1999 (“ISO C997).

Systems/C C Library 507

MBSINIT(3)
NAME

mbsinit - determine conversion object status

SYNOPSIS

#include <wchar.h>

int
mbsinit(const mbstate_t *ps);

DESCRIPTION

The mbsinit() function determines whether the mbstate_t object pointed to by ps
describes an initial conversion state.

RETURN VALUES

The mbsinit() function returns non-zero if ps is NULL or describes an initial con-
version state, otherwise it returns zero.

STANDARDS

The mbsinit() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

508 Systems/C C Library

MBSRTOWCS(3)
NAME

mbsrtowces, mbsnrtowcs - convert a character string to a wide-character string
(restartable)

SYNOPSIS

#include <wchar.h>

size_t
mbsrtowcs (wchar_t * restrict dst, const char ** restrict src, size_t len,
mbstate_t * restrict ps);

size_t
mbsnrtowcs(wchar_t * restrict dst, const char ** restrict src,
size_t nms, size_t len, mbstate_t * restrict ps);

DESCRIPTION

The mbsrtowcs() function converts a sequence of multibyte characters pointed to
indirectly by src into a sequence of corresponding wide characters and stores at most
len of them in the wchar_t array pointed to by dst, until it encounters a terminating
null character (°

07%).

If dst is NULL , no characters are stored.

If dst is not NULL, the pointer pointed to by src is updated to point to the character
after the one that conversion stopped at. If conversion stops because a null character
is encountered, *src is set to NULL.

The mbstate_t argument, ps, is used to keep track of the shift state. If it is NULL,
mbsrtowcs() uses an internal, static mbstate_t object, which is initialized to the
initial conversion state at program startup.

The mbsnrtowces() function behaves identically to mbsrtowces(), except that con-
version stops after reading at most nms bytes from the buffer pointed to by src.

RETURN VALUES

The mbsrtowces() and mbsnrtowces() functions return the number of wide char-
acters stored in the array pointed to by dst if successful, otherwise it returns
(size_t)-1.

Systems/C C Library 509

ERRORS

The mbsrtowcs() and mbsnrtowces() functions will fail if:

EILSEQ An invalid multibyte sequence was encountered.
EINVAL The conversion state is invalid.
SEE ALSO

mbrtowc(3), mbstowces(3), multibyte(3), wesrtombs(3)

STANDARDS

The mbsrtowcs() function conforms to ISO/IEC 9899:1999 (“ISO C997).

The mbsnrtowcs() function is an extension to the standard.

510 Systems/C C Library

MULTIBYTE(3)
NAME

multibyte — multibyte and wide character manipulation functions

SYNOPSIS

#include <limits.h>
#include <stdlib.h>
#include <wchar.h>

DESCRIPTION

The basic elements of some written natural languages, such as Chinese, cannot be
represented uniquely with single C chars. The C standard supports two different
ways of dealing with extended natural language encodings: wide characters and
multibyte characters. Wide characters are an internal representation which allows
each basic element to map to a single object of type wchar_t. Multibyte characters
are used for input and output and code each basic element as a sequence of C chars.
Individual basic elements may map into one or more (up to MB_.LEN_MAX) bytes in a
multibyte character.

The current locale (setlocale(3)) governs the interpretation of wide and multibyte
characters. The locale category LC_CTYPE specifically controls this interpretation.
The wchar_t type is wide enough to hold the largest value in the wide character
representations for all locales.

Multibyte strings may contain ‘shift’ indicators to switch to and from particular
modes within the given representation. If explicit bytes are used to signal shifting,
these are not recognized as separate characters but are lumped with a neighboring
character. There is always a distinguished ‘initial’ shift state. Some functions (e.g.,
mblen(3), mbtowc(3) and wctomb(3)) maintain static shift state internally, whereas
others store it in an mbstate_t object passed by the caller. Shift states are undefined
after a call to setlocale(3) with the LC_CTYPE or LC_ALL categories.

For convenience in processing, the wide character with value 0 (the null wide char-
acter) is recognized as the wide character string terminator, and the character with
value 0 (the null byte) is recognized as the multibyte character string terminator.
Null bytes are not permitted within multibyte characters.

The C library provides the following functions for dealing with multibyte characters:

mblen(3) get number of bytes in a character

Systems/C C Library 511

mbrlen(3) get number of bytes in a character (restartable)

mbrtowc(3) convert a character to a wide-character code (restartable)
mbsrtowces(3) convert a character string to a wide-character string (restartable)
mbstowces(3) convert a character string to a wide-character string

mbtowc(3) convert a character to a wide-character code

wertomb(3) convert a wide-character code to a character (restartable)
westombs(3) convert a wide-character string to a character string
wesrtombs(3) convert a wide-character string to a character string (restartable)

wctomb(3) convert a wide-character code to a character

SEE ALSO

setlocale(3), stdio(3), bigh(5), euc(5), gh18030(5), gh2312(5), gbk(5), mskanji(5),
utf8(5)

STANDARDS

These functions conform to ISO/IEC 9899:1999 (“ISO C99”).

512 Systems/C C Library

RUNE(3)
NAME

setrunelocale, setinvalidrune, sgetrune, sputrune - rune support for C

SYNOPSIS

#include <rune.h>
#include <errno.h>

int
setrunelocale(char *locale)

void
setinvalidrune(rune_t rune)

rune_t
sgetrune(const char *string, size_t n,
char const **result)

int
sputrune (rune_t rune, char *string, size_t n,
char **result)

#include <stdio.h>

long
fgetrune (FILE *stream)

int

fungetrune(rune_t rune, FILE *stream)
int

fputrune (rune_t rune, FILE *stream)

DESCRIPTION

The setrunelocale() controls the type of encoding used to represent runes as multi-
byte strings as well as the properties of the runes as defined in jctype.h;. The locale
argument indicates which locale to load. If the locale is successfully loaded, 0 is
returned, otherwise an errno value is returned to indicate the type of error.

The setinvalidrune() function sets the value of the global value _INVALID_RUNE to
be rune.

Systems/C C Library 513

The sgetrune() function tries to read a single multibyte character from string,
which is at most n bytes long. If sgetrune() is successful, the rune is returned.
If result is not NULL, *result will point to the first byte which was not converted
in string. If the first n bytes of string do not describe a full multibyte character,
_INVALID RUNE is returned and *result will point to string. If there is an encoding
error at the start of string, _INVALID RUNE is returned and *result will point to
the second character of string.

The sputrune() function tries to encode rune as a multibyte string and store it at
string, but no more than n bytes will be stored. If result is not NULL, *result will
be set to point to the first byte in string following the new multibyte character. If
string is NULL, *result will point to (char *)0 + z, where z is the number of bytes
that would be needed to store the multibyte value. If the multibyte character would
consist of more than n bytes and result is not NULL, *result will be set to NULL.
In all cases, sputrune() will return the number of bytes which would be needed to
store rune as a multibyte character.

The fgetrune() function operates the same as sgetrune() with the exception that
it attempts to read enough bytes from stream to decode a single rune. It returns
either EOF on end of file, _-INVALID RUNE on an encoding error, or the rune decoded
if all went well.

The fungetrune() function pushes the multibyte encoding, as provided by spu-
trune(), of rune onto stream such that the next fgetrune() call will return rune.

It returns EOF if it fails and 0 on success.

The fputrune() function writes the multibyte encoding of rune, as provided by
sputrune(), onto stream. It returns EOF on failure and 0 on success.

RETURN VALUES

The setrunelocale() function returns one of the following values:

0 setrunelocale() was successful.

EFAULT locale was NULL.

ENOENT The locale could not be found.

EFTYPE The file found was not a valid file.

EINVAL The encoding indicated by the locale was unknown.

The sgetrune() function either returns the rune read or _INVALID RUNE. The spu-
trune() function returns the number of bytes needed to store rune as a multibyte
string.

514 Systems/C C Library

SEE ALSO

mbrune(3), setlocale(3)

NOTE

The ANSI C type wchar_t is the same as rune_t. Rune_t was chosen to accent the
purposeful choice of not basing the system with the ANSI C primitives, which were,
shall we say, less aesthetic.

The setrunelocale() function and the other non-ANSI rune functions were inspired
by Plan 9 from Bell Labs as a much more sane alternative to the ANSI multibyte
and wide character support.

All of the ANSI multibyte and wide character support functions are built using the
rune functions.

Systems/C C Library 515

SETLOCALE(3)

NAME

setlocale, localeconv - natural language formatting for C

SYNOPSIS

#include <locale.h>

char *

setlocale(int category, const char *locale)

struct lconv *
localeconv(void)

DESCRIPTION

The setlocale() function sets the C library’s notion of natural language formatting
style for particular sets of routines. Each such style is called a ‘locale’ and is invoked
using an appropriate name passed as a C string. The localeconv() routine returns
the current locale’s parameters for formatting numbers.

The setlocale() function recognizes several categories of routines. These are the
categories and the sets of routines they select:

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MONETARY

LC_NUMERIC

516 Systems/C C Library

Set the entire locale generically.

Set a locale for string collation routines. This controls
alphabetic ordering in strcoll() and strxfrm().

Set a locale for the ctype(3), mbrune(3), multibyte(3)
and rune(3) functions. This controls recognition of
upper and lower case, alphabetic or non-alphabetic
characters, and so on. The real work is done by the
setrunelocale() function.

Set a locale for formatting monetary values; this af-
fects the localeconv() function.

Set a locale for formatting numbers. This controls the
formatting of decimal points in input and output of
floating point numbers in functions such as printf()
and scanf(), as well as values returned by locale-
conv().

LC_TIME

Set a locale for formatting dates and times using the
strftime() function.

Only three locales are defined by default, the empty string "" which denotes the
native environment, and the "C" and "POSIX" locales, which denote the C language
environment. A locale argument of NULL causes setlocale() to return the current
locale. By default, C programs start in the "C" locale. The only function in the
library that sets the locale is setlocale(); the locale is never changed as a side effect
of some other routine.

The localeconv() function returns a pointer to a structure which provides param-
eters for formatting numbers, especially currency values:

struct lconv {

char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

};

*decimal _point;
*thousands_sep;
*grouping;
*int_curr_symbol;
*currency_symbol;
*mon_decimal_point;
*mon_thousands_sep;
*mon_grouping;
*positive_sign;
*negative_sign;
int_frac_digits;
frac_digits;
p_cs_precedes;
p_sep_by_space;
n_cs_precedes;
n_sep_by_space;
p_sign_posn;
n_sign_posn;

The individual fields have the following meanings:

decimal point

thousands_sep

grouping

The decimal point character, except for currency
values.

The separator between groups of digits before the
decimal point, except for currency values.

The sizes of the groups of digits, except for cur-
rency values. This is a pointer to a vector of in-
tegers, each of size char, representing group size
from low order digit groups to high order (right

Systems/C C Library 517

int_curr_symbol
currency_symbol
mon_decimal_point
mon_thousands_sep
mon_grouping

positive_sign

negative_sign

int frac digits

frac digits

p-cs_precedes

p-sep-by_space

n_cs_precedes

n_sep_by_space

p-sign_posn

n_sign_posn

518 Systems/C C Library

to left). The list may be terminated with 0 or
CHAR_MAX. If the list is terminated with 0, the
last group size before the 0 is repeated to account
for all the digits. If the list is terminated with
CHAR_MAX, no more grouping is performed.

The standardized international currency symbol.
The local currency symbol.

The decimal point character for currency values.
The separator for digit groups in currency values.
Like grouping but for currency values.

The character used to denote nonnegative cur-
rency values, usually the empty string.

The character used to denote negative currency
values, usually a minus sign.

The number of digits after the decimal point in
an international-style currency value.

The number of digits after the decimal point in
the local style for currency values.

1 if the currency symbol precedes the currency
value for nonnegative values, 0 if it follows.

1 if a space is inserted between the currency sym-
bol and the currency value for nonnegative values,
0 otherwise.

Like p_cs_precedes but for negative values.
Like p_sep_by_space but for negative values.

The location of the positive_sign with respect to a
nonnegative quantity and the currency_symbol,
coded as follows:

Parentheses around the entire string.
Before the string.
After the string.

Just before currency_symbol.

= W NN = O

Just after currency_symbol.

Like p_sign_posn but for negative currency val-
ues.

Unless mentioned above, an empty string as a value for a field indicates a zero
length result or a value that is not in the current locale. A CHAR_MAX result similarly
denotes an unavailable value.

RETURN VALUES

The setlocale() function returns NULL and fails to change the locale if the given
combination of category and locale makes no sense. The localeconv() function
returns a pointer to a static object which may be altered by later calls to setlocale()
or localeconv().

SEE ALSO

colldef(1), mklocale(1), ctype(3), mbrune(3), multibyte(3), rune(3), stroll(3),
strxfrm(3)

STANDARDS

The setlocale() and localeconv() functions conform to ISO/TEC 9899:1990 (“ISO
C90").

ISSUES

The current implementation supports only the "C" and "POSIX" locales for all but
the LC_COLLATE, LC_CTYPE, and LC_TIME categories.

In spite of the gnarly currency support in localeconv(), the standards don’t include
any functions for generalized currency formatting.

Use of LC_MONETARY could lead to misleading results until we have a real time cur-
rency conversion function. LC_NUMERIC and LC_TIME are personal choices and should
not be wrapped up with the other categories.

Systems/C C Library 519

TOASCII(3)
NAME

toascii - convert a byte to 7-bit ASCII

SYNOPSIS

#include <ctype.h>

int
toascii(int c)

DESCRIPTION

The toascii() function strips all but the low 7 bits from a letter, including parity
or other marker bits.

RETURN VALUES

The toascii() function always returns a valid ASCII character.

SEE ALSO

isalnum(3), isalpha(3), isascii(3), iscntrl(3), isdigit(3), isgraph(3), slower(3), is-
print(3), ispunct(3), isspace(3), isupper(3), isxdigit(3), stdio(3), tolower(3), toup-
per(3)

NOTE

This function makes little sense for an EBCDIC character, but is provided for com-
patibility.

520 Systems/C C Library

TOLOWER(3)
NAME

tolower - upper case to lower case letter conversion

SYNOPSIS

#include <ctype.h>

int
tolower (int c)

DESCRIPTION

The tolower() function converts an upper-case letter to the corresponding lower-
case letter.

RETURN VALUES

If the argument is an upper-case letter, the tolower() function returns the cor-
responding lower-case letter if there is one; otherwise the argument is returned
unchanged.

SEE ALSO

isalnum(3), isalpha(3), isascii(3), iscntrl(3), isdigit(3), isgraph(3), slower(3), is-
print(3), ispunct(3), isspace(3), isupper(3), isxdigit(3), stdio(3), toascii(3), toup-
per(3)

STANDARDS

The tolower() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 521

TOUPPER(3)
NAME

toupper - lower case to upper case letter conversion

SYNOPSIS

#include <ctype.h>

int
toupper (int c)

DESCRIPTION

The toupper() function converts a lower-case letter to the corresponding upper-case
letter. If the argument is a lower-case letter, the toupper() function returns the
corresponding upper-case letter if there is one; otherwise the argument is returned
unchanged.

SEE ALSO

isalnum(3), isalpha(3), isascii(3), iscntrl(3), isdigit(3), isgraph(3), slower(3),
isprint(3), ispunct(3), isspace(3), isupper(3), isxdigit(3), stdio(3), toascii(3),
tolower(3)

STANDARDS

The toupper() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

522 Systems/C C Library

TOWLOWER(3)
NAME

towlower - upper case to lower case letter conversion (wide character version)

SYNOPSIS

#include <wctype.h>

wint_t
towlower (wint_t wc);

DESCRIPTION

The towlower() function converts an upper-case letter to the corresponding lower-
case leteter.

RETURN VALUES

If the argument is an upper-case letter, the towlower() function returns the cor-
responding lower-case letter if there is one; otherwise the arugmnet is returned
unchanged.

SEE ALSO

iswlower(3), tolower(3), towupper(3), wctrans(3)

STANDARDS

The towlower() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 523

TOWUPPER(3)
NAME

towupper - lower case to upper case letter conversion (wide character version)

SYNOPSIS

#include <wctype.h>

wint_t
towupper (wint_t wc);

DESCRIPTION

The towupper() function converts a lower-case letter to the corresponding upper-
case letter.

RETURN VALUES

If the argument is a lower-case letter, the towupper() function returns the cor-
responding upper-case letter if there is one; otherwise the argument is returned
unchanged.

SEE ALSO

iswupper(3), toupper(3), towlower(3), wctrans(3)

STANDARDS

The towupper() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

524 Systems/C C Library

WCSTOL(3)
NAME

westol, westoul, westoll, westoull, westoimax, westoumax - convert a wide character
string value to a long, unsigned long, long long, unsigned long long, intmax_t
or uintmax_t integer

SYNOPSIS

#include <wchar.h>

long
wcstol(const wchar_t * restrict nptr, wchar_t ** restrict endptr,
int base);

unsigned long
wcstoul (const wchar_t * restrict nptr, wchar_t ** restrict endptr,
int base);

long long
wcstoll(const wchar_t * restrict nptr, wchar_t ** restrict endptr,
int base);

unsigned long long
wcstoull (const wchar_t * restrict nptr, wchar_t ** restrict endptr,
int base);

#include <inttypes.h>

intmax_t
wcstoimax(const wchar_t * restrict nptr, wchar_t ** restrict endptr,
int base);

uintmax_t
wcstoumax (const wchar_t * restrict nptr, wchar_t ** restrict endptr,
int base);

DESCRIPTION

The wecestol(), wcstoul(), wcstoll(), wcstoull(), wecstoimax() and wec-
stoumax() functions are wide-character versions of the strtol(), strtoul(), str-
toll(), strtoull(), strtoimax() and strtoumax() functions, respectively. Refer to
their manual pages (for example strtol(3)) for details.

Systems/C C Library 525

SEE ALSO

strtol(3), strtoul(3)

STANDARDS

The westol(), wcstoul(), wcstoll(), wcstoull(), wcstoimax() and wec-
stoumax() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

526 Systems/C C Library

WCTRANS(3)
NAME

towctrans, wctrans - wide character mapping functions

SYNOPSIS

wint_t
towctrans(wint_t wc, wctrans_t desc);

wctrans_t
wctrans (const char *charclass);

DESCRIPTION

The wctrans() function returns a value of type wetrans_t which represents the re-
quested wide character mapping operation and may be used as the second argument
for calls to towctrans().

The following character mapping names are recognized:

tolower toupper

The towctrans() function transliterates the wide character wec according to the
mapping described by desc.

RETURN VALUES

The towctrans() function returns the transliterated character if successful, other-
wise it returns the character unchanged and sets errno.

The wctrans() function returns non-zero if successful, otherwise it returns zero and
sets errno.

EXAMPLES

Reimplement towupper() in terms of towctrans() and wctrans():

Systems/C C Library 527

wint_t
mytowupper (wint_t wc)
{

return (towctrans(wc, wctrans("toupper")));

}

ERRORS

The towctrans() function will fail if:

EINVAL The supplied desc argument is invalid.

The wctrans() function will fail if:

EINVAL The requested mapping name is invalid.

SEE ALSO

tolower(3), toupper(3), wetype(3)

STANDARDS

The towctrans() and wctrans() functions conform to ISO/IEC 9899:1999 (“ISO
C99").

528 Systems/C C Library

WCTYPE(3)
NAME

iswctype, wetype - wide character class functions

SYNOPSIS

#include <wctype.h>

int
iswctype(wint_t wc, wctype_t charclass);

wctype_t
wctype(const char *property);

DESCRIPTION

The wctype() function returns a value of type wctype_t which represents the re-
quested wide character class and may be used as the second argument for calls to
iswctype().

The following character class names are recognized:

alnum cntrl ideogram print special
alpha digit lower punct upper
blank graph phonogram space xdigit

The iswctyp() function checks whether the wide character wc is in the character
class charclass.

RETURN VALUES

The iswctype() function returns non-zero if and only if we has the property de-
scribed by charclass, or charclass is zero.

The wctype() function returns 0 if property is invalid, otherwise it returns a value
of type wctype_t that can be used in subsequent calls to iswctype().

Systems/C C Library 529

EXAMPLE

Reimplement iswalpha(3) in terms of iswctype() and wctype():

int

myiswalpha(wint_t wc)

{

return (iswctype(wc, wctype("alpha")));
}

SEE ALSO

ctype(3)

STANDARDS

The iswctype() and wetype() functions conform to ISO/IEC 9899:1999 (“ISO
C99”). The “ideogram”, “phonogram” and “special” character classes are exten-
sions.

530 Systems/C C Library

WCWIDTH(3)
NAME

wewidth - number of column positions of a wide-character code

SYNOPSIS

int
wewidth(wchar_t wc);

DESCRIPTION

The wewidth() function determines the number of column positions required to
display the wide character we.

RETURN VALUES

The wewidth() function returns 0 if the wc argument is a null wide character
(L°\0?), -1 if wc is not printable, otherwise it returns the number of column positions
the character occupies.

SEE ALSO

iswprint(3), weswidth(3)

STANDARDS

The wewidth() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 531

Math library

The math library contains implementations of the transcendental functions and
other support routines for manipulating floating point values.

532 Systems/C C Library

MATH(3)
NAME

math - introduction to mathematical library functions

DESCRIPTION

These functions constitute the C math library.

Declarations for these functions may be obtained from the include file <math.h>.

Systems/C C Library 533

LIST OF FUNCTIONS

Name Appears on Page
_isBFP _isBFP(3)
acos acos(3)
acosf acos(3)
acosl acos(3)
acosh acosh(3)
acoshf acosh(3)
acoshl acosh(3)
asin asin(3)
asinf asin(3)
asinl asin(3)
asinh asinh(3)
asinhf asinh(3)
asinhl asinh(3)
atan atan(3)
atanf atan(3)
atanl atan(3)
atanh atanh(3)
atanhf atanh(3)
atanhl atanh(3)
atan2 atan2(3)
atan2f atan2(3)
atan2l atan2(3)
cbrt sqrt(3)
cbrtf sqrt(3)
cbrtl sqrt(3)

ceil ceil(3)

ceilf ceil(3)

ceill ceil(3)
copysign copysign(3)
copysignf copysign(3)
copysignl copysign(3)
cos cos(3)

cosf cos(3)

cosl cos(3)

cosh cosh(3)
coshf cosh(3)
coshl cosh(3)

534 Systems/C C Library

Description

determine floating-point for-
mat

arc cosine function

arc cosine function

arc cosine function

inverse hyperbolic function
inverse hyperbolic function
inverse hyperbolic function
arc sine function

arc sine function

arc sine function

inverse hyperbolic function
inverse hyperbolic function
inverse hyperbolic function
arc tangent function of one
variable

arc tangent function of one
variable

arc tangent function of one
variable

inverse hyperbolic function
inverse hyperbolic function
inverse hyperbolic function
arc tangent function of two
variables

arc tangent function of two
variables

arc tangent function of two
variables

cube root

cube root

cube root

integer no less than

integer no less than

integer no less than

copy sign

copy sign

copy sign

trigonometric function
trigonometric function
trigonometric function
hyperbolic cosine function
hyperbolic cosine function
hyperbolic cosine function

Name
erf

erff

erfl

erfc
erfcf
erfcl
exp
exp2
exp2f
exp?2l
expf
expl
expml
expmlf
expmlf
fabs
fabsf
fabsl
fdim
fdimf
fdiml
feenableexcept

fegetround

fe_dec_getround

floor
floorf
floorl
fma
fmaf
fmal
fmax
fmaxf
fmaxl
fmin
fminf
fminl
fmod
fmodf

fmodl

Appears on Page
erf(3)

fdim(3)
feenableexcept(3)

fegetround(3)

fe_dec_getround(3)

floor(3)
floor(3)

Description

error function

error function

error function
complementary error function
complementary error function
complementary error function
exponential e*

exponential 27

exponential 2%

exponential 27

exponential e”

exponential e*

e’ —1
e’ —1
e’ —1

absolute value
absolute value
absolute value
positive difference functions
positive difference functions
positive difference functions

floating point exception
masking
retrieve/set current IEEE
floating point rounding
direction

retrieve/set current Decimal
floating point rounding direc-
tion

integer no greater than
integer no greater than
integer no greater than
fused multiply-add
fused multiply-add
fused multiply-add
floating-point maximum and
minimum functions
floating-point maximum and
minimum functions
floating-point maximum and
minimum functions
floating-point maximum
minimum functions
floating-point maximum
minimum functions
floating-point maximum and

minimum functions

and

and

floating-point remainder

functions

floating-point Systemait@d@ Library 535
functions

floating-point remainder

Name
frexp

frexpf
frexpl
hypot
ilogh

iloghf
ilogbl

isfinite

isgreater

isgreaterequal

isinf

isless
islessequal
islessgreater
isnan
isnormal
isunordered
ldexp
ldexpf
ldexpl
lgamma
lgammaf
lgammal
llrint

lrintf
lrintl
llround

llroundf

llroundl

Appears on Page

frexp(3)
frexp(3)
frexp(3)
hypot(3)
ilogb(3)
ilogh(3)
ilogb(3)
fpclassify(3)
isgreater(3)
isgreater(3)
fpclassify(3)
isgreater(3)
isgreater(3)
isgreater(3)
fpclassify(3)
fpclassify(3)
isgreater(3)
ldexp(3)
ldexp(3)
ldexp(3)
lgammay(3)
lgamma(3)
lgammay(3)
Irint(3)
Irint(3)
Irint(3)
Iround(3)
Iround(3)

Iround(3)

536 Systems/C C Library

Description

convert to fraction and inte-
gral components

convert to fraction and inte-
gral components

convert to fraction and inte-
gral components

Euclidean distance

extract exponent

extract exponent

extract exponent

classify a floating-point num-
ber

compare two floating-point
numbers

compare two floating-point
numbers

classify a floating-point num-
ber

compare two floating-point
numbers

compare two floating-point
numbers

compare two floating-point
numbers

classify a floating-point num-
ber

classify a floating-point num-
ber

compare two floating-point
numbers

multiply by integral power of
2

multiply by integral power of
2

multiply by integral power of
2

log gamma function

log gamma function

log gamma function

convert, to integer

convert to integer

convert, to integer

convert to mnearest integral
value

convert to nearest integral
value

convert to nearest integral
value

Name Appears on Page Description
log log(3) natural logarithm In(z)

logf log(3) natural logarithm In(x)

logl log(3) natural logarithm In(z)

log10 log(3) logarithm to base 10 log;o(x)

log10f log(3) logarithm to base 10 logq(x)

log101 log(3) logarithm to base 10 log;o(x)

log2 log(3) logarithm to base 2 log,(z)

log2f log(3) logarithm to base 2 log, ()

log2l log(3) logarithm to base 2 log,(z)

logh ilogb(3) extract exponent

logbf ilogh(3) extract exponent

loghl ilogb(3) extract exponent

loglp log(3) In(1+z)

log1pf log(3) In(1+ x)

loglpl log(3) In(1+2)

Irint Irint(3) convert to integer

Irintf Irint(3) convert to integer

Irintl Irint(3) convert to integer

Iround Iround(3) convert to nearest integral
value

Iroundf Iround(3) convert to nearest integral
value

Iroundl Iround(3) convert to nearest integral
value

modf modf(3) extract signed integral

and fractional values from
floating-point number

modff modf(3) extract signed integral
and fractional wvalues from
floating-point number

modfl modf(3) extract signed integral
and fractional values from
floating-point number

nan nan(3) quiet NaNs

nanf nan(3) quiet NaNs

nanl nan(3) quiet NaNs

nearbyint rint(3) round to integral value in
floating-point format

nearbyintf rint(3) round to integral value in
floating-point format

nearbyintl rint(3) round to integral value in
floating-point format

nextafter nextafter(3) next representable value

nextafterf nextafter(3) next representable value

nextafterl nextafter(3) next representable value

nexttoward nextafter(3) next representable value

nexttowardf nextafter(3) next representable value

nexttowardl nextafter(3) next representable value

Systems/C C Library 537

Name

pow

powf

powl
remainder
remainderf
remainder]
remquo
remquof
remquol
rint

rintf
rintl
round
roundf
roundl

scalbln
scalblnf
scalblnl
scalbn
scalbnf
scalbnl
signbit

sin
sinf
sinl
sinh
sinhf
sinhl
sqrt
sqrtf
sqrtl
tan
tanf
tanl
tanh
tanhf
tanhl

Appears on Page
exp(3)

exp(3)

exp(3)

remainder(3)
remainder(3)
remainder(3)
remainder(3)
remainder(3)
remainder(3)
rint(3)

rint(3)
rint(3)
round(3)

round(3)

538 Systems/C C Library

Description

exponential z¥

exponential x¥

exponential z¥

minimal residue functions
minimal residue functions
minimal residue functions
minimal residue functions
minimal residue functions
minimal residue functions
round to integral value in
floating-point format

round to integral value in
floating-point format

round to integral value in
floating-point format

round to nearest integral
value

round to nearest integral
value

round to nearest integral
value

adjust exponent

adjust exponent

adjust exponent

adjust exponent

adjust exponent

adjust exponent

determine whether a floating-
point number’s sign is nega-
tive

trigonometric function
trigonometric function
trigonometric function
hyperbolic function
hyperbolic function
hyperbolic function

square root

square root

square root

trigonometric function
trigonometric function
trigonometric function
hyperbolic function
hyperbolic function
hyperbolic function

Name Appears on Page Description

tgamma lgamma(3) gamma function

tgammaf lgamma(3) gamma function

tgammal lgamma(3) gamma function

trunc trunc(3) nearest integral value with
magnitude less than or equal
to |z|

truncf trunc(3) nearest integral value with
magnitude less than or equal
to |z|

truncl trunc(3) nearest integral value with
magnitude less than or equal
to |z|

NOTES

These library functions support both the HFP (Hexadecimal Floating Point) format
and BFP (IEEE Binary Floating Point) formats. The selection of the format is either
made at compile time via compiler options, or at runtime based on the return value
of the __isBFP() function.

SEE ALSO

An explanation of the HFP and BFP floating point formats is provided in the
z/Architecture Principles of Operations, IBM publication SA22-7200.

_isBFP(3)

Systems/C C Library 539

__FP_CAST(3)
NAME

__fp_cast - floating point cast function

SYNOPSIS

#include <machine/IEEE754.h>

int
fp_cast(int mode, void *src_ptr, int src_kind,
void *targ_ptr, int targ_kind);

DESCRIPTION

The __fp_cast() function adjusts the size of a floating point number from the
src_kind to the targ_kind sizes. __fp_cast() will convert the floating point value at
the address specified in src_ptr to the target size and save the result at the address
specified in targ_ptr.

The mode parameter indicates one of _FP_BFP_MODE or _FP_HFP_MODE for either BFP
or HFP values.

The src_kind and targ_kind parameters indicate the size of the source and tar-
get floating point number. FEach should be one of _FP_FLOAT, _FP_DOUBLE or
_FP_LONG_DOUBLE.

RETURN VALUES

The __fp_cast() function returns 0 on success.

If any of mode, src_kind or targ_kind is invalid __fp_cast() returns -1.

SEE ALSO

__isbfp(3)

540 Systems/C C Library

__ISBFP(3)
NAME

_isBFP, __fp_swapmode, __fp_setmode - floating point format functions

SYNOPSIS

#include <machine/IEE754.h>

int
__isBFP(void);

int
__fp_swapmode (int newmode) ;

void
fp_setmode(int newmode) ;

DESCRIPTION

The __isBFP() function determines the current selection of the floating-point for-
mat. The runtime library maintains a selection state of either BFP or HFP or ”un-
determined.” When __isBPF() is invoked, if the state is undetermined”, then the
compile-time setting of the caller is investigated to determine the mode. __isBFP()
returns 1 if the mode is specifically set to BFP, or the caller is determined to be
BFP, 0 for HFP.

The __fp_swapmode() function is used to return the current library floating point
state, and set a new one. It can be used to retain the current mode, set a new one,
perform some operations and then restore the previous mode.

The __fp_setmode() function sets a particular state.

The state values are

_FP_MODE_RESET The mode is determined by the caller.
_FP_HFP_MODE The mode is HFP.

_FP_BFP_MODE The mode is BFP.

Many of the library functions use __isBFP() to determine if the operation is to
proceed in BFP or HFP format.

Systems/C C Library 541

RETURN VALUES

The __isBFP() function returns 1 if the current mode is _FP_BFP_MODE or if the
current mode is _-FP_MODE_RESET and the caller has been determined to be compiled
for BFP values; otherwise it returns zero.

The __fp_swapmode() function returns the current mode state setting.

The current mode is thread-specific and is inherited from the parent thread when a
new thread is created.

SEE ALSO

_fp_cast(3)

542 Systems/C C Library

ACOS(3)
NAME

acos, acosf, acosl - arc cosine functions

SYNOPSIS

#include <math.h>

double
acos(double x);

float
acosf (float x);

long double
acosl(long double x);

DESCRIPTION

The acos(), acosf() and acosl() functions computes the principal value of the arc
cosine of z. A domain error occurs for arguments not in the range [—1, +1].

RETURN VALUES

The acos(), acosf() and acosl() functions return the arc cosine in the range [0, 7]

radians. If |z| > 1,

The acos(), acosf() and acosl() functions may set the global variable errno to

EDOM and a reserved operand fault may be generated.

SEE ALSO

asin(3), atan(3), atan2(3), cos(3), cosh(3), math(3), sin(3), sinh(3), tan(3), tanh(3)

STANDARDS

The acos() function conforms to ISO/TEC 9899:1990 (“ISO C90”).

The acosf() and acosl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 543

ACOSH(3)
NAME

acosh, acoshf, acoshl - inverse hyperbolic cosine function

SYNOPSIS

#include <math.h>

double
acosh(double x);

float
acoshf (float x);

long double
acoshl(long double x);

DESCRIPTION

The acosh(), acoshf() and acoshl() functions computes the inverse hyperbolic
cosine of the real argument z. If the argument is less than 1, these functions raise
an invalid exception and for BFP values return a NaN, for HFP alues these functions
return 0.0.

RETURN VALUES

The acosh(), acoshf() and acoshl() functions return the inverse hyperbolic cosine
of .

SEE ALSO

asinh(3), atanh(3), exp(3), math(3)

STANDARDS

The acosh(), acoshf() and acoshl() functions conform to ISO/IEC 9899:1999
(“ISO C99”).

544 Systems/C C Library

SCALBN(3)
NAME

scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnl — adjust exponent

SYNOPSIS

#include <math.h>

double
scalbln(double x, long n);

float
scalblnf (float x, long n);

long double
scalblnl (long double x, long n);

double
scalbn(double x, int n);

float
scalbnf (float x, int n);

long double
scalbnl(long double x, int n);

DESCRIPTION

These routines return z (2 % *n) computed by exponent manipulation.

SEE ALSO

math(3)

STANDARDS

These routines conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 545

ASIN(3)
NAME

asin, asinf, asinl - arc sine functions

SYNOPSIS

#include <math.h>

double
asin(double x);

float
asinf (float x);

long double
asinl(long double x);

DESCRIPTION

The asin(), asinf() and asinl() functions computes the principal value of the arc
sine of z. A domain error occurs for arguments not in the range [—1, +1].

RETURN VALUES

The asin(), asinf() and asinl() functions return the arc sine in the range [—%, +7]
radians.

SEE ALSO

acos(3), atan(3), atan2(3), cos(3), cosh(3), math(3), sin(3), sinh(3), tan(3), tanh(3)

STANDARDS

The asin() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The asinf() and asinl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

546 Systems/C C Library

ASINH(3)
NAME

asinh, asinhf, asinhl - inverse hyperbolic sine function

SYNOPSIS

#include <math.h>

double
asinh(double x);

float
asinhf (float x);

long double
asinhl(long double x);

DESCRIPTION

The asinh(), asinhf() and asinhl() functions compute the inverse hyperbolic sine
of the real argument z.

RETURN VALUES

The asinh(), asinhf() and asinhl() functions return the inverse hyperbolic sine of
.

SEE ALSO

acosh(3), atanh(3), exp(3), math(3)

STANDARDS

The asinh(), asinhf() and asinhl() functions conform to ISO/IEC 9899:1999 (“ISO
C99").

Systems/C C Library 547

ATAN(3)
NAME

atan, atanf, atanl - arc tangent functions of one variable

SYNOPSIS

#include <math.h>

double
atan(double x);

float
atanf (float x);

long double
atanl (long double x);

DESCRIPTION

The atan(), atanf() and atanl() functions compute the principal value of the arc
tangent of z.

RETURN VALUES

The atan(), atanf() and atanl() functions return the arc tangent in the range
[—%,+7%] radians.

SEE ALSO

acos(3), asin(3), atan2(3), cos(3), cosh(3), math(3), sin(3), sinh(3), tan(3), tanh(3)

STANDARDS

The atan() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The atanf() and atanl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

548 Systems/C C Library

ATAN2(3)
NAME

atan2, atan2f, atan2l - arc tangent functions of two variables

SYNOPSIS

#include <math.h>

double
atan2(double y, double x);

float
atan2f (float y, float x);

long double
atan21 (long double y, long double x);

DESCRIPTION

The atan2(), atan2f() and atan2l() functions compute the principal value of
arctan (%), using the signs of both arguments to determine the quadrant of the
return value.

RETURN VALUES

The atan2(), atan2f() and atan2l() functions if successful, return arctan (£) in

the range [—, 7] radians. If both x and y are zero, the global variable errno is set
to EDOM.

atan2(y,z) = arctan(¥) ifx>0
sign(y) (m — arctan (|4|)) ifz <0
0 ife=y=0
sign(y) 5 ifr=0+#y

NOTES

The functions atan2(), atan2f() and atan2l() defines “if x > 0, atan2(0,0) = 0.”
On some systems, atan2(0, 0) may generate an error message. The reasons for
assigning a value to atan2(0, 0) are these:

Systems/C C Library 549

e Programs that test arguments to avoid computing atan2(0, 0) must be in-
different to its value. Programs that require it to be invalid are vulnerable to
diverse reactions to that invalidity on diverse computer systems.

e The atan2() function is used mostly to convert from rectangular (x,y) to
polar (r,0) coordinates that must satisfy = rcosf and y = rsinf. These
equations are satisfied when (x = 0,y = 0) is mapped to (r = 0,0 = 0). In
general, conversions to polar coordinates should be computed thus:

r
theta

hypot(x,y); /* ... = sqrt(x*x+y*y) */
atan2(y,x) ;

e The foregoing formulas need not be altered to cope in a reasonable way with
signed zeros and infinities on a machine that conforms to IEEE 754. The
versions of hypot(3) and atan2() provided for such a machine are designed
to handle all cases. That is why atan2(+0, —0) = £ for instance. In general
the formulas above are equivalent to these:

r = sqrt(x*x+y*xy); if (r == 0) x = copysign(1,x);

SEE ALSO

acos(3), asin(3), atan(3), cos(3), cosh(3), math(3), sin(3), sinh(3), tan(3), tanh(3)

STANDARDS

The atan2() function conforms to ISO/TEC 9899:1990 (“ISO C90”).

The atan2f() and atan2l() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

550 Systems/C C Library

ATANH(3)
NAME

atanh, atanhf, atanhl - inverse hyperbolic tangent function

SYNOPSIS

#include <math.h>

double
atanh(double x);

float
atanhf (float x);

long double
atanhl (long double x);

DESCRIPTION

The atanh(), atanhf() and atanhl() functions compute the inverse hyperbolic
tangent of the real argument z.

RETURN VALUES

The atanh(), atanhf() and atanhl() functions return the inverse hyperbolic tan-
gent of z if successful. If the argument has the value 1.0, HUGE_VAL is returned, if
the argument is -1.0, ~-HUGE_VAL is returned. If the absolute value of the argument is
greater than 1.0, a DOMAIN error is indicated and for BFP values a NaN is returned,
for HFP values 0.0 is returned.

SEE ALSO

acosh(3), asinh(3), exp(3), fenv(3), math(3)

STANDARDS

The atanh(), atanhf() and atanhl() functions conform to ISO/IEC 9899:1999
(“ISO C997).

Systems/C C Library 551

CEIL(3)
NAME

ceil, ceilf, ceill — smallest integral value greater than or equal to x

SYNOPSIS

#include <math.h>

double
ceil(double x);

float
ceilf (float x);

long double
ceill(long double x);

DESCRIPTION

The ceil(), ceilf() and ceill() functions compute the smallest integral value greater
than or equal to x, expressed as a floating-point number.

SEE ALSO

abs(3), fabs(3), floor(3), math(3), rint(3), round(3), trunc(3)

STANDARDS

The ceil() function conforms to ISO/TEC 9899:1990 (“ISO C90”). The ceilf() and
ceill() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

552 Systems/C C Library

COPYSIGN(3)

NAME

copysign, copysignf, copysignl - copy sign

SYNOPSIS

#include <math.h>

double
copysign(double x, double y);

float
copysignf (float x, float y);

long double
copysignl(long double x, long double y);

DESCRIPTION

The copysign(), copysignf() and copysignl() functions return z with its sign
changed to ¥s.

SEE ALSO

fabs(3), fdim(3), math(3)

STANDARDS

The copysign(), copysignf(), and copysignl() routines conform to ISO/IEC
9899:1999 (“ISO C99”).

Systems/C C Library 553

COS(3)
NAME

cos, cosf, cosl - cosine functions

SYNOPSIS

#include <math.h>

double
cos(double x);

float
cosf (double x);

long double
cosl(long double x);

DESCRIPTION

The cos(), cosf() and cosl() functions compute the cosine of x (measured in radi-
ans). A large magnitude argument may yield a result with little or no significance.

RETURN VALUES

The cos(), cosf() and cosl() functions return the cosine value.

SEE ALSO

acos(3), asin(3), atan(3), atan2(3), cosh(3), math(3), sin(3), sinh(3), tan(3), tanh(3)

STANDARDS

The cos() function conforms to ISO/IEC 9899:1990 (“ISO C907).

The cosf() and cosl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

554 Systems/C C Library

COSH(3)
NAME

cosh, coshf, coshl - hyperbolic cosine function

SYNOPSIS

#include <math.h>

double
cosh(double x);

float
coshf (float x);

long double
coshl(long double x);

DESCRIPTION

The cosh(), coshf() and coshl() functions compute the hyperbolic cosine of z.

RETURN VALUES

The cosh(), coshf() and coshl() functions returns the hyperbolic cosine.

SEE ALSO

acos(3), asin(3), atan(3), atan2(3), cos(3), math(3), sin(3), sinh(3), tan(3), tanh(3)

STANDARDS

The cosh() function conforms to ISO/IEC 9899:1990 (“ISO C907).

The coshf() and coshl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 555

ERF(3)
NAME

erf, erff, erfl, erfc, erfcf, erfcl — error function operators

SYNOPSIS

#include <math.h>

double
erf (double x);

float
erff(float x);

long double
erfl(long double x);

double
erfc(double x);

float
erfcf(float x);

long double
erfcf(long double x);

DESCRIPTION

These functions calculate the error function of z.

The erf(), erff() and erfl() functions calculate the error function of z; where

2 T e
erf(z) = ﬁ/o e " dt

The erfc(), erfef() and erfcfl() functions calculate the complementary error func-
tion of z; that is erfc() subtracts the result of the error function erf (x) from 1.0.

This is useful, since for large z places disappear.

SEE ALSO

math(3)

556 Systems/C C Library

STANDARDS

The functions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 557

EXP(3)
NAME

exp, expf, expl, exp2, exp2f, exp2l, expml, expmlf, expmll, pow, powf, powl -
exponential and power functions

SYNOPSIS

#include <math.h>

double
exp(double x);

float
expf (float x);

long double
expl(long double x);

double
exp2(double x);

float
exp2f (float x);

long double
exp2l (long double x);

double
expml (double x);

float
expmlf (float x);

float
expmlf (float x);

double
pow(double x, double y);

float
powf (float x, float y);

long double
powl(long double x, long double y);

558 Systems/C C Library

DESCRIPTION

The exp(), expf() and expfl() functions compute the exponential value of the
given argument z.

The exp2(), exp2f() and exp2l() functions compute the base 2 exponential value
of the given argument z.

The expm1(), expm1f() and expm1l() functions compute the value exp(x)-1.0
accurately even for tiny argument z.

The pow(), powf() and powl() functions compute the value of z to the exponent
Y.

ERROR (due to Roundoff etc.)

exp(), expm1(0), exp2(integer) and pow(integer,integer) are exact provided
they are representable. Otherwise the error in these functions is generally below one
ulp.

RETURN VALUES

These functions will return the appropriate computation unless an error occurs or
an argument is out of range. The functions exp(), expm1() and pow() detect
if the computed value will overflow, set the global variable errno to ERANGE. The
function pow(x, y) checks to see if x < 0 and y is not an integer, in the event this
is true, the global variable errno is set to EDOM for HFP values or return a NaN for
BFP values.

NOTES

The function pow(x, 0) returns z° = 1 for all # including x = 0, oo (not found for
IBM HFP format) and NaN (not found in IBM HFP format).

Previous implementations of pow() may have defined z° to be undefined in some
or all of these cases. Here are reasons for returning 20 = 1:

e Any program that already tests whether x is zero (or infinite or NaN) before
computing 20 cannot care whether 0° = 1 or not. Any program that depends
upon 0° to be invalid is dubious anyway since that expression’s meaning and,
if invalid, its consequences vary from one computer system to another.

Systems/C C Library 559

e Some Algebra texts (e.g. Sigler’s) define #° = 1 for all z, including = 0. This
is compatible with the convention that accepts ag as the value of polynomial

p(a:) = CLOCL’O + ala,’l —+ a2g;2 4+t anx"

at = 0 rather than reject ag0° as invalid.

e Analysts will accept 0° = 1 despite that z¥ can approach anything or nothing
as = and y approach 0 independently. The reason for setting 0° = 1 anyway
is this:

If z(z) and y(z) are any functions analytic (expandable in power
series) in z around z = 0, and if there z(0) = y(0) = 0, then

z(2)¥®) - 1asz—0.

o If 0° = 1, then oc” = 0% = 1 too; and then NaN® = 1 too because 2° = 1 for
all finite and infinite x, i.e., independently of x.

SEE ALSO

fenv(3), ldexp(3), log(3), math(3)

STANDARDS

These functions conform to ISO/IEC 9899:1999 (“ISO C99”).

560 Systems/C C Library

FABS(3)
NAME

fabs, fabsf, fabsl — floating-point absolute value functions

SYNOPSIS

#include <math.h>

double
fabs(double x);

float
fabsf (float x);

long double
fabsl(long double x);

DESCRIPTION

The fabs(), fabsf() and fabsl() functions compute the absolute value of a floating-
point number z.

RETURN VALUES

The fabs(), fabsf() and fabsl() functions return the absolute value of z.

SEE ALSO

abs(3), ceil(3), floor(3), math(3), rint(3)

STANDARDS

The fabs() function conforms to ISO/IEC 9899:1990 (“ISO C90”). The fabsf()
and fabsl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 561

FDIM(3)
NAME

fdim, fdimf, fdiml — positive difference functions

SYNOPSIS

#include <math.h>

double
fdim(double x, double y);

float
fdimf (float x, float y);

long double
fdiml(long double x, long double y);

DESCRIPTION

The fdim(), fdimf(), and fdiml() functions return the positive difference between
z and y. That is, if oy is positive, then -y is returned. If either z or y is a NaN,
then a NaN is returned. Otherwise, the result is +0.0.

Overflow or underflow may occur if and only if the exact result is not representable
in the return type. No other exceptions are raised.

SEE ALSO

fabs(3), fmax(3), fmin(3), math(3)

STANDARDS

The fdim(), fdimf(), and fdiml() functions conform to ISO/IEC 9899:1999 (“ISO

C99”).

562 Systems/C C Library

FEENABLEEXCEPT(3)
NAME

feenableexcept, fedisableexcept, fegetexcept — floating-point exception masking

SYNOPSIS

#include <fenv.h>
#pragma STDC FENV_ACCESS ON

int
feenableexcept (int excepts);

int
fedisableexcept(int excepts);

int
fegetexcept (void);

DESCRIPTION

The feenableexcept() and fedisableexcept() functions unmask and mask (re-
spectively) exceptions specified in excepts. The fegetexcept() function returns the
current exception mask. All exceptions are masked by default.

Floating-point operations that produce unmasked exceptions will trap, and a
SIGFPE will be delivered to the process. By installing a signal han- dler for SIGFPE,
applications can take appropriate action immediately without testing the exception
flags after every operation. Note that the trap may not be immediate, but it should
occur before the next floating- point instruction is executed.

For all of these functions, the possible types of exceptions include those described
in fenv(3). Some architectures may define other types of floating-point exceptions.

RETURN VALUES

The feenableexcept(), fedisableexcept(), and fegetexcept() functions return
a bitmap of the exceptions that were unmasked prior to the call.

SEE ALSO

sigaction(2), feclearexcept(3), feholdexcept(3), fenv(3), feupdateenv(3)

Systems/C C Library 563

ISSUES

Functions in the standard library may trigger exceptions multiple times as a re-
sult of intermediate computations; however, they generally do not trigger spurious
exceptions.

No interface is provided to permit exceptions to be handled in nontrivial ways.
There is no uniform way for an exception handler to access information about the
exception-causing instruction, or to determine whether that instruction should be
reexecuted after returning from the handler.

564 Systems/C C Library

FEGETROUND(3)
NAME

fegetround, fesetround — floating-point rounding control

SYNOPSIS

#include <fenv.h>
#pragma STDC FENV_ACCESS ON

int
fegetround(void) ;

int
fesetround(int round);

DESCRIPTION

The fegetround() function determines the current BFP floating-point rounding
mode, and the fesetround() function sets the current BFP rounding mode to
round. The rounding mode is one of FE_TONEAREST, FE_DOWNWARD, FE_UPWARD, or

FE_TOWARDZERO, as described in fenv(3).

This is the rounding mode for BFP (IEEE) arithmetic.

RETURN VALUES

The fegetround() routine returns the current rounding mode. The fesetround()
function returns 0 on success and non-zero otherwise; however, the present imple-

mentation always succeeds.

SEE ALSO

fenv(3)

STANDARDS

The fegetround() and fesetround() functions conform to ISO/TEC 9899:1999

(“ISO C99”).

Systems/C C Library 565

FE_DEC_GETROUND(3)
NAME

fe_dec_getround, fe_dec_setround — Decimal floating-point rounding control

SYNOPSIS

#include <fenv.h>

int
fe_dec_getround(void);
int

fe_dec_setround(int round);

DESCRIPTION

The fe_dec_getround() function determines the current decimal floating-point
rounding mode, and the fe_dec_setround() function sets the current deci-
mal floating point rounding mode to round. The rounding mode is one
of FE_DEC_TONEAREST, FE DEC_TOWARDZERO, FE DEC_UPWARD, FE _DEC_DOWNWARD or
FE_DEC_TONEARESTFROMZERO.

This is the rounding mode for DFP (Decimal) arithmetic.

RETURN VALUES

The fe_dec_getround() routine returns the current rounding mode. The
fe_dec_setround() function returns 0 on success and non-zero otherwise; however,
the present implementation always succeeds.

SEE ALSO

fenv(3)

566 Systems/C C Library

FLOOR(3)
NAME

floor, floorf, floorl — largest integral value less than or equal to x

SYNOPSIS

#include <math.h>

double
floor(double x);

float
floorf(float x);

long double
floorl(long double x);

DESCRIPTION

The floor(), floorf() and floorl() functions compute the largest integral value less
than or equal to z, expressed as a floating-point number.

SEE ALSO

abs(3), ceil(3), fabs(3), math(3), rint(3), round(3), trunc(3)

STANDARDS

The floor() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The floorf() and floorl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 567

FMA(3)
NAME

fma, fmaf, fmal — fused multiply-add

SYNOPSIS

#include <math.h>

double
fma(double x, double y, double z);

float
fmaf (float x, float y, float z);

long double
fmal (long double x, long double y, long double z);

DESCRIPTION

The fma(), fmaf(), and fmal() functions return (x * y) + z, computed with only
one rounding error. Using the ordinary multiplication and addition operators, by
contrast, results in two roundings: one for the intermediate product and one for the
final result.

For instance, the expression 1.2e100 * 2.0e208 - 1.4e308 produces infinity due to
overflow in the intermediate product, whereas fma(1.2e100, 2.0e208, -1.4e308) re-
turns approximately 1.0e308 (for IEEE values.)

The fused multiply-add operation is often used to improve the accuracy of cal-
culations such as dot products. It may also be used to improve performance on
machines that implement it natively. The macros FP_FAST FMA, FP_FAST FMAF and
FP_FAST FMAL may be defined in jmath.h; to indicate that fma(), fmaf(), and
fmal() (respectively) have comparable or faster speed than a multiply operation
followed by an add operation.

SEE ALSO

fenv(3), math(3)

568 Systems/C C Library

STANDARDS

The fma(), fmaf(), and fmal() functions conform to ISO/IEC 9899:1999 (“ISO
C99”). A fused multiply-add operation with virtually identical characteristics ap-
pears in IEEE draft standard 754R.

Systems/C C Library 569

FMAX(3)
NAME

fmax, fmaxf, fmaxl, fmin, fminf, fminl — floating-point maximum and minimum
functions

SYNOPSIS

#include <math.h>

double
fmax (double x, double y);

float
fmaxf (float x, float y);

long double
fmaxl(long double x, long double y);

double
fmin(double x, double y);

float
fminf (float x, float y);

long double
fminl (long double x, long double y);

DESCRIPTION

The fmax(), fmaxf(), and fmaxl() functions return the larger of z and y, and
likewise, the fmin(), fminf(), and fminl() functions return the smaller of z and .
They treat +0.0 as being larger than -0.0. If one argument is a NaN, then the other
argument is returned. If both arguments are NaNs, then the result is a NaN. These
routines do not raise any floating-point exceptions.

SEE ALSO

fabs(3), fdim(3), math(3)

570 Systems/C C Library

STANDARDS

The fmax(), fmaxf(), fmaxl(), fmin(), fminf(), and fminl() functions conform
to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 571

FMOD(3)
NAME

fmod, fmodf, fmodl — floating-point remainder functions

SYNOPSIS

#include <math.h>

double
fmod(double x, double y);

float
fmodf (float x, float y);

long double
fmodl(long double x, long double y);

DESCRIPTION

The fmod(), fmodf() and fmodl() functions compute the floating-point remainder

of £,
y

RETURN VALUES

The fmod(), fmodf() and fmodl() functions return the value x — i % y for some
integer ¢ such that, if y is non-zero, the result has the same sign as x and magnitude
less than the magnitude of y. If y is zero, whether a domain error occurs or the
fmod() function returns zero is implementation-defined and depends on the use of
IEEE or HFP values.

SEE ALSO

math(3)

STANDARDS

The fmod() function conforms to ISO/IEC 9899:1990 (“ISO C907).

The fmodf(), and fmodl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

572 Systems/C C Library

FPCLASSIFY (3)
name

fpclassify, isfinite, isinf, isnan, isnormal - classify a floating-point number

SYNOPSIS

#include <math.h>

int
fpclassify(real-floating x);

int
isfinite(real-floating x);

int
isinf (real-floating x);

int
isnan(real-floating x);

int
isnormal (real-floating x);

DESCRIPTION

The fpclassify() macro takes an argument of z and returns one of the following
manifest constants.

FP_INFINITE Indicates that x is an infinite number.
FP_NAN Indicates that x is not a number (NaN).
FP_NORMAL Indicates that x is a normalized number.
FP_SUBNORMAL Indicates that x is a denormalized number.

FP_ZERO Indicates that x is zero (0 or -0).

The isfinite() macro returns a non-zero value if and only if its argument has a finite
(zero, subnormal, or normal) value. The isinf(), isnan(), and isnormal() macros
return non-zero if and only if z is an infinity, NaN, or a non-zero normalized number,
respectively. Note that HFP values do not support infinity or NaN.

Systems/C C Library 573

SEE ALSO

isgreater(3), math(3), signbit(3)

STANDARDS

The fpclassify(), isfinite(), isinf(), isnan(), and isnormal() macros conform to
ISO/IEC 9899:1999 (“ISO C99”).

574 Systems/C C Library

FREXP(3)
NAME

frexp, frexpf, frexpl — convert floating-point number to fractional and integral com-
ponents

SYNOPSIS

#include <math.h>

double
frexp(double value, int *exp);

float
frexpf (float value, int *exp);

long double
frexpl(long double value, int *exp);

DESCRIPTION

The frexp(), frexpf() and frexpl() functions break a floating-point number into
a normalized fraction and an integral power of 2. They store the integer in the int
object pointed to by ezp.

RETURN VALUES

These functions return the value z, such that z is a double with magnitude in the
interval [1/2, 1) or zero, and value equals x times 2 raised to the power *ezp. If
value is zero, both parts of the result are zero.

SEE ALSO

ldexp(3) math(3), modf(3)

STANDARDS

The frexp(), frexpf() and frexpl() functions conform to ISO/TEC 9899:1999 (“ISO
C99”).

Systems/C C Library 575

HYPOT(3)
NAME

hypot, hypotf, hypotl - euclidean distance functions

SYNOPSIS

#include <math.h>

double
hypot (double x, double y);

float
hypotf (float x, float y);

long double
hypotl(long double x, long double y);

DESCRIPTION

The hypot(), hypotf() and hypotl() functions compute \/x% 4+ y? in such a way
that underflow will not happen, and overflow occurs only if the final result deserves
it.

hypot(co,v) = hypot(v,00) = +oo for all v, including NaN. (co and NAN are not
found in the IBM HFP format).

SEE ALSO

math(3), sqrt(3)

STANDARDS

The hypot(), hypotf() hypotl() functions conform to ISO/IEC 9899:1999 (“ISO
C99”).

576 Systems/C C Library

ILOGB(3)
NAME

ilogb, iloghf, ilogbl, logh, logbf, loghl — extract exponent

SYNOPSIS

#include <math.h>

int
ilogb(double x);

int
ilogbf (float x);

int
ilogbl(long double x);

double
logb(double x);

float
logbf (float x);

long double
logbl(long double x);

DESCRIPTION

ilogb(), ilogbf() and ilogbl() return z’s exponent in integer format. For
BFP (IEEE) values ilogb(+-infinity) returns INT_MAX, ilogb(+-NaN) returns
FP_ILOGBNAN . ilogb(0) returns FP_ILOGBO.

logb(), logbf(), and logbl() return z’s exponent in floating-point format with the
same precision as z. For BFP (IEEE) values logb(+-infinity) returns +infinity. If zis
+/-0, logb(), logbf(), and logbl() return ~HUGE_VAL, ~HUGE_VALF and -HUGE_VALL
respectively.

BFP values have a radix of 2 and HFP values have a radix of 16; the return exponent
values are in the radix of the format (FLT_RADIX defined in <float.h>).

SEE ALSO

frexp(3), math(3), scalbn(3)

Systems/C C Library 577

STANDARDS

The ilogb(), ilogbf(), ilogbl(), logb(), logbf(), and logbl() routines conform to
ISO/IEC 9899:1999 (“ISO C99”).

578 Systems/C C Library

ISGREATER(3)
NAME

isgreater, isgreaterequal, isless, islessequal, islessgreater, isunordered — compare two
floating-point numbers

SYNOPSIS

#include <math.h>

int
isgreater(real-floating x, real-floating y);

int
isgreaterequal (real-floating x, real-floating y);

int
isless(real-floating x, real-floating y);

int
islessequal(real-floating x, real-floating y);

int
islessgreater(real-floating x, real-floating y);

int
isunordered(real-floating x, real-floating y);

DESCRIPTION

Each of the macros isgreater(), isgreaterequal(), isless(), islessequal(), and
islessgreater() take arguments z and y and return a non-zero value if and only if
its nominal relation on z and y is true. These macros always return zero if either
argument is not a number (NaN), but unlike the corresponding C operators, they
never raise a floating point exception.

The isunordered() macro takes arguments z and y and returns non-zero if and
only if neither z nor y are NaNs. For any pair of floating-point values, one of the
relationships (less, greater, equal, unordered) holds.

Note that HFP floating-point values do not support NaN, therefor isunordered()

is always false for HFP values.

Systems/C C Library 579

SEE ALSO

fpclassify(3), math(3), signbit(3)

STANDARDS

The isgreater(), isgreaterequal(), isless(), islessequal(), islessgreater(), and
isunordered() macros conform to ISO/IEC 9899:1999 (“ISO C99”).

580 Systems/C C Library

LDEXP(3)
NAME

ldexp, Idexpf, ldexpl - multiply floating-point number by integral power of 2

SYNOPSIS

#include <math.h>

double
ldexp(double x, int exp);

float
ldexpf (float x, int exp);

long double
ldexpl(long double x, int exp);

DESCRIPTION

The ldexp(), ldexpf(), and ldexpl() functions multiply a floating-point number
by an integral power of 2.

RETURN VALUES

These functions return the value of z times 2 raied to the power ezp.

SEE ALSO

frexp(3), math(3), modf(3)

STANDARDS

The ldexp(), ldexpf() and ldexpl() functions conform to ISO/IEC 9899:1999
(“ISO C99”).

Systems/C C Library 581

LGAMMA (3)
NAME

lgamma, lgamma_r, lgammaf, lgammaf_r, lgammal, lgammal_r, tgamma, tgammaf,
tgammal - log gamma functions, gamma functions

SYNOPSIS

#include <math.h>
extern int signgam;

double
lgamma (double x);

double
lgamma_r (double x, int *signgamp);

float
lgammaf (float x);

float
lgammaf_r(float x, int *signgamp);

double
tgamma (double x);

float
tgammaf (float x);

long double
tgammal (long double x) ;

DESCRIPTION

lgamma (1), lgammaf (z), and 1lgammal (z) functions return In |[T'(z)|.
The external integer signgam returns the sign of I'(z).

lgamma_r (z, signgamp), lgammaf r(z,signgamp), and lgammal_r(z,signgamp)
provide the same functionality as 1lgamma(z), lgammaf)z) and lgammal (x)but the
caller must provide an integer to store the sign of I'(z).

The tgamma (), tgammaf (z), and tgammal (z) functions return I'(z) with no effect
on signgam.

582 Systems/C C Library

IDIOSYNCRASIES

Do not use the expression “g = signgam*exp(lgamma(x))” to compute g = I'(z).
Instead use a program like this (in C):

lg = lgamma(x); g = signgam*exp(lg);

Only after lgamma() has returned can signgam be correct.

For arguments in its range tgamma() is preferred, as for positive arguments it is
accurate to within one unit in the last place. Exponentiation of lgamma() will lose
up to 10 significant bits.

RETURN VALUES

tgamma(), tgammaf(), tgammal(), lgamma(), lgammaf(), lgammal(),
lgamma r(), lgammaf r(), lgammal r(), return appropriate values unless an
argument is out of range. Overflow will occur for sufficiently large positive val-
ues, and non-positive integers. For large non-integer negative values, tgammal(),
tgammaf() and tgammal() will underflow.

SEE ALSO

math(3)

STANDARDS

The lgamma(), lgammaf(), lgammal(), tgamma(), tgammaf() and tgam-
mal() functions are expected to conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 583

LOG(3)
NAME

log, logf, logl, log10, log10f, log101, loglp, loglpf, loglpl, log2, log2f, log2l - logarithm
functions

SYNOPSIS

#include <math.h>

double
log(double x);

float
logf (float x);

long double
logl(long double x);

double
logl0(double x);

float
logl0f (float x);

long double
log101(long double x);

double
logip(double x);

float
loglipf (float x);

long double
loglpl(long double x);

double
log2(double x);

float
log2f (float x);

long double
log2l(long double x);

584 Systems/C C Library

DESCRIPTION

The log(), logf() and logl() functions compute the natural logarithm of z.
The log10(), log10£() and log10l() functions compute the logarithm base 10 of z.

The loglp(), loglpf() and loglpl() functions compute the natural logarithm of
1+z. Computing the natural logarithm as loglp(x) is more accurate than computing
it as log(1 + x) when z is close to zero.

The log2(), log2f() and log2l() functions compute the logarithm base 2 of z.
RETURN VALUES

These functions return the requested logarithm; the logarithm of 1 is +0. An
attempt to take the logarithm of +-0 results in a divide-by-zero exception, and
-HUGE_VAL is returned. Otherwise, attempting to take the logarithm of a negative
number results in an invalid exception and a return value of NaN for BFP values
and 0 for HFP values.

SEE ALSO

exp(3), ilogh(3), math(3), pow(3)

STANDARDS

The log(), logf(), logl(), logl0(), logl0f(), logl0l(), loglp(), loglpf(),
loglpl(), log2(), log2f() and log2l() functions conform to ISO/IEC 9899:1999

(“ISO C99”).

Systems/C C Library 585

LRINT(3)
NAME

lIrint, llrintf, llrint], Irint, lrintf, lrintl - convert to integer

SYNOPSIS

#include <math.h>

long long
llrint (double x);

long long
llrintf(float x);

long long
1llrintl(long double x);

long
lrint(double x);

long
lrintf (float x);

long
lrintl(long double x);

DESCRIPTION

The Irint() function returns the integer nearest to its argument z according to the
current rounding mode. If the rounded result is too large to be represented as a long
value, an invalid exception is raised and the return value is undefined. Otherwise,
if is not an integer, lrint() raises an inexact exception. When the rounded result
is representable as a long, the expression

lrint (x)

is equivalent to

(long)rint (x)

586 Systems/C C Library

(although the former may be more efficient).

The llrint(), Urintf(), llrintl(), lrintf(), and Irintl() functions differ from lrint()
only in their input and output types.

SEE ALSO

Iround(3), math(3), rint(3), round(3)

STANDARDS

These functions conform to ISO/IEC 9899:1999 (“ISO C997).

Systems/C C Library 587

LROUND(3)
NAME

llround, llroundf, llroundl, lround, Iroundf, Iroundl - convert to nearest integral value

SYNOPSIS

#include <math.h>

long long
llround(double x);

long long
llroundf (float x);

long long
llroundl (long double x);

long
lround(double x);

long
lroundf (float x);

long
lroundl(long double x);

DESCRIPTION

The Iround() function returns the integer nearest to its argument z, rounding
away from zero in halfway cases. If the rounded result is too large to be represented
as a long value, an invalid exception is raised and the return value is undefined.
Otherwise, if z is not an integer, Iround() may raise an inexact exception. When
the rounded result is representable as a long, the expression

lround(x)

is equivalent to

(long) round (x)

588 Systems/C C Library

(although the former may be more efficient).

The llround(), llroundf(), llroundl(), lIroundf() and Iroundl() functions differ
from lround() only in their input and output types.

SEE ALSO

Irint(3), math(3), rint(3), round(3)

STANDARDS

The llround(), llroundf(), llroundl(), lround(), Iroundf(), and lroundl() func-
tions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 589

MODF(3)
NAME

modf, modff, modfl - extract signed integral and fractional values from floating-point
number

SYNOPSIS

#include <math.h>

double
modf (double value, double *iptr);

float
modff (float value, float *iptr);

long double
modfl(long double value, long double *iptr);

DESCRIPTION

The modf(), modff(), and modfl() functions break the argument value into inte-
gral and fractional parts, each of which has the same sign as the argument. It stores
the integral part as a floating point number in the object pointed to by ipitr.

RETURN VALUES

These functions return the signed fractional part of value.

SEE ALSO

frexp(3), 1dexp(3), math(3)

STANDARDS

The modf(), modff(), and modfl() functions conform to ISO/IEC 9899:1999
(“ISO C99”).

590 Systems/C C Library

NAN(3)
NAME

nan, nanf, nanl - quiet NaNs

SYNOPSIS

#include <math.h>

double
nan(const char *s);

float
nanf (const char *s);

long double
nanl (const char *s);

DESCRIPTION

The NAN macro expands to a quiet NaN (Not A Number). Similarly, each of the
nan(), nanf() and nanl() functions generate a quiet NaN value without raising
an invalid exception. The argument s should point to either an empty string or a
hexadecimal representation of a non-negative 32-bit integer (e.g., 70x1234”.) In the
latter case, the integer is encoded in some free bits in the representation of the NaN,
which sometimes store machine-specific information about why a particular NaN was
generated. There are 22 such bits available for float variables, 51 bits for double
variables, and at least 51 bits for a long double. If s is improperly formatted or
represents an integer that is too large, then the particular encoding of the quiet NaN
that is returned is indeterminate.

Only BFP floating-point supports NaN values. When HFP is enabled, these functions
return 0.0.

COMPATIBILITY

Calling these functions with a non-empty string isn’t portable. Another implemen-
tation may translate the string into a different NaN encoding, and furthermore, the
meaning of a given NaN encoding varies across machine architectures and implemen-
tations.

Systems/C C Library 591

SEE ALSO

fenv(3), isnan(3), math(3), strtod(3)

STANDARDS

The nan(), nanf(), and nanl() functions and the NAN macro conform to ISO/IEC
9899:1999 (“ISO C99”).

592 Systems/C C Library

NEXTAFTER(3)
NAME

nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, nexttowardl - next rep-
resentable value

SYNOPSIS

#include <math.h>

double
nextafter(double x, double y);

float
nextafterf (float x, float y);

long double
nextafterl(long double x, long double y);

double
nexttoward(double x, long double y);

float
nexttowardf (float x, long double y);

long double
nexttowardl(long double x, long double y);

DESCRIPTION

These functions return the next machine representable number from z in direction
y. The returned value may not be normalized, for either HFP or BFP.

SEE ALSO

math(3)

STANDARDS

The nextafter(), nextafterf(), nextafterl(), nexttoward(), nexttowardf(),
and nexttowardl() routines conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 593

REMAINDER(3)
NAME

remainder, remainderf, remainderl, remquo, remquof, remquol - minimal residue
functions

SYNOPSIS

#include <math.h>

double
remainder (double x, double y);

float
remainderf (float x, float y);

long double
remainderl (long double x, long double y);

double
remquo (double x, double y, int *quo);

float
remquof (float x, float y, int *quo);

long double
remquol(long double x, long double y, int *quo);

DESCRIPTION

remainder(), remainderf(), remainderl(), remquo(), remquof(), and
remquol() return the remainder r := x - n*y where n is the integer nearest the
exact value of x/y; moreover if —n - x/y— = 1/2 then n is even. Consequently the
remainder is computed exactly and —r— j= —y—/2. But attempting to take the
remainder when y is 0 or z is +-infinity is an invalid operation that produces a NaN.

The remquo(), remquof(), and remquol() functions also store the last k bits of
n in the location pointed to by quo, provided that n exists. The number of bits k is
platform-specific, but is guaranteed to be at least 3.

SEE ALSO

fmod(3), math(3)

594 Systems/C C Library

STANDARDS

The remainder(), remainderf(), remainderl(), remquo(), remquof(), and
remquol() routines conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 595

RINT(3)
NAME

nearbyint, nearbyintf, nearbyintl, rint, rintf, rintl - round to integral value in
floating-point format

SYNOPSIS

#include <math.h>

double
nearbyint (double x);

float
nearbyintf (float x);

long double
nearbyintl(long double x);

double
rint(double x);

float
rintf(float x);

long double

rintl(long double x);

DESCRIPTION

The rint(), rintf(), and rintl() functions return the integral value nearest to z. For
BFP values, the rounding is performed according to the prevailing rounding mode.
For HFP values, the rounding mode is always round-toward-zero. These functions
raise an inexact exception when the original argument is not an exact integer.

The nearbyint(), nearbyintf(), and nearbyintl() functions perform the same
operation, except that they do not raise an inexact exception.

SEE ALSO

abs(3), ceil(3), fabs(3), fenv(3), floor(3), Irint(3), Iround(3), math(3), round(3)

596 Systems/C C Library

STANDARDS

These functions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 597

ROUND(3)
NAME

round, roundf, roundl - round to nearest integral value

SYNOPSIS

#include <math.h>

double
round (double x);

float
roundf (float x);

long double
roundl (long double x);

DESCRIPTION

The round(), roundf(), and roundl() functions return the nearest integral value
to z; if x lies halfway between two integral values, then these functions return the
integral value with the larger absolute value (i.e., they round away from zero).

SEE ALSO

ceil(3), floor(3), Irint(3), Iround(3), math(3), rint(3), trunc(3)

STANDARDS

These functions conform to ISO/IEC 9899:1999 (“ISO C99”).

598 Systems/C C Library

SIGNBIT(3)

NAME

signbit - determine whether a floating-point number’s sign is negative

SYNOPSIS

#include <math.h>

int
signbit(real-floating x);

DESCRIPTION

The signbit() macro takes an argument of z and returns non-zero if the value of its

sign is negative, otherwise 0.

SEE ALSO

fpclassify(3), math(3)

STANDARDS

The signbit() macro conforms to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 599

SIN(3)
NAME

sin, sinf, sinl - sine functions

SYNOPSIS

#include <math.h>

double
sin(double x);

float
sinf (float x);

long double
sinl(long double x);

DESCRIPTION

The sin(), sinf() and sinl() functions compute the sine of (measured in radians).
A large magnitude argument may yield a result with little or no significance.

RETURN VALUES

The sin(), sinf() and sinl() functions return the sine value.

SEE ALSO

acos(3), asin(3), atan(3), atan2(3), cos(3), cosh(3), math(3), sinh(3), tan(3), tanh(3)

STANDARDS

The sin() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The sinf() and sinl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

600 Systems/C C Library

SINH(3)
NAME

sinh, sinhf, sinhl - hyperbolic sine function

SYNOPSIS

#include <math.h>

double
sinh(double x);

float
sinhf (float x);

long double
sinhl (long double x);

DESCRIPTION

The sinh(), sinhf() and sinhl() functions computes the hyperbolic sine of z.

RETURN VALUES

The sinh(), sinhf() and sinhl() functions return the hyperbolic sine value.

SEE ALSO

acos(3), asin(3), atan(3), atan2(3), cos(3), cosh(3), math(3), sin(3), tan(3), tanh(3)

STANDARDS

The sinh() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The sinhf() and sinhl() functions conform to ISO/TEC 9899:1999 (“ISO C99”).

Systems/C C Library 601

SQRT(3)
NAME

cbrt, cbrtf, sqrt, sqrtf, sqrtl — cube root and square root functions

SYNOPSIS

#include <math.h>

double
cbrt(double x);

float
cbrtf (float x);

double
sqrt (double x);

float
sqrtf(float x);

long double
sqrtl(long double x);

DESCRIPTION

The cbrt(), cbrtf() and cbrtl() functions compute the cube root of z.

The sqrt(), sqrtf() and sqrtl() functions compute the non-negative square root of
.

RETURN VALUES

The cbrt(), cbrtf() and cbrtl() functions return the requested cube root. The
sqrt(), sqrtf() and sqrtl() functions return the requested square root unless an
error occurs. An attempt to take the square root of a negative x causes an error; in
this event, the global variable errno is set to EDOM and 0.0 is returned, or for BFP
values a NalN is returned.

SEE ALSO

fenv(3), math(3)

602 Systems/C C Library

STANDARDS

The sqrt() function conforms to ISO/TEC 9899:1990 (“ISO C90”).

The cbrt(), cbrtf(), cbrtl(), sqrtf() and sqrtl() functions conforms to ISO/IEC
9899:1999 (“ISO C99”).

Systems/C C Library 603

TAN(3)
NAME

tan, tanf, tanl - tangent functions

SYNOPSIS

#include <math.h>

double
tan(double x);

float
tanf (float x);

long double
tanl(long double x);

DESCRIPTION

The tan(), tanf() and tanl() functions compute the tangent of z (measured in ra-
dians). A large magnitude argument may yield a result with little or no significance.

RETURN VALUES

The tan(), tanf() and tanl() functions return the tangent value.

SEE ALSO

acos(3), asin(3), atan(3), atan2(3), cos(3), cosh(3), math(3), sin(3), sinh(3), tanh(3)

STANDARDS

The tan() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The tanf() and tanl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

STANDARDS

604 Systems/C C Library

TANH(3)
NAME

tanh, tanhf, tanhl - hyperbolic tangent function

SYNOPSIS

#include <math.h>

double
tanh(double x)

float
tanhf (float x)

long double
tanhl (long double x)

DESCRIPTION

The tanh(), tanhf() and tanhl() functions compute the hyperbolic tangent of z.

RETURN VALUES

The tanh(), tanhf() and tanhl() functions return the hyperbolic tangent value.

SEE ALSO

acos(3), asin(3), atan(3), atan2(3), cos(3), cosh(3), math(3), sin(3), sinh(3), tan(3)

STANDARDS

The tanh() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The tanhf() and tanhl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 605

TRUNC(3)
NAME

trunc, truncf, truncl - nearest integral value with magnitude less than or equal to
|z

SYNOPSIS

#include <math.h>

double
trunc(double x);

float
truncf (float x);

long double
truncl(long double x);

DESCRIPTION

The trunc(), truncf() and truncl() functions return the nearest integral value
with magnitude less than or equal to |z|. They are equivalent to rint(), rintf(),
and rintl(), respectively, in the FE_ TOWARDZERO rounding mode.

SEE ALSO

ceil(3), fesetround(3), floor(3), math(3), nextafter(3), rint(3), round(3)

STANDARDS

The trunc(), truncf(), and truncl() functions conform to ISO/IEC 9899:1999
(“ISO C99”).

606 Systems/C C Library

Standard I/O Library

The ANSI C standard provides for a set of input and output functions known as
the Standard I/O Library.

Systems/C C Library 607

STDIO(3)
NAME

stdio - standard input/output library functions

SYNOPSIS

#include <stdio.h>
FILE *stdin;
FILE *stdout;
FILE *stderr;

DESCRIPTION

The standard I/O library provides a simple and efficient buffered stream I/O in-
terface. Input and output is mapped into logical data streams and the physical
I/O characteristics are concealed. The functions and macros are listed below; more
information is available from the individual man pages.

A stream is associated with an external file (which may be a physical device) by
opening a file, which may involve creating a new file. Creating an existing file causes
its former contents to be discarded. If a file can support positioning requests (such
as a disk file, as opposed to a terminal) then a file position indicator associated with
the stream is positioned at the start of the file (byte zero), unless the file is opened
with append mode. If append mode is used, the position indicator will be placed
the end-of-file. The position indicator is maintained by subsequent reads, writes and
positioning requests. All input occurs as if the characters were read by successive
calls to the fgetc(3) function; all output takes place as if all characters were read by
successive calls to the fputc(3) function.

A file is disassociated from a stream by closing the file. Output streams are flushed
(any unwritten buffer contents are transferred to the host environment) before the
stream is disassociated from the file. The value of a pointer to a FILE object is
indeterminate after a file is closed (garbage).

A file may be subsequently reopened, by the same or another program execution,
and its contents reclaimed or modified (if it can be repositioned at the start). If the
main function returns to its original caller, or the exit(3) function is called, all open
files are closed (hence all output streams are flushed) before program termination.
Other methods of program termination such as abort(3) do not bother to close files

properly.

This implementation makes a distinction between “text” and “binary” streams.
Records written in non-binary mode are padded after a new-line is written to fill

608 Systems/C C Library

the record. If no new-line is written before the record length is exhausted, the record
will be “split”. That is, when the record length is reached, the record will be written
and a new one started.

At program startup, three streams are predefined and need not be opened explicitly:

e standard input (for reading conventional input)
e standard output (for writing conventional output) and

e standard error (for writing diagnostic output).

These streams are abbreviated stdin, stdout and stderr. Initially, the standard
error stream is unbuffered, the standard input and output streams are fully buffered
if and only if the streams do not refer to an interactive or “terminal” device, as
determined by the isatty(3) function. In fact, all freshly-opened streams that refer
to terminal device default to line buffering, and pending output to such streams
is written automatically whenever an such an input stream is read. Note that
this applies only to “true reads”; if the read request can be satisfied by existing
buffered data, no automatic flush will occur. In these cases, or when a large amount
of computation is done after printing part of a line on an output terminal, it is
necessary to fllush(3) the standard output before going off and computing so that
the output will appear.

Alternatively, these defaults may be modified via the setvbuf(3) function.

The SYNOPSIS sections of the following information indicate which include files
are to be used, what the compiler declaration for the function looks like and which
external variables are of interest.

The following are defined as macros; these names may not be re-used without
first removing their current definitions with #undef: BUFSIZ, EOF, FILENAME MAX,
FOPEN_MAX, L_cuserid, L_ctermid, L_tmpnam, NULL, SEEK_END, SEEK_SET, SEEK_CUR,
TMP_MAX, clearerr, feof, ferror, fileno, reopen, fwopen, getc, getchar, putc,
putchar, stderr, stdin, stdout. Function versions of the macro functions feof(),
ferror(), clearerr(), fileno(), getc(), getchar(), putc(), and putchar() exist
and will be used if the macros definitions are explicitly removed.

SEE ALSO

close(2), open(2), read(2), write(2)

ISSUES

The standard buffered functions do not interact well with certain other library and
system functions, especially abort(3).

Systems/C C Library 609

STANDARDS

The stdio library conforms to ISO/IEC 9899:1990 (“ISO C90”).

LIST OF FUNCTIONS

Function Description

clearerr check and reset stream status
fclose close a stream

fdopen stream open functions

feof check and reset stream status
ferror check and reset stream status
fHlush flush a stream

fgetc get next character or word from input stream
fgetln get a line from a stream
fgetpos reposition a stream

fgets get a line from a stream
fileno check and reset stream status
fopen stream open functions

fprintf formatted output conversion
fpurge flush a stream

fputc output a character or word to a stream
fputs output a line to a stream
fread binary stream input/output
freopen stream open functions

fropen open a stream

fscanf input format conversion
fseek reposition a stream

fsetpos reposition a stream

ftell reposition a stream

funopen open a stream

610 Systems/C C Library

fwopen
fwrite
getc
getchar
getdelim
getline
gets

getw
mkstemp
mktemp
perror
printf
putc
putchar
puts
putw
remove
rewind
scanf
setbuf
setbuffer
setlinebuf
setvbuf
snprintf
sprintf
sscanf
strerror
sys_errlist

sys_nerr

open a stream

binary stream input/output

get next character or word from input stream
get next character or word from input stream
get a line from a stream

get a line from a stream

get a line from a stream

get next character or word from input stream
create unique temporary file

create unique temporary file

system error messages

formatted output conversion

output a character or word to a stream
output a character or word to a stream
output a line to a stream

output a character or word to a stream
remove directory entry

reposition a stream

input format conversion

stream buffering operations

stream buffering operations

stream buffering operations

stream buffering operations

formatted output conversion

formatted output conversion

input format conversion

system error messages

system error messages

system error messages

Systems/C C Library 611

tempnam
tmpfile
tmpnam
ungetc
viprintf
viscanf
vprintf
vscanf
vsnprintf
vsprintf

vsscanf

temporary file routines

temporary file routines

temporary file routines

un-get character from input stream
formatted output conversion

input format conversion

formatted output conversion

input format conversion

formatted output conversion
formatted output conversion

input format conversion

612 Systems/C C Library

FCLOSE(3)
NAME

fclose - close a stream

SYNOPSIS

#include <stdio.h>

int
fclose(FILE *stream)

DESCRIPTION

The fclose() function dissociates the named stream from its underlying file or set
of functions. If the stream was being used for output, any buffered data is written
first, using fllush(3).

RETURN VALUES

Upon successful completion 0 is returned. Otherwise, EOF is returned and the global
variable errno is set to indicate the error. In either case no further access to the
stream is possible.

ERRORS

[EBADF] The argument stream is not an open stream.

The fclose() function may also fail and set errno for any of the errors specified for
the routines close(2) or flush(3).

SEE ALSO

close(2), fllush(3), fopen(3), setbuf(3)

STANDARDS

The fclose() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 613

FERROR(3)
NAME

clearerr, feof, ferror, fileno - check and reset stream status

SYNOPSIS

#include <stdio.h>

void
clearerr (FILE *stream)

int
feof (FILE *stream)

int
ferror (FILE *stream)
int

fileno(FILE *stream)

DESCRIPTION

The function clearerr() clears the end-of-file and error indicators for the stream
pointed to by stream.

The function feof() tests the end-of-file indicator for the stream pointed to by
stream, returning non-zero if it is set. The end-of-file indicator can only be cleared
by the function clearerr().

The function ferror() tests the error indicator for the stream pointed to by stream,
returning non-zero if it is set. The error indicator can only be reset by the clearerr()

function.

The function fileno() examines the argument stream and returns its integer de-
scriptor.

ERRORS

These functions should not fail and do not set the external variable errno.

614 Systems/C C Library

SEE ALSO

open(2), stdio(3)

STANDARDS

The functions clearerr(), feof(), and ferror() conform to ISO/IEC 9899:1990
(“ISO C”).

Systems/C C Library 615

FFLUSH(3)
NAME

flush, fpurge - flush a stream

SYNOPSIS

#include <stdio.h>

int
fflush(FILE *stream)

int

fpurge (FILE *stream)

DESCRIPTION

The function fllush() forces a write of all buffered data for the given output or
update stream via the stream’s underlying write function. The open status of the
stream is unaffected.

If the stream argument is NULL, fllush() flushes all open output streams.
The function fpurge() erases any input or output buffered in the given stream. For
output streams this discards any unwritten output. For input streams this discards

any input read from the underlying object but not yet obtained via getc(3). This
includes any text pushed back via ungetc.

RETURN VALUES

Upon successful completion 0 is returned. Otherwise, EOF is returned and the global
variable errno is set to indicate the error.

ERRORS

[EBADF] Stream is not an open stream, or, in the case of fllush(), not a
stream open for writing.

The function flush() may also fail and set errno for any of the errors specified for
the routine write(2).

616 Systems/C C Library

SEE ALSO

write(2), fclose(3), fopen(3), setbuf(3)

STANDARDS

The fllush() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 617

FGETLN(3)
NAME

fgetln - get a line from a stream

SYNOPSIS

#include <stdio.h>

char *
fgetln(FILE *stream, size_t *len)

DESCRIPTION

The fgetln() function returns a pointer to the next line from the stream referenced
by stream. This line is not a C string as it does not end with a terminating NUL
character. The length of the line, including the final newline, is stored in the memory
location to which len points. (Note, however, that if the line is the last in a file that
does not end in a newline, the returned text will not contain a newline.)

RETURN VALUES

Upon successful completion a pointer is returned; this pointer becomes invalid after
the next I/O operation on stream (whether successful or not) or as soon as the
stream is closed. Otherwise, NULL is returned. The fgetln() function does not
distinguish between end-of-file and error; the routines feof(3) and ferror(3) must be
used to determine which occurred. If an error occurs, the global variable errno is set
to indicate the error. The end-of-file condition is remembered, even on a terminal,
and all subsequent attempts to read will return NULL until the condition is cleared
with clearerr(3).

The text to which the returned pointer points may be modified provided that no
changes are made beyond the returned size. These changes are lost as soon as the
pointer becomes invalid.

ERRORS

[EBADF] The argument stream is not a stream open for reading.

The fgetln() function may also fail and set errno for any of the errors specified for
the routines fflush(3), mallow(3), read(2), stat(2), or realloc(3).

618 Systems/C C Library

SEE ALSO

ferror(3), fgets(3), fopen(3), putc(3)

Systems/C C Library 619

FGETWLN(3)
NAME

fgetwln - get a line of wide characters from a stream

SYNOPSIS

#include <stdio.h>
#include <wchar.h>

wchar_t *
fgetwln(FILE * restrict stream, size_t * restrict len)

DESCRIPTION

The fgetwln() function returns a pointer to the next line from the stream referenced
by stream. This line is not a standard wide character string as it does not end with a
terminating null wide character. The length of the line, including the final newline,
is stored in the memory location to which len points. (Note, however, that if the
line is the last in a file that does not end in a newline, the returned text will not
contain a newline.)

RETURN VALUES

Upon successful completion a pointer is returned; this pointer becomes invalid after
the next I/O operation on stream (whether successful or not) or as soon as the
stream is closed. Otherwise, NULL is returned. The fgetwln() function does not
distinguish between end-of-file and error; the routines feof(3) and ferror(3) must be
used to determine which occurred. If an error occurs, the global variable errno is set
to indicate the error. The end-of-file condition is remembered, even on a terminal,
and all subsequent attempts to read will return NULL until the condition is cleared
with clearerr(3).

The text to which the returned pointer points may be modified, provided that no
changes are made beyond the returned size. These changes are lost as soon as the
pointer becomes invalid.

ERRORS

[EBADF] The argument stream is not a stream open for reading.

The fgetwln() function may also fail and set errno for any of the errors specified
for the routines mbrtowc(3), realloc(3), or read(2).

620 Systems/C C Library

SEE ALSO

ferror(3), fgetln(3), fgetws(3), fopen(3)

Systems/C C Library 621

GETLINE(3)
NAME

getdelim, getline - get a line from a stream

SYNOPSIS

#tdefine _WITH_GETLINE
#include <stdio.h>

ssize_t
getdelim(char ** restrict linep, size_t * restrict linecapp,
int delimiter, FILE * restrict stream);

ssize_t
getline(char *x restrict linep, size_t * restrict linecapp,
FILE * restrict stream);

DESCRIPTION

The getdelim() function reads a line from stream, delimited by the character delim-
iter. The getline() function is equivalent to getdelim() with the newline character
as the delimiter. The delimiter character is included as part of the line, unless the
end of the file is reached.

The caller may provide a pointer to a malloc’d buffer for the line in *linep, and the
capacity of that buffer in *linecapp. These functions expand the buffer as needed,
as if via realloc(). If linep points to a NULL pointer, a new buffer will be allocated.
In either case, *linep and *linecapp will be updated accordingly.

RETURN VALUES

The getdelim() and getline() functions return the number of characters stored in
the buffer, excluding the terminating NUL character. The value -1 is returned if an
error occurs, or if end-of-file is reached.

EXAMPLES

The following code fragment reads lines from a file and writes them to standard
output. The fwrite() function is used in case the line contains embedded NUL
characters.

622 Systems/C C Library

char *line = NULL;

size_t linecap = 0;

ssize_t linelen;

while ((linelen = getline(&line, &linecap, fp)) > 0)
fwrite(line, linelen, 1, stdout);

free(line);

COMPATIBILITY

Many application writers used the name getline before the getline() function
was introduced in IEEE Std 1003.1 (“POSIX.1”), so a prototype is not provided
by default in order to avoid compatibility problems. Applications that wish to use
the getline() function described herein should either request a strict IEEE Std
1003.1-2008 (“POSIX.1”) environment by defining the macro _POSIX_C_SOURCE to
the value 200809 or greater, or by defining the macro WITH_GETLINE, prior to the
inclusion of jstdio.h;. For compatibility with GNU libc, defining either _-BSD_SOURCE
or _GNU_SOURCE prior to the inclusion of jstdio.h; will also make getline() available.

ERRORS

These functions may fail if:

[EINVAL] Either linep or linecapp is NULL.

[EOVERFLOW] No delimiter was found in the first SSIZE_MAX characters.

These functions may also fail due to any of the errors specified for fgets() and
malloc().

SEE ALSO

fgetln(3), fgets(3), malloc(3)

STANDARDS

The getdelim() and getline() functions conform to IEEE Std 1003.1-2008
(“POSIX.17).

ISSUES

There are no wide character versions of getdelim() or getline().

Systems/C C Library 623

FGETS(3)
NAME

fgets, gets - get a line from a stream

SYNOPSIS

#include <stdio.h>

char *
fgets(char *str, int size, FILE *stream)

char *
gets(char *str)

DESCRIPTION

The fgets() function reads at most one less than the number of characters specified
by size from the given stream and stores them in the string str. Reading stops when
a newline character is found, at end-of-file or error. The newline, if any, is retained.
If any characters are read and there is no error, a >\0’ character is appended to
end the string.

The gets() function is equivalent to fgets() with an infinite size and a stream of
stdin, except that the newline character (if any) is not stored in the string. It is
the caller’s responsibility to ensure that the input line, if any, is sufficiently short to
fit in the string.

RETURN VALUES

Upon successful completion, fgets() and gets() return a pointer to the string. If
end-of-file occurs before any characters are read, they return NULL and the buffer
content is unchanged. If an error occurs, they return NULL and the buffer content
is indeterminate. The fgets() and gets() functions do not distinguish between
end-of-file and error, and callers must use feof(3) and ferror(3) to determine which
occurred.

ERRORS

[EBADF] The given stream is not a readable stream.

624 Systems/C C Library

The function fgets() may also fail and set errno for any of the errors specified for
the routines fllush(3), fstat(2), read(2), or malloc(3).

The function gets() may also fail and set errno for any of the errors specified for
the routine getchar(3).

SEE ALSO

feof(3), ferror(3), fgetln(3)

STANDARDS

The functions fgets() and gets() conform to ISO/IEC 9899:1990 (“ISO C90”).

ISSUES

Since it is usually impossible to ensure that the next input line is less than some
arbitrary length, and because overflowing the input buffer is almost invariably a
security violation, programs should NEVER use gets().

The gets() function exists purely to conform to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 625

FGETWS(3)
NAME

fgetws - get a line of wide characters from a stream

SYNOPSIS

#include <stdio.h>
#include <wchar.h>

wchar_t *
fgetws(wchar_t * restrict ws, int n, FILE * restrict fp)

DESCRIPTION

The fgetws() function reads at most one less than the number of characters specified
by n from the given fp and stores them in the wide character string ws. Reading
stops when a newline character is found, at end-of-file or error. The newline, if any,
is retained. If any characters are read and there is no error, a ’\0’ character is
appended to end the string.

RETURN VALUES

Upon successful completion, fgetws() returns ws. If end-of-file occurs before any
characters are read, fgetws() returns NULL and the buffer contents remain un-
changed. If an error occurs, fgetws() returns NULL and the buffer contents are
indeterminate. The fgetws() function does not distinguish between end-of-file and
error, and callers must use feof(3) and ferror(3) to determine which occurred.

ERRORS

The fgetws() function will fail if:

[EBADF] The given fp argument is not a readable stream.

[EILSEQ] The data obtained from the input stream does not form a valid

multibyte character.

The function fgetws() may also fail and set errno for any of the errors specified
for the routines fllush(3), fstat(2), read(2), or malloc(3).

626 Systems/C C Library

SEE ALSO

feof(3), ferror(3), fgets(3)

STANDARDS

The fgetws() function conforms to IEEE Std 1003.1-2001 (“POSIX.1").

Systems/C C Library 627

FOPEN(3)

NAME

fopen, fdopen, freopen - stream open functions

SYNOPSIS

#include <stdio.h>

FILE *
fopen(char *path, char *mode)

FILE x*
fdopen(int fildes, char *mode)

FILE *
freopen(char #*path, char *mode, FILE *stream)

DESCRIPTION

The fopen() function opens the file whose name is the string pointed to by path
and associates a stream with it.

The argument mode points to a string beginning with one of the following sequences
(Additional characters may follow these sequences.):

71}
r

“r+77

7]
W

4LW+77

(1))

44a+77

Open text file for reading. The stream is positioned at the beginning of the
file.

Open for reading and writing. The stream is positioned at the beginning of
the file.

Truncate file to zero length or create text file for writing. The stream is
positioned at the beginning of the file.

Open for reading and writing. The file is created if it does not exist, otherwise
it is truncated. The stream is positioned at the beginning of the file.

Open for writing. The file is created if it does not exist. The stream is
positioned at the end of the file.

Open for reading and writing. The file is created if it does not exist. The
stream is positioned at the end of the file.

628 Systems/C C Library

The mode string can also include the letter “b” either as a third character or as
a character between the characters in any of the two-character strings described
above. The “b” indicates that I/O should be performed in binary mode, instead of
the default text mode.

If a comma is found after the mode specification, the remaining text is taken to be
DCB attributes which will be passed to the open(2) function. See open(2) for a
description of these attributes.

Reads and writes may be intermixed on read/write streams in any order, and do not
require an intermediate seek as in other versions of studio. This is not portable to
other systems. However; ANSI C requires that a file positioning function intervene
between output and input, unless an input operation encounters end-of-file.

The fdopen() function associates a stream with the existing file descriptor, fildes.
The mode of the stream must be compatible with the mode of the file descriptor.

The freopen() function opens the file whose name is the string pointed to by path
and associates the stream pointed to by stream with it. The original stream (if
it exists) is closed. The mode argument is used just as in the fopen() function.
The primary use of the freopen() function is to change the file associated with a
standard text stream (stderr, stdin, or stdout).

RECORD I/0

If the type=record attribute is specified after the mode specification; the lower-level
file descriptor will be processed in “record I/O” mode. In this mode, the file is set
to non-buffering to directly pass write requests to the lower level write functions.
Any read processing should reset the file buffer to a buffer size sufficient to handle
the expected record length of the file. See the fread(3) and fwrite(3) sections for
more information regarding record 1/0.

RETURN VALUES

Upon successful completion fopen(), fdopen() and freopen() return a FILE
pointer. Otherwise, NULL is returned and the global variable errno is set to in-
dicate the error.

EXAMPLE

The following opens the file specified by the character pointer output_file name,
for text output. Note that it uses the DCB attributes string to specify that the file
format should be FIXED BLOCKED, with a block size of 8000 and a logical record
length of 80:

Systems/C C Library 629

char *output_file_name;
FILE *output_file;

output_file = fopen(output_file_name,
"w,recfm=fb,blksize=8000,1recl=80");
ERRORS

[EINVAL] The mode provided to fopen(), fdopen(), or freopen() was in-
valid.
The fopen(), fdopen() and freopen() functions may also fail and set errno for

any of the errors specified for the routine malloc(3).

The fopen() function may also fail and set errno for any of the errors specified for
the routine open(2).

The fdopen() function may also fail and set errno for any of the errors specified
for the routine fentl(2).

The freopen() function may also fail and set errno for any of the errors specified
for the routines open(2), fclose(3) and fllush(3).

SEE ALSO

open(2), fclose(3), fseek(3), funopen(3)

ISSUES

fopen() is based on open(). Any restrictions mentioned on the open(3) description
apply to fopen().

STANDARDS

The fopen() and freopen() functions conform to ISO/IEC 9899:1990 (“ISO C90”).
The fdopen() function conforms to IEEE Std1003.1-1988 (“POSIX").

630 Systems/C C Library

FPUTS(3)
NAME

fputs, puts - output a line to a stream

SYNOPSIS

#include <stdio.h>

int
fputs(const char *str, FILE *stream)

int
puts(const char *str)

DESCRIPTION

The function fputs() writes the string pointed to by str to the stream pointed to
by stream.

The function puts() writes the string str, and a terminating newline character, to
the stream stdout.

RETURN VALUES

The fputs() function returns 0 on success and EOF on error; puts() returns a
nonnegative integer on success and EOF on error.

ERRORS

[EBADF] The stream supplied is not a writable stream.

The functions fputs() and puts() may also fail and set errno for any of the errors
specified for the routines write(2).

SEE ALSO

ferror(3), putc(3), stdio(3)

Systems/C C Library 631

STANDARDS

The functions fputs() and puts() conform to ISO/IEC 9899:1990 (“ISO C90”).

632 Systems/C C Library

FPUTWS(3)
NAME

fputws - output a line of wide characters to a stream

SYNOPSIS

#include <stdio.h>
#include <wchar.h>

int
fputws(const wchar_t * restrict ws, FILE * restrict fp)

DESCRIPTION

The fputws() function writes the wide character string pointed to by ws to the
stream pointed to by fp.

RETURN VALUES

The fputws() function returns 0 on success and -1 on error.

ERRORS

The fputws() function will fail if:
[EBADF] The fp argument supplied is not a writable stream.

The fputws() function may also fail and set errno for any of the errors specified
for the routine write(2).

SEE ALSO

ferror(3), fputs(3), putwe(3), stdio(3)

STANDARDS

The fputws() function conforms to IEEE Std 1003.1-2001 (“POSIX.1").

Systems/C C Library 633

FREAD(3)
NAME

fread, fwrite - binary stream input/output

SYNOPSIS

#include <stdio.h>

size_t
fread(void *ptr, size_t size, size_t nmemb,
FILE *stream)

size_t
fwrite(const void *ptr, size_t size, size_t nmemb,
FILE *stream)

DESCRIPTION

The function fread() reads nmemb objects, each size bytes long, from the stream
pointed to by stream, storing them at the location given by ptr.

The function fwrite() writes nmemb objects, each size bytes long, to the stream
pointed to by stream, obtaining them from the location given by pir.

RECORD I/0

If the stream was opened with the attribute of type=record, then the lower-level
read /write operation is performed in “record I/O” mode. Furthermore, the stream
is set to be unbuffered.

For fwrite(), the unbuffered stream causes the specified number of bytes (size *
nmemb) to be directly passed to the write() operation and written as one record. A
subsequent fwrite() will advance to the next output record.

For fread(), the unbuffered stream will cause a read of 1 byte from each record in
the input file. Thus, for fread(), the buffer should be reset using setvbuf(3), to a
size that is appropriate for the expected maximum input record length. Then, the
lower-level read operation will fill this buffer with a single record, and that buffer
will used to satisfy the fread() request. When record-I/O is employed, every call
to fread() forces a refresh of the input buffer by invoking read(2) to read the next
record.

634 Systems/C C Library

For example, to read a variable-length file MYFILE a record a time; where the maxi-
mum record length in MYFILE is 8000 bytes:

char record[8000];
FILE *f;
int num_read, rec_len;

/* open the binary file in record-I/0 mode */
f = fopen("MYFILE", "rb,type=record");

/* set the input buffering to be record-sized */
setvbuf (f, NULL, _IOFBF, 8000);

/* read a record */
num_read = fread(record, 1, 8000, f);

Note that the size value in this example is set to 1, and the number of elements
(nmemb) is set to 8000, allowing fread() to return the number of bytes read on the
record.

RETURN VALUES

The functions fread() and fwrite() advance the file position indicator for the
stream by at least the number of bytes read or written. They return the num-
ber of objects read or written. If an error occurs, or the end-of-file is reached, the
return value is a short object count (or zero).

The function fread() does not distinguish between end-of-file and error. Callers
must use feof(3) and ferror(3) to determine which occurred. The function fwrite()
returns a value less than nmemb only if a write error has occurred, or the the amount
of data is larger than the maximum record length when using “record I/0”.

When reading from a variable-length record using “record I/O” (type=record), it
is possible to read a zero-length record. In this case, there is no data read; which is
typically the situation end-of-file. In this event, the lower-level read() will set the
error condition, with errno set to EAGAIN. Thus, programs using fread() reading
from variable-length input with type=record need to be aware that ferror()(3) will
be true for zero-length input records. The error should be cleared with clearerr()(3)
to proceed to the next record. This approach allows the program to distinguish
between reading a zero-length record and reaching end-of-file.

Writing to variable-length record files cannot produce a zero-length record. If it is

desired to produce zero-length records in the resulting output file, then the write()(2)
function with type=record should be used.

Systems/C C Library 635

SEE ALSO

read(2), write(2)

STANDARDS

The functions fread() and fwrite() conform to ISO/IEC 9899:1990 (“ISO C90”).

636 Systems/C C Library

FSEEK(3)
NAME

fgetpos, fseek, fseeko, fsetpos, ftell, ftello, rewind - reposition a stream

SYNOPSIS

#include <stdio.h>

int
fseek(FILE *stream, long offset, int whence)

long
ftell(FILE *stream)

void
rewind (FILE *stream)

int
fgetpos(FILE *stream, fpos_t *pos)

int
fsetpos(FILE *stream, fpos_t *pos)

int
fseeko(FILE *stream, off_t offset, int whence);

off_t
ftello(FILE *stream);

DESCRIPTION

The fseek() function sets the file position indicator for the stream pointed to by
stream. The new position, measured in bytes, is obtained by adding offset bytes
to the position specified by whence. If whence is set to SEEK_SET, SEEK_CUR, or
SEEK_END, the offset is relative to the start of the file, the current position indicator,
or end-of-file, respectively. A successful call to the fseek() function clears the end-
of-file indicator for the stream and undoes any effects of the ungetc(3) function on
the same stream.

The ftell() function obtains the current value of the file position indicator for the
stream pointed to by stream.

Systems/C C Library 637

The rewind() function sets the file position indicator for the stream pointed to by
stream to the beginning of the file. It is equivalent to:

(void)fseek(stream, OL, SEEK_SET)

except that the error indicator for the stream is also cleared (see clearerr(3)).

The fseeko() function is identical to fseek(), except it takes an off_t argument
instead of a long. Likewise, the ftello() function is identical to ftell(), except it
returns an off_t.

The fgetpos() and fsetpos() functions are alternate interfaces equivalent to ftell()
and fseek() (with whence set to SEEK_SET), setting and storing the current value
of the file offset into or from the object referenced by pos. The fpos_t object may
be a complex object and these routines may be the only way to reposition a text
stream in a portable fashion.

RETURN VALUES

The rewind() function returns no value.

The fgetpos(), fseek(), fseeko() and fsetpos() functions return the value 0 if
successfu; otherwise the value -1 is returned and the global variable errno is set to
indicate the error.

Upon successful completion, ftell() and ftello() return the current offset. Other-
wise, -1 is returned and the global variable errno is set to indicate the error.

ISSUES

These functions depend on Iseek(2). Any restrictions provided in the lseek(2) de-
scription apply to these functions as well.

ERRORS
[EBADF] The stream specified is not a seekable stream.
[EINVAL] The whence argument to fseek() was not SEEK_SET, SEEK_END, or

SEEK_CUR.

The function fgetpos(), fseek(), fseeko(), fsetpos(), ftell() and ftello() may also
fail and set errno for any of the errors specified for the routines flush(3), fstat(2),
Iseek(2), and malloc(3).

638 Systems/C C Library

SEE ALSO

Iseek(2)

STANDARDS

The fgetpos(), fsetpos(), fseek(), ftell(), and rewind() functions conform to
ISO 9899: 1990 (“ISO C90”).

The fseeko() and ftello() functions conform to Version 2 of the Single UNIX Spec-
ification (“SUSv2”).

Systems/C C Library 639

FUNOPEN(3)
NAME

funopen, fropen, fwopen - open a stream

SYNOPSIS

#include <stdio.h>

FILE =*

funopen(const void *cookie,

int (*readfn) (void *, char *, int),

int (xwritefn) (void *, const char *, int),
fpos_t (*seekfn) (void *, fpos_t, int),

int (*closefn) (void %))

FILE =*
fropen(void *cookie,
int (*readfn) (void *, char *, int))

FILE *
fwopen(void *cookie,
int (*writefn) (void *, const char *, int))

DESCRIPTION

The funopen() function associates a stream with up to four “I/O functions”. Either
readjfn or writefn must be specified; the others can be given as an appropriately-typed
NULL pointer. These I/O functions will be used to read, write, seek and close the
new stream.

In general, omitting a function means that any attempt to perform the associated
operation on the resulting stream will fail. If the close function is omitted, closing
the stream will flush any buffered output and then succeed.

The calling conventions of readfn, writefn, seekfn and closefn must match those,
respectively, of read(2), write(2), seek(2), and close(2) with the single exception
that they are passed the cookie argument specified to funopen() in place of the
traditional file descriptor argument.

Read and write I/O functions are allowed to change the underlying buffer on fully
buffered or line buffered streams by calling setvbuf(3). They are also not required
to completely fill or empty the buffer. They are not, however, allowed to change
streams from unbuffered to buffered or to change the state of the line buffering flag.

640 Systems/C C Library

They must also be prepared o have read or write calls occur on buffers other than
the one most recently specified.

All user I/O functions can report an error by returning -1. Additionally, all of the
functions should set the external variable errno appropriately if an error occurs.

An error on closefn() does not keep the stream open.

As a convenience, the include file <stdio.h> defines the macros frozen() and
fwopen() as calls to funopen() with only a read or write function specified.

RETURN VALUES

Upon successful completion, funopen() returns a FILE pointer. Otherwise, NULL
is returned and the global variable errno is set to indicate the error.

ERRORS

[EINVAL] The funopen() function was called without either a read or write
function. The funopen() function may also fail and set errno for
any of the errors specified for the routine malloc(3).

SEE ALSO

fentl(2), open(2), fclose(3), fopen(3), fseek(3), setbuf(3)

Systems/C C Library 641

FWIDE(3)
NAME

fwide - get/set orientation of a stream

SYNOPSIS

#include <stdio.h>
#include <wchar.h>

int
fwide (FILE *stream, int mode)

DESCRIPTION

The fwide() function determines the orientation of the stream pointed at by stream.

If the orientation of stream has already been determined, fwide() leaves it un-
changed. Otherwise, fwide() sets the orientation of stream according to mode.

If mode is less than zero, stream is set to byte-oriented. If it is greater than zero,
stream is set to wide-oriented. Otherwise, mode is zero, and stream is unchanged.

RETURN VALUES

The fwide() function returns a value according to orientation after the call of
fwide(); a value less than zero if byte-oriented, a value greater than zero if wide-
oriented, and zero if the stream has no orientation.

SEE ALSO

ferror(3), fgetc(3), fgetwe(3), fopen(3), fpute(3), fputwe(3), freopen(3), stdio(3)

STANDARDS

The fwide() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

642 Systems/C C Library

GETC(3)
NAME

fgetc, getc, getchar, getw - get next character or word from input stream

SYNOPSIS

#include <stdio.h>

int

fgetc(FILE *stream)
int

getc(FILE *stream)
int

getchar ()

int
getw(FILE *stream)

DESCRIPTION

The fgetc() function obtains the next input character (if present) from the stream
pointed at by stream, or the next character pushed back on the stream via ungetc(3).

The getc() function acts essentially identically to fgetc(), but is a macro that
expands in-line.

The getchar() function is equivalent to: getc with the argument stdin.

The getw() function obtains the next int (if present) from the stream pointed at
by stream.

RETURN VALUES

If successful, these routines return the next requested object from the stream. If the
stream is at end-of-file or a read error occurs, the routines return EOF. The routines
feof(3) and ferror(3) must be used to distinguish between end-of-file and error. If an
error occurs, the global variable errno is set to indicate the error. The end-of-file
condition is remembered, even on a terminal, and all subsequent attempts to read
will return EOF until the condition is cleared with clearerr(3).

Systems/C C Library 643

SEE ALSO

ferror(3), fopen(3), fread(3), putc(3), ungetc(3)

STANDARDS

The fgetc(), getc() and getchar() functions conform to ISO/IEC 9899:1990 (“ISO
C90”).

ISSUES

Since EQF is a valid integer value, feof(3) and ferror(3) must be used to check for
failure after calling getw(). The size and byte order of an int varies from one
machine to another, and getw() is not recommended for portable applications.

644 Systems/C C Library

GETWC(3)
NAME

fgetwe, getwe, getwchar - get next wide character from input stream

SYNOPSIS

#include <stdio.h>
#include <wchar.h>

wint_t
fgetwc(FILE *stream)

wint_t
getwc (FILE *stream)

wint_t
getwchar ()

DESCRIPTION

The fgetwc() function obtains the next input wide character (if present) from the
stream pointed at by stream, or the next character pushed back on the stream via
ungetwe(3).

The getwc() function acts essentially identically to fgetwce().

The getwchar() function is equivalent to getwc() with the argument stdin.

RETURN VALUES

If success