
Systems/C C Library
Version 2.30

Copyright c© 2020, Dignus, LLC

Systems/C C Library
Version 2.30

i

Copyright c© 2024 Dignus LLC, 8378 Six Forks Road Suite 203, Raleigh NC, 27615.
World rights reserved. No part of this publication may be stored in a retrieval
system, transmitted, or reproduced in any way, including but not limited to pho-
tocopy, photograph, magnetic or other record, without the prior agreement and
written permission of the publisher.

This product includes software developed by the University of California, Berkeley
and its contributors.

Copyright (c) 1990, 1993
The Regents of the University of California. All rights reserved.

IBM, S/390, zSeries, zArchitecure, z/OS, z/VM, z/VSE, OS/390, MVS, VM, CMS,
HLASM, and High Level Assembler are registered trademarks of International Busi-
ness Machines Corporation.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Microsoft, Windows, Windows NT, Windows XP are trademarks of Microsoft Cor-
poration in the United States and other countries.

Dignus, Systems/C, Systems/C++ and Systems/ASM are registered trademarks of
Dignus, LLC.

ii

Contents

How to use this book 1

Using the Systems/C C library 3
Linking with the Systems/C C run-time library on OS/390 and z/OS . . 3

A note on re-entrant (RENT) programs 3
Using PLINK . 4
Linking under the OpenEdition shell 5
Other useful utilities . 6
Linking programs on OS/390 and z/OS 7
Executing programs . 8

Systems/C C Library Features 11
Special “built-in” implementations for common C library functions. . 11

Using the Systems/C Direct-CALL interface 12

Systems/C z/Architecture Library 21
z/Architecture library features . 21
z/Architecture data and code locations 21
Determining addressing mode . 22
Linking with the Systems/C z/Architecture Library 22
z/Architecture and OpenEdition services 23
Direct-CALL extensions . 23
Mixing z/Architecture and non-z/Architecture functions 23

Programming for TSO and BATCH 25
Running programs under TSO . 25
argv processing under TSO . 26
Running programs under BATCH JCL . 26
argv processing under BATCH . 26

Programming for OpenEdition 29
Linking programs under the OpenEdition Shell 29
Copying programs from a PDS to the OpenEdition Shell 30
Running programs under the OpenEdition Shell 30

Systems/C C Library iii

Programming for CMS 31
Linking programs for CMS . 31

Using PLINK to create CMS programs 31
Using LKED to link CMS programs 33
Executing programs on CMS . 34

Programming for MVS 3.8 35
Linking programs for MVS 3.8 . 35

Using PLINK to create MVS 3.8 programs 36
MVS 3.8 runtime restrictions . 37

Controlling the runtime environment 39
Runtime Options specified in the program arguments 39

Runtime Options in TSO and Batch 39
Runtime Options in OpenEdition . 40
Disabling/Enabling runtime options in TSO and Batch 40

stdin, stdout and stderr . 41
Changing standard filenames at execution time 41
Changing standard filenames and attributes at compile time 41

Choosing the TCP/IP interface . 42
Changing argv delimiters for BATCH and TSO 43
Disabling runtime options for BATCH and TSO 43
Controlling stack space allocation . 44
Specifying the runtime storage SUBPOOL 45
Specifying the runtime KEY . 45
Controlling access to Unix System Services 45
Signal Handling . 46

Considerations for SIGABND processing 47
OpenEdition . 47

Linking under OpenEdition . 47
Running under OpenEdition . 48

Data locations . 49
Stand alone function . 49

Compiler invoked routines . 50
Initializing re-entrant data . 50

User ABEND codes issued by the runtime 53

Systems/C C Library functions 55
System Functions . 56

ACCESS(2) . 57
AIO CANCEL(2) . 59
AIO ERROR(2) . 61
AIO READ(2) . 63
AIO RETURN(2) . 66
AIO SUSPEND(2) . 68

iv

AIO WRITE(2) . 70
CHDIR(2) . 73
CHMOD(2) . 75
CHOWN(2) . 78
CHROOT(2) . 80
CLOCK GETTIME(2) . 82
CLOSE(2) . 84

DCALL ENV(2) . 86
DCALL SETRETREGVAL(2) . 87

DDNFIND(2) . 88
DYNALL(2) . 90

DUP(2) . 98
EXECVE(2) . 100
EXIT(2) . 104

FCNTL(2) . 106
FLDATA(2) . 108
FORK(2) . 112
FSYNC(2) . 114

GET CPUID(2) . 116
GETITIMER(2) . 117
GETDTABLESIZE(2) . 120
GETGID(2) . 121
GETGROUPS(2) . 122
GETLOGIN(2) . 123
GETPID(2) . 124
GETPGRP(2) . 125
GETPRIORITY(2) . 127
GETPRV(2) . 129
GETRUSAGE(2) . 130
GETSID(2) . 132
GETTIMEOFDAY(2) . 133
GETUID(2) . 135
GRANTPT(2) . 136
IBMFD(2) . 137

ISPOSIXON(2) . 139
JOBNAME(2) . 140

KILL(2) . 141
LINK(2) . 143
LIO LISTIO(2) . 145
LSEEK(2) . 147
MKDIR(2) . 149
MKFIFO(2) . 151
MKNOD(2) . 153
MMAP(2) . 155
MPROTECT(2) . 159

v

MSYNC(2) . 161
MSGCTL(2) . 163
MSGGET(2) . 166
MSGRCV(2) . 168
MSGSND(2) . 170
MUNMAP(2) . 172
NANOSLEEP(2) . 173
OPEN(2) . 175
OSDDINFO(2) . 184

PASSWD(2) . 186
PATHCONF(2) . 188
PIPE(2) . 190

PROCNAME(2) . 192
QUERYDUB(2) . 193

READ(2) . 194
READLINK(2) . 197
RENAME(2) . 198
RMDIR(2) . 201
SCHED YIELD(2) . 203
SEMCTL(2) . 204
SEMGET(2) . 207
SEMOP(2) . 209
SETGROUPS(2) . 212
SETMODE(2) . 213

SETPGID(2) . 214
SETREGID(2) . 216
SETREUID(2) . 218
SETSID(2) . 219
SETUID(2) . 221
SHMAT(2) . 223
SHMCTL(2) . 225
SHMGET(2) . 227
SIGACTION(2) . 229
SIGPENDING(2) . 236
SIGPROCMASK(2) . 237
SIGQUEUE(2) . 239
SIGSUSPEND(2) . 241
SIGWAIT(2) . 242

SMF RECORD(2) . 244
STAT(2) . 245

STEPNAME(2) . 249
SYMLINK(2) . 250

SVC99(2) . 252
SYNC(2) . 259
TRUNCATE(2) . 260

vi

UMASK(2) . 262
UNLINK(2) . 263
UNLOCKPT(2) . 265

USERID(2) . 266
UTIMES(2) . 267
VFORK(2) . 269
WAIT(2) . 271
WRITE(2) . 274

TCP/IP related functions . 277
ACCEPT(2) . 278
BIND(2) . 280
CONNECT(2) . 282
GETCLIENTID(2) . 284
GETHOSTID(2) . 285
GETHOSTNAME(2) . 287
GETPEERNAME(2) . 288
GETSOCKNAME(2) . 289
GETSOCKOPT(2) . 291
GIVESOCKET(2) . 295
IOCTL(2) . 298
LISTEN(2) . 301
POLL(2) . 302
RECV(2) . 305
SELECT(2) . 309
SELECTEX(2) . 312
SEND(2) . 313

SETSOCKPARM(2) . 316
SOCKET(2) . 318
SHUTDOWN(2) . 321
TAKESOCKET(3) . 323

Gen Library . 325
ATOE(3) . 326
TO XX(3) . 328

ALARM(3) . 331
ASSERT(3) . 332
BITSTRING(3) . 333
CLOCK(3) . 336
CTERMID(3) . 337
DIRECTORY(3) . 339
DLOPEN(3) . 341
ERR(3) . 344
EXEC(3) . 347
FMTCHECK(3) . 350
FMTMSG(3) . 352
FNMATCH(3) . 355

vii

FTOK(3) . 357
GETCWD(3) . 358
GETCONTEXT(3) . 360
GETGRENT(3) . 362
GETPROGNAME(3) . 364
GETPWENT(3) . 365
GLOB(3) . 367
HCREATE(3) . 372
ISATTY(3) . 376
LSEARCH(3) . 377
MAKECONTEXT(3) . 378
NICE(3) . 380
POPEN(3) . 381
POSIX SPAWN(3) . 383
POSIX SPAWNATTR GETFLAGS(3) 388
POSIX SPAWNATTR GETPGROUP(3) 390
POSIX SPAWNATTR GETSIGDEFAULT(3) 392
POSIX SPAWNATTR GETSIGMASK(3) 394
POSIX SPAWNATTR INIT(3) . 396
POSIX SPAWN FILE ACTIONS ADDOPEN(3) 398
POSIX SPAWN FILE ACTIONS INIT(3) 401
PSELECT(3) . 403
PSIGNAL(3) . 405
PTSNAME(3) . 406
PAUSE(3) . 408
QUEUE(3) . 409
RAISE(3) . 425
SEM DESTROY(3) . 426
SEM GETVALUE(3) . 427
SEM INIT(3) . 429
SEM OPEN(3) . 431
SEM POST(3) . 434
SEM WAIT(3) . 437
SIGNAL(3) . 439
SIGSETOPS(3) . 443
SETJMP(3) . 445
SLEEP(3) . 447
SYSCONF(3) . 448
TCGETPGRP(3) . 450
TCSENDBREAK(3) . 451
TCSETATTR(3) . 453
TCSETPGRP(3) . 457
THRD CREATE(3) . 459
TIME(3) . 464
TIMES(3) . 465

viii

TIMEZONE(3) . 467
TPUT(3) . 468
TRACEBACK(3) . 469
TSEARCH(3) . 471
TTYNAME(3) . 473
UCONTEXT(3) . 474
UNAME(3) . 475
USLEEP(3) . 476
UTIME(3) . 477
WORDEXP(3) . 478
WTO(3) . 481

Locale Library . 482
BTOWC(3) . 483
CTYPE(3) . 484
ISALNUM(3) . 486
ISALPHA(3) . 487
ISASCII(3) . 488
ISBLANK(3) . 489
ISCNTRL(3) . 490
ISDIGIT(3) . 491
ISGRAPH(3) . 492
ISLOWER(3) . 493
ISPRINT(3) . 494
ISPUNCT(3) . 495
ISSPACE(3) . 496
ISUPPER(3) . 497
ISWALNUM(3) . 498
ISXDIGIT(3) . 501
MBLEN(3) . 502
MBRLEN(3) . 504
MBRTOWC(3) . 506
MBSINIT(3) . 508
MBSRTOWCS(3) . 509
MULTIBYTE(3) . 511
RUNE(3) . 513
SETLOCALE(3) . 516
TOASCII(3) . 520
TOLOWER(3) . 521
TOUPPER(3) . 522
TOWLOWER(3) . 523
TOWUPPER(3) . 524
WCSTOL(3) . 525
WCTRANS(3) . 527
WCTYPE(3) . 529
WCWIDTH(3) . 531

ix

Math library . 532
MATH(3) . 533

FP CAST(3) . 540
ISBFP(3) . 541

ACOS(3) . 543
ACOSH(3) . 544
SCALBN(3) . 545
ASIN(3) . 546
ASINH(3) . 547
ATAN(3) . 548
ATAN2(3) . 549
ATANH(3) . 551
CEIL(3) . 552
COPYSIGN(3) . 553
COS(3) . 554
COSH(3) . 555
ERF(3) . 556
EXP(3) . 558
FABS(3) . 561
FDIM(3) . 562
FEENABLEEXCEPT(3) . 563
FEGETROUND(3) . 565
FE DEC GETROUND(3) . 566
FLOOR(3) . 567
FMA(3) . 568
FMAX(3) . 570
FMOD(3) . 572
FPCLASSIFY(3) . 573
FREXP(3) . 575
HYPOT(3) . 576
ILOGB(3) . 577
ISGREATER(3) . 579
LDEXP(3) . 581
LGAMMA(3) . 582
LOG(3) . 584
LRINT(3) . 586
LROUND(3) . 588
MODF(3) . 590
NAN(3) . 591
NEXTAFTER(3) . 593
REMAINDER(3) . 594
RINT(3) . 596
ROUND(3) . 598
SIGNBIT(3) . 599
SIN(3) . 600

x

SINH(3) . 601
SQRT(3) . 602
TAN(3) . 604
TANH(3) . 605
TRUNC(3) . 606

Standard I/O Library . 607
STDIO(3) . 608
FCLOSE(3) . 613
FERROR(3) . 614
FFLUSH(3) . 616
FGETLN(3) . 618
FGETWLN(3) . 620
GETLINE(3) . 622
FGETS(3) . 624
FGETWS(3) . 626
FOPEN(3) . 628
FPUTS(3) . 631
FPUTWS(3) . 633
FREAD(3) . 634
FSEEK(3) . 637
FUNOPEN(3) . 640
FWIDE(3) . 642
GETC(3) . 643
GETWC(3) . 645
MKTEMP(3) . 647
PRINTF(3) . 650
PUTC(3) . 656
PUTWC(3) . 658
REMOVE(3) . 659
SCANF(3) . 660
SETBUF(3) . 664
TMPFILE(3) . 666
UNGETC(3) . 669
UNGETWC(3) . 670
WPRINTF(3) . 671
WSCANF(3) . 677

The Standard Library . 682
FREE24(3) . 683
FREE31(3) . 684
MALLOC24(3) . 685
MALLOC31(3) . 686

ABORT(3) . 687
ABS(3) . 688
ARC4RANDOM(3) . 689
ATEXIT(3) . 691

xi

ATOF(3) . 692
ATOI(3) . 693
ATOL(3) . 694
BSEARCH(3) . 696
CALLOC(3) . 697
DIV(3) . 698
ENVIRON(7) . 699
EXIT(3) . 700
FREE(3) . 701
GETENV(3) . 702
GETOPT(3) . 704
GETSUBOPT(3) . 707
IMAXABS(3) . 709
IMAXDIV(3) . 710
LABS(3) . 711
LDIV(3) . 712
LLABS(3) . 713
LLDIV(3) . 714
MALLOC(3) . 715
MEMORY(3) . 716
STRFMON(3) . 718
QSORT(3) . 721
RADIXSORT(3) . 724
RAND(3) . 726
RANDOM(3) . 727
REALLOC(3) . 729
REALPATH(3) . 730
STRTOD(3) . 731
STRTOL(3) . 733
STRTOUL(3) . 735
SYSCONF(3) . 737
SYSTEM(3) . 739

Standard Time library . 740
CTIME(3) . 741
STRFTIME(3) . 745
STRPTIME(3) . 748
TIME2POSIX(3) . 749
TZSET(3) . 751
TZFILE(5) . 754

String Library . 756
BCMP(3) . 757
BCOPY(3) . 758
BSTRING(3) . 759
BZERO(3) . 761
FFS(3) . 762

xii

INDEX(3) . 763
MEMCCPY(3) . 764
MEMCHR(3) . 765
MEMCMP(3) . 766
MEMCPY(3) . 767
MEMMEM(3) . 769
MEMMOVE(3) . 770
MEMSET(3) . 771
RINDEX(3) . 772
STRCASECMP(3) . 773
STRCAT(3) . 774
STRCHR(3) . 775
STRCMP(3) . 776
STRCOLL(3) . 777
STRCPY(3) . 778
STRCSPN(3) . 780
STRDUP(3) . 781
STRERROR(3) . 782
STRING(3) . 784
STRLCPY(3) . 787
STRLEN(3) . 790
STRPBRK(3) . 791
STRRCHR(3) . 792
STRSEP(3) . 793
STRSPN(3) . 794
STRSTR(3) . 795
STRTOK(3) . 797
STRXFRM(3) . 799
SWAB(3) . 800
WCSWIDTH(3) . 801
WMEMCHR(3) . 802

Regular Expression Library . 805
REGEX(3) . 806
RE FORMAT(7) . 813

Net Library . 817
ADDR2ASCII(3) . 818
BYTEORDER(3) . 821
ETHERS(3) . 822
GAI STRERROR(3) . 825
GETADDRINFO(3) . 827
GETHOSTBYNAME(3) . 833

NSSWITCH LINE(3) . 837
GETIPNODEBYNAME(3) . 839
GETNAMEINFO(3) . 843
GETNETENT(3) . 847

xiii

GETPROTOENT(3) . 849
GETSERVENT(3) . 851
INET(3) . 853
NS(3) . 856
RESOLVER(3) . 858

Thread Library . 861
PTHREAD(3) . 862
PTHREAD ATFORK(3) . 874
PTHREAD ATTR(3) . 876
PTHREAD BARRIER(3) . 881
PTHREAD BARRIERATTR(3) . 883
PTHREAD CANCEL(3) . 885
PTHREAD CLEANUP POP(3) . 887
PTHREAD CLEANUP PUSH(3) . 888
PTHREAD CONDATTR(3) . 889
PTHREAD COND BROADCAST(3) 892
PTHREAD COND DESTROY(3) 893
PTHREAD COND INIT(3) . 894
PTHREAD COND SIGNAL(3) . 896
PTHREAD COND TIMEDWAIT(3) 897
PTHREAD COND WAIT(3) . 899
PTHREAD CREATE(3) . 900
PTHREAD DETACH(3) . 902
PTHREAD EQUAL(3) . 904
PTHREAD EXIT(3) . 905
PTHREAD GETSPECIFIC(3) . 907
PTHREAD JOIN(3) . 909
PTHREAD KEY CREATE(3) . 911
PTHREAD KEY DELETE(3) . 913
PTHREAD KILL(3) . 915
PTHREAD MAIN NP(3) . 916
PTHREAD MUTEXATTR(3) . 917
PTHREAD MUTEX DESTROY(3) 920
PTHREAD MUTEX INIT(3) . 921
PTHREAD MUTEX LOCK(3) . 923
PTHREAD MUTEX TRYLOCK(3) 924
PTHREAD MUTEX UNLOCK(3) 925
PTHREAD ONCE(3) . 926
PTHREAD RWLOCKATTR DESTROY(3) 928
PTHREAD RWLOCKATTR GETPSHARED(3) 929
PTHREAD RWLOCKATTR SETPSHARED(3) 932
PTHREAD RWLOCK DESTROY(3) 934
PTHREAD RWLOCK INIT(3) . 936
PTHREAD RWLOCK RDLOCK(3) 938
PTHREAD RWLOCK UNLOCK(3) 940

xiv

PTHREAD RWLOCK WRLOCK(3) 941
PTHREAD SELF(3) . 943
PTHREAD SET LIMIT NP(3) . 944
PTHREAD SIGMASK(3) . 947
PTHREAD SPIN INIT(3) . 949
PTHREAD SPIN LOCK(3) . 951
PTHREAD TESTCANCEL(3) . 953
PTHREAD YIELD(3) . 956
THRD CREATE(3) . 957

CEEPIPI interface . 962
CEEPIPI(3) . 963

CEEPIPI init main(3) . 969
CEEPIPI init main dp(3) . 970
CEEPIPI init sub(3) . 971
CEEPIPI init sub dp(3) . 972
CEEPIPI call main(3) . 973
CEEPIPI call sub(3) . 975
CEEPIPI call sub addr(3) . 977
CEEPIPI end seq(3) . 979
CEEPIPI start seq(3) . 980
CEEPIPI term(3) . 981
CEEPIPI add entry(3) . 982
CEEPIPI delete entry(3) . 984
CEEPIPI identify entry(3) . 985
CEEPIPI identify environment(3) 986
CEEPIPI identify attributes(3) . 988
CEEPIPI set user word(3) . 989
CEEPIPI get user word(3) . 990
CEEPIPI alloc CEEPIT(3) . 991

Keyed Access (VSAM) I/O . 993
VSAMIO(3) . 994
KCLOSE(3) . 1000
KDATA(3) . 1001
KDELETE(3) . 1003
KERRINFO(3) . 1005
KGETPOS(3) . 1006
KINSERT(3) . 1008
KOPEN(3) . 1010
KREAD(3) . 1013
KREPLACE(3) . 1015
KRETRV(3) . 1016
KSEARCH(3) . 1018
KSEEK(2) . 1020
KSETPOS(3) . 1022
KWRITE(3) . 1024

xv

ASCII/EBCDIC Translation Table 1027

SIGABND example to catch ABEND 978 (out-of-stack) 1029

DCALL example 1033

xvi

How to use this book

This book describes the Systems/C C run-time library.

The Systems/C run-time library provides functions that implement most of the
ANSI-C standard library on OS/390 and z/OS. Using the Systems/C library, you
can build stand-alone programs that run on OS/390 and z/OS.

For information on the Systems/C C compiler, refer to the Systems/C C Compiler
manual.

Systems/C also includes several utility programs used to manage the process of
building OS/390 and z/OS programs. For more information regarding these utilities,
see the Systems/C Utilities manual.

For further information, contact Dignus, LLC at (919) 676-0847, or visit
http://www.dignus.com.

Systems/C C Library 1

2 Systems/C C Library

Using the Systems/C C library

This section describes how to link with the Systems/C C library and how to execute
the resulting programs.

Linking with the Systems/C C run-time library on
OS/390 and z/OS

Once the compiler generated assembly source has been assembled, the disparate
objects can be linked into an executable load module. If the Systems/ASM assem-
bler was used to cross-assemble the assembly source, the object decks should be
transferred to OS/390 via FTP or some other binary-mode transfer mechanism.

Systems/C contains two versions of the Systems/C library - the RENT version
for generating re-entrant programs and the non-rent version for generating non-re-
entrant programs.

If the source were compiled with the –frent option, the RENT library should be em-
ployed to produce a re-entrant load module. This will require using the Systems/C
pre-linker PLINK during the link step.

If no source was compiled with the –frent option, then the non-rent library should
be used. In that case, it is not necessary to use the Systems/C pre-linker, PLINK.

A note on re-entrant (RENT) programs

Re-entrant (RENT) programs are programs which can safely be linked with the
RENT option applied to the IBM LINKER, and can be placed in the OS/390 LIN-
KLST, etc... They are, generally speaking, programs which do not modify their
own loaded sections, but instead allocate memory to contain program variables at
program start-up.

When a C source file is compiled with the –frent option, the compiler will place all
of the extern and static variables in the pseudo-register vector, the PRV. These
variables are referred to by Q-CON references in the generated assembly source.

Systems/C C Library 3

The IBM linker gathers all of the Q-CON references together allocating an entry for
each in the PRV.

The Systems/C library, at start-up, allocates the appropriate space for the PRV,
and retains a pointer to the PRV at a known location.

At run-time, a reference to a variable in the PRV uses the PRV pointer and the
value the linker has substituted for the Q-CON, adding them together to produce the
run-time offset for the variable.

An issue arises because of variable initialization allowed by the ANSI C standard.
For example, the address of a variable in the PRV isn’t known until run-time, when
the PRV is allocated, but is a valid file-scoped initialization value.

Because of this, the Systems/C compiler, DCC produces run-time initialization
scripts which the Systems/C library processes at program start up, after the PRV
has been allocated. It is the job of the Systems/C pre-linker, PLINK, to locate the
start of these scripts in each object and gather them together. PLINK then places
a list of these at the end of the resulting object, in a known section. The run-time
library walks the list, interpreting the scripts it finds.

Thus, RENT programs must be processed with the Systems/C pre-linker, PLINK,
to ensure proper run-time initialization of variables located in the PRV.

Using PLINK

PLINK gathers the input objects together, performing AUTOCALL resolution
where appropriate, producing a single file which can then be processed by the IBM
BINDER or older IEWL linker.

As PLINK gathers objects, it examines the defined symbols, looking for a Sys-
tems/C initialization script section and other object file processing that may need
to be performed.

The output of PLINK is then processed by the IBM BINDER to produce the
executable load module.

For detailed information on PLINK, see the PLINK section in the Systems/C
Utilities manual.

On cross-hosted platforms (Windows and UNIX), PLINK is typically executed
with the object files listed on the command line; and a –S option or library names
to locate any required library objects.

For example, on a Windows platform the command:

plink "-SC:\sysc\lib\objs_rent\&M" prog.obj

4 Systems/C C Library

will read the initial input file, prog.obj and examine the C:\sysc\lib\objs rent
directory for any AUTOCALL references. Because no -o option was specified, the
resulting object file is writting to the file p.out.

This command, on UNIX platforms:

plink t1.obj t2.obj libone.a -L../mylibs -ltwo

will read the two primary input objects t1.obj and t2.obj. It will try and resolve
references from the DAR archive libone.a and then the second DAR archive
../mylibs/libtwo.a

On OS/390 or z/OS, PLINK operates similar to the IBM pre-linker. The result-
ing gathered object is written to the file //DDN:SYSMOD unless otherwise specified.
PLINK has a default library template of -S//DDN:SYSLIB(%M) which causes it to
look in the SYSLIB PDS for autocall references. Other input objects, -S library
templates or DAR archives may be added in the PARMS option on the PLINK
step. PLINK reads the file //DDN:SYSIN as the initial input file. Typically, this
file contains INCLUDE cards to include the primary objects for the program. Other
primary input files may be included in the PARMS for PLINK. For example, the
following JCL reads the object INDD(PROG) and uses DIGNUS.LIBCR.OBJ as the
autocall library:

//PLINK EXEC PGM=PLINK
//STDERR DD SYSOUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCR.OBJ,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
//SYSMOD DD DSN=myoutput.obj,DISP=NEW

Note that the STDERR and STDOUT DDs were specified for PLINK’s message output.
Also, the ARLIBRARY control card could have been used to add additional DAR
archive files for resolving external references.

For more detailed information regarding PLINK and the other Systems/C utilities,
see the Systems/C Utilities manual.

Linking under the OpenEdition shell

Systems/C programs can be linked under the OpenEdition shell; to create load
modules that reside in the Hierarchical File System (HFS).

Systems/C C Library 5

To create an HFS load-module, the output from PLINK can be linked using the
OpenEdition cc command. The -e // option should be added the cc command to
indicate that the entry-point is not the default Language Environment entry point
expected by cc. The Systems/C runtime library will specify its own entry-point.

For example, to pre-link and link the object myfunc.o and produce the HFS load-
module myprog under the OpenEdition shell (assuming /usr/local/dignus is the
installation location), simply run PLINK:

plink -omyprog.o myfunc.o "-S/usr/local/dignus/objs_rent/&m"

then use the OpenEdition cc command:

cc -e // -omyprog myprog.o

to produce the myprog load-module. myprog can then be invoked as any other
OpenEdition program.

Other useful utilities

Systems/C provides other useful utilities. More details and examples of their use
can be found in the Systems/C Utilities manual.

DAR — the Systems/C Archive utility

The Systems/C archive utility, DAR, creates and maintains groups of files combined
into an archive. Once an archive has been created, new files can be added and
existing files can be extracted, deleted or replaced. Files gathered together with
DAR can be used to resolve AUTOCALLed references from PLINK.

DRANLIB — the Systems/C Archive index utility

DRANLIB is used to index a Systems/C archive to allow for AUTOCALL refer-
ences to longer names, or to names which are not dependent on the archive member
name. DRANLIB will create a SYMDEF member in the Systems/C archive which
PLINK will consult when looking for symbolic resolutions.

GOFF2XSD — Convert GOFF format objects to XSD format

GOFF2XSD is used to convert GOFF format objects to XSD format. Typically,
GOFF format objects are created by the IBM HLASM assembler when the XOBJECT
option is enabled. The PLINK linker can read GOFF format natively. This utility
is no longer required for using PLINK and is provided only for back-level support.

6 Systems/C C Library

DCCPC — the Systems/C CICS Command Processor

DCCPC is used to convert EXEC CICS commands in C source into plain C code for
compilation. It is especially useful in cross environments where IBM’s translators
cannot be used.

D2S — the Systems/C DSECT to struct conversion tool

D2S extracts assembly DSECTs from assembler-generated ADATA information and
generates C-style struct definitions. This is intended to allow C code to work
seamlessly with data structures from your assembly code.

Linking programs on OS/390 and z/OS

Before execution, programs must be prepared, optionally using the Systems/C pre-
linker, PLINK, and then linked using either PLINK or the IBM LINKER or
BINDER.

Systems/C provides two versions of the Systems/C C library, one for RENT pro-
grams and one for non-RENT programs. If you are using the Systems/C library,
it is important to link with the appropriate version. If any source programs refer-
ence variables found in the Systems/C library (e.g. errno) and that program was
compiled with the –frent option, then the re-entrant version of the Systems/C li-
brary should be used. Using the incorrect version of the library will cause strange
run-time errors. The installation instructions for your particular host platform will
detail where to find the correct Systems/C library. Normally the Systems/C library
is specified as the last library to use for AUTOCALL resolution in the PLINK
step. Furthermore, PLINK must be used for re-entrant programs that use the Sys-
tems/C library or to take advantage of DAR archive libraries for external reference
resolution.

In the following example JCL, there are three objects to link together to form the
resulting executable, MAIN, SUB1, and SUB2, representing a main module and two
supporting sub-modules. These are found in the PDS MY.PDS.OBJ. The resulting
executable is written to MY.PDS.LOAD(MPROG).

//LINK JOB
//PLINK EXEC PGM=PLINK,REGION=2048K
//STEPLIB DD DSN=DIGNUS.LOAD,DISP=SHR
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSLIB DD DSN=DIGNUS.LIBCR.OBJ,DISP=SHR
//SYSMOD DD DSN=&&PLKDD,UNIT=VIO,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),

Systems/C C Library 7

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//INDD DD DSN=MYPDS.OBJ,DISP=SHR
//SYSIN DD *
INCLUDE INDD(MAIN)
INCLUDE INDD(SUB1)
INCLUDE INDD(SUB2)

//STDIN DD *
//LINK EXEC PGM=IEWL,REGION=2M,PARM=(’LIST’,
// ’MAP,XREF,LET’,
// ’ALIASES=NO,UPCASE=NO,MSGLEVEL=4,EDIT=YES’)
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

First, the Systems/C pre-linker, PLINK is invoked, specifying the inclusion of the
three object modules and the Systems/C C reentrant library. This step could have
been performed on a cross-platform host, running PLINK there. Then the IBM
BINDER is invoked for final linking and generation of the resulting load module.

Executing programs

Once a program has been successfully linked, it is a typical OS/390 or zOS load
module and may be executed via JCL, TSO CALL command or, via the OpenEdition
exec() linkage.

By default, the Systems/C library contains no modules that are loaded during pro-
gram execution, meaning it is “all-resident.” As such, there are no run-time library
concerns, and no particular modules which must be present in a STEPLIB concaten-
dation.

For traditional (non-POSIX) programs, the Systems/C C library’s default behavior
is to open file descriptors descriptors #0, #1 and #2 using the names //DDN:STDIN,
//DDN:STDOUT and //DDN:STDERR. Thus, the DD-names STDIN, STDOUT and STDERR
must be properly allocated. The open(2) description contains more information
regarding file descriptors and file I/O.

For standard Systems/C library uses, where the Direct-CALL feature is not em-
ployed, arguments specified in the TSO CALL command, or via the PARM option
of JCL are processed and presented to the program in the argv[] array passed to
the main() function. The Systems/C library uses a comma (,) as the argument
delimiter, similar to other option processes used in TSO and batch environments.

For example, if the resulting program was named “PROG” in the MY.PROGS PDS, the
following JCL would execute the program, passing the argument strings “arg1”,
“arg2”, and “arg3” in the argv[] array.

8 Systems/C C Library

...
//PROG EXEC PGM=PROG,PARM="arg1,arg2,arg3"
//STEPLIB DD DSN=MY.PROGS,DISP=SHR
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*

Note the definition of the STDOUT and STDERR DD statements to provide the neces-
sary output path for the Systems/C library.

For programs invoked via the exec() service (POSIX programs), the first 3 file
descriptors are inherited from the parent process. Also, the arguments are processed
by the Unix Systems Services environment and are presented to the program in the
typical UNIX style.

Systems/C C Library 9

10 Systems/C C Library

Systems/C C Library Features

The Systems/C C Library contains several features to aid in the development of
OS/390 and z/OS programs.

This include Systems/C C compiler support for in-line expansion of certain com-
monly used C functions, support for using Systems/C programs in almost any run-
time environment, and enhanced support for z/Architecture 64-bit programs.

Special “built-in” implementations for common C library functions.

The Systems/C compiler, DCC, provides built-in implementations for some of the
more common C library functions. Built-in functions are used when the Systems/C
C library header file <string.h> system header file is included. The following
functions have built-in implementations:

memcpy()
memset()
memcmp()
memchr()
strcpy()
strlen()
strcmp()
strcat()
strchr()
strncat()
strncmp()
strncpy()
strrchr()

#include <string.h> to take advantage of the built-in versions of these functions.

Systems/C C Library 11

Using the Systems/C Direct-CALL interface

The Systems/C C library is implemented using the Systems/C entry and exit macros
which assume a Systems/C environment is extent at run time.

The Systems/C environment includes items such as the local stack frame used for
automatic variables in your C code, the Systems/C run-time heap, I/O data blocks,
etc...

Thus, in order to call a Systems/C function which uses the Systems/C entry and
exit linkage macros, this environment must be established and accessible.

For typical Systems/C programs, where the initial function is a C main() function;
the Systems/C library handles creation of this environment.

However, there are circumstances where there is no Systems/C main() function.
For example, calling Systems/C routines from COBOL or directly from assembler
source in a system exit.

For this situation, Systems/C provides the Direct-CALL (DCALL) interface, where
a Systems/C function can be directly called from any environment. This interface
can be employed to either automatically create and destroy a Systems/C environ-
ment, or to create and re-use, then destroy a Systems/C environment.

Automatic Creation/Destruction of the Systems/C environment

To use the Direct-CALL to automatically create an destroy a Systems/C environ-
ment, particular Systems/C functions are indicated as being “directly called”. These
functions establish a Systems/c environment, so that normal System/C library func-
tions can be employed until the “directly called” function has ended. At the end
of execution of the “directly called” function, the System/C library environment is
destroyed and all resources are returned to the operating system.

To indicate that a particular function is to be “directly called”, the DCALL=YES
keyword is added to the functions prologue macro with a #pragma prolkey control
statement:

#pragma prolkey(funcname,"DCALL=YES")

where funcname is the name of the “directly called” function. This causes the
prologue generated for the named function to establish the System/C environment,
and destroy it on return from the function.

For more information regarding #pragma prolkey, see the Systems/C C Compiler
manual.

12 Systems/C C Library

For example, if MYFUNC was to be “directly called” from assembler language;
and MYFUNC would further use the Systems/C library you might have in your
assembler source:

L 2,=F’1’
ST 2,PARMS
L 2,=F’2’
ST 2,PARMS+4
LA 1,PARMS
L 15,=V(MYFUNC)
BALR 14,15 Call ’MYFUNC’

* The return value from MYFUNC is in R15.
...

PARMS DS 2F

which invokes MYFUNC with a standard parameter list, passing the values #1 and
#2.

For the C definition of MYFUNC:

#pragma prolkey(MYFUNC,"DCALL=YES")

int
MYFUNC(int one, int two)
{

printf("In MYFUNC - arg #1 is %d\n", one);
printf(" arg #2 is %d\n", two);

...
return (0); /* return 0 to the caller */

}

In this example, when MYFUNC is invoked, a Systems/C environment will be
created, and MYFUNC can then invoke Systems/C library functions (e.g. printf()
above.)

On return from MYFUNC - the Systems/C environment will be destroyed and any
resources will be returned to the operating system. The return value from MYFUNC
will be in R15 as it is declared to be a function returning an int.

Notice also that two parameters were passed to MYFUNC in this example. The
Systems/C linkage follows standard linkage conventions, so Systems/C “direct call”
functions interoperate well with most environments. When invoking “direct call”
Systems/C functions from some high-level languages, such as PL/I and COBOL,
be sure to declare any parameters as pointers to their data types, as these other
languages pass parameters by-reference, instead of the C by-value approach.

Systems/C C Library 13

Register uses across DCALL executions

When a Dignus environment is created and destroyed, the Dignus runtime saves and
restores the registers as per normal linkage rules.

In the 31-bit runtime environment, the Dignus library assumes R13 points to a
72-byte save area and will save and restore R2 through R14.

In the 64-bit runtime environment, if the DCALL creation routine is invoked in
AMODE 31, then the runtime only assumes R13 points to a 72-byte save area.
However, the full 64-bit registers values for R2 through R14 are saved and restored.
If the creation routine is invoked in AMODE 64, then the runtime assumes R13
points to a 144-byte save area, and the full 64-bit values of R2 through R14 are
saved and restored.

The runtime does not guarantee the preservation of R0, R1 or R15 across a DCALL
function call.

Creating, re-using and destroying a Systems/C environment

The Direct-CALL interface can also be used to create a Systems/C environment
which is not destroyed. The created environment may be used multiple times until it
is explicitly destroyed. This can save run-time cost, as the creation of a Systems/C
environment involves some overhead. Reusing a previously created environment
avoids the creation problem for functions called many times.

Creating a Systems/C environment

To create a Systems/C environment, the DCALL prologue key is altered to indicate
that the environment should be created when the named function is invoked, but
not destroyed when the function returns. To indicate this, use

DCALL=ALLOCATE

on the prologue key statement. On return from the C function, an environment
pointer is returned in general register one (R1). This value should be saved, and
may be re-used on subsequent Systems/C function calls to re-use the created envi-
ronment. Note that the creation function can call other Systems/C functions, alter
global data in the environment, etc... providing for a nice location to accomplish
any particular initialization that may be needed.

For example:

14 Systems/C C Library

#pragma prolkey(create,"DCALL=ALLOCATE")
void
create()
{

/* This function is called to create a */
/* Systems/C environment. */

/* On return, the created environment address */
/* is returned in R1. */

}

Another approach to saving the environment pointer for R1 is to use the
dcall env() function. dcall env() returns the same environment pointer that

will be returned in the R1 register.

Thus, dcall env() can be used to save the environment pointer in a parameter
passed to the

DCALL=ALLOCATE

function. For example:

#include <machine/dcall.h>

void
create(void **env_ptr)
{

/* Set the *env_ptr value to the created environment */
/* pointer*/

*env_ptr = __dcall_env();
}

Using this approach, the environment pointer can be saved in a parameter which
can then later be passed to other functions which need it.

Reusing a created environment

To reuse a previously created Systems/C environment, a different DCALL prologue
key is provided, indicating that an environment should not be established, but can
be found in the supplied location. To indicate this use:

DCALL=SUPPLIED

Systems/C C Library 15

on the prologue key statement. When this is specified, the Systems/C library
will use the environment address specified in register zero (R0). Before invok-
ing the function, load register 0 with the address previously returned in R1 by
a DCALL=ALLOCATE function call.

For example:

#pragma prolkey(func1,"DCALL=SUPPLIED")
func1()
{

/* calls to func1() assume a Systems/C */
/* environment is passed in R0 */
printf("in func1\n");

}

#pragma prolkey(func2,"DCALL=SUPPLIED")
func2()
{

/* calls to func2() assume a Systems/C */
/* environment is passed in R0 */
printf("in func2\n");

}

A DCALL=SUPPLIED function cannot invoke another DCALL=SUPPLIED function using
the same environment address. That is, while the environment is being used by
a DCALL=SUPPLIED function, a separately invoked DCALL=SUPPLIED function will
restart the stack point and corrupt the program. If two DCALL=SUPPLIED interfaces
are provided, and need to share function code, then a 3rd non-DCALL function is
the best approach.

The Systems/C library also provides for an exit to locate the desired environment
when a function is called, the FINDENV=exitname option for DCALL function.
FINDENV specifies an entry point which will be invoked for DCALL=SUPPLIED
function calls. When FINDENV is present, the Systems/C library will invoke the
exit before any other processing. The exit should return with a

L R15,=V(CRT9A)
BR 15

having located the Systems/C environment and placing that address into register 0
(R0.)

The FINDENV exit must preserve register nine through thirteen (R9-R13) and does
not have an available save area.

For example,

16 Systems/C C Library

#pragma prolkey(func3,"DCALL=SUPPLIED,FINDENV=FINDME")

When func3() is invoked, the exit FINDME will be driven to load the Systems/C
environment pointer into R0.

One example of using the FINDENV option is to pass the environment pointer in
the parameter block. For example, if the SUPPLIED function was:

#progma prolkey (SUPPEX, "DCALL=SUPPLIED,FINDENV=@@FNDENV")
SUPPEX(void **env_ptr, int *parm1)
{
/* env_ptr is used by the @@FNDENV assembler piece */
/* to set R0 to the environment pointer. */

}

then the @@FNDENV assembly function might be:

@@FNDENV CSECT
@@FNDENV AMODE ANY
@@FNDENV RMODE ANY

USING @@FNDENV,15
L 2,0(0,1)
L 0,0(0,2) Get environment ptr into R0
L 15,=V(@CRT9A)
BR 15
LTORG
END

Note that if the name specified in FINDENV is an external label, not present in the
current compilation, then it should be made visible to the assembler via an EXTRN
statement. For example:

__asm { EXTRN FARAWAY }
#pragma prolkey(func4,"DCALL=SUPPLIED,FINDENV=FARAWAY")

The DCCPRLG macro will reference the FINDENV specified label via an address-
constant (A-CON), and the label needs to be appropriately defined for proper ref-
erence. Note that the EXTRN statement should only appear once in the generated
assembly. Multiple EXTRN statements for the same label are flagged as errors by the
assembler.

Systems/C C Library 17

Reusing an existing PRV

For a DCALL=ALLOCATE or DCALL=YES function, it is possible to indicate
that the previously established PRV should be employed instead of re-allocating the
PRV and performing global initialization functions.

Normally, when a DCALL=ALLOCATE or DCALL=YES function is invoked, the
runtime will acquire space for the PRV and run global initialization functions (in-
cluding global constructor functions.)

However, there are instances where only a new stack frame is required, but no PRV
should be allocated. For example; to implement multi-threading via the ATTACH
macro. The environment requires its own stack, but wants to share the global state.
This only applies to re-entrant data as non-re-entrant data is in the load module
proper and thus would be shared amongst all environments.

In this case, the PRV=0 option on the DCALL=ALLOCATE or DCALL=YES can
be used.

When PRV=0 is specified, the Dignus runtime will create a new stack frame envi-
ronment for the environment but will not create or initialize a new PRV and will not
invoke global constructor functions. Instead, the PRV is taken from the value found
in register zero (R0) at the start of the DCALL=ALLOCATE or DCALL=YES
function.

The Dignus library function getprv(2) can be used in the primary environment to
retrieve the current PRV value before invoking a PRV=0 function.

When re-using an existing PRV, the environment start up does not reinitialize global
or static reentrant variables and does not execute global initializers on start up. On
completion, the runtime does not execute global destructors or free the specified
PRV. In this fastion, the PRV=0 environment will ”share” the global re-entrant
variables with the environment specified in R0.

Differences from main()

The Systems/C Direct-CALL environment start up does not provide all the same
function that a normal main() start up provides.

There is no argument processing in the Direct-CALL environment, the DCALL func-
tion is simply invoked directly and processes parameters as any other C function.
The caller should create a normal parameter list, with R1 pointing at the parameter
block.

Furthermore, the Direct-CALL start up does not initialize the TZ environment vari-
able. The TZ environment variable is used by the localtime() function to determine
the current timezone and is initialized when a normal main() function is invoked.

18 Systems/C C Library

However, this initialization is operating-system specific and is avoided in the Direct-
CALL start up.

To have localtime() present a locale time zone, the TZ environment variable should
be set appropriately. See the tzset(3) description for more information on the format
of the TZ environment variable.

Destroying the Systems/C environment

After the Systems/C environment is no longer needed, it should be destroyed to
return resources to the operating system. To destroy an environment created with
DCALL=ALLOCATE, use the DCALL=DESTROY prologue key. The address of
the environment to destroy should be placed in register 0 (R0.) To indicate this use:

DCALL=DESTROY

on a prologue key pragma. The specified function will be invoked with the given
environment, and may invoke any other Systems/C functions. On return from
that function, global destructors will be invoked, and the the environment will be
destroyed, returning resources to the operating system. After calling the function,
the environment address is no longer valid.

For example:

#pragma prolkey(destroy,"DCALL=DESTROY")
destroy()
{

/* perform any clean-up that needs to happen */
/* On return from this function, the */
/* Systems/C environment specified in R0 */
/* will be destroyed. */

}

Note that the Pseudo-Register-Vector (PRV) is created when a
DCALL=ALLOCATE function is invoked, and is used when any SUP-
PLIED or DESTROY functions are subsequently invoked. Thus, all
DCALL=ALLOCATE/SUPPLIED/DESTROYed functions that use the same
global variables must be in the same bound load module, so they will have the
same PRV. That is, environments created with DCALL=ALLOCATE cannot be
passed to functions linked in different load modules, unless remote function
pointers are employed to switch PRVs.

Systems/C C Library 19

Saving environment memory by avoiding I/O

By default, when a Systems/C environment is created, with either DCALL=YES
or DCALL=ALLOCATE, the Systems/C library initializes the I/O functions so file
I/O can occur. This initialization consumes some overhead in both run-time and
memory. If the Systems/C functions do not make use of any of the Systems/C I/O
facilities, this can be avoided by adding

NOSTDIO=1

to the DCALL statements in the prologue keys for the library creation. When
NOSTDIO=1 is specified, the Systems/C library will not initialize its I/O functions.
Any calls to I/O functions in that environment will ABEND, so care must be taken
to ensure none exist.

For example:

#pragma prolkey(noio,"DCALL=YES,NOSTDIO=1")
noio()
{

/* This function, or any function it calls, */
/* does no I/O */

}

20 Systems/C C Library

Systems/C z/Architecture
Library

Systems/C supports programs for the z/Architecture system, providing the complete
Systems/C library to the z/Architecture environment.

This includes full support for 64-bit addresses, bringing the power of the Systems/C
library to this environment.

The Systems/c z/Architecture library uses the LP64 programming model, long and
pointer data types are 64-bits wide.

z/Architecture library features

The Systems/C library contains extentions to the memory management facil-
ities helpful in a 64-bit programming environment, malloc31(), free31(),
malloc24(), free24(). These allow for the management of allocated space

that is guaranteed to be 31-bit or 24-bit addressable as appropriate.

z/Architecture programs can use the Systems/C and Systems/C++ ptr31 pointer
qualifier to define and use 31-bit addresses in z/Architecture mode. For more infor-
mation regarding the ptr31 qualifier, see the Systems/C C Compiler manual.

The Systems/C z/Architecture library provides full support for all of the functions
in the 31-bit library, including TCP/IP, memory allocation, and file I/O. For many
applications, simply recompiling and relinking with the z/Architecture library will
enable programs on the new z/Architecture hardware.

The Systems/C z/Architecture library has no restrictions on program data, all data
can reside above the 2-gigabyte “bar”.

z/Architecture data and code locations

The Systems/C z/Architecture library allows loading of data above the 2-gigabyte
“bar”. There are no restrictions in the Systems/C z/Architecture library for data to

Systems/C C Library 21

reside anywhere in particular. The default location for the runtime heap, stack and
re-entrant data in the z/Architecture library is above the 2-gigabyte “bar”, freeing
up lower instructions for.

Currently, the z/OS program loader will not load instruction code above the 2-
gigabyte “bar”, thus the Systems/C library assumes that program code is located
within the first 2-gigabytes of the address space.

Determining addressing mode

The z/Architecture library has no restrictions on the addressing mode. It will
operate correctly if the AMODE is 64, 31 or 24.

At program start-up, the z/Architecture library determines the proper addressing
mode based on flags present in the definition of the main() function. If main() was
compiled with the –mlp64 option, and the –famode option was not used to specify
otherwise, the z/Architecture library will switch to AMODE=64 before beginning the
program.

If the –famode option was used to indicate an AMODE other than 64, the
z/Architecture library will not change the AMODE to 64.

The Systems/C C Compiler manual has more information on the –mlp64 and
–famode options.

Linking with the Systems/C z/Architecture Library

To produce z/Architecture programs, the program must be linked with the
z/Architecture libraries. The procedure is only slightly different that linking with
the non-z/Architecture library.

Systems/C provides a reentrant and non-reentrant z/Architecture libraries. On
cross-platform hosts, these objects are in the objs rent z and objs norent z di-
rectories. On OS/390 and z/OS, these are in the LIBCRZ and LIBCNZ PDSes. To
use the Systems/C z/Architecture library, simply specify these directories/PDSs in
place of the non-zArchitecture versions.

For example, JCL to execute the PLINK pre-linker with the Systems/C
z/Architecture reentrant library would be similar to the following:

...
//PLINK EXEC PGM=PLINK
//STDERR DD SYSOUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCRZ.OBJ,DISP=SHR

22 Systems/C C Library

//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
//SYSMOD DD DSN=myoutput.obj,DISP=NEW

The same command on a UNIX or Windows platform might be:

plink -omyoutput.obj prog.obj "-SC:\sysc\objs_rent_z\&M"

assuming Systems/C was installed in the C:\sysc directory.

z/Architecture and OpenEdition services

All of the OpenEdition (POSIX) functions available to 31-bit programs operate with
the z/Architecture library. The Systems/C library uses the 64-bit z/OS interfaces
for this, and thus all pointers will be 64-bits in size.

The 64-bit z/OS interfaces were only made available after z/OS 1.5, and thus the
z/Architecture library requires z/OS 1.5 or later for OpenEdition services.

Direct-CALL extensions

Systems/C Direct-CALL programs linked with the z/Architecture library can be
invoked from a 64-bit or 31-bit execution environment. The Direct-CALL library
will automatically switch to AMODE 64 when a z/Architecture DCALL entry point
is invoked.

Note that the environment pointer returned in register R0 with a DCALL=CREATE
invocation is allocated in the AMODE of the calling function. Thus, for 31-bit programs
invoking z/Architecture DCALL=SUPPLIED entry points, even if the entry pointer is
running with AMODE=64, the environment pointer will be a 31-bit address. For
z/Architecture programs running with AMODE=64, the environment pointer for a
DCALL=SUPPLIED invocation is be a complete 64-bit value.

Mixing z/Architecture and non-z/Architecture functions

With Systems/C, each load module is either linked with the z/Architecture versions
of the Systems/C library, or non-z/Architecture versions. This allows for a complete
library in both environments without issues in clashing names or varying pointer
sizes, or other considerations.

However, programs linked with the z/Architecture library may invoke DCALL pro-
grams created with the non-z/Architecture library, and vice-versa. The Systems/C

Systems/C C Library 23

DCALL environment initialization will automatically switch AMODEs as appropriate,
allowing for a seamless transition between the AMODE=64 and AMODE=24/AMODE=31
environments.

Also, Systems/C and Systems/C++ provide extensions which allow the programmer
to declare explicit 64 and 31-bit pointers which facilitates the transition between
the two environments. See the Systems/C Compiler manual and Systems/C++
Compiler manual for more information.

24 Systems/C C Library

Programming for TSO and
BATCH

Systems/C programs can be executed from either TSO or BATCH (JCL) environ-
ments.

Running programs under TSO

Systems/C programs started via a TSO address space are typically invoked via the
CALL command.

For example:

READY
call ’my.progs(prog)’ ’my parms’

would invoke the program prog in the my.progs PDS, passing the single parm string
“my parms”.

The double-quote character can be used to group together characters including a
comma. Within a double-quoted string, the back-slash character can be used to
represent the double quote. For example, to produce the argv[] strings "my,parm"
and "parm2", the parm string would be ’"my,parm",parm2’.

Note that TSO, by default, will upper-case parameter strings. If lower-case letters
are needed in the parm string, be careful to add the ASIS option on the CALL
command.

If a Systems/C program is in a PDS that is in the JOBLIB or STEPLIB concatenta-
tions, it can be executed just as any other system program, without directly using
CALL.

Systems/C C Library 25

argv processing under TSO

When a program is executed via the TSO CALL interface, the argument string is
parsed looking for argument delimitor character, which defaults to a comma ().
Each delimitor character separates an argument value.

Unlike UNIX (USS) systems, the parm string is not parsed for spaces, or quotes. It
is simply broken at each instance of the delimitor character.

An alternate character for argument delimiters can be specified by defining the char
argvc variable. If that is defined, the runtime uses the specified character as the

delimiter. If the character specified is a space, the runtime will skip multiple spaces.

Thus, the parm string ’my,parms’ would produce two values passed in the argv
array on the invocation of main(). The first would be the string "my", the second
is the string "parms".

Similarly, the parm string ’my space,parms’ would produce two argv elements,
"my space" and "parms", because spaces are not a parameter delimiter.

Running programs under BATCH JCL

Systems/C programs can be executed under normal JCL via the typical EXEC JCL
statement.

For example, if the PDS MY.PDS contained a Systems/C program named MYPROG
then the JCL statement:

//RUN EXEC PGM=MY.PDS(MYPROG),PARM=’parm string’

would execute MYPROG passing the parameter string ’parm string’.

argv processing under BATCH

Similar to argument processing under TSO, the Systems/C runtime looks for the
argument delimitor character to separate arguments. Unlike UNIX or POSIX sys-
tems, BATCH mainframe programs typically use commas as a parameter delimiter.
The default argument delimitor character is a comma, but can be overriden by
defining the char argvc variable. If the char argvc is defined to be a space,
then multiple spaces are skipped. To better integrate into existing environments,
the Systems/C runtime defaults to a comma as the argument delimitor character.

26 Systems/C C Library

Each delimitor character in the incoming PARM value is taken as a separator to
separate the resulting argv values passed to the main() function.

The char argvc variable can indicate a different character to use as the argument
separator. If char argvc is set to a space, the runtime environment will skip
adjacent spaces, considering them as one.

Thus, if the delimitor character is using the default value of a comma, the PARM value
’my,parms’ would produce two values passed in the argv array on the invocation
of main(). The first would be the string "my", the second is the string "parms".

Similarly, if a comma is the delimitor character, the PARM string ’my space,parms’
would produce two argv elements, "my space" and "parms", because spaces are
not a parameter delimiter.

If needed, the double-quote character can be used to group together characters, in-
cluding the delimitor charactor. Within a double-quoted string, the back-slash char-
acter can be used to represent the double quote. For example, to produce the argv[]
strings "my,parm" and "parm2", the PARM string would be ’"my,parm",parm2’,
assuming comma is the delimitor character.

Systems/C C Library 27

28 Systems/C C Library

Programming for OpenEdition

The Systems/C library supports programs executed under OpenEdition MVS (Unix
Systems Servies - USS). Programs can be executed under the USS shell, or take
advantage of the facilities provided by OpenEdition services, including the various
POSIX functions and Hierarchical File System (HFS.)

Note that all of the POSIX functions also operate in 64-bit mode.

As noted in the individual function descriptions, many of the POSIX functions are
only supported for HFS files. A POSIX file funtion applied to a non-POSIX file will
fail with an appropriate error code.

If Unix System Services are unavailable, the functions will fail with error return
codes when possible.

More recent versions of OpenEdition require re-entrant programs; thus the compiler
option –frent must be specified when compiling, and the objects should be linked
with the re-entrant Systems/C library.

Linking programs under the OpenEdition Shell

Systems/C programs can be linked under the OpenEdition shell; to create load
modules that reside in the Hierarchical File System (HFS).

To create an HFS load-module, the output from PLINK can be linked using the
OpenEdition cc command. The -e // option should be added the cc command to
indicate that the entry-point is not the default Language Environment entry point
expected by cc. The Systems/C runtime library will specify its own entry-point.

For example, to pre-link and link the object myfunc.o and produce the HFS load-
module myprog under the OpenEdition shell (assuming /usr/local/dignus is the
installation location), simply run PLINK:

plink -omyprog.o myfunc.o "-S/usr/local/dignus/objs_rent/&m"

then use the OpenEdition cc command:

Systems/C C Library 29

cc -e // -omyprog myprog.o

to produce the myprog load-module. myprog can then be invoked as any other
OpenEdition program.

Copying programs from a PDS to the OpenEdition Shell

To copy a program from a PDS or PDSE to the HFS file system, the program must
be re-linked into the HFS. Unfortunately, the IBM linker will not determine the
proper entry-point in this case, and so the Systems/C entry point must be specified
on the cc command.

To re-link a program from a PDS or PDSE into the HFS, the Systems/C entry-point
@crt0 (lower-case) must be specified in the cc command.

For example, if the PDS MYNAME.T.LOAD contained the Systems/C program named
MYPROG, it could be copied into the HFS executabled named myprog with the com-
mand:

cc -e @crt0 -omyprog "//’MYNAME.T.LOAD(TEST)’"

Running programs under the OpenEdition Shell

Programs running under the OpenEdition shell are started via the BPX1EXC exec
service. Systems/C programs residing in the HFS can simply be run as any other
OpenEdition program.

More recent versions of OpenEdition require re-entrant programs; thus the compiler
option –frent must be specified when compiling, and the objects should be linked
with the re-entrant Systems/C library.

The Systems/C runtime recognizes when the program is started via the exec service,
and processes the incoming argument and environment parameters appropriately.
The arguments will be presented to the program in the argv array; and the envi-
ronment variables will be available via the standard getenv() functions.

Furthermore, when started via exec, the first three file descriptors will be inherited
from the invoking process. The Systems/C I/O functions will make these directly
available to the program as file descriptors #0, #1 and #2, which are then also
associated with FILE * variables stdin, stdout and stderr. Also in this case, the
default filename style will be set to “//HFS:” so that file names will, by default,
refer to files within the Hierarchical File System.

30 Systems/C C Library

Programming for CMS

The Systems/C library supports a limited CMS environment, taking advantage of
the OSRUN facility on CMS. The library does not support TCP/IP, or the SFS, but
is a basic port of the existing I/O and memory management library used on z/OS.

Linking programs for CMS

To produce an object deck that is eventually linked on CMS, the CMS runtime
objects must be present on the PLINK command line before the normal object
library specification. This will insert the CMS runtime ahead of the normal runtime.
These are the cmsutil, @@ddndec, @@tyqsac and @@ddncms object decks found in
the objs rent and objs norent directories on cross-platform hosts, or the LIBCR
and LIBCN PDSs on z/OS.

The Systems/C runtime also makes reference to the DMSSTKR symbol when linking,
thus during the PLINK step the –allow ref=DMSSTKR option should be used to
account for this unresolved reference in the PLINK step.

Once the PLINK step is performed, the resulting object deck can be copied to
CMS, and placed in an FB 80 file with the .TEXT file mode.

The CMS linker, LKED can then be used to create a member of a LOADLIB that can
be executed with OSRUN.

Note that Systems/C programs for CMS are currently limited to RMODE=24 execu-
tion, because of restrictions in the OS/390 emulation routines.

Using PLINK to create CMS programs

PLINK performs several important tasks for CMS programs.

The CMS linkage editor (LKED) is limited to only 4096 bytes for PRV (Psuedo
Register Vector) processing. PLINK addresses this issue by performing all PRV
processing, so that the object deck presented to LKED has no PRV references.

Systems/C C Library 31

LKED also does not handle XSD or GOFF style input. PLINK when the –(px) option
will properly adjust the resulting object deck to only be ESD-style, shortening long
names and converting the input object decks appropriately.

To create programs for CMS, the CMS runtime support must be specified before
the normal z/OS runtime libraries.

For example, on a Windows platform, if the typical PLINK command for pre-
linking looked like (where the Systems/C installation was in the C:\sysc directory):

plink -px -omy_prog.obj t1.obj t2.obj "-SC:\sysc\objs_rent\&M"

then to link for execution on CMS, we need to insert the CMS runtime objects and
specify the DMSSTKR is allowed to be an unresolved reference:

plink -px -omy_prog.obj t1.obj t2.obj
-allow_ref=DMSSTKR
C:\sysc\objs_rent\cmsutil
C:\sysc\objs_rent\@@ddndec
C:\sysc\objs_rent\@@tyqsac
C:\sysc\objs_rent\@@ddnms

"-SC:\sysc\objs_rent\&M"

(note that if the command line becomes too long for Windows, the –@ option can
be used to place command line options in a file. See the PLINK section of the
Systems/C Utilities manual for more information.)

To implement the same task when running PLINK on OS/390 or z/OS, simply
adjust the SYSIN stream to specify the CMS runtime object decks.

If the typical PLINK step in the JCL looked like:

...
//PLINK EXEC PGM=PLINK,PARM=’-px’
//STDERR DD SYSOUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCR.OBJ,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
//SYSMOD DD DSN=myoutput.obj,DISP=NEW

then, to pre-link this program for CMS, adjust the PARM value to include the -
allow ref=DMSSTKR and specify the CMS objects in the SYSIN stream, as in:

32 Systems/C C Library

...
//PLINK EXEC PGM=PLINK,PARM=’-px,allow_ref=DMSSTKR’
//STDERR DD SYSOUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCR.OBJ,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
INCLUDE SYSLIB(CMSUTIL)
INCLUDE SYSLIB(@@DDNDEC)
INCLUDE SYSLIB(@@TYQSAC)
INCLUDE SYSLIB(@@DDNCMS)
//SYSMOD DD DSN=myoutput.obj,DISP=NEW

(note that the –px option was also specified in the PARM string when executing
PLINK.)

Using LKED to link CMS programs

After the PLINK step has been executed the resulting object deck should be copied
to CMS and placed into an FB 80 dataset with the TEXT file mode. This can be
accomplished using FTP or any other binary transfer.

Once the PLINK output has been placed on CMS, the LKED command will link it
and produce a LOADLIB member which can be executed with OSRUN.

The VMLIB TXTLIB must be GLOBAL’d to resolve references that the Systems/C run-
time requires. Also, this library should be specified as the SYSLIB so LKED can
resolve those references.

The PLINK generated object deck should be specified as the SYSLIN input to LKED.

Because of limitations in the OSRUN environment, Systems/C programs must be
linked with RMODE=24 specified.

For example, if the result of PLINK was placed on the A disk with the file name
PROG TEXT A, and the resulting program should reside in the MYLOAD LOADLIB A
load library, these commands would execute LKED to accomplish the linking:

FILEDEF SYSLMOD DISK MYLOAD LOADLIB A (RECFM U
GLOBAL TXTLIB VMLIB
FILEDEF SYSLIB DISK VMLIB TXTLIB S (PERM
FILEDEF SYSLIN DISK PROG TEXT A
LKED PROG (RMODE 24 AMODE 31
FILEDEF SYSLMOD CLEAR
FILEDEF SYSLIB CLEAR
FILEDEF SYSLIN CLEAR

Systems/C C Library 33

Note the RMODE 24 was specified on the LKED command.

Consult the IBM VM/CMS documentation for further information about these com-
mands.

Executing programs on CMS

To execute Systems/C programs on CMS, the OSRUN command is used. Appropriate
FILEDEFs should be specified as the program may require. Each DD the program
opens should be FILEDEF’d so that the open() may succeed.

The PARM option of the OSRUN command specifies any parameters passed to the
program.

For example, if we intend to execute the program PROG with the parameters,
“any,parms”, from the MYLOAD LOADLIB A library, and the program read from the
STDIN DD and wrote to the STDOUT and STDERR DDs, these commands would be
employed:

GLOBAL LOADLIB MYLOAD
FILEDEF STDIN TERMINAL
FILEDEF STDOUT TERMINAL (LRECL 133 BLKSIZE 133
FILEDEF STDERR TERMINAL (LRECL 133 BLKSIZE 133
OSRUN PROG PARM=’any,parms’

Note that the LRECL and BLKSIZE values must be specified on the FILEDEF for CMS
files. For TERMINAL type files, the LRECL and BLKSIZE should be the same to avoid
any block level buffering.

Systems/C programs are limited to the environment supported by OSRUN.

34 Systems/C C Library

Programming for MVS 3.8

The Systems/C library supports programs for the MVS 3.8 operating system. Gen-
erally, the full support of the Systems/C library is available, with the restrictions
inherent in the MVS 3.8 environment.

Linking programs for MVS 3.8

Systems/C supports executing C programs on MVS 3.8 by inserting MVS 3.8 specific
objects in the link step before the normal library objects. These objects replace the
normal library objects, providing MVS 3.8 low-level operating system support. The
modules can be found in the MVS38 objs rent and MVS38 objs norent directories
on cross-platform hosts, or as PDS members in the LIBCR38 and LIBCN38 PDS
libraries on OS/390 and z/OS hosts.

To create MVS 3.8 executables, simple place these directories (or PDSs) in the
PLINK search order ahead of the normal library.

Also, for support of long names in external identifiers, the Systems/C library is
delivered in extended object (XSD) form. The MVS 3.8 linker does not support this
form of object deck. Thus, the Systems/C pre-linker, PLINK, must be used and
the –px option of PLINK must be enabled to process these objects and produce an
object deck that is suitable for linking with the MVS 3.8 linker.

If IBM’s HLASM assembler is used to produce the objects, and the XOBJECT param-
eter to HLASM is enabled, HLASM will produce object files in the GOFF object
file format. PLINK can directly process these input files and produce objects that
can be handled by the MVS 3.8 linker. PLINK, with the –px option, will properly
convert these files into objects suitable for the MVS 3.8 linker. With this approach,
HLASM-produced objects with support for long identifier names can be used to
create MVS 3.8 programs. For more detailed information about PLINK see the
Systems/C Utilities manual.

Systems/C C Library 35

Using PLINK to create MVS 3.8 programs

As mentioned above, PLINK must be used to pre-link the input objects and place
them in a format suitable for use on MVS 3.8. PLINK’s primary function in this
regard is to convert any long names and or XSD cards in the generated objects to
short names and produce an object file that the MVS 3.8 linker will process. Thus,
the –px option should be used on the PLINK command, which instructs PLINK
to perform this processing.

Furthermore, for re-entrant programs, PLINK will process all PRV-related opera-
tions, processing PR and XD symbols internally. The MVS 3.8 linker cannot handle
PRV vectors larger than 4K bytes. The PLINK –prem option, which supports this
function, is enabled by default, and should not be disabled when creating MVS 3.8
executables.

PLINK is also used to ensure the MVS 3.8 objects are used instead of the normal
library objects. On cross-platform systems, simply specify the MVS 3.8 object
directories ahead of the normal object directoris on the PLINK command line. On
OS/390 or z/OS, specify the MVS 3.8 library PDS ahead, in a concatenation with
the normal library PDS.

On OS/390 or z/OS to link with the MVS 3.8 re-entrant libraries, add the
LIBCR38 PDS to the SYSLIB concatenation, otherwise use the LIBCN38 PDS.
On cross-platform hosts, to link with the re-entrant MVS 3.8 library, add the
MVS38 objs rent directory to the search list, ahead of the normal library speci-
fication. To link with the non-re-entrant MVS 3.8, on cross-platform hosts, add the
MVS38 objs norent directory.

For example, on a Windows platform, if the typical PLINK command for pre-
linking looked like (where the Systems/C installation was in the C:\sysc directory):

plink -omy_prog.obj t1.obj t2.obj "-SC:\sysc\objs_rent\&M"

then to link for execution on MVS 3.8, insert another search template which specifies
the MVS 3.8 directory, as in:

plink -omy_prog.obj t1.obj t2.obj "-SC:\sysc\MVS38_objs_rent\&M"
"-SC:\sysc\objs_rent\&M"

(note that if the command line becomes too long for Windows, the –@ option can
be used to place command line options in a file. See the PLINK section of the
Systems/C Utilities manual for more information.)

To implement the same task when running PLINK on OS/390 or z/OS, simply
adjust the SYSLIB DD statement to provide the proper concatenation.

If the typical PLINK step in the JCL looked like:

36 Systems/C C Library

...
//PLINK EXEC PGM=PLINK,PARM=’-px’
//STDERR DD SYSOUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCR.OBJ,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
//SYSMOD DD DSN=myoutput.obj,DISP=NEW

then, to pre-link this program for MVS 3.8, adjust the SYSLIB DD statement to add
the MVS 3.8 PDS, as in:

...
//PLINK EXEC PGM=PLINK,PARM=’-px’
//STDERR DD SYSOUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCR38.OBJ,DISP=SHR
// DD DSN=DIGNUS.LIBCR.OBJ,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
//SYSMOD DD DSN=myoutput.obj,DISP=NEW

(note that the –px option was specified in the PARM string when executing PLINK.)

MVS 3.8 runtime restrictions

In general, beyond the environmental constraints of an MVS 3.8 system, there are
no issues with Systems/C programs. Except for the following noted differences, the
entire Systems/C run-time library and all of the Systems/C programming features
operate as they would on a more recent operating system.

MVS 3.8 only supports 24-bit addresses, thus Systems/C programs are limited by
MVS 3.8’s memory size restrictions.

Dynamic allocation of files via the O CREAT flag on open(2) calls is not supported.

MVS 3.8 does not provide TCP/IP, thus the TCP/IP related functions in the Sys-
tems/C library will not operate.

MVS 3.8 does not provide the BPX family of services, thus POSIX functions are not
available and will fail with an error return code.

Systems/C C Library 37

MVS 3.8 programs can be executed on OS/390 or z/OS. If the program objects
are re-linked on OS/390 or z/OS, the AMODE=24 and RMODE=24 options should be
specified on the IBM link step, or to the PLINK command if PLINK is creating
a TSO TRANSMIT module. The MVS 3.8 low-level operating system interfaces
provided in the MVS 3.8 objects will not operate correctly on OS/390 or z/OS if
the program is not linked AMODE=24 and RMODE=24.

38 Systems/C C Library

Controlling the runtime
environment

Runtime Options specified in the program arguments

Runtime options can be specified in the program arguments in a BATCH or TSO
program, or in the DIG RUNOPTS environment variable in a program running under
OpenEdition.

Runtime options are not examined in DCALL environments.

By default, runtime options are disabled in the BATCH and TSO environments, to
enable them set the global int runopt variable to 1.

The following runtime options are supported:

ENVAR(name=val) specifies that the environment variable name should be set to the
value val in the start-up runtime environment.

TRAP(trap-setting) Specifies that a runtime ESTAE should be established for the
receipt of signals generated by hardware interrupts. trap-setting is
either ON or OFF.

Unrecognized options are silently ignored.

Runtime Options in TSO and Batch

In the TSO and BATCH environment, the incoming argument string is examined.
All text up to the first backslash (’\’) is examined to look for runtime options. The
actual program arguments follow this first backslash. If no backslash is present
at all, then the entire string is taken to be the program arguments. Note that
the backslash character can be changed via the declaration of the global variable
rochar, as in:

Systems/C C Library 39

char __rochar = ’/’; /* set / as the runtime options delimiter */

Previous versions of the Dignus Systems/C runtime used the slash (’/’) character
as the delimiter; but Dignus Systems/C programs use the slash in file names which
frequently appear as command line arguments (i.e. //DSN:MY.FILE.NAME). Because
of this the default runtime options delimiter character was changed to backslash
(’\’).

Furthermore, to avoid other potential issues with older programs, runtime options
processing is off by default in the TSO and BATCH environments. If your program
wants to take advantage of runtime options processing in the TSO or BATCH en-
vironments, it needs to be specifically enabled by declaring the runopt integer as
in:

int __runopt = 1;

Runtime Options in OpenEdition

When running in the OpenEdition environment, the Systems/C library looks for
runtime options in the environment variable ” DIG RUNOPTS”. Any runtime options
are specified there. The incoming argument list is not examined in this environment.

Disabling/Enabling runtime options in TSO and Batch

If you define an integer named runopt at global scope, and give it the value 0;
then runtime options processing is disabled, and the entire parameter string will be
used.

This is the default behavior.

That is:

int __runopt = 0;

will defeat runtime options processing in TSO and Batch.

To enable runtime options processing in TSO and Batch, set the value of runopt
to 1 as in:

int __runopt = 1;

40 Systems/C C Library

By default, the backslash (
) character is used to delimit the end of the runtime options and the start of the
argument string. You can change this default character by declaring the character
variable rochar at file scope and initializing it with the character to use. For
example:

char __rochar = ’|’; /* use | to mark end of runtime options */

stdin, stdout and stderr

According to the C standard definition, three standard streams are initilized and
opened when program begins execution, stdin for input, and stdout and stderr
for output.

In Systems/C, streams are implemented in terms of lower-level file descriptors, stdin
is associated with file descriptor #0, stdout is associated with file descriptor #1
and stderr is associated with file descriptor #2.

Initially, the Systems/C library opens these file descriptors with the names
"//DDN:STDIN", "//DDN:STDOUT" and "//DDN:STDERR". "//DDN:STDOUT" and
"//DDN:STDERR" are opened with an LRECL=133 and BLKSIZE=1330 by default.

Changing standard filenames at execution time

The standard approach of using the freopen(3) function to reassociate the standard
file streams operates as expected with the Systems/C runtime.

For example, to close and re-open the stdin stream to the SYSIN DD, a program
can simply:

if(!(freopen("//DDN:SYSIN", "r", stdin)) {
perror("couldn’t re-open stdin");

}

See the freopen(3) function description for more information.

Changing standard filenames and attributes at compile time

A program can specify alternate strings to change the names the library uses to
open the first three file descriptors.

To change the name, initialize a char * variable with the replacement file name to
be used, as described in the following table:

Systems/C C Library 41

stdin char * fd0nm = "name";
stdout char * fd1nm = "name";
stderr char * fd2nm = "name";

When fd0nm, fd1nm, or fd2nm is defined, the library uses the name defined
there as the initial name for file descriptors #0, #1 and #2 respectively.

For example, the following declaration causes the library to associate the SYSIN DD
with file descriptor #0, making it the stdin stream at program start-up:

char *__fd0nm = "//DDN:SYSIN";

To change the default attribute used to open a file, specify an attribute string in the
fd0atr, fd1atr or fd2atr global variables. The string specified will be passed

as the attribute parameter to the open(2) invocation at library start-up.

For example, the following declaration will cause the stdout stream, file descriptor
#1, to be opened as an FB80 file with a blocksize of 800:

char *__fd1atr = "recfm=fb,lrecl=80,blksize=800";

See the open(2) function description for more information about file attribute
strings.

Note that these names are only used when a program is not executed via the BPX
execve interface. If a program is executed from the USS shell, or via the BPXCALL
interface in batch mode, the first 3 file descriptors are inherited from the environment
and the Systems/C library does not invoke open(2) to provide them.

Choosing the TCP/IP interface

By default, the Systems/C runtime library uses the BPX socket interface for imple-
mentation of the various TCP/IP-related functions.

Older versions used the EZASMI interface.

You can choose to use the EZASMI interface by defining the bpxso integer variable
at a global scope and initializing it with the value 0, as in:

int __bpxso = 0;

Note that if you use the EZASMI interface, socket file descriptors will not be inherited
across a fork() function call and the file descriptor will be close()’d in the child.

42 Systems/C C Library

Changing argv delimiters for BATCH and TSO

By default, when a Systems/C program is executed under BATCH or TSO, the
delimiter that separates arguments is the comma, which is typical of these programs.

However, it can be changed to any character by defining the char argvc variable
in a program.

When argvc is defined, the runtime library uses the character value specified there
as the argument delimiter.

Furthermore, if argvc is defined as a single space, the runtime will consider adja-
cent spaces as one.

Thus, if the program had:

char __argvc = ’ ’;

then the parm string, ’a parm string’, under TSO or BATCH would generate the
argv[] array:

argv[1] "a"
argv[2] "parm"
argv[3] "string"
argv[4] NULL

Disabling runtime options for BATCH and TSO

Normally, when executing in a TSO or BATCH environment, any value in the PARM
string up to the first right slash is examined for runtime options.

If needed, you can disable this check by defining the runopt integer variable at
global scope, with a value of 0, as in:

int __runopt = 0;

If runopt is defined, and it has a zero value, then the initial runtime startup
processing will not look for any runtime options, and the entire string will be used
to produce the argc and argv values passed to the main() function.

Systems/C C Library 43

Controlling stack space allocation

The Systems/C runtime library allocates space used at runtime for per-function
areas. This space is the runtime “stack”. The runtime doesn’t allocate a separate
space for each function, instead allocating and managing this space in blocks of
storage.

The initial block of storage is called the ISTK (initial stack allocation.) If this block
is sufficiently large for the entire run of the program, no other memory will need
to be allocated. Creating a sufficiently large block can greatly improve runtime
performance.

The initial stack allocation can be specified in the #pragma prolkey of the main()
or other entry-point function. When the Systems/C library begins execution, it uses
the value specified in the ISTK=n prologue key for the initial allocation size.

For example,

#pragma prolkey(main,"ISTK=4096")
main()
{

specifies that the initial stack allocated when this program is begun is 4096 bytes.

As a program runs, more stack space may be dynamically required. The Systems/C
runtime system automatically allocates and manages that space as needed. This
space is called the extension stack, or ESTK.

However, small and frequent allocations can result in degraded performance. If
indicated, it may be prudent to specify a particular stack extension on a function,
to cause the library to pre-allocate a larger extension should one be needed. This
can be done using the ESTK=n prologue key.

For example:

#pragma prolkey(lotsofstack,"ESTK=16384")
lotsofstack()
{

specifies that when lotsofstack() is invoked, should a stack extension be required,
the allocated space will be at least 16384 bytes in size.

44 Systems/C C Library

Specifying the runtime storage SUBPOOL

By default, the Systems/C runtime allocates stack and heap memory in the default
subpool.

However, this can be altered by specifing #pragma prolkey setting SP=n on the
main() or other entry-point function.

The subpool value is a numeric.

For example,

#pragma prolkey(main,"DCALL=YES,SP=123")
myfunc()
{

specifies that memory allocated by the Direct-CALL function myfunc() be allocated
from sub-pool #123.

Specifying the runtime KEY

Systems/C programs begin execution in the default key setting. Specifying the
#pragma prolkey setting KEY=val will cause the runtime library to switch to the
specified key and begin execution. When the runtime is complete, for example, a
Direct-CALL environment terminates, the key will be reset to the value that was
present on entry to the function.

val can be either the keyword ENTRY or a numeric key value.

For example:

#pragma prolkey(func,"DCALL=YES,KEY=8")
func()

specifies that just before func() is invoked, the current hardware protection key
saved, and the set to 8. On return from func(), the key will be restored to the
saved value.

Controlling access to Unix System Services

On z/OS, when a Unix System Service is required the runtime library invokes the
appropriate assembler interface. For example, to open a file in the Hierarchical File
System (HFS), the runtime library would invoke the BPX1OPN service.

Systems/C C Library 45

When a Unix System Service is invoked, it causes the z/OS task to become ’dubbed’;
which is undesirable in some cases, and simply not allowed in others. In particular,
this is not allowed in a CICS environment.

To provide control over this, the runtime library defines an int variable named
NOBPX.

NOBPX is initialized to 0 indicating that Unix System Service functions are allowed.

Assigning any non-zero value to NOBPX will cause the runtime library to disallow
Unix System Service functions, failing the function with errno set to ENOSYS.

This can be particularly useful in a Direct-CALL CICS environment, where Unix
System Service functions are not allowed.

Note that the runtime library may attempt to invoke Unix System Services due to
runtime library requirements, even if the user’s program does not directly invoke
these services.

Signal Handling

A Systems/C program supports several style of signal management. Using an
library-established ESTAE exit to catch signal-producing hardware interrupts, as
well as supporting the OpenEdition ”SIR” style of signal handling.

When a Systems/C program is initiated via an exec(2) function, the OpenEdition
style of signals is assumed, as this would be in a POSIX environment. Also, if the
pthread create(3) function is called, that requires the POSIX environment, and thus
OpenEdition signals are used.

Otherwise, the use of an ESTAE to recognize hardware interrupts and generate
a signal is controlled by the TRAP setting on the prologue macro of the main()
function. TRAP defaults to OFF so no ESTAE is established, and a hardware inter-
rupt is simply processed as z/OS usually does, typically an ABEND. Specifying the
#pragma prolkey setting TRAP=ON, or specifying the TRAP(ON) run option, causes
the Systems/C library to establish an ESTAE exit to handle hardware interrupts
and raise an appropriate signal.

You can also use the runtime option of ”TRAP(ON)” or ”TRAP(OFF)” to override the
program setting on the prologue macro.

As previously mentioned, in a POSIX environment (execution was initiated via
exex(2)), an ESTAE exit is required for proper signal delivery and the setting of the
TRAP value will be forced to ON. Also the ESTAE exit is required for POSIX pthread
processing if pthread functions are used.

46 Systems/C C Library

Considerations for SIGABND processing

In the Dignus runtime on z/OS when an ESTAE exit is established, a SIGABND signal
is raised when an ABEND is issued. The SIGABND can be handled with a SIGABND
signal handler established by either the signal(3) or sigaction(2) functions.

The signal hander can use the abendcode(3) and rsncode(3) functions to query
the abend and reason codes associated with the ABEND.

Returning from the signal handler causes the program state to be restored to the
instruction that caused the ABEND. As that is the instruction that caused the
ABEND, the ABEND will then be re-issued. If the SIGABND signal handler remains
active, then it will be re-invoked, essentially causing a loop. This is consistent with
signal processing in UNIX environments.

If the signal state for SIGABND is SIG DFL on return from the signal handler normal
z/OS abend processing will processing will occur. In z/OS parlance, the ABEND
will be ”percolated”.

SIG IGN is invalid for SIGABND signals; as a SIGABEND cannot be ignored.

The Dignus stack management routines issue an ABEND 978 for the out-of-stack
situation. To establish a signal handler for that it is necessary to use the sigalt-
stack(3) and sigaction(2) functions to provide a separate stack area for executing of
the handler. Otherwise, an ABEND 978 is immediately percolated as there is no
stack on which to execute the signal handler.

An example of how to catch an ABEND 978 is provided in the appendix.

OpenEdition

Linking under OpenEdition

A Systems/C program can either be linked into a PDS, PDSE or into the Hiearchical
File System (HFS.

Under USS, to link a Systems/C program, first the program is processed with the
Systems/C pre-linker (PLINK, to produce an output object module. Then, the
final linking can use the USS cc command to link. To use the cc command link into
the HFS, the “-e //” option should be added.

For example,

plink -o prog1.obj prog1.o -S"objs_rent/&M"
cc -e // -o prog1 prog1.obj

Systems/C C Library 47

would pre-link the program prog1.o including the re-entrant Systems/C library
objects, then the “cc -e //” command would complete the link, producing the
program prog1.

Note that if the library objects need not be present in the HFS; the PLINK com-
mand can reference the library PDS, as in:

plink -o prog1.obj prog1.o -S"//DSN:DIGNUS.LIBCR.OBJ(&M)"

Alternatively, a batch linking process can specify that the final output from the IBM
binder reside in the HFS. Simply adjust the SYSLMOD DD definition appropriately. For
example, to cause the IBM binder to write to the HFS file /users/employee/prog1,
an appropriate SYSLMOD definition might be:

//SYSLMOD DD PATH=’/u/rivers/PLINK20/test/prog’,
// PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=(SIRWXO,SIRWXG,SIRWXU)

Running under OpenEdition

When a Systems/C program is executed via the exec() function, the Systems/C
runtime start-up processes the command-line arguments in a typical UNIX-style
fashion. Also, the Systems/C runtime correctly initializes the environment values
from the environment pointers specified in the exec() invocation.

The isPosixOn(2) function can be used to determine if the program was started via
exec() and thus, mostly likely, under the OpenEdition shell. For example:

if(isPosixOn()) {
printf("I was started under USS\n");

} else {
printf("I was started under BATCH or TSO\n");

}

When programs are started via exec(), the default file “style” (style) is set to
"//HFS:". So that any file name which doesn’t explicitly specifically specify a
different style is assumed to be an //HFS:-style file.

Programs started via exec() inherit the first 3 file descriptors from the parent pro-
cess. So the values of fd0nm, fd1nm, fd2nm, fd0atr, fd1atr and fd2atr
do not apply. If a program needs to adjust these default file descriptors, the stan-
dard freopen(3) approach should be used. See the freopen(3) function description
for more information.

Programs executing in the OpenEdition environment use BPX-style signal handling.

48 Systems/C C Library

Data locations

Systems/C data address ranges are not restricted in any fashion, data can re-
side above the 2-gigabyte “bar”, or above the 16-megabyte “line” or below the
16-megabyte “line”.

Data in Systems/C programs is in three general areas, the “HEAP”, which is data
allocated via malloc() function calls, the “STACK”, which is local data allocated
to each function, and the “PRV”, which contains file-scoped re-entrant data. Also
note that the library provides a separate mechanism for dynamic management of
“heap” memory in a particular address range, via malloc31() and malloc24.

Each of these locations can be specified by additional #pragma prolkey statements
on program entry points, either the main() function entry point, or a DCALL entry
point.

The default locations for the HEAP, STACK and PRV in z/Architecture programs
(programs where the main() function was compiled with the –march=zarch option
enabled) is above the 2-gigabyte “bar”. Otherwise, the default is below the 2-
gigabyte “bar”.

If the –famode=any, or –famode=31 or –famode=24 option was specified on the com-
pilation of the main() function for z/Architecture programs, the default locations
will be below the 2-gigabyte “bar”.

Each of the HEAP, STACK and PRV locations can be specifically defined by adding
LOCHEAP=loc, LOCSTACK=loc and LOCPRC=loc to the entry-point’s prologue macro us-
ing #pragma prolkey. The values for loc are 24, 31, ANY and 64. ANY is equivalent
to 31.

For example, if the following #pragma prolkey was specified for a main() com-
piled with –march=zarch, and no –famode option was specified, then the Systems/C
runtime could allocate the PRV and HEAP data above the 2-gigabyte “bar”, but
STACK data would be restricted to below.

#pragma prolkey(main,"LOCSTACK=31")
int main(int argc, char *argv[])
{
...

Stand alone function

The Systems/C and Systems/C++ compilers can be used to create programs that
use your own entry and exit linkage. Such code cannot be linked with the Systems/C
runtime because the Systems/C runtime assumes that the Systems/C linkage has
been employed.

Systems/C C Library 49

However, some functions can be safely linked into such an environment.

Compiler invoked routines

When not compiling in z/Arch mode (–march=zarch is not specified), the C and
C++ compilers use “helper” functions to accomplish some 64-bit arithmetic. These
functions are:

@@MULU64 64-bit unsigned multiply
@@MULI64 64-bit signed multiply
@@DIVU64 64-bit unsigned divide/modulus
@@DIVI64 64-bit signed divide/modulus

These function only assume that register 13 points to a typical save area (80 bytes)
and can safely be used in a typical environment. These functions can be found in
the Systems/C library and can be linked with your own code (provided R13 points
to a typical save area in your own linkage.)

Initializing re-entrant data

When compiling with the —frent option, or more generally, in the presence of any
rent data, the Systems/C and Systems/C++ compilers generate a re-entrant ini-

tialization section which is gathered together by the pre-linker PLINK. PLINK
places its information in a CSECT named @@RINIT#. If that symbol is not resolved,
then the program required no re-entrant initializations.

At initial program start-up, the Systems/C runtime examines this section and, after
allocating the re-entrant data, performs the various initializations indicated.

If it is desired to have initialized re-entrant data within your own runtime environ-
ment, then this same operation needs to be performed.

The Systems/C runtime provides the @@SARNTI function (stand-alone re-entrant
initialization) to accomplish this task. After allocating re-entrant data, the program
should initialize the data area to zeros and then invoke @@SARNTI with the address
of the re-entrant data, the PLINK-generated re-entrant initialization section and
some other parameters as described below.

The size of the re-entrant data can be obtained using a CXD relocation.

@@SARNTI is “stand alone” in that it requires no other runtime and uses standard
OS linkage. When linked from the 31-bit runtime library @@SARNTI assumes that
R13 points to a typical 80-byte save area, and further assumes that R1 points to a
typical OS-linkage parameter block. When linked from the 64-bit runtime library
@@SARNTI assumes that R13 is a 64-bit pointer that points to a Format-4 64-bit
style save area, and that R1 is a 64-bit pointer that points to a parameter block
that contains 64-bit pointers.

50 Systems/C C Library

The parameters for @@SARNTI are:

stack address of at least 1024 bytes used for stack space
prv address of allocated rent data
entries address of PLINK-generated initializers

The first parameter (the stack space used by @@SARNTI) must be a least 1024 bytes
long.

The second parameter is the address of the memory allocated to contain the PRV.
That memory must be initialized to all zeros before invoking @@SARNTI.

The third parameter is the address of the @@RINIT# section containing the PLINK-
generated initialization data.

@@SARNTI returns a zero (0) in register R15 if it is successful, otherwise it returns a
non-zero value in R15. The current return codes are:

0 successful initialization
4 invalid/unsupported initializers

On return from @@SARNTI the temporary stack space passed as the first parameter
is unused by the Systems/C runtime and may be released or reused.

For example, the following snippet of code shows how to allocate the re-entrant data
section for a 31-bit environment, initialize it to zero and then invoke @@SARNTI. The
64-bit environment would be similar except that the parameters addressed by R1
would be 64-bit pointers.

WXTRN @@RINIT#
...
L 6,=A(@@RINIT#)
LTR 6,6
BZ NONE nothing to do?
L 4,RENT_SIZE
GETMAIN RC,LV=(4) allocate reentrant data
LR 5,1
LR 0,1
L 1,RENT_SIZE
LA 14,0(0,0)
LA 15,0(0,0)
MVCL 0,14 zero-out rent data (assuming it’s not too large)
LA 1,PARMS
LA 7,STACK stack space
ST 7,0(0,1) first parm
LR 7,5 addr of rent data
ST 7,4(0,1) 2nd parm
LR 7,6 addr of initializers
ST 7,8(0,1) 3rd parm

Systems/C C Library 51

L 15,=V(@@SARNTI)
BALR 14,15
LTR 15,15
BZ DONE
... problems; initialization failed

NONE DS 0H
DONE DS 0H

...
RENT_SIZE CXD
STACK DS 0D

DS CL1024 stack space
PARMS DS 0D

DS 1A address of stack
DS 1A address of PRV
DS 1A address of rent

52 Systems/C C Library

User ABEND codes issued by
the runtime

The Systems/C library can issue a small number of user ABENDs, due to various
start-up and other situations where it is impossible to continue running and no other
diagnostic facility is available.

These diagnostics are issued using the ABEND macro in z/OS, with the given ABEND
number.

These values should not be employed by user code as they indicate issues particular
to the Systems/C runtime environment.

The following list describes the ABEND number and the situation where it arises:

135 A dd number could not be allocated in the table of DD names; this is
deprecated and will be eliminated in a future release.

136 The table for managing DD names cannot be allocated. This is likely
due to insufficent available memory. This is deprecated and will be
eliminated in a future release.

178 The initial memory allocation for a dynamic storage area (DSA) set-up
failed, likely due to insufficient available memory, the program cannot
run.

278 The first memory segment allocation failed, likely due to insufficient
available memory, the program cannot run.

279 Insufficient memory was available to set up the program name, argv
array or environ array at program start-up.

378 Returning the allocated re-entrant variable data space to the operating
system failed at program termination. This is likely due to a program
memory overlay detected at the end of execution.

478 Returning an allocated stack segment to the operating system failed.
This is likely due to a program memory overlay detected at the end
of execution.

Systems/C C Library 53

555 An invalid or corrupt handle was passed to a DCALL=SUPPLIED
function.

578 Returning the initial memory allocation to the operating system failed.
This is likely due to a program memory overlay detected at the end
of execution.

678 Re-entrant variable initialization failed. This is either a compiler or
library problem and should be reported to Dignus.

978 The stack management routines were unable to allocate further mem-
ory to expand the stack segment. ABEND 978 can be ”caught”
by a SIGABND handler only if the library has established as ESTAE
(TRAP(ON) is true) and an alternate execution stack is provided for
the signal handling function.

801 64-bit program start failed. This is typically caused by linking code
compiled for 31-bit with the 64-bit Dignus runtime. When linking with
the 64-bit runtime, the –mlp64 option must be used on the DCC and
DCXX compiler command lines.

3532 The SIGABRT signal was sent to a Dignus program not executing
under OpenEdition. The program prints a traceback and ends with
this user ABEND.

54 Systems/C C Library

Systems/C C Library functions

The Systems/C library provides the ANSI standard functions, as well as several
extensions which aide in the porting of other programs to the mainframe.

The Systems/C library is compiled using the standard Systems/C prologue and
epilogue macros. The Systems/C library environment would need to be established
if these functions are to be included in a Systems/C program that uses an alternate
stack frame layout.

This section provides an overview of the C library functions, the return values and
other common definitions and concepts.

The function return types and parameters, as well as the requisite #include files
are described in the SYNOPSIS section. The function is then described, followed by
the possible values of the global variable errno. Also, related functions are named
in the SEE ALSO section. If the function conforms to any particular standards,
that will be noted in the STANDARDS section.

The run-time library is also divided into sections for easy reference.

Systems/C C Library 55

System Functions

System functions are those that are typically implemented by the operating system
on UNIX platforms.

These are implemented in the Systems/C C run-time library as best as the host
operating system allows.

Several of the system functions described below depend on IBM’s OpenEdition As-
sembler Callable Services. If these services are not available, the functions can fail,
typically setting the global variable errno to EOPNOTSUPP (operation is not sup-
ported.) For more information about OpenEdition services, see the IBM “OS/390
OpenEdition Assembler Callable Services” manual and related IBM documentation.

56 Systems/C C Library

ACCESS(2)

NAME

access – check access permissions of an //HFS:-style file or pathname

SYNOPSIS

#include <unistd.h>

int
access(const char *path, int mode);

DESCRIPTION

The access() function checks the accessibility of the file named by path for the
access permissions indicated by mode. The value of mode is the bitwise inclusive
OR of the access permissions to be checked (R OK for read permission, W OK for write
permission and X OK for execute/search permission) or the existence test, F OK. All
components of the pathname path are checked for access permissions (including
F OK).

RETURN VALUES

If path cannot be found or if any of the desired access modes would not be granted,
then a -1 value is returned; otherwise a 0 value is returned.

ERRORS

Access to the file is denied if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EROFS] Write access is requested for a file on a read-only file system.

Systems/C C Library 57

[ETXTBSY] Write access is requested for a pure procedure (shared text) file
presently being executed.

[EACCES] Permission bits of the file mode do not permit the requested access,
or search permission is denied on a component of the path pre-
fix. The owner of a file has permission checked with respect to the
“owner” read, write, and execute mode bits, members of the file’s
group other than the owner have permission checked with respect
to the “group” mode bits, and all others have permissions checked
with respect to the “other” mode bits.

[EFAULT] Path points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file
system.

[ENOTSUPP] The access() function is not supported on this type of path name.

SEE ALSO

chmod(2), open(2), stat(2)

STANDARDS

The access() function call is expected to conform to IEEE Std1003.1-1990
(“POSIX”) for a path in the HFS.

CAVEAT

access() is a potential security hole due to race conditions and should never be used.
Setuid and setgid applications should restore the effective uid or gid and perform
actions directly rather than use access() to simulate access checks for the real user
of group id.

access() only operates on //HFS:-style files. If the access() function is applied to
non-//HFS: style files, the return value will be set to -1, and errno will be set to
EOPNOTSUPP.

58 Systems/C C Library

AIO CANCEL(2)

NAME

aio cancel – cancel an outstanding asynchronous I/O operation

SYNOPSIS

#include <aio.h>

int
aio_cancel(int fildes, struct aiocb * iocb);

DESCRIPTION

The aio cancel() function cancels the outstanding asynchronous I/O request for the
file descriptor specified in fildes. If iocb is specified, only that specific asynchronous
I/O request is cancelled.

Normal asynchronous notification occurs for cancelled requests. Requests complete
with an error result of ECANCELED.

RESTRICTIONS

The aio cancel() function does not cancel asynchronous I/O requests for HFS,
DDN or DSN files. The aio cancel() function will always return AIO NOTCANCELED
for file descriptors associated with HFS, DDN or DSN files.

The aio cancel() function dependes on pthreads for operation, and thus requires a
POSIX environment.

RETURN VALUES

The aio cancel() function returns -1 to indicate an error, or one of the following:

[AIO CANCELED] All outstanding requests meeting the criteria specified were can-
celled.

[AIO NOTCANCELED] Some requests were not cancelled, status for the requests should
be checked with aio error(2).

[AIO ALLDONE] All of the requests meeting the criteria have finished.

Systems/C C Library 59

ERRORS

An error return from aio cancel() indicates:

[EBADF] The fildes argument is an invalid file descriptor.

SEE ALSO

aio error(2), aio read(2), aio return(2), aio suspend(2), aio write(2)

STANDARDS

The aio cancel() function is expected to conform to the IEEE Std 1003.1
(“POSIX.1”) standard.

60 Systems/C C Library

AIO ERROR(2)

NAME

aio error – retrieve error status of asynchronous I/O operation

SYNOPSIS

#include <aio.h>

int
aio_error(const struct aiocb *iocb);

DESCRIPTION

The aio error() function returns the error status of the asynchronous I/O request
associated with the structure pointed to by iocb.

RETURN VALUES

If the asynchronous I/O request has completed successfully, aio error() returns
0. If the request has not yet completed, EINPROGRESS is returned. If the request
has completed unsuccessfully the error status is returned as described in read(2),
write(2), or fsync(2) is returned.

On failure, aio error() returns -1 and sets errno to indicate the error condition.

RESTRICTIONS

The aio error() function dependes on pthreads for operation, and thus requires a
POSIX environment.

ERRORS

The aio error() function will fail if:

[EINVAL] The iocb argument does not reference an outstanding asynchronous
I/O request.

Systems/C C Library 61

SEE ALSO

aio cancel(2), aio read(2), aio return(2), aio suspend(2), aio write(2), fsync(2),
read(2), write(2)

STANDARDS

The aio error() function is expected to conform to the IEEE Std 1003.1
(“POSIX.1”) standard.

62 Systems/C C Library

AIO READ(2)

NAME

aio read – asynchronous read from a file

SYNOPSIS

#include <aio.h>

int
aio_read(struct aiocb *iocb);

DESCRIPTION

The aio read() function allows the calling process to read iocb->aio nbytes from
the descriptor iocb->aio fildes beginning at the offset iocb->aio offset into the
buffer pointed to by iocb->aio buf. The call returns immediately after the read re-
quest has been enqueued to the descriptor; the read may or may not have completed
at the time the call returns.

The iocb->aio lio opcode argument is ignored by the aio read() function.

The iocb pointer may be subsequently used as an argument to aio return() and
aio error() in order to determine return or error status for the enqueued operation
while it is in progress.

If the request could not be enqueued (generally due to invalid arguments), then the
call returns without having enqueued the request.

If the request is successfully enqueued, the value of iocb->aio offset can be mod-
ified during the request as context, so this value must not be referenced after the
request is enqueued.

RESTRICTIONS

The Asynchronous I/O Control Block structure pointed to by iocb and the buffer
that the iocb->aio buf member of that structure references must remain valid until
the operation has completed. For this reason, use of auto (stack) variables for these
objects is discouraged.

The asynchronous I/O control buffer iocb should be zeroed before the aio read()
call to avoid passing bogus context information to the kernel.

Systems/C C Library 63

Modifications of the Asynchronous I/O Control Block structure or the buffer con-
tents after the request has been enqueued, but before the request has completed,
are not allowed.

If the file offset in iocb->aio offset is past the offset maximum for
iocb->aio fildes, no I/O will occur.

The aio read() function dependes on pthreads for operation, and thus requires a
POSIX environment.

RETURN VALUES

The aio read() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The aio read() function will fail if:

[EAGAIN] The request was not queued because of system resource limitations.

[ENOSYS] The aio read() function is not supported.

The following conditions may be synchronously detected when the aio read() func-
tion call is made, or asynchronously, at any time thereafter. If they are detected
at call time, aio read() returns -1 and sets errno appropriately; otherwise the
aio return() function must be called, and will return -1, and aio error() must be
called to determine the actual value that would have been returned in errno.

[EBADF] The iocb->aio fildes argument is invalid.

[EINVAL] The offset iocb->aio offset is not valid, the priority specified by
iocb->aio reqprio is not a valid priority, or the number of bytes
specified by iocb->aio nbytes is not valid.

[EOVERFLOW] The file is a regular file, iocb->aio nbytes is greater than zero, the
starting offset in iocb->aio offset is before the end of the file, but
is at or beyond the iocb->aio fildes offset maximum.

If the request is successfully enqueued, but subsequently cancelled or an error occurs,
the value returned by the aio return() function is per the read(2) function, and
the value returned by the aio error() function is either one of the error returns
from the read(2) function, or one of:

64 Systems/C C Library

[EBADF] The iocb->aio fildes argument is invalid for reading.

[ECANCELLED] The request was explicitly cancelled via a call to aio cancel().

[EINVAL] The offset iocb->aio offset would be invalid.

SEE ALSO

aio cancel(2), aio error(2), aio return(2), aio suspend(2), aio write(2)

STANDARDS

The aio read() function is expected to conform to the IEEE Std 1003.1
(“POSIX.1”) standard.

Systems/C C Library 65

AIO RETURN(2)

NAME

aio return – retrieve return status of asynchronous I/O operation

SYNOPSIS

#include <aio.h>

int
aio_return(struct aiocb *iocb);

DESCRIPTION

The aio return() function returns the final status of the asynchronous I/O request
associated with the structure pointed to by iocb.

The aio return() function should only be called once, to obtain the final status
of an asynchronous I/O operation once aio error(2) returns something other than
EINPROGRESS.

RETURN VALUES

If the asynchronous I/O request has completed, the status is returned as described
in read(2), write(2), or fsync(2). On failure, aio return() returns -1 and sets errno
to indicate the error condition.

RESTRICTIONS

The aio return() function dependes on pthreads for operation, and thus requires
a POSIX environment.

ERRORS

The aio return() function will fail if:

[EINVAL] The iocb argument does not reference an outstanding asynchronous
I/O request.

66 Systems/C C Library

SEE ALSO

aio cancel(2), aio error(2), aio suspend(2), aio write(2), fsync(2), read(2), write(2)

STANDARDS

The aio return() function is expected to conform to the IEEE Std 1003.1
(“POSIX.1”) standard.

Systems/C C Library 67

AIO SUSPEND(2)

NAME

aio suspend – suspend until asynchronous I/O operations or timeout complete

SYNOPSIS

#include <aio.h>

int
aio_suspend(const struct aiocb * const iocbs[], int niocb,

const struct timespec * timeout);

DESCRIPTION

The aio suspend() function suspends the calling process until at least one of the
specified asynchronous I/O requests have completed, a signal is delivered, or the
timeout has passed.

The iocbs argument is an array of niocb pointers to asynchronous I/O requests.
Array members containing null pointers will be silently ignored.

If timeout is not a null pointer, it specifies a maximum interval to suspend. If timeout
is a null pointer, the suspend blocks indefinitely. To effect a poll, the timeout should
point to a zero-value timespec structure.

RETURN VALUES

If one or more of the specified asynchronous I/O requests have completed,
aio suspend() returns 0. Otherwise it returns -1 and sets errno to indicate the
error, as enumerated below.

RESTRICTIONS

The aio suspend() function dependes on pthreads for operation, and thus requires
a POSIX environment.

68 Systems/C C Library

ERRORS

The aio suspend() function will fail if:

[EAGAIN] The timeout expired before any I/O requests completed.

[EINVAL] At least one of the requests specified in iocbs is invalid.

[EINTR] the suspend was interrupted by a signal.

SEE ALSO

aio cancel(2), aio error(2), aio return(2), aio write(2)

Systems/C C Library 69

AIO WRITE(2)

NAME

aio write – asynchronous write to a file

SYNOPSIS

#include <aio.h>

int
aio_write(struct aiocb *iocb);

DESCRIPTION

The aio write() function allows the calling process to write iocb->aio nbytes from
the buffer pointed to by iocb->aio buf to the descriptor iocb->aio fildes. The
call returns immediately after the write request has been enqueued to the descriptor;
the write may or may not have completed at the time the call returns. If the request
could not be enqueued, generally due to invalid arguments, the call returns without
having enqueued the request.

If O APPEND is set for iocb->aio fildes, aio write() operations append to the file
in the same order as the calls were made. If O APPEND is not set for the file descriptor,
the write operation will occur at the absolute position from the beginning of the file
plus iocb->aio offset for supported files.

The iocb pointer may be subsequently used as an argument to aio return() and
aio error() in order to determine return or error status for the enqueued operation
while it is in progress.

If the request is successfully enqueued, the value of iocb->aio offset can be mod-
ified during the request as context, so this value must not be referenced after the
request is enqueued.

RESTRICTIONS

The Asynchronous I/O Control Block structure pointed to by iocb and the buffer
that the iocb->aio buf member of that structure references must remain valid until
the operation has completed. For this reason, use of auto (stack) variables for these
objects is discouraged.

The asynchronous I/O control buffer iocb should be zeroed before the aio write()
function to avoid passing bogus context information.

70 Systems/C C Library

Modifications of the Asynchronous I/O Control Block structure or the buffer con-
tents after the request has been enqueued, but before the request has completed,
are not allowed.

If the file offset in iocb->aio offset is past the offset maximum for
iocb->aio fildes, no I/O will occur.

The aio write() function dependes on pthreads for operation, and thus requires a
POSIX environment.

RETURN VALUES

The aio write() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The aio write() function will fail if:

[EAGAIN] The request was not queued because of system resource limitations.

[ENOSYS] The aio write() function is not supported.

The following conditions may be synchronously detected when the aio write() func-
tion call is made, or asynchronously, at any time thereafter. If they are detected
at call time, aio write() returns -1 and sets errno appropriately; otherwise the
aio return() function must be called, and will return -1, and aio error() must be
called to determine the actual value that would have been returned in errno.

[EBADF] The iocb->aio fildes argument is invalid, or is not opened for
writing.

[EINVAL] The offset iocb->aio offset is not valid, the priority specified by
iocb->aio reqprio is not a valid priority, or the number of bytes
specified by iocb->aio nbytes is not valid.

If the request is successfully enqueued, but subsequently canceled or an error occurs,
the value returned by the aio return() function is per the write(2) function, and
the value returned by the aio error() is either one of the error returns from the
write(2) function, or one of:

[EBADF] The iocb->aio fildes argument is invalid for writing.

[ECANCELED] The request was explicitly canceled via a call to aio cancel().

[EINVAL] The offset iocb->aio offset would be invalid.

Systems/C C Library 71

SEE ALSO

aio cancel(2), aio error(2), aio return(2), aio suspend(2),

STANDARDS

The aio write() function is expected to conform to the IEEE Std 1003.1
(“POSIX.1”) standard.

72 Systems/C C Library

CHDIR(2)

NAME

chdir, fchdir - change current //HFS:-style working directory

SYNOPSIS

#include <unistd.h>

int
chdir(const char *path);

int
fchdir(int fd);

DESCRIPTION

The path argument points to the pathname of a directory. The chdir() function
causes the named directory to become the current working directory, that is, the
starting point for path searches of pathnames not beginning with a slash, ‘/’.

The path argument must be an //HFS:-style file name.

The fchdir() function causes the directory referenced by fd to become the current
working directory, the starting point for path searches of pathnames not beginning
with a slash, ‘/’.

In order for a directory to become the current directory, a process must have execute
(search) access to the directory.

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

chdir() will fail and the current working directory will be unchanged if one or more
of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

Systems/C C Library 73

[EOPNOTSUPP] The file system containing the file named by name1 does not support
directories.

[EMLINK] The link count of the file named by name1 would exceed 32767.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named directory does not exist.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EACCES] Search permission is denied for any component of the path name.

[EFAULT] Path points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file
system.

fchdir() will fail and the current working directory will be unchanged if one or more
of the following are true:

[EACCES] Search permission is denied for the directory referenced by the file
descriptor.

[ENOTDIR] The file descriptor does not reference a directory.

[EBADF] The argument fd is not a valid file descriptor.

SEE ALSO

chroot(2)

STANDARDS

The chdir() function call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.1”).

74 Systems/C C Library

CHMOD(2)

NAME

chmod, fchmod - change mode of an //HFS:-style file

SYNOPSIS

#include <sys/stat.h>

int
chmod(const char *path, mode_t mode);

int
fchmod(int fd, mode_t mode);

DESCRIPTION

The file permission bits of the file named specified by path or referenced by the file
descriptor fd are changed to mode. The chmod() function verifies that the process
owner (user) either owns the file specified by path (or fd), or is the super-user. The
chmod() function follows symbolic links to operate on the target of the link rather
than the link itself.

A mode is created from or’d permission bit masks defined in <sys/stat.h>:

#define S_IRWXU 0000700 /* RWX mask for owner */
#define S_IRUSR 0000400 /* R for owner */
#define S_IWUSR 0000200 /* W for owner */
#define S_IXUSR 0000100 /* X for owner */

#define S_IRWXG 0000070 /* RWX mask for group */
#define S_IRGRP 0000040 /* R for group */
#define S_IWGRP 0000020 /* W for group */
#define S_IXGRP 0000010 /* X for group */

#define S_IRWXO 0000007 /* RWX mask for other */
#define S_IROTH 0000004 /* R for other */
#define S_IWOTH 0000002 /* W for other */
#define S_IXOTH 0000001 /* X for other */

#define S_ISUID 0004000 /* set user id on execution */
#define S_ISGID 0002000 /* set group id on execution */
#define S_ISVTX 0001000 /* sticky bit */

Systems/C C Library 75

#ifndef _POSIX_SOURCE
#define S_ISTXT 0001000
#endif

Setting the S ISUID bit indicates that when the file is executed, the process’s effective
user-id is set to the file’s owner user-id, so that the process appears to be running
under the user-id of the file’s owner.

Settin the S ISGID bit indicates that when the file is executed, the process’s effective
group-id is that of file’s owner group-id.

RETURN VALUE

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

chmod() will fail and the file mode will be unchanged if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EPERM] The effective user ID does not match the owner of the file and the
effective user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file
system.

fchmod() will fail if:

[EBADF] The descriptor is not valid.

76 Systems/C C Library

[EINVAL] fd refers to a socket, not to a file.

[EROFS] The file resides on a read-only file system.

[EIO] An I/O error occurred while reading from or writing to the file
system.

SEE ALSO

chown(2), open(2), stat(2)

STANDARDS

The chmod() function call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.1”).

Systems/C C Library 77

CHOWN(2)

NAME

chown, fchown, lchown – change owner and group of an //HFS:-style file

SYNOPSIS

#include <unistd.h>

int
chown(const char *path, uid_t owner, gid_t group);

int
fchown(int fd, uid_t owner, gid_t group);

int
lchown(const char *path, uid_t owner, gid_t group);

DESCRIPTION

The owner ID and group ID of the file named by path or referenced by fd is changed
as specified by the arguments owner and group. The owner of a file may change the
group to a group of which he or she is a member, but the change owner capability
is restricted to the super-user.

chown() clears the set-user-id and set-group-id bits on the file to prevent accidental
or mischievous creation of set-user-id and set-group-id programs if not executed by
the super-user. chown() follows symbolic links to operate on the target of the link
rather than the link itself.

lchown() is similar to chown() but does not follow symbolic links.

One of the owner or group id’s may be left unchanged by specifying it as -1.

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

78 Systems/C C Library

ERRORS

chown() and lchown() will fail and the file will be unchanged if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EPERM] The effective user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file
system.

fchown() will fail if:

[EBADF] fd does not refer to a valid descriptor.

[EINVAL] fd refers to a socket, not a file.

[EPERM] The effective user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.

[EIO] An I/O error occurred while reading from or writing to the file
system.

SEE ALSO

chmod(2)

STANDARDS

The chown() function call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.1”).

Systems/C C Library 79

CHROOT(2)

NAME

chroot - change root directory

SYSNOPSIS

#include <unistd.h>

int
chroot(const char *dirname);

DESCRIPTION

dirname is the address of the pathname of an //HFS:-style directory, terminated by
an ASCII NUL. chroot() causes dirname to become the root directory, that is, the
starting point for path searches of pathnames beginning with ‘/’.

In order for a directory to become the root directory a process must have execute
(search) access for that directory.

It should be noted that chroot() has no effect on the process’s current directory.

This call is restricted to the super-user.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate an error.

ERRORS

chroot() will fail and the root directory will be unchanged if:

[ENOTDIR] A component of the path name is not a directory.

[EPERM] The effective user ID is not the super-user, or one or more file de-
scriptors are open directories.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any component of the path name.

80 Systems/C C Library

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EFAULT] dirname points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file
system.

SEE ALSO

chdir(2)

Systems/C C Library 81

CLOCK GETTIME(2)

NAME

clock gettime, clock settime, clock getres – get/set/calibrate date and time

SYNOPSIS

#include <sys/time.h>

int
clock_gettime(clockid_t clock_id, struct timespec *tp);

int
clock_settime(clockid_t clock_id, const struct timespec *tp);

int
clock_getres(clockid_t clock_id, struct timespec *tp);

DESCRIPTION

The clock gettime() and clock settime() allow the calling process to retrieve or
set the value used by a clock which is specified by clock id.

Only the CLOCK REALTIME and CLOCK MONOTONIC clocks are supported by this im-
plementation. The clock id argument can only be one of those values.

The structure pointed to by tp is defined in ¡sys/time.h¿ as:

struct timespec {
time_t tv_sec; /* seconds */
long tv_nsec; /* and nanoseconds */

};

The system TOD clock is set during the initial program load or via operator com-
mands. The clock settime() function verifies its arguments but always returns an
-1 with errno set to EPERM.

The resolution (granularity) of a clock is returned by the clock getres() system
call. This value is placed in a (non-NULL) *tp.

82 Systems/C C Library

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

The following error codes may be set in errno:

[EINVAL] The clock id argument was not a valid value.

[EFAULT] The *tp argument address referenced invalid memory.

[EPERM] The process is not allowed to set the time.

SEE ALSO

ctime(3)

STANDARDS

The clock gettime(), clock settime(), and clock getres() system calls conform
to IEEE Std 1003.1b-1993 (“POSIX.1”).

Systems/C C Library 83

CLOSE(2)

NAME

close - delete a descriptor

SYNOPSIS

#include <unistd.h>

int
close(int d);

DESCRIPTION

The close() call deletes a descriptor from the per-process object reference table. If
this is the last reference to the underlying object, the object will be deactivated. For
example, on the last close of a file the current seek pointer associated with the file
is lost; on the last close of a socket(2) associated naming information and queued
data are discarded.

When a process exits, all associated file descriptors are freed, but since there is a
limit on active descriptors per processes, the close() function call is useful when a
large quantity of file descriptors are being handled.

RETURN VALUES

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and the global integer variable errno is set to indicate the error.

IMPLEMENTATION NOTES

When closing a file that has a partial written record, Systems/C will pad the record
to the LRECL size and write the data. The padding byte used depends on how
the file was opened. For O TEXT files, the padding byte is the space character. For
non-O TEXT files, the padding byte is the NUL character, zero.

ERRORS

close() will fail if:

84 Systems/C C Library

[EBADF] d is not an active descriptor.

[EINTR] An interrupt was received.

SEE ALSO

fcntl(2), open(2),

STANDARDS

The close() function call is expected to conform to IEEE Std1003.1-1990
(“POSIX”), as closely as possible given the host operating system environment.

Systems/C C Library 85

DCALL ENV(2)

NAME

dcall env - retrieve direct-call environment pointer

SYNOPSIS

#include <machine/dcall.h>

void * __dcall_env(void)

DESCRIPTION

The dcall env() function returns the current environment pointer which can be
used by subsequent

DCALL=SUPPLIED

functions.

The dcall env() function is typically used in the

DCALL=ALLOCATE

function to make the environment pointer available to the allocation function to
save for later use.

86 Systems/C C Library

DCALL SETRETREGVAL(2)

NAME

dcall setretregval - set the value of a register after invoking a DCALL routine.

SYNOPSIS

#include <machine/dcall.h>

void __dcall_setretregval(int reg, long val);

DESCRIPTION

The dcall setretregval function sets the value a register will have on return from
the DCALL’d environment.

The reg parameter indicates the register number, and should be in the range 0 to
15. Values outside that range are ignored.

The val parameter indicates the value the register should have on return.

Overwritting register values that have architected uses (e.g. R15) is undefined and
can have undesired results.

In an AMODE 64 environment, if the calling environment is AMODE 64 then val
will represent the entire register. Otherwise if the caller was AMODE 24 or AMODE
31, then only the lower 32-bits of val will be set in the register reg.

The dcall setretregval function can be used to set a register value for returning
to the calling environment, for example setting R0 or R1 when the DCALL’d function
returns.

Systems/C C Library 87

DDNFIND(2)

NAME

ddnfind, ddnext - determine DSN’s associated with a DD name.

SYNOPSIS

#include <machine/syscio.h>

void *
ddnfind(char *ddn, char *dsn);

void *
ddnnext(void *token, char *dsn);

DESCRIPTION

The ddnfind() and ddnnext() functions are used to retrieve a DATA SET name
(DSN) name(s) allocated to a DD name (DD). ddnfind() retrieves the first DSN as-
sociated with the DD ddn, and saves it in the location specified by dsn. ddnfind()
returns a token, which is then passed to subsequent calls to ddnnext(). The Sys-
tems/C file prefix (//DDN:) should not be specified in the ddn parameter.

ddnnext() is used to retrieve subsequent DSNs associated with the DD ddn.
ddnnext() accepts the token created from the ddnfind() function, and returns
the token that should be used on a subsequent call to ddnnext().

When the list of DSNs has been exhausted, dnnext() returns NULL and releases the
space associated with token.

The storage allocated for dsn should be sufficiently large to contain any valid DSN
name. The Systems/C file prefix (//DSN:) is not returned in dsn.

IMPLEMENTATION NOTES

The ddnfind() and ddnnext() functions examine the job JFCB control block to
determine the associated DSN. If the DD is associated with a HFS file, then the
returned name will appear as “...PATH=.SPECIFIED...”.

88 Systems/C C Library

RETURN VALUES

ddnfind() returns a pointer to the allocate token if the ddn is located, NULL if the
ddn does not exist, or (void *)(-1) if there insufficient space to allocate the token.
If successful, ddnfind() places the first DSN name in the storage addressed by dsn.

ddnnext() returns the token and places the DSN name in the storage addressed by
dsn. At the end of the list of DSN names, ddnnext() returns NULL.

SEE ALSO

osddinfo(2)

Systems/C C Library 89

DYNALL(2)

NAME

dynalloc - allocate a data set

SYNOPSIS

#include <machine/dynit.h>

int
__dynall(__dyn_t *parms);

int
dynalloc(__dyn_t *parms);

int
__dynfre(__dyn_t *parms);

int
dynfree(__dyn_t *parms);

void
__dyninit(__dyn_t *parms);

DESCRIPTION

The dynall function is used to dynamically allocate MVS data sets, dynfre is
used to unallocate an MVS data set. dynalloc is an alias for dynall and dynfree
is an alias for dynfre.

dynall creates the SVC 99 parameter list based on the fields of the incoming parms
structure and then employs the SVC 99 facility to invoke the allocate function.

dynfre creates the SVC 99 parameter list based on the fields of the incoming parms
structure and then employs the SVC 99 facility to invoke the deallocate function.

In each case, the parms argument points to a dyn t structure that contains the
following fields:

char *ddname DD name. If the string is 8 question marks, then it indicates the area
where the system-generated ddname is returned, otherwise the string
is truncated at 8 characters and upper-cased before being passed to
the SVC 99 interface.

90 Systems/C C Library

char *dsname data set name. The string has a maximum length of 1023 characters
and is upper cased before being passed to the SVC 99 interface.

int sysout sysout dataset, set to DEF CLASS for the default SYSOUT class

char *sysoutname program name for SYSOUT

char *member member name of a PDS/PDSE

int status data set status, can be one of the following:

DISP OLD

DISP MOD

DISP NEW

DISP SHR

int normdisp data set’s normal disposition, can be on of:

DISP UNCATLG

DISP CATLG

DISP DELETE

DISP KEEP

int conddisp data set’s conditional disposition, can be one of the following:

DISP UNCATLG

DISP CATLG

DISP DELETE

DISP KEEP

char *unit unit name

char *volser a comma-separated list of volume serial numbers

int volseq volume sequence number

int volcount maximum volume count

int label type of tape label , can be one of the following:

LABEL NL no label

LABEL SL IBM standard label

LABEL NSL non-standard label

LABEL SUL both IBM standard and user label

LABEL BLP bypass label processing

LABEL LTM check and bypass leading tape mark

LABEL AL ANSI standard label

LABEL AUL ANSI standard and user label

Systems/C C Library 91

int dsorg data set organization, can be one of the following:

DSORG unknown unknown organization

DSORG U unmoveable

DSORG VSAM VSAM

DSORG GS graphics

DSORG PO partioned organization

DSORG POU partioned organization unmoveable

DSORG MQ message processing queue

DSORG CQ direct access message queue

DSORG CX communication line group

DSORG DA direct access

DSORG DAU direct access unmoveable

DSORG PS phsyical sequential

DSORG PSU phsyical sequential unmoveable

DSORG IS indexed sequential (deprecated)

DSORG ISU indexed sequential unmoveable (deprecated)

int alcunit unit of space allocation, one of the following:

CYL Cylinders

TRK Tracks

int primary primary space allocation

int secondary secondary space allocation

int recfm record format, one of, or a combination of the following,

M

A

S

B

D

V

F

U

FB

VB

FBS

VBS

long long blksize block size

92 Systems/C C Library

int lrecl logical record length, 0x8000 indicates ’X’ for BSAM and QSAM al-
locations.

char *volrefds volume serial reference

char *dcbrefds DSNAME for DCB reference

char *dcbrefdd DDNAME for DCB reference

unsigned int flags miscellaneous flags, a combination of the following:

CLOSE close on free

RELEASE release unused space

PERM

CONTIG request contiguous space

ROUND round allocation sizes

TERM device is a terminal

DUMMY DSN

HOLDQ

WAIT

char *password data set password

int dirblk number of directory blocks

int avgblk average block length

char *storclass SMS storage class

char *mgntclass SMS management class

char *dataclass SMS data class

int recorg VSAM dataset organization , one of the following:

KS

ES

RR

LS

int keylength VSAM key length

int keyoffset VSAM key offset

int rls VSAM record level sharing flags, one of the following:

RLS NRI no read integrity

RLS CR consistent read

RLS CRE consistent read explicit

Systems/C C Library 93

char *refdd copy attributes from referenced DDNAME

char *like copy attributes from DSNAME

int dsntype Type attribute of PDS or PDSE, one of the following:

DSNT LARGE large format, greater than 65535 trks

DSNT BASIC basic format data set

DSNT EXTPREF extended format preferred

DSNT EXTREQ extended format required

DSNT HFS HFS file system

DSNT PIPE FIFO special pipe

DSNT PDS PDS

DSNT LIBRARY PDSE

char *pathame path name

int pathopts path options, one of the following:

PATH OSYNC

PATH OCREAT

PATH OEXCL

PATH ONOCTTY

PATH OTRUNC

PATH OAPPEND

PATH ONONBLOCK

PATH ORDWR

PATH ORDONLY

PATH OWRONLY

int pathmode path mode, one or a combination of the following:

PATH SISUID

PATH SIGUID

PATH SIRUSR

PATH SIWUSR

PATH SIXUSR

PATH SIRWXU

PATH SIRGRP

PATH SIWGRP

PATH SIXGRP

PATH SIWRXG

PATH SIROTH

94 Systems/C C Library

PATH SIWOTH

PATH SIXOTH

PATH SIWRXO

int pathndisp path normal disposition, can be one of the following:

DISP DELETE

DISP KEEP

int pathcdisp path conditional disposition , can be one of the following:

DISP DELETE

DISP KEEP

char * ptr31 * ptr31 miscitems extra text units

struct S99RBX * ptr31 rbx SVC99 RBX (request block extension) pointer

struct S99EMPARMS * ptr31 emsparmlist pointer to messages

int infocode SVC 99 returned info code

int errcode SVC 99 returned error code

The dyn t structure must be initialized before invoking dynall or dynfre. This
is accomplised using the dyninit macro, or by using the DYN T INITIALIZER
macro. Unpredictable results may occur if the structure isn’t properly initialized.

The miscitems, rbx and emsparmlist fields can be used to pass additional information
to underlying SVC99 service. For more information about these, and the underly-
ing SVC99 service, consult the IBM ”z/OS MVS Programm Authorized Assembler
Services Guide” and the svc99(2) documentation.

The dynfre function deallocates a z/OS data set based on the values passed via
the parms parameter. The only fields in the given dyn t structure used by dynfre
are:

char *ddname

char *dsname

char *member

char *pathname

char *normdisp

char *pathndisp

char *miscitems

all other fields are ignored.

Systems/C C Library 95

EXAMPLES

This program dynamically allocates a file named ”MYNAME.MY.DATASET”, with
an allocation unit of CYL, a primary quantity of 2 and a secondary quantity of 1,
with a logical record length of 121, a block size of 12100 and a fixed record ASA
format.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <machine/dynit.h>
#include <machine/svc99.h>

int main () {
__dyn_t ip;

__dyninit(&ip);

ip.ddname = "mydd"; /* MYDD DD */
ip.dsname = "MYNAME.MY.DATASET"; /* DSN=’MYNAME.MY.DATASET’ */
ip.status = __DISP_NEW; /* DISP=(NEW,CATLG) */
ip.normdisp = __DISP_CATLG;
ip.alcunit = __CYL; /* SPACE=(CYL,(2,1)), */
ip.primary = 2;
ip.secondary = 1;
ip.dirblk = 1;
ip.flags = __RELEASE & __CONTIG; /* RLSE,CONTIG) */
ip.dsorg = __DSORG_PO; /* DCB=(DSORG=PO, */
ip.recfm = _F_ + _B_ + _A_; /* RECFM=FBA, */
ip.lrecl = 121; /* LRECL=121, */
ip.blksize = 12100; /* BLKSIZE=12100) */

if (dynalloc(&ip) != 0) {
int err, inf;
err = ip.errcode;
inf = ip.infocode;
printf("Dynalloc failed with error code 0x%04x (%d), "

"info code 0x%04x (%d)\n", err, inf);
}

}

To deallocate a file:

#include <stdio.h>

96 Systems/C C Library

#include <stdlib.h>
#include <string.h>
#include <machine/dynit.h>

int
main(void)
{
__dyn_t ip = __DYN_T_INITIALIZER;

ip.ddname = "mydd";
dynfree(&ip);

}

RETURN VALUES

The dynalloc() function returns -1 if it was unable to allocate enough memory to
build the parameters for the svc99() function.

Otherwise, it returns the return code from the invocation of svc99().

ISSUES

The dynalloc and dynfree functions are only available on z/OS.

SEE ALSO

”z/OS MVS Programm Authorized Assembler Services Guide”, malloc31(3),
svc99(3).

Systems/C C Library 97

DUP(2)

NAME

dup, dup2 - duplicate an existing file descriptor

SYNOPSIS

#include <unistd.h>

int
dup(int olddd)

int
dup2(int olddd, int newdd)

DESCRIPTION

dup() duplicates an existing object descriptor and returns its value to the calling
process (newd = dup(oldd)). The argument oldd is a small non-negative integer
index in the per-process descriptor table. The value must be less than the size of
the table, which is returned by getdtablesize(2). The new descriptor returned by
the call is the lowest numbered descriptor currently not in use by the process.

The object referenced by the descriptor does not distinguish between oldd and newd
in any way. Thus if newd and oldd are duplicate references to an open file, read(2),
write(2) and lseek(2) calls all move a single pointer into the file, and append mode,
non-blocking I/O and synchronous I/O options are shared between the references.
If a separate pointer into the file is desired, a different object reference to the file
must be obtained by issuing an additional open(2) call.

In dup2(), the value of the new descriptor newd is specified. If this descriptor is
already in use and oldd != newd, the descriptor is first deallocated as if a close(2)
call had been used. If oldd is not a valid descriptor, then newd is not closed. If oldd
== newd and oldd is a valid descriptor, then dup2() is successful, and does nothing.

RETURN VALUES

The value -1 is returned if an error occurs in either call. The external variable
errno indicates the cause of the error.

98 Systems/C C Library

ERRORS

dup() and dup2() fail if:

[EBADF] oldd or newd is not a valid active descriptor.

[EMFILE] Too many descriptors are active.

[ENOMEM] Insufficient memory was available.

SEE ALSO

close(2), fcntl(2), getdtablesize(2), open(2)

STANDARDS

The dup() and dup2() function calls are expected to conform to IEEE Std1003.1-
1990 (“POSIX”), as closely as possible given the constraints of the host operating
system.

Systems/C C Library 99

EXECVE(2)

NAME

execve - execute a file

SYNOPSIS

#include <unistd.h>

int
execve(const char *path, char *const argv[], char *const envp[]);

DESCRIPTION

execve() transforms the calling process into a new process. The new process is
constructed from an ordinary //HFS:-style file, whose name is pointed to by path,
called the new process file. This file is either an executable object file, or a file of
data for an interpreter.

An interpreter file begins with a line of the form:

#! <interpreter> [<arg>]

When an interpreted file is is execve()’d, the system actually execve’s the spec-
ified interpreter. If the optional arg is specified, it becomes the first argument to
the interpreter, and the name of the originally execve()’d file becomes the sec-
ond argument; otherwise, the name of the originally execve()’d file becomes the
first argument. The original arguments are shifted over to become the subsequent
arguments. The zero’th argument is set to the specified interpreter.

The argument argv is a pointer to a NULL-terminated array of character pointers to
nul-terminated character strings. These strings construct the argument list to be
made available to the new process. At least one argument must be present in the
array; by custom, the first element should be the name of the executed program (for
example, the last component of path).

The argument envp is also a pointer to a NULL-terminated array of character pointers
to nul-terminated strings. A pointer to this array is normally stored in the global
variable environ. These strings pass information to the new process that is not
directly an argument to the command.

//HFS:-style file descriptors open in the calling process image remain open in the new
process image, except for those for which the close-on-exec flag is set (see close(2)

100 Systems/C C Library

and fcntl(2)). File descriptors not associated with //HFS:-style files are closed as
if the close-on-exec flag was set. Descriptors that remain open are unaffected by
execve().

Signals set to be ignored in the calling process are set to be ignored in the new
process. Signals which are set to be caught in the calling process image are set to
default action in the new process image. Blocked signals remain blocked regardless
of changes to the signal action. The signal stack is reset to be undefined.

If the set-user-ID mode bit of the new process image file is set (see chmod(2)),
the effective user ID of the new process image is set to the owner ID of the new
process image file. If the set-group-ID mode bit of the new process image file is
set, the effective group ID of the new process image is set to the group ID of the
new process image file. (The effective group ID is the first element of the group
list.) The real user ID, real group ID and other group IDs of the new process image
remain the same as the calling process image. After any set-user-ID and set-group-
ID processing, the effective user ID is recorded as the saved set-user-ID, and the
effective group ID is recorded as the saved set- group-ID. These values may be used
in changing the effective IDs later (see setuid(2)).

The set-ID bits are not honored if the respective file system has the SSTFNOSUID
option enabled or if the new process file is an interpreter file.

The new process also inherits the following attributes from the calling process:

process ID see getpid(2)

parent process ID see getppid(2)

process group ID see getpgrp(2)

access groups see getgroups(2)

working directory see chdir(2)

root directory see chroot(2)

control terminal

resource usages see getrusage(2)

interval timers

resource limits see getrlimit(2)

file mode mask see umask(2)

signal mask

When a program is executed as a result of an execve() call, the lower-level service
passes a parameter list, which is pointed to by regiter 1. The parameter list consists
of the following parameter addresses, with the high-order bit set in the last value.

Systems/C C Library 101

R1 Parameter list
_______ _________________________
|@Plist |______ ____ |@Argument count |______ Argument count
|_______| | |_________________________|

| |@Argument length list |______ Argument length list
| |_________________________|
| |@Argument data list |______ Argument data list
| |_________________________|
| |@Environment count |______ Environment count
| |_________________________|
| |@Environment length list |______ Environment length
| |_________________________|
| |@Environment data list |______ Environment data list
| |_________________________|
|_____|@Plist (high_order = ’1’)|______ Parameter list

|_________________________| (Self_pointer)

The Systems/C runtime recognizes this entry style and transforms the parameters
into the standard:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the number of elements in argv (the “arg count”) and argv points to
the array of character pointers to the arguments themselves.

For entry into Systems/C programs, the argv and envp array elements are assumed
to be nul-terminated.

RETURN VALUES

As the execve() function overlays the current process image with a new process
image the successful call has no process to return to. If execve() does return to
the calling process an error has occurred; the return value will be -1 and the global
variable errno is set to indicate the error.

ERRRORS

execve() will fail and return to the calling process if:

[ENOTDIR] A component of either path prefix is not a directory.

102 Systems/C C Library

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENAMETOOLONG] When invoking an interpreted script, the interpreter name exceeds
MAXSHELLCMDLEN characters.

[ENOENT] The new process file does not exist.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] The new process file is not an ordinary file.

[EACCES] The new process file mode denies execute permission.

[ENOEXEC] The new process file has the appropriate access permission, but is
not in the proper format to be a process image.

[ENOMEM] The new process requires more virtual memory than is allowed by
the imposed maximum.

[E2BIG] The number of bytes in the new process’ argument list is larger than
the system-imposed limit.

[EFAULT] Path, argv, or envp point to an illegal address.

[EIO] An I/O error occurred while reading from the file system.

SEE ALSO

fork(2), exit(2), execl(3), exit(3), The BPX1EXC service in the IBM publication
“OpenEdition Assembler Callable Services”.

Systems/C C Library 103

EXIT(2)

NAME

exit - terminate the calling program

SYNOPSIS

#include <unistd.h>

void
_exit(int status);

DESCRIPTION

The exit() function terminates a program with the following consequences:

• All of the descriptors open in the calling process are closed. This may entail
delays, for example, waiting for output to drain.

• All allocated memory for the programs stack and heap space is released.

• For OpenEdition (POSIX) programs, if the parent OpenEdition process of the
calling process has an outstanding wait(2) call or catches the SIGCHLD signal,
it is notified of the calling process’s termination and the status is set as defined
by wait(2).

• For OpenEdition (POSIX) programs, the parent process-ID of all of the calling
process’s existing child processes are set to 1; the initialization process inherits
each of these processes.

• For OpenEdition (POSIX) programs, if the termination of the process causes
any process group to become orphaned (usually because the parents of all
members of the group have now exited), and if any member of the orphaned
group is stopped, the SIGHUP signal and the SIGCONT signal are sent to all
members of the newly-orphaned process group.

• For OpenEdition (POSIX) programs, if the process is a controlling process,
the SIGHUP signal is sent to the foreground process group of the controlling
terminal, and all current access to the controlling terminal is revoked.

• For DCALL environments, the environment is destroyed and cannot be used
again via DCALL=SUPPLIED.

Most C programs call the library routine exit(3), which flushes buffers, closes
streams, unlinks temporary files, etc., before calling exit().

104 Systems/C C Library

RETURN VALUES

exit() can never return.

SEE ALSO

fork(2), wait(2), exit(3)

STANDARDS

The exit() function call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.1”) as much as the host system allows.

Systems/C C Library 105

FCNTL(2)

NAME

fcntl - file control

SYNOPSIS

#include <fcntl.h>

int
fcntl(int fd, int cmd, ...)

DESCRIPTION

fcntl() provides for control over descriptors. The argument fd is a descriptor to be
operated on by cmd as described below. Depending on the value of cmd, fcntl can
take an additional third argument int arg.

F GETFL Get descriptor status flags, as described below (arg is ignored).

F SETFL Set descriptor status flags to arg.

F GETFD Get the file descriptor flags (FD LEAVEONCLOSE or FD FREEONCLOSE,
or both) associated with the DSN/DDN file descriptor.

F SETFD Set the leave-on-close (FD LEAVEONCLOSE) and/or free-on-close
(FD FREEONCLOSE) flags associated with the DSN/DDN file descrip-
tor. If the FD LEAVEONCLOSE bit is set in arg, then when the asso-
ciated file is closed, the LEAVE option will be specified on the MVS
CLOSE macro. If the FD FREEONCLOSE bit is set in arg, then when
the associated file is closed, the FREE option will be specified on the
MVS CLOSE macro.

RETURN VALUES

Upon successful completion, the value returned depends on cmd as follows:

F GETFL Value of flags.

F GETFD Value of flags.

other Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

106 Systems/C C Library

ERRORS

fcntl() will fail if:

[EBADF] fd is not a valid open file descriptor.

SEE ALSO

close(2), getdtablesize(2), open(2)

Systems/C C Library 107

FLDATA(2)

NAME

fldata - retrieve low-level file information

SYNOPSIS

#include <machine/syscio.h>

int
fldata(int fd, char *buf, int bufsize, fldata_t *info);

DESCRIPTION

The fldata() function examines the open file descriptor fd and returns information
about the file. If the file descriptor was generated by a call to open(2), (or indirectly
via fopen(3)), then fldata() returns the original name specified on the open()
function call in buf, up to bufsize characters. The fldata() function does not append
a NUL character to buf.

fldata() also sets various fields of the fldata t structure with information from the
open file. The fldata t structure (shown below) is defined in <machine/syscio.h>.

typedef struct __fileData {
/* Record formats */
unsigned int __recfmF:1; /* Fixed Records */
unsigned int __recfmV:1; /* Variable Records */
unsigned int __recfmU:1; /* Undefined Records */
unsigned int __recfmS:1; /* Spanned */
unsigned int __recfmBlk:1; /* Blocked data set */
unsigned int __recfmASA:1; /* ASA print control characters */
unsigned int __recfmM:1; /* Machine control character */
/* Data Set organization */

unsigned int __dsorgPO:1; /* PDS */
unsigned int __dsorgPDSmem:1; /* PDS member specified on open */
unsigned int __dsorgPDSdir:1;
unsigned int __dsorgPS:1; /* sequential file */
unsigned int __dsorgConcat:1;
unsigned int __dsorgMem:1;
unsigned int __dsorgHiper:1;
unsigned int __dsorgTemp:1;
unsigned int __dsorgVSAM:1;
unsigned int __dsorgHFS:1; /* HFS file */

108 Systems/C C Library

unsigned int __dsorgPDSE:1;
/* How was the file opened? */

unsigned int __openmode:2;
unsigned int __modeflag:4;
unsigned int __vsamRLS:3;
unsigned int __reserv1:8;

__device_t __device;
unsigned long __blksize;
unsigned long __maxreclen;
unsigned short __vsamtype;
unsigned long __vsamkeylen;
unsigned long __vsamRKP;
char * __dsname;
unsigned int __reserv2;

} fldata_t;

The fields of fldata t are as follows:

recfmF Set to 1 for fixed-length records

recfmV Set to 1 for variable-length records

recvmU Set to 1 for undeifned-length records

recfmS Set to 1 for spanned records

recfmBlk Set to 1 for blocked records

recfmASA Set to 1 if the file uses ASA print-control characters

recfmM Set to 1 if the file uses machine print-control characters

dsorgPO Set to 1 for a PDS file

dsorgPDSmem Set to 1 for PDS members

dsorgPDSdir Set to 1 for PDS or PDSE directory

dsorgPS Set to 1 for sequential files

dsorgConcat Set to 1 for concatenated sequential files

dsorgHFS Set to 1 for HFS files.

dsorgPDSE Set to 1 if the file is a PDSE

openmode How the files was opened, one of TEXT, BINARY or RECORD

modeflag How the file is altered or used, can be APPEND, READ, UPDATE,
WRITE. These values can be logically OR’d together.

Systems/C C Library 109

device The low-level “device driver” handling this file, one of DISK,
TERMINAL, SOCKET or HFS

blksize Block size of the file

maxreclen Record length of the file (1-32760); or 2147483647 for an LRECL=X
Variable Spanned file.

dsname For //DDN:-style files, this is set to a pointer to the NUL-terminated
DSN-name associated with the file. If the DD-name is a concatena-
tion, this contains the first DSN-name in the concatenation. If the
name passed to open(2) was not a //DDN:-style name, this field will
be NULL.

RETURN VALUES

If successful, fldata() returns the number of characters copied into buf (which may
be zero.) Otherwise, fldata() returns -1 and sets the global variable errno to
indicate the error.

ERRORS

fldata() will fail if:

[EBADF] fd is not a valid descriptor.

[EFAULT] Either buf or info specifies an invalid address.

[ENOSYS] Couldn’t determine the associated DSN name for a //DDN:-style
name

Furthermore, for //HFS:-style files, fldata() can fail under the same conditions that
fstat(2) can fail.

SEE ALSO

open(2), fstat(2), ddnfind(2), fileno(3)

ISSUES

The dsname field is statically allocated in the library and should be saved between
calls to fldata.

110 Systems/C C Library

The fldata t structure defines fields not currently supported by the Systems/C
library (e.g. VSAM-related fields.) These are provided for compatibility with IBM’s
fldata function. Note that the IBM fldata function operates on FILE streams
not file descriptors and has a slightly different parameter list.

Systems/C C Library 111

FORK(2)

NAME

fork - create a new process

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

pid_t
fork(void);

DESCRIPTION

fork() causes creation of a new process. The new process (child process) is an exact
copy of the calling process (parent process) except for the following:

• The child process has a unique process ID.

• The child process has a different parent process ID (i.e. the process ID of the
parent process.)

• The child process has its own copy of the parent’s descriptors. These descrip-
tors reference the same underlying objects, so that, for instance, file pointers
in file objects are shared between the child and the parent, so that an lseek(2)
on a descriptor in the child process can affect a subsequent read(2) or write(2)
by the parent. This descriptor copying is also used by the shell to establish
standard input and output for newly created processes as well as to set up
pipes.

Any file descriptors associated with non //HFS:-style files are closed in the
child process.

• The child process’ resource utilizations are set to 0.

• All interval timers are cleared

• Any file locks previous set by the parent are not inherited by the child.

• The child has no pending signals.

112 Systems/C C Library

RETURN VALUES

Upon successful completion, fork() returns a value of 0 to the child process and
returns the process ID of the child process to the parent process. Otherwise, a value
of -1 is returned to the parent process, no child process is created, and the global
variable errno is set to indicate the error.

ERRORS

fork() will fail and no child process will be created if:

[EAGAIN] The system-imposed limit on the total number of processes under
execution would be exceeded.

[EAGAIN] The user is not the super user, and the “soft” resource limit on the
number of per-user processes has been exhausted.

[ENOMEM] There is insufficient space for the new process.

SEE ALSO

execve(2), wait(2)

Systems/C C Library 113

FSYNC(2)

NAME

fsync - synchronise changes to a file

SYNOPSIS

#include <unistd.h>

int
fsync(int fd);

DESCRIPTION

For //HFS:-style files, fsync() causes all modified data and attributes of fd to be
moved to a permanent storage device. This normally results in all in-core modified
copies of buffers for the associated file to be written to a disk.

fsync() should be used by programs that require a file to be in a known state, for
example, in building a simple transaction facility.

Because of internal operating system buffering, for non-//HFS:-style files, the
fsync() function fails with a -1 return code, and errno set to EIO.

RETURN VALUES

The fsync() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The fsync() function fails if:

[EBADF] fd is not a valid descriptor.

[EINVAL] fd refers to something that is not a regular file.

[EIO] An I/O error occurred while reading from or writing to the file
system.

114 Systems/C C Library

SEE ALSO

sync(2)

Systems/C C Library 115

GET CPUID(2)

NAME

get cpuid() - return the IBM CPU identifier

SYNOPSIS

#include <machine/tiot.h>

int __get_cpuid(char *buff);

DESCRIPTION

The get cpuid() function returns the current CPU identifier as a nul-terminated
string in the buffer addressed by buff. Buff must be at least 11 bytes long (10 bytes
for the identifier, with a terminating zero.)

The CPU ID contains the serial number, followed by the model number.

RETURN VALUES

The get cpuid() function always returns the value 0. The CPU ID is contained
in the string buff.

116 Systems/C C Library

GETITIMER(2)

NAME

getitimer, setitimer – get/set value of interval timer

SYNOPSIS

#include <sys/time.h>
#define ITIMER_REAL 0
#define ITIMER_VIRTUAL 1
#define ITIMER_PROF 2

int
getitimer(int which, struct itimerval *value);

int
setitimer(int which, const struct itimerval *value,

struct itimerval *ovalue);

DESCRIPTION

The system provides each process with three interval timers, defined in ¡sys/time.h¿.
The getitimer() system call returns the current value for the timer specified in
which in the structure at value. The setitimer() system call sets a timer to the
specified value (returning the previous value of the timer if ovalue is not a null
pointer).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */

};

If it value is non-zero, it indicates the time to the next timer expiration. If it interval
is non-zero, it specifies a value to be used in reloading it value when the timer expires.
Setting it value to 0 disables a timer, regardless of the value of it interval. Setting
it interval to 0 causes a timer to be disabled after its next expiration (assuming
it value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this
resolution.

Systems/C C Library 117

The ITIMER REAL timer decrements in real time. A SIGALRM signal is delivered when
this timer expires.

The ITIMER VIRTUAL timer decrements in process virtual time. It runs only when
the process is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER PROF timer decrements both in process virtual time and when the
system is running on behalf of the process. It is designed to be used by inter-
preters in statistically profiling the execution of interpreted programs. Each time
the ITIMER PROF timer expires, the SIGPROF signal is delivered. Because this signal
may interrupt in-progress system calls, programs using this timer must be prepared
to restart interrupted system calls.

The maximum number of seconds allowed for it interval and it value in setitimer()
is 100000000.

NOTES

Three macros for manipulating time values are defined in ¡sys/time.h¿. The
timerclear() macro sets a time value to zero, timerisset() tests if a time value
is non-zero, and timercmp() compares two time values.

The underlying IBM implementation uses the MVS STIMERM interface, if the number
of concurrent STIMERM SET requests for the current task is exceeded, the program
can abnormally end.

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

The getitimer() and setitimer() system calls will fail if:

[EFAULT] The value argument specified a bad address.

[EINVAL] The value argument specified a time that was too large to be handled
or was negative.

[ENOSYS] POSIX signals were not enabled for the program and are required
for delivering the signal when the timer expires.

118 Systems/C C Library

SEE ALSO

gettimeofday(2), select(2)

Systems/C C Library 119

GETDTABLESIZE(2)

NAME

getdtablesize - get descriptor table size

SYNOPSIS

#include <unistd.h>

int
getdtablesize(void)

DESCRIPTION

Each process has a fixed size descriptor table, which is guaranteed to have at least 20
slots. The entries in the descriptor table are numbered with small integers starting
at 0. The call getdtablesize() returns the size of this table.

SEE ALSO

close(2), dup(2), open(2)

120 Systems/C C Library

GETGID(2)

NAME

getgid, getegid - get group process identification

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

gid_t
getgid(void);

gid_t
getegid(void);

DESCRIPTION

The getgid() function returns the real group ID of the calling process, getegid()
returns the effective group ID of the calling process.

The real group ID is specified at login time.

The real group ID is the group of the user who invoked the program. As the
effective group ID gives the process additional permissions during the execution of
“set-group-ID” mode processes, getgid() is used to determine the real-user-id of
the calling process.

ERRORS

As long as UNIX System Services are available, the getgid() and getegid() func-
tions are always successful, and no return value is reserved to indicate an error.

SEE ALSO

getuid(2), setgid(2), setregid(2)

STANDARDS

The getgid() and getegid() function calls are expected to conform to ISO/IEC
9945-1:1990 (“POSIX.1”), as closely as the host system allows.

Systems/C C Library 121

GETGROUPS(2)

NAME

getgroups - get group access list

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

int
getgroups(int gidsetlen, gid_t *gidset);

DESCRIPTION

getgroups() gets the current group access list of the user process and stores it in
the array gidset. The parameter gidsetlen indicates the number of entries that may
be placed in gidset. getgroups() returns the actual number of groups returned
in gidset. No more than NGROUPS MAX will ever be returned. If gidsetlen is zero,
getgroups() returns the number of supplementary group IDs associated with the
calling process without modifying the array pointed to by gidset.

RETURN VALUES

A successful call returns the number of groups in the group set. A value of -1
indicates that an error occurred, and the error code is stored in the global variable
errno.

ERRORS

The possible errors for getgroups() are:

[EINVAL] The argument gidsetlen is smaller than the number of groups in the
group set.

[EFAULT] The argument gidset specifies an invalid address.

SEE ALSO

setgroups(2)

122 Systems/C C Library

GETLOGIN(2)

NAME

getlogin - get login name

SYNOPSIS

#include <unistd.h>

char *
getlogin(void);

DESCRIPTION

The getlogin() routine returns the login name of the user associated with the
current session. The name is normally associated with a login step at the time a
session is created, and is inherited by all processes descended from the login shell.
(This is true even if some of those processes assume another user ID.)

RETURN VALUES

If a call to getlogin() succeeds, it returns a pointer to a NUL-terminated string in
a static buffer, or NULL if the name has not been set.

ERRORS

If OpenEdition services are available, getlogin() should not fail. If OpenEdition
services are available, and the request fails getlogin() will terminate the program
with an abend.

STANDARDS

getlogin() conforms to ISO/IEC 9945-1:1996 (“POSIX.1”).

Systems/C C Library 123

GETPID(2)

NAME

getpid, getppid - get parent or calling process identification

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

pid_t
getpid(void);

pid_t
getppid(void);

DESCRIPTION

getpid() returns the process ID of the calling process. Though the ID is guaranteed
to be unique, it should NOT be used for constructing temporary file names, for
security reasons; see mkstemp(3) instead.

getppid() returns the process ID of the parent of the calling process.

ERRORS

If OpenEdition services are available, the getpid() and getppid() functions are
always succesful, and no return value is reserved to indicate an error.

If OpenEdition services are not available, getpid() and getppid() return zero, and
the global variable errno is set to the value ENOSYS.

STANDARDS

The getpid() and getppid() function calls are expected to conform to ISO/IEC
9945-1:1990 (“POSIX.1”) as closely as the host operating system allows.

124 Systems/C C Library

GETPGRP(2)

NAME

getpgrp - get process group

SYNOPSIS

#include <unistd.h>

pid_t
getpgrp(void);

pid_t
getpgid(pid_t pid);

DESCRIPTION

The process group of the current process is returned by getpgrp(). The process
group of the process identified by pid is returned by getpgid(). If pid is zero,
getpgid() returns the process group of the current process.

Process groups are used for distribution of signals, and by terminals to arbitrate
requests for their input: processes that have the same process group as the terminal
are foreground and may read, while others will block with a signal if they attempt
to read.

This call is thus used by programs to create process groups in implementing job
control. The tcgetpgrp(3) and tcsetpgrp(3) calls are used to get/set the process
group of the control terminal.

RETURN VALUES

The getpgrp() call always succeeds. Upon successful completion, the getpgid()
call returns the process group of the specified process; otherwise, it returns a value
of -1 and sets errno to indicate the error.

ERRORS

getpgrp() will succeed unless:

[EPERM] pid is not in the same session as the calling process

[ESRCH] there is no process whose process ID equals pid

Systems/C C Library 125

SEE ALSO

getsid(2), setpgid(2)

STANDARDS

The getpgrp() function call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.1”) as closely as the host system allows.

126 Systems/C C Library

GETPRIORITY(2)

NAME

getpriority, setpriority - get/set program scheduling priority

SYNOPSIS

#include <sys/time.h>
#include <sys/resource.h>

int
getpriority(int which, int who);

int
setpriority(int which, int who, int prio);

DESCRIPTION

The scheduling priority of the process, process group, or user, as indicated by which
and who is obtained with the getpriority() call and set with the setpriority() call.
Which is one of PRIO PROCESS, PRIO PGRP, or PRIO USER, and who is interpreted
relative to which (a process identifier for PRIO PROCESS, process group identifier for
PRIO PGRP, and a user ID for PRIO USER). A zero value of who denotes the current
process, process group, or user. Prio is a value in the range -20 to 19. The default
priority is 0; lower priorities cause more favorable scheduling.

The getpriority() call returns the highest priority (lowest numerical value) enjoyed
by any of the specified processes. The setpriority() call sets the priorities of all
of the specified processes to the specified value. Only the super-user may lower
priorities.

RETURN VALUES

Since getpriority() can legitimately return the value -1, it is necessary to clear the
external variable errno prior to the call, then check it afterward to determine if a
-1 is an error or a legitimate value.

The setpriority() function returns the value 0 if successful; otherwise the value -1
is returned and the global variable errno is set to indicate the error.

Systems/C C Library 127

ERRORS

getpriority() and setpriority() will fail if:

[EINVAL] Which was not one of PRIO PROCESS, PRIO PGRP, or PRIO USER.

[EINVAL] Who is not a alid process ID, group ID or user ID.

[ENOSYS] The system does not support this function, or the installation has
not enabled it.

[ESRCH] No process was located using the which and who values specified.

In addition to the errors indicated above, setpriority() will fail if:

[EPERM] A process was located, but neither its effective nor real user ID
matched the effective user ID of the caller.

[EACCES] A non super-user attempted to lower a process priority.

SEE ALSO

nice(3), fork(2)

128 Systems/C C Library

GETPRV(2)

NAME

getprv - return the current Pseudo Register Vector address

SYNOPSIS

#pragma map (__getprv,"@@GETPRV")
void *__getprv(void);

This function does not appear in any header file, thus, the #pragma map statement
must be properly provided to use it.

DESCRIPTION

The getprv() function returns the address of the current Pseudo Register Vector
(PRV). The PRV contains global re-entrant data.

Typically getprv() is used in conjunction with #pragma
prokley(...,"DCALL=ALLOCATE,PRV=0") functions for creating stack envi-
ronments that share the same global variables.

Systems/C C Library 129

GETRUSAGE(2)

NAME

getrusage - get information about resource utilization

SYNOPSIS

#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>
#define RUSAGE_SELF 0
#define RUSAGE_CHILDREN -1

int
getrusage(int who, struct rusage *rusage);

DESCRIPTION

getrusage() returns information describing the resources utilized by the cur-
rent process, or all its terminated child processes. The who parameter is either
RUSAGE SELF or RUSAGE CHILDREN. The buffer to which rusage points will be filled
in with the following structure:

struct rusage {
struct timeval ru_utime; /* user time used */
struct timeval ru_stime; /* system time used */

}

The fields are interpreted as follows:

ru utime the total amount of time spent executing in user mode.

ru stime the total amount of time spent in the system executing on be-
half of the process(es).

RETURN VALUES

The getrusage() function returns the value 0 if successful; otherwise the value -1
is returned and the global variable errno is set to indicate the error.

130 Systems/C C Library

ERRORS

The getrusage() function will fail if:

[EINVAL] The who parameter is not a valid value. gitem[[EFAULT]] The ad-
dress specified by the rusage parameter is not in a valid part of the
process address space.

SEE ALSO

gettimeofday(2), wait(2)

Systems/C C Library 131

GETSID(2)

NAME

getsid - get process session

SYNOPSIS

#include <unistd.h>

pid_t
getsid(pid_t pid);

DESCRIPTION

The session ID of the process identified by pid is returned by getsid(). If pid is
zero, getsid() returns the session ID of the current process.

RETURN VALUES

Upon successful completion, the function getsid() returns the session ID of the
specified process; otherwise, it returns a value of -1 and sets errno to indicate an
error.

ERRORS

getsid() will succeed unless:

[EPERM] pid is not in the same session as the calling process.

[ESRCH] there is no process with a process ID equal to pid.

SEE ALSO

getpgid(2), getpgrp(2), setpgid(2), setsid(2)

132 Systems/C C Library

GETTIMEOFDAY(2)

NAME

gettimeofday - get date and time

SYNOPSIS

#include <sys/time.h>

int
gettimeofday(struct timeval *tp, struct timezone *tzp);

DESCRIPTION

The system’s notion of the current Greenwich time and the current time zone is
obtained with the gettimeofday() call. The time is expressed in seconds and
microseconds since midnight (0 hour), January 1, 1970. The resolution of the system
clock is hardware dependent, and the time may be updated continuously or in
“ticks”. If tp or tzp is NULL, the associated time information will not be returned.

The structure pointed to by tp and tzp are defined in <sys/time.h> as:

struct timeval {
long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */

};

struct timezone {
int tz_minuteswest; /* minutes west of Greenwich */
int tz_dsttime; /* type of dst correction */

};

The timezone structure indicates the local time zone (measured in minutes of time
westward from Greenwich), and a flag that, if nonzero, indicates that Daylight
Saving time applies locally during the appropriate part of the year.

The Systems/C runtime on OS/390 and z/OS assumes the system clock is set to
Greenwhich time (not local time), and uses the CVTTZ value to determine the time-
zone offset.

Systems/C C Library 133

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

The following error codes may be set in errno:

[EFAULT] An argument address referenced invalid memory.

SEE ALSO

ctime(3)

134 Systems/C C Library

GETUID(2)

NAME

getuid, geteuid - get user identification

SYNOPSIS

#include <unistd.h>
#include <sys/types.h>

uid_t
getuid(void);

uid_t
geteuid(void);

DESCRIPTION

The getuid() function returns the real user ID of the calling process. The geteuid()
function returns the effective user ID of the calling process.

The real user ID is that of the user who has invoked the program. As the effective
user ID gives the process additional permissions during execution of “set-user-ID”
mode processes, getuid() is used to determine the real-user-id of the calling process.

ERRORS

As long as the UNIX System Services are available, the getuid() and geteuid()
functions are always successful, and no return value is reserved to indicate an error.

SEE ALSO

getgid(2), setgid(2), setreuid(2), setuid(2)

STANDARDS

The geteuid() and getuid() function calls are expected to conform to ISO/IEC
9945-1:1990 (“POSIX.1”), as close as the host system allows.

Systems/C C Library 135

GRANTPT(2)

NAME

grantpt - grant access to a slave pseudoterminal

SYNOPSIS

#include <stdlib.h>

int
grantpt(int filedes);

DESCRIPTION

The grantpt() function changes the ownership and mode of a slave pseudoterminal.
filedes is a file descriptor that is the result of an open(2) of the corresponding master
pseudoterminal.

Secure connections can be provided by using grantpt() and unlockpt(2), or by
simply issuing the first open against the slave pseudoterminal from the userid or
process that opened the master terminal.

RETURN VALUE

If successful, grantpt() returns the value 0, otherwise a -1 is returned and the global
variable errno is set to indicate the error.

ERRORS

grantpt() will fail it:

[EACCESS] grantpt() has already been issued on this descriptor, or the slave
pseudoterminal has already been opened.

[EBADF] filedes is invalid

[EINVAL] filedes is not a master pseudoterminal

[ENOENT] The slave pseudoterminal was not found.

SEE ALSO

ptsname(3), unlockpt(2)

136 Systems/C C Library

IBMFD(2)

NAME

ibmfd - return the current Pseudo Register Vector address

SYNOPSIS

#include <fcntl.h>

int __ibmfd(int fd);

DESCRIPTION

The ibmfd() function returns the associated IBM BPX or SOCKET file descriptor
number for the given fd.

The value of fd must come from a BPX socket-related function (e.g. socket() or
accept()) or a call to open() specifying an HFS file.

This function can be used to map the file-descriptor number fd to it’s underlying
IBM file-descriptor number for direct calls to the lower-level IBM BPX interfaces.

Care must be taken when directly calling the low-level BPX interfaces, as the state of
the file may be altered from the state managed by the Dignus runtime. For example,
the Dignus runtime may consider a file descriptor to be ”open”, but a direct call to
BPX1CLS could close the underlying IBM file-descriptor causing mysterious errors.

RETURN VALUE

If successful, ibmfd() returns the value of the IBM file descriptor, otherwise a -1
is returned and the global variable errno is set to indicate the error.

ERRORS

ibmfd() will fail it:

[EBADF] fd is invalid

[EINVAL] fd is not an HFS or SOCKET descriptor

Systems/C C Library 137

SEE ALSO

open(3), socket(2), accept(2)

138 Systems/C C Library

ISPOSIXON(2)

NAME

isPosixOn - determine if the OpenMVS functions are available

SYNOPSIS

#include <unistd.h>

int
__isPosixOn(void);

DESCRIPTION

The isPosixOn() function returns 1 if the OpenMVS system functions are avail-
able and the program is executing in a POSIX environment, otherwise it returns
0.

Systems/C C Library 139

JOBNAME(2)

NAME

jobname - return the current jobname

SYNOPSIS

#include <machine/tiot.h>

char *
__jobname(void);

char *
__jobname_r(char *buf);

DESCRIPTION

The jobname() function returns the current jobname of the executing program
on MVS, OS/390 and z/OS. The value returned is a pointer to a NUL-terminated
string. Trailing blanks are removed from the name returned by the operating system.

jobname() returns a pointer to a static area, care should be taken to copy this
value before invoking jobname() again and when using jobname() in a multi-
tasking environment.

jobname r() places the job name in the area addressed by buf. buf must be at
least 9 characters in size. jobname r() returns buf.

SEE ALSO

stepname(2), procname(2), userid(2) querydub(2)

140 Systems/C C Library

KILL(2)

NAME

kill - send signal to a program or process

SYNOPSIS

#include <sys/types.h>
#include <signal.h>

int
kill(pid_t pid, int sig);

DESCRIPTION

The kill() function sends the signal given by sig to pid, a process or a group of
processes. Sig may be one of the valid signals, or it may be 0, in which case error
checking is performed but no signal is actually sent. This can be used to check the
validity of pid.

When running under OpenEdition, and pid is not the same process ID as the call-
ing program, the BPX1KIL service is used to send the signal to a different process
or process group. Otherwise, pid is ignored, and the signal is sent to the calling
program.

For a process to have permission to send a signal to a process designated by pid,
the real or effective user ID of the receiving process must match that of the sending
process or the user must have appropriate privileges (such as given by a set-user-ID
program or the user is the super-user). A single exception is the signal SIGCONT,
which may always be sent to any descendant of the current process.

If pid is greater than zero, sig is sent to the process whose ID is equal to pid.

If pid is zero, sig is sent to all processes whose group is equal to the process group
ID of the sender, and for which the process has permission.

If pid is -1, and the user has super-user privileges, the signal is sent to all processes
excluding the process with ID 1 (usually init), and the process sending the signal.
If the user is noto the super user, the signal is sent to tall processes with the same
uid as the user excluding the process sending the signal. No error is returend if any
process could be signaled.

If pid is negative, but not -1, the signal is sent to all processes whose process group
ID is equal to the absolute value of pid.

Systems/C C Library 141

If sig is SIGABRT and SIGABRT signals have not been caught via the signal() function,
and the program is not running under OpenEdition, then a function call traceback
will be generated on the STDERR stream, and the program will issue a user X’DCC’
or 3532 ABEND.

RETURN VALUES

The kill() function returns the value 0 if successful; otherwise the value -1 is returned
and the global variable errno is set to indicate the error.

ERRORS

kill() will fail and no signal will be sent if:

[EINVAL] Sig is not a valid signal number.

[ESRCH] No process can be found corresponding to that specified by pid.

[ESRCH] The process id was given as 0 but the sending process does not have
a process group.

[EPERM] The sending process is not the super-user and its effective user id
does not match the effective user-id of the receiving process. When
signaling a process group, this error is returned if any members of
the group could not be signaled.

SEE ALSO

getpgrp(2), getpid(2), raise(3)

STANDARDS

The kill() function call is expected to conform to ISO/IEC 9945-1:1990 (“POSIX.1”)
as closely as the host operating system allows.

142 Systems/C C Library

LINK(2)

NAME

link - make a hard file link

SYNOPSIS

#include <unistd.h>

int
link(const char *name1, const char *name2);

DESCRIPTION

The link() function call atomically creates the specified directory entry (hard link)
name2 with the attributes of the underlying object pointed at by name1. If the link
is successful, the link count of the underlying object is incremented, and name1 and
name2 share equal access and rights to the underlying object.

If name1 is removed, the file name2 is not deleted and the link count of the under-
lying object is decremented.

Name1 must exist for the hard link to succeed and both name1 and name2 must be
in the same file system. name1 may not be a directory.

RETURN VALUES

The link() function returns the value 0 if successful; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

link() will fail and no link will be created if:

[ENOTDIR] A component of either path prefix is not a directory.

[ENAMETOOLONG] A component of either pathname exceeded 255 characters, or entire
length of either path name exceeded 1023 characters.

[ENOENT] A component of either path prefix does not exist.

Systems/C C Library 143

[EOPNOTSUPP] The file system containing the file named by name1 does not support
links.

[EMLINK] The link count of the file named by name1 would exceed 32767.

[EACCES] A component of either path prefix denies search permission.

[EACCES] The requested link requires writing in a directory with a mode that
denies write permission.

[ELOOP] Too many symbolic links were encountered in translating one of the
pathnames.

[ENOENT] The file named by name1 does not exist.

[EEXIST] The link named by name2 does exist.

[EPERM] The file named by name1 is a directory.

[EXDEV] The link named by name2 and the file named by name1 are on
different file systems.

[ENOSPC] The directory in which the entry for the new link is being placed
cannot be extended because there is no space left on the file system
containing the directory.

[EDQUOT] The directory in which the entry for the new link is being placed
cannot be extended because the user’s quota of disk blocks on the
file system containing the directory has been exhausted.

[EIO] An I/O error occurred while reading from or writing to the file
system to make the directory entry.

[EROFS] The requested link requires writing in a directory on a read-only file
system.

[EFAULT] One of the pathnames specified is outside the process’s allocated
address space.

SEE ALSO

pathconf(2), readlink(2), symlink(2), unlink(2)

STANDARDS

The link() function call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.1”) as closely as the host operating system allows.

144 Systems/C C Library

LIO LISTIO(2)

NAME

lio listio – list directed I/O

SYNOPSIS

#include <aio.h>

int
lio_listio(int mode, struct aiocb * const [] list, int nent,

struct sigevent *sig);

DESCRIPTION

The lio listio() function initiates a list of I/O requests with a single function call.
The list argument is an array of pointers to aiocb structures describing each oper-
ation to perform, with nent elements. NULL elements are ignored.

The aio lio opcode field of each aiocb specifies the operation to be performed.
The following operations are supported:

[LIO READ] Read data as if by a call to aio read(2).

[LIO NOP] No operation.

[LIO WRITE] Write data as if by a call to aio write(2).

If the mode argument is LIO WAIT, lio listio() does not return until all the requested
operations have been completed. If mode is LIO NOWAIT, the requests are processed
asynchronously, and the signal specified by sig is sent when all operations have
completed. If sig is NULL, the calling process is not notified of I/O completion.

The order in which the requests are carried out is not specified; in particular, there
is no guarantee that they will be executed in the order 0, 1, ..., nent-1.

RESTRICTIONS

The lio listio() function dependes on pthreads for operation, and thus requires a
POSIX environment.

Systems/C C Library 145

RETURN VALUES

If mode is LIO WAIT, the lio listio() function returns 0 if the operations completed
successfully, otherwise -1.

If mode is LIO NOWAIT, the lio listio() function 0 if the operations are successfully
queued, otherwise -1.

ERRORS

The lio listio() function will fail if:

[EAGAIN] There are not enough resources to enqueue the requests.

[EINVAL] The mode argument is neither LIO WAIT nor LIO NOWAIT.

[EINTR] A signal interrupted the function before it could be completed.

[EIO] One or more requests failed.

In addition, the lio listio() function may fail for any of the reasons listed for
aio read(2) and aio write(2).

If lio listio() succeeds, or fails with an error code of EAGAIN, EINTR or EIO, some
of the requests may have been initiated. The caller should check the error status of
each aiocb structure individually by calling aio error(2).

SEE ALSO

aio error(2), aio read(2), aio write(2), read(2), write(2)

STANDARDS

The lio listio() function is expected to conform to IEEE Std 1003.1-2001
(“POSIX.1”).

146 Systems/C C Library

LSEEK(2)

NAME

lseek - reposition read/write file offset

SYNOPSIS

#include <unistd.h>

off_t
lseek(int filedes, off_t offset, int whence)

DESCRIPTION

The lseek() function repositions the offset of the file descriptor fildes to the argu-
ment offset according to the directive whence. The argument fildes must be an open
file descriptor. lseek() repositions the file position pointer associated with the file
descriptor fildes as follows:

• If whence is SEEK SET, the offset is set to offset bytes.

• If whence is SEEK CUR, the offset is set to its current location plus offset bytes.

• If whence is SEEK END, the offset is set to the size of the file plus offset bytes.

The lseek() function allows the file offset to be set beyond the end of the existing
end-of-file of the file. If data is later written at this point, subsequent reads of the
data in the gap return bytes of zeros (until data is actually written into the gap).

Some devices are incapable of seeking. The value of the pointer associated with such
a device is undefined.

RETURN VALUES

Upon successful completion, lseek() returns the resulting offset location as mea-
sured in bytes from the beginning of the file. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

Systems/C C Library 147

ERRORS

lseek() will fail and the file position pointer will remain unchanged if:

[EBADF] Fildes is not an open file descriptor.

[ESPIPE] Fildes is associated with a pipe, socket, or FIFO.

[EINVAL] Whence is not a proper value.

SEE ALSO

dup(2), open(2)

ISSUES

This document’s use of whence is incorrect English, but is maintained for historical
reasons.

There are limitations to the Systems/C lseek() support for non-HFS files, due to
implementing a byte offset file abstraction in the OS/390 and z/OS environments.
lseek(fd, 0, SEEK CUR) is supported for any file. This returns the internal byte
count (the number of bytes read or written.) lseek(fd, n, SEEK CUR) is supported
if the corresponding SEEK SET lseek operation is supported. That is, the value of
n is added to the current position to determine a new offset. If lseek with the
SEEK SET option on the computed offset succeeds, this succeeds. lseek(fd, 0,
SEEK SET) succeeds on any non-HFS file for which the NOTE and POINT service is
valid. lseek(fd, n, SEEK SET) succeeds for any non-HFS file opened with the
O RDONLY mode and for which the NOTE and POINT service is valid. This will not
extend the file size as the file is opened read-only. Seeking past the end of file on a
read-only file will return -1 and set errno to EINVAL.

lseek(fd, 0, SEEK END) is supported for non-HFS O RDONLY files. This is can be
an expensive operation because the entire file must be read to determine its length
in bytes.

These limitations similarly affect the fseek() function, which uses lseek() in its
implementation.

STANDARDS

The lseek() function call is expected to conform to IEEE Std1003.1-1990
(“POSIX”) as closely as the host operating system allows.

148 Systems/C C Library

MKDIR(2)

NAME

mkdir – make a directory file

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

int
mkdir(const char *path, mode_t mode);

DESCRIPTION

The HFS directory path is created with the access permissions specified by mode
and restricted by the umask(2) of the calling process. path must be an //HFS:-style
file name.

The directory’s owner ID is set to the process’s effective user ID.

RETURN VALUES

The mkdir() unction returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

mkdir() will fail and no directory will be created if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied for a component of the path prefix, or
write permission is denied on the parent directory of the directory
to be created.

Systems/C C Library 149

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EROFS] The named file resides on a read-only file system.

[EEXIST] The named file exists.

[ENOSPC] The new directory cannot be created because there is no space left
on the file system that will contain the directory.

[ENOSPC] There are no free inodes on the file system on which the directory
is being created.

[EDQUOT] The new directory cannot be created because the user’s quota of
disk blocks on the file system that will con tain the directory has
been exhausted.

[EDQUOT] The user’s quota of inodes on the file system on which the directory
is being created has been exhausted.

[EIO] An I/O error occurred while making the directory entry or allocating
the inode.

[EIO] An I/O error occurred while reading from or writing to the file
system.

[EFAULT] Path points outside the process’s allocated address space.

SEE ALSO

chmod(2), stat(2), umask(2)

STANDARDS

The mkdir() function call is expected to conform to IEEE Std1003.1-1990
(“POSIX”) as closely as the host operating system allows.

150 Systems/C C Library

MKFIFO(2)

NAME

mkfifo - make a fifo file

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

int
mkfifo(const char *path, mode_t mode);

DESCRIPTION

mkfifo() creates a new fifo file with name path. The access permissions are specified
by mode and restricted by the umask(2) of the calling process.

The fifo’s owner ID is set to the process’s effective user ID. The fifo’s group ID is
set to that of the parent directory in which it is created.

RETURN VALUES

The mkfifo() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

mkfifo() will fail and no fifo will be created if:

[ENOTSUPP] The system does not support Unix Systems Services.

[ENOTSUP] The specified path is not in the HFS file system.

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

Systems/C C Library 151

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EROFS] The named file resides on a read-only file system.

[EEXIST] The named file exists.

[ENOSPC] The directory in which the entry for the new fifo is being placed
cannot be extended because there is no space left on the file system
containing the directory.

[ENOSPC] There are no free inodes on the file system on which the fifo is being
created.

[EDQUOT] The directory in which the entry for the new fifo is being placed
cannot be extended because the user’s quota of disk blocks on the
file system containing the directory has been exhausted.

[EDQUOT] The user’s quota of inodes on the file system on which the fifo is
being created has been exhausted.

[EIO] An I/O error occurred while making the directory entry or allocating
the inode.

[EIO] An I/O error occurred while reading from or writing to the file
system.

[EFAULT] Path points outside the process’s allocated address space.

SEE ALSO

chmod(2), mknod(2), stat(2), umask(2)

STANDARDS

The mkfifo() function call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.1”) as closely as the host operating system allows.

152 Systems/C C Library

MKNOD(2)

NAME

mknod - make an //HFS:-style special file node

SYNOPSIS

#include <unistd.h>

int
mknod(const char *path, mode_t mode, dev_t dev);

DESCRIPTION

The HFS filesystem node path is created with the file type and access permissions
specified in mode. The access permissions are modified by the process’s umask value.

If mode indicates a block or character special file, dev is a configuration dependent
specification denoting a particular device on the system. Otherwise, dev is ignored.

mknod() requires super-user privileges.

RETURN VALUES

The mknod() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

mknod() will fail and the file will be not created if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

Systems/C C Library 153

[EPERM] The process’s effective user ID is not super-user.

[EIO] An I/O error occurred while making the directory entry or allocating
the inode.

[ENOSPC] The directory in which the entry for the new node is being placed
cannot be extended because there is no space left on the file system
containing the directory.

[ENOSPC] There are no free inodes on the file system on which the node is
being created.

[EDQUOT] The directory in which the entry for the new node is being placed
cannot be extended because the user’s quota of disk blocks on the
file system containing the directory has been exhausted.

[EDQUOT] The user’s quota of inodes on the file system on which the node is
being created has been exhausted.

[EROFS] The named file resides on a read-only file system.

[EEXIST] The named file exists.

[EFAULT] Path points outside the process’s allocated address space.

[EINVAL] Creating anything else than a character special file, regular file,
FIFO or directory is not supported.

SEE ALSO

chmod(2)), mkfifo(2), stat(2), umask(2)

154 Systems/C C Library

MMAP(2)

NAME

mmap - allocate memory, or map files or devices into memory

SYNOPSIS

#include <sys/types.h>
#include <sys/mman.h>

void *
mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset);

DESCRIPTION

The mmap() function causes the pages starting at addr and continuing for at most
len bytes to be mapped from the //HFS: object described by fd, starting at byte
offset offset. If len is not a multiple of the pagesize, the mapped region may extend
past the specified range, or mmap() may fail. Any such extension beyond the end
of the mapped object will be zero-filled.

If addr is non-zero, it is used as a hint to the system. (As a convenience to the
system, the actual address of the region may differ from the address supplied.) If
addr is zero, an address will be selected by the system. The actual starting address
of the region is returned. A successful mmap deletes any previous mapping in the
allocated address range.

If MAP FIXED is specified, a non-zero addr must be aligned to a page boundary,
if MAP MEGA is specified addr a non-zero addr must be segment aligned. When
MAP FIXED is not supplied, the result will be on the nearest page boundary if possible
or if MAP MEGA is specifed on the nearest segment boundary, if possible.

On systems that support it the MAP 64 option can be specified to request an address
above-the-bar in 64-bit environents. If the len value is larger than 2G, or the addr
value is larger than 64G then MAP 64 is implied. The MAP 64 option can be added
to request 64-bit addresses when neither of those is true.

The protections (region accessibility) are specified in the prot argument by or’ing
the following values:

PROT NONE Pages may not be accessed.

PROT READ Pages may be read.

Systems/C C Library 155

PROT WRITE Pages may be written.

PROT EXEC Pages may be executed.

The flags parameter specifies the type of the mapped object, mapping options and
wether modifications made to the mapped copy of the page are private to the process
or are to be shared with other references. Sharing, mapping type and options are
specified in the flags argument by or’ing the following values:

MAP FIXED Do not permit the system to select a different address than the one
specified. If the specified address cannot be used, mmap() will fail.
If MAP FIXED is specified, addr must be a multiple of the pagesize.
Use of this option is discouraged.

MAP PRIVATE Modifications are private.

MAP SHARED Modifications are shared.

MAP MEGA Memory is mapped using segment-sized units instead of page-sized
units.

MAP 64 Use above-the-bar (64-bit) storage and support lengths larger than
0x7fffffff. When MAP 64 is specified, MAP SHARED is assumed.
MAP PRIVATE and MAP MEGA may not be combined with MAP 64.

The close(2) function does not unmap pages, see munmap(2) for further information.

RETURN VALUES

Upon successful completion, mmap() returns a pointer to the mapped region. Oth-
erwise, a value of MAP FAILED is returned and errno is set to indicate the error.

ERRORS

mmap() will fail if:

[EACCES] The flag PROT READ was specified as part of the prot parameter and
fd was not open for reading. The flags MAP SHARED and PROT WRITE
were specified as part of the flags and prot parameters and fd was
not open for writing.

[EAGAIN] The caller is not in PSW key 8.

[EBADF] fd is not a valid open file descriptor.

156 Systems/C C Library

[EINVAL] MAP FIXED was specified and the addr parameter was not page (or
segment) aligned, or part of the desired address space resides out of
the valid address space for a user process.

[EINVAL] addr was above 0x7fffffff (see ISSUES below).

[EINVAL] len was negative.

[EINVAL] len was larger than 0x7fffffff in 64-bit mode (see ISSUES below).

[EINVAL] offset was not page-aligned (or segment-aligned when MAP MEGA is
specified.)

[EINVAL] flags or prot were invalid.

[EINVAL] An attempt to map an already mapped file with a different specifi-
cation of MAP MEGA.

[EINVAL] An invalid address (greater than 0x7fffffff and less than 64G) was
passed for addr.

[EINVAL] Both MAP 64 and MAP FIXED were specified but the addr had zeros
in the high-order 32-bits.

[ENODEV] fd refers to a non-supported file type.

[ENOMEM] MAP FIXED was specified and the addr parameter wasn’t available.

[ENOMEM] There is not enough space remaining in the address space.

[ENOMEM] There is not enough shared storage available in the entire system.

[ENOSYS] MAP PRIVATE was specified, but the hardware doesn’t support it.

[ENXIO] The address range is not valid for the file.

64-BIT addresses

Originally, even in 64-bit addressing mode, the z/OS mmap service did not allow
a length greater than 2G or an address greater than the 31-bit address space. IBM
APARs OA60306 and PH32235 were created to deliver the ability to handle true
64-bit lengths and 64-bit addresses.

In general, this is called ”64-bit support”. I can be specifically requested using the
MAP 64 specification, or by specifying an addr above 64G or specifying a len larger

than 2G.

There are several caveats to this support as outlined in the z/OS BPX4MMP system
service documentation. Consult the IBM documentation ”z/OS UNIX Systems
Services Programming: Assembler Callable Services Reference” for more details.

Systems/C C Library 157

ISSUES

Even in 64-bit addressing mode, the z/OS mmap function cannot map addresses
above 0x7ffffff or specify a length larger than 0x7ffffff. The returned address will
also be in the 31-bit address space.

This issue was addressed in IBM APAR OA60306 and APAR PH32235.

The MAP 64 flag is only valid when IBM APAR’s OA60306 and PH32235 have been
applied, or when running on versions of z/OS after version 2.5. Using it in other
situations is undefined and may fail mysteriously. The Dignus runtime has no way
to determine if its use in any runtime environment is valid.

SEE ALSO

mprotect(2), msync(2), munmap(2).

158 Systems/C C Library

MPROTECT(2)

NAME

mprotect - control the protection of pages

SYNOPSIS

#include <sys/types.h>
#include <sys/mman.h>

int
mprotect(const void *addr, size_t len, int prot);

DESCRIPTION

The mprotect() system call changes the specified pages to have protection prot.
Not all implementations will guarantee protection on a page basis; the granularity
of protection changes may be as large as an entire region.

Currently these protection bits are known, which can be combined, OR’d together:

PROT NONE No permissions at all.

PROT READ The pages can be read.

PROT WRITE The pages can be written.

PROT EXEC The pages can be executed.

RETURN VALUES

The mprotect() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The mprotect() function will fail if:

[EINVAL] The virtual address range specified by the addr and len arguments
is not valid.

[EACCES] The calling process was not allowed to change the protection to the
value specified by the prot argument.

Systems/C C Library 159

SEE ALSO

msync(2), munmap(2)

160 Systems/C C Library

MSYNC(2)

NAME

msync - synchronize a mapped region

SYNOPSIS

#include <sys/types.h>
#include <sys/mman.h>

int
msync(void *addr, size_t len, int flags);

DESCRIPTION

The msync() system call writes any modified pages back to the filesystem and
updates the file modification time. If len is 0, all modified pages within the re-
gion containing addr will be flushed; if len is non-zero, only those pages containing
addr and len-1 succeeding locations will be examined. The flags argument may be
specified as follows:

MS ASYNC Return immediately

MS SYNC Perform synchronous writes

MS INVALIDATE Invalidate all cached data

RETURN VALUES

The msync() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

msync() will fail if:

[EINVAL] addr is not a multiple of the hardware page size.

[EINVAL] len is too large or negative.

[EINVAL] flags was both MS ASYNC and MS INVALIDATE. Only one of these flags
is allowed.

[EIO] An I/O error occurred while writing to the file system.

Systems/C C Library 161

SEE ALSO

mprotect(2), munmap(2)

162 Systems/C C Library

MSGCTL(2)

NAME

msgctl - message control operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int
msgctl(int msqid, int cmd, struct msqid_ds *buf);

DESCRIPTION

The msgctl() system call performs some control operations on the message queue
specified by msqid.

Each message queue has a data structure associated with it, parts of which may
be altered by msgctl() and parts of which determine the actions of msgctl().
The data structure is defined in <sys/msg.h> and contains (amongst others) the
following members:

struct msqid_ds {
struct ipc_perm msg_perm; /* msg queue permission bits */
struct msg *msg_first; /* first message in the queue */
struct msg *msg_last; /* last message in the queue */
u_long msg_cbytes; /* number of bytes in use on the queue */
u_long msg_qnum; /* number of msgs in the queue */
u_long msg_qbytes; /* max # of bytes on the queue */
pid_t msg_lspid; /* pid of last msgsnd() */
pid_t msg_lrpid; /* pid of last msgrcv() */
time_t msg_stime; /* time of last msgsnd() */
long msg_pad1;
time_t msg_rtime; /* time of last msgrcv() */
long msg_pad2;
time_t msg_ctime; /* time of last msgctl() */
long msg_pad3;
long msg_pad4[4];

};

Systems/C C Library 163

The ipc perm structure used inside the shmid ds structure is defined in
<sys/ipc.h> and looks like this:

struct ipc_perm {
ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */
ushort gid; /* group id */
ushort mode; /* r/w permission */
ushort seq; /* sequence # (to generate unique msg/sem/shm id) */
key_t key; /* user specified msg/sem/shm key */

};

The operations to be performed by msgctl() is specified in cmd and is one of:

IPC STAT Gather information about the message queue and place it in the structure
pointed to by buf.

IPC SET Set the value of the msg perm.uid, msg perm.gid, and msg qbytes fields
in the structure associated with msqid. The values are taken from the corre-
sponding fields in the structure pointed to by buf. his operation can only be
executed by the super-user, or a process that has an effective user id equal to
either msg perm.cuid or msg perm.uid in the data structure associated with
the message queue. The value of msg qbytes can only be increased by the
super-user. Values for msg qbytes that exceed the system limit are silently
truncated to that limit.

IPC RMID Remove the message queue specified by msqid and destroy the data associ-
ated with it. Only the super-user or a process with an effective uid equal to
the msg perm.cuid or msg perm.uid values in the data structure associated
with the queue can do this.

The permission to read from or write to a message queue (see msgsnd(2) and ms-
grcv(2)) is determined by the msg perm.mode field in the same way as is done with
files (see chmod(2)), but the effective uid can match either the msg perm.cuid field
or the msg perm.uid field, and the effective gid can match either msg perm.cgid or
msg perm.gid.

RETURN VALUES

The msgctl() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

164 Systems/C C Library

ERRORS

The msgctl() function will fail if:

[EPERM] The cmd argument is equal to IPC SET or IPC RMID and the caller
is not the super-user, nor does the effective uid match either the
msg perm.uid or msg perm.cuid fields of the data structure associ-
ated with the message queue.

An attempt is made to increase the value of msg qbytes through
IPC SET but the caller is not the super-user.

[EACCES] The command is IPC STAT and the caller has no read permission for
this message queue.

[EINVAL] The msqid argument is not a valid message queue identifier.

cmd is not a valid command.

[EFAULT] The buf argument specifies an invalid address.

SEE ALSO

msgget(2), msgrcv(2), msgsnd(2)

ISSUES

The underlying IBM Unix Systems Services does not support the seq and key fields
of the ipc perm structure, nor the msg first, msg last or msg cbytes field of the
msqid ds. They are provided for compatibility and will always be zero.

Systems/C C Library 165

MSGGET(2)

NAME

msgget - get message queue

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int
msgget(key_t key, int msgflg);

DESCRIPTION

The msgget() function returns the message queue identifier associated with key. A
message queue identifier is a unique integer greater than zaero.

A message queue is created if either key is equal to IPC PRIVATE, or key does not
have a message queue identifier associated with it, and the IPC CREAT bit is set in
msgflg.

If a new message queue is created, the data structure associated with it (the msgid ds
structure, see msgctl(2)) is initialized as follows:

• msg perm.cuid and msg perm.uid are set to the effective uid of the calling
process.

• msg perm.gid and msg perm.cgid are set to the effective gid of the calling
process.

• msg perm.mode is set to the lower 9 bits of msgflg.

• msg cbytes, msg qnum, msg lspid, msg lrpid, msg rtime and msg stime are
set to 0.

• msg qbytes is set to the system wide maximum value for the number of bytes
in a queue (MSGMNB).

• msg ctime is set to the current time.

RETURN VALUES

Upon successful completion a positive message queue identifier is returned. Other-
wise, -1 is returned and the global variable errno is set to indicate the error.

166 Systems/C C Library

ERRORS

[EACCES] A message queue is already associated with key and the caller has
no permission to access it.

[EEXIST] Both IPC CREAT and IPC EXCL are set in msgflg, and a message
queue is already associated with key.

[ENOSPC] A new message queue could not be created because the system limit
for the number of message queues has been reached.

[ENOENT] IPC CREAT was not set in msgflg and no message queue associated
with key was found.

SEE ALSO

msgctl(2), msgrcv(2), msgsnd(2)

Systems/C C Library 167

MSGRCV(2)

msgrcv - receive a message from a message queue

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int
msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);

DESCRIPTION

The msgrcv() function receives a message from the message queue specified in
msqid, and places it into the structure pointed to by msgp. This structure should
consist of the following members:

long mtype; /* message type */
char mtext[1]; /* body of message */

mtype is an integer greater than 0 that can be used for selecting messages, mtext is
an array of bytes, with a size up to that of the system limit.

The value of msgtyp has one of the following meanings:

• The msgtyp argument is greater than 0. The first message of type msgtyp will
be received.

• The msgtyp argument is equal to 0. The first message on the queue will be
received.

• The msgtyp argument is less than 0. The first message of the lowest message
type that is less than or equal to the absolute value of msgtyp will be received.

The msgsz argument specifies the maximum length of the requested message. If the
received message has a length greater than msgsz it will be silently truncated if the
MSG NOERROR flag is set in msgflg, otherwise an error will be returned.

If no matching message is present on the message queue specified by msqid, the
behavior of msgrcv() depends on whether the IPC NOWAIT flag is set in msgflag or
not. If IPC NOWAIT is set, msgrcv() will immediately return a value of -1, and set
errno to ENOMSG. If IPC NOWAIT is not set, the calling process will be blocked until:

168 Systems/C C Library

• A message of the requested type becomes available on the message queue.

• The message queue is removed, in which case -1 will be returned, and errno
set to EINVAL.

• A signal is received and caught. -1 is returned, and errno set to EINTR.

If a message is is successfully received, the data structure associated with msqid is
updated as follows:

• msg lrpid is set to the pid of the caller.

• msg lrtime is set to the current time.

• msg qnum is decremented by 1.

RETURN VALUES

Upon successful completion, msgrcv() returns the number of bytes received into
the mtext field of the structure pointed to by msgp. Otherwise, -1 is returned, and
errno set to indicate the error.

ERRORS

The msgrcv() function will fail if:

[EINVAL] The msqid argument is not a valid message queue identifier.

The msgsz argument is less than 0.

[E2BIG] A matching message was received, but its size was greater than
msgsz and the MSG NOERROR flag was not set in msgflg.

[EACCES] The calling process does not have read access to the message queue.

[EFAULT] The msgp argument points to an invalid address.

[EIDRM] The message queue was removed while msgrcv() was waiting for a
message of the requested type to become available on it.

[EINTR] The system call was interrupted by the delivery of a signal.

[ENOMSG] There is no message of the requested type available on the message
queue, and IPC NOWAIT is set in msgflg.

SEE ALSO

msgctl(2), msgget(2), msgsnd(2)

Systems/C C Library 169

MSGSND(2)

NAME

msgsnd - send a message to a message queue

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int
msgsnd(int msqid, void *msgp, size_t msgsz, int msgflg);

DESCRIPTION

The msgsnd() function sends a message to the message queue specified in msqid.
msgp points to a structure containing the message. This structure should consist of
the following members:

long mtype; /* message type */
char mtext[1]; /* body of message */

mtype is an integer greater than 0 that can be used for selecting messages (see
msgrcv(2)), mtext is an array of bytes, with a size up to the system limit.

If the number of bytes already on the message queue plus msgsz is bigger than the
maximum number of bytes on the message queue (msg qbytes, see msgctl(2)), or
the number of messages on all queues system-wide is already equal to the system
limit, msgflg determines the action of msgsnd(). If msgflg has IPC NOWAIT mask set
in it, the call will return immediately. If msgflg does not have IPC NOWAIT(s)et
in it, the call will block until:

• The condition which caused the call to block does no longer exist. The message
will be sent.

• The message queue is removed, in which case -1 will be returned, and errno
is set to EINVAL.

• The caller catches a signal. The call returns with errno set to EINTR.

After a successful call, the data structure associated with the message queue is
updated in the following way:

170 Systems/C C Library

• msg qnum is incremented by 1.

• msg lspid is set to the pid of the calling process.

• msg stime is set to the current time.

RETURN VALUES

The msgsnd() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

msgsnd() will fail if:

[EINVAL] msqid is not a valid message queue identifier

msgsz is less than 0, or greater than msg qbytes.

mtype is not greater than 0.

[EACCES] The calling process does not have write access to the message queue.

[EAGAIN] There was no space for this message either on the queue, or in the
whole system, and IPC NOWAIT was set in msgflg.

[EFAULT] msgp points to an invalid address.

[EIDRM] The message queue was removed while msgsnd() was waiting for
a resource to become available in order to deliver the message.

[EINTR] The system call was interrupted by the delivery of a signal.

SEE ALSO

msgctl(2), msgget(2), msgrcv(2)

Systems/C C Library 171

MUNMAP(2)

NAME

munmap - remove a mapping

SYNOPSIS

#include <sys/types.h>
#include <sys/mman.h>

int
munmap(void *addr, size_t len);

DESCRIPTION

The munmap() system call deletes the mapping for the specified address range, and
causes further references to addresses within the range to generate invalid memory
references.

RETURN VALUES

The munmap() returns the value 0 if successful; otherwise the value -1 is returned
and the global variable errno is set to indicate the error.

ERRORS

munmap() will fail if:

[EINVAL] The addr parameter was not page aligned, the len parameter was
negative, or some part of the region being unmapped is outside the
valid address range for a process.

SEE ALSO

mmap(2), mprotect(2), msync(2)

172 Systems/C C Library

NANOSLEEP(2)

NAME

nanosleep – suspend process execution for an interval measured in nanoseconds

SYNOPSIS

#include <time.h>

int
nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

DESCRIPTION

The nanosleep() system call causes the process to sleep for the specified time.
An unmasked signal will cause it to terminate the sleep early, regardless of the
SA RESTART value on the interrupting signal.

RETURN VALUES

If the nanosleep() system call returns because the requested time has elapsed, the
value returned will be zero.

If the nanosleep() system call returns due to the delivery of a signal, the value
returned will be -1, and the global variable errno will be set to indicate the in-
terruption. If rmtp is non-NULL, the timespec structure it references is updated to
contain the unslept amount (the request time minus the time actually slept).

ERRORS

The nanosleep() system call fails if:

[EFAULT] Either rqtp or rmtp points to memory that is not a valid part of the
process address space.

[EINTR] The nanosleep() system call was interrupted by the delivery of a
signal.

[EINVAL] The rqtp argument specified a nanosecond value less than zero or
greater than or equal to 1000 million.

[ENOSYS] The nanosleep() system call is not supported by this implementa-
tion.

Systems/C C Library 173

IMPLEMENTATION

The nanosleep() function requires the use of BPX signals to interrupt the process
before the timeout occurs. If BPX signals are not enabled, the nanosleep() function
will wait until the specified time has elapsed.

SEE ALSO

sigsuspend(2), sleep(3)

STANDARDS

The nanosleep() system call conforms to IEEE Std 1003.1b-1993 (“POSIX.1”).

174 Systems/C C Library

OPEN(2)

NAME

open - open or create a file for reading or writing

SYNOPSIS

#include <fcntl.h>

int
open(const char *path, int flags, ...)

DESCRIPTION

The file name specified by path is opened for reading and/or writing as specified by
the argument flags and the file descriptor returned to the calling process. The flags
argument may indicate the file is to be created if it does not exist (by specifying the
O CREAT flag). In this case open requires a third argument mode t mode.

The flags specified are formed by or’ing the following values

O RDONLY open for reading only

O WRONLY open for writing only

O RDWR open for reading and writing

O NONBLOCK do not block on open

O APPEND append on each write

O CLOEXEC close the file on exec

O CREAT create file if it does not exist

O TRUNC truncate size to 0

O EXCL error if create and file exists

O SHLOCK atomically obtain a shared lock

O EXLOCK atomically obtain an exclusive lock

O BINARY specifies that I/O is to be done in binary mode, not text
translation.

O TEXT (default) specify that I/O is to be done with text translation.

Systems/C C Library 175

O ATTR An extra char * argument is found after the mode argument.
This argument can be applied to non-HFS files, and specifies
file attributes to use in the OS/390 DCB.

Opening a file with O APPEND set causes each write on the file to be appended to the
end. If O TRUNC is specified and the file exists, the file is truncated to zero length.
If O EXCL is set with O CREAT and the file already exists, open() returns an error.
This may be used to implement a simple exclusive access locking mechanism. If the
O NONBLOCK flag is specified and the open() call would result in the process being
blocked for some reason (e.g., waiting for carrier on a dialup line), open() returns
immediately. The first time the process attempts to perform I/O on the open file it
will block (not currently implemented).

For HFS files, if the O CLOEXEC flag is set, then the FD CLOEXEC flag will be set;
otherwise it is cleared.

If O BINARY is specified, the bytes retrieved from the operating system are passed
to the program without further processing.

If O TEXT is specified, on input, trailing blanks are deleted and a new-line is ap-
pended. On output, the new-line marks the end of the record, with trailing blanks
appended to complete an output record.

When opening a file, a lock with flock(2) semantics can be obtained by setting
O SHLOCK for a shared lock, or O EXLOCK for an exclusive lock. If creating a file
with O CREAT, the request for the lock will never fail (provided that the underlying
filesystem supports locking).

If successful, open() returns a non-negative integer, termed a file descriptor. It
returns -1 on failure. The file pointer used to mark the current position within the
file is set to the beginning of the file.

The system imposes a limit on the number of file descriptors open simultaneously
by one process. Getdtablesize(2) returns the current system limit.

PATH NAMES

The Systems/C open() function uses path name prefixes to determine how to al-
locate the file. A path name prefix consists of two slashes, followed by the prefix
style name, followed by a colon (// style:). If a prefix is not specified, and the path
name begins with a single slash (/), or the path name begins with the two characters
period (.) and then slash (/), the file is treated as if the //HFS: prefix had been
specified. Otherwise, the current default style is used.

The current default style is found in the global variable extern char * style,
and may be changed by assigning a new value to that variable. When a Systems/C

176 Systems/C C Library

program is invoked from either a TSO or BATCH environment, the default value of
style is //DDN:.

When a Systems/C program is invoked via the exec function (i.e. under OpenEdi-
tion), the default value of style is //HFS:.

The styles currently supported include:

//DSN: The specified path is a fully qualified dataset name on OS/390.

//DDN: The specified path is a DDN allocated via a JCL DD card, or the TSO
ALLOCATE command.

//HFS: The specified path is a file that resides in the Hiearchical File System
(HFS).

Both //DSN: and //DDN: style names may also specify PDS member names, sur-
rounded by parentheses.

DCB ATTRIBUTES

If the O ATTR bit is set in the flags argument, and the style is not //HFS:, then this
call to open is understood to have four arguments; the forth is a character string
which describes the DCB attributes to initially use for the OS/390 OPEN service.
All four arguments must be present if O ATTR is set.

These attributes are used to provide DCB during an OPEN EXIT on the OS/390
OPEN system service. Thus they can be used to provide default values when they
are not present on DD cards, or can provide appropriate values when creating a new
data set.

The format of that string is a comma separated list of NAME=VALUE pairs.

The following names and values are currently supported:

abend abend indicates how the runtime should handle BSAM I/O
ABENDs after a successful BSAM OPEN. If abend=abend is
specified then any ignornable I/O ABEND will become an ac-
tual ABEND to be processed by whatever ABEND processing
is pertinent. If abend=recover is specified, any ignorable I/O
ABEND will be ”ignored” (although the operating system will
often produce a message of some kind) and the library will
report the I/O failure to the program, with errno set appro-
priately.

The default is abend=recover.

Systems/C C Library 177

blksize integer block size.

blocks No parameter. blocks specifies allocations are in blocks. May
be abbreviated as blks or blk.

bufno integer number of buffers. bufno specifies the number of buffers
to specify when allocating a non-HFS data set.

cylinders No parameter. cylinders specifies allocations are in cylinders.
May be abbreviated as cyls or cyl.

directory integer specifying the number of directory blocks for a new
PDS. If the value is omitted, directory blocks will not be spec-
ified when allocating the new PDS.

catalog Indicates the file should be added to the system catalog. May
be abbreviated as catlg.

delete The file should be deleted when it is deallocated.

keep The file is kept when it is deallocated.

keylen integer specifying the key length value in the DCB.

lrecl integer representing the logical record length, or the character
’X’ indicating a record length larger than 32760 for Variable
Spanned files.

ncp integer representing the NCP value for BSAM I/O (number of
outstanding READ/WRITE requests before a CHECK.) This
is also the number of I/O buffers the library will allocate when
multi-buffering I/O is allowed.

preopen No parameter. preopen indicates that the values specified as
attributes should apply to the DCB before opening the file, thus
”overriding” any JCL specification.

noseek No parameter. Indicates that the file positioning function
(lseek(2)) will not be used on the returned file descriptor.
When noseek is true, the MACRF option on a BSAM OPEN
will not indicate the use of NOTE and POINT, and thus the
file can read LARGE format data sets. Reading/writing of
LARGE format data sets also requires the BLOCKTOKEN-
SIZE(NOREQUIRE) in SYS1.PARMLIB. noseek is also re-
quired for multi-buffer support (if seeking is needed, only one
I/O buffer is used.)

primary integer specifying the primary allocation size. May be abbrevi-
ated as pri.

recfm specifies the record format, either f, fa, fb, fs, fba, fbs, fsa,
fbsa, v, vb, vs, vbs or u is supported.

178 Systems/C C Library

secondary integer specifying the secondary allocation size. May be abbre-
viated as sec

rlse No parameter. Indicates any unused space for a new data set
be returned (this is the default setting.)

norlse No parameter. Indicates any unused space for a new data set
not be returned

tracks No parameter. tracks specifies allocations are in tracks. May
be abbreviated as trks or trk

type keyword specifying type of I/O. Currently, the record keyword
is supported to indirect record I/O (e.g. type=record). When
used with open(2), this attribute sets the O RECIO flag.

uncatlg Indicates the file should removed from the system catalog. May
be abbreviated as uncatlg.

unit character string that specifies the device name.

verbose No parameter. Causes allocation messages to appear in the
system log. The default is not verbose.

volser character string representing the volume serial identifier. May
be abbreviated as vol.

volseq integer specify the volume sequence number.

Invalid NAME=VALUE pairs are silently ignored.

Note that preopen, blocks, cylinders and tracks NAMEs have no VALUE spec-
ified, and that the VALUE is optional on the directory NAME.

For example, the following code will open //DDN:MYDD for binary input with a
blksize of 3200 and an lrecl of 80:

open("//DDN:MYDD", O_RDONLY|_O_ATTR|_O_BINARY,
0, "blksize=3200,lrecl=80");

CREATING //DSN: FILES

Files can be created by the Systems/C runtime when the O CREAT flag is specified.
Many of the O ATTR flags only apply when creating files.

For example, if the O ATTR string specifies that a file is fixed block, but an existing
file opened for input is variable blocked, the library will continue as if the file were
variable blocked.

Systems/C C Library 179

If a file doesn’t exist, the initial allocation sizes and attributes may be specified in
the JCL or ALLOC statement, via the O ATTR string, or may be calculated by the
Systems/C library.

Attributes are combined from these sources in the following order.

If the ”preopen” attribute is not enabled, then the value from the JCL or ALLOC
statement are used first. If ”preopen” is specified, then the values specified in the
O ATTR string are used first. That is, if ”preopen” is specified, the constructed DCB
is initialized with any values specified in O ATTR, otherwise it is not. If during OPEN
processing (in the OPEN exit routine), values are not provided then the ones specified
from the O ATTR string are used. For any values still not defined, the following rules
are used to calculate default values.

If RECFM is unspecified and the file is opened for output with the O BINARY flag,
then a RECFM=FB will be used. If the file is opened for output without the O BINARY
flag, then the device is queried. If the device is a terminal, RECFM=U will be used,
otherwise RECFM=FBA will be used. If the RECFM remains unspecified for an input
file, further processing stops and the OPEN will likely fail with a errno set to EIO.

If both BLKSIZE and LRECL remain unspecified (both are zero) then the library
examines the RECFM to determine these values. If RECFM=U, then BLKSIZE will be
the maximum blocksize for the device, and LRECL will be zero. If RECFM=F then
BLKSIZE=LRECL=80 will be used. If RECFM=FB then LRECL will be the 80 and BLKSIZE
will be the largest blocksize that is possible for the device. If RECFM=V then the
BLKSIZE will be the maximum blocksize that is possible for the device, and LRECL
will be the lessedr of BLKSIZE-4 and 1028.

If LRECL is provided, but BLKSIZE is not, then for RECFM=U files, the BLKSIZE becomes
LRECL and LRECL is set to zero. For RECFM=F files, the BLKSIZE is set to be the same
as the LRECL, and for RECFM=FB files, the BLKSIZE is set to be the largest multiple
of the LRECL that can fit in the maximum blocksize of the device. For RECFM=V files
the BLKSIZE is set to LRECL+4.

If LRECL is not provided, but BLKSIZE is, then for RECFM=U, LRECL is set to 0. For
RECM=F and RECFM=FB, LRECL is set to be the BLKSIZE value. For RECFM=V files,
LRECL is set to the lesser of BLKSIZE-4 and 1028.

For BSAM I/O, if the DCB has a DCBNCP value of 0 or 1 and the ncp attribute was
used and it specifies a value larger than 1, then the specified ncp attribute value is
used.

For example, the following statement creates a new file RECFM=FB, USER.FILE, spec-
ifying that the primary allocation is 1000 blocks, the secondary allocation is 500
blocks, the record length is 80 and the block size is 800 (note the specification of
O CREAT which causes the library to create the file if it doesn’t exist):

open("//DSN:USER.FILE", O_WRONLY|O_CREAT|_O_ATTR|_O_BINARY,

180 Systems/C C Library

0,
"recfm=fb,blksize=800,lrecl=80,blks,primary=1000,secondary=500");

Note that combining values via the O ATTR string and JCL or other sources may
create conflicting values that cause the open() to fail. For example, if the JCL
only specifies LRECL=133 and the program provides an attribute string that specifies
"recfm=fb,lrecl=80,blksize=8000", then the resulting combined attributes will
be RECFM=FB,LRECL=133,BLKSIZE=8000 which is invalid because the BLKSIZE is not
a multiple of the LRECL. In such a situation, the "preopen" attribute can be used
to indicate that the values specified in the O ATTR string take precedence over the
values from the JCL.

To ensure a file does not previously exist, use the O EXCL flag. If O EXCL is specified
in combination with O CREAT, and the file already exists, the open() function will
return -1 and indicate the error in errno.

RECORD I/O

Typically, the C model of I/O is simply a stream of bytes; without consideration
of record lengths or boundaries. The Systems/C runtime presents this abstraction
to the C program, managing block and record considerations internally. Thus, for
example, a read(2) request of 500 bytes will internally deblock a file, and gather 500
bytes, crossing any record boundaries as needed.

However, there are situations in mainframe programming environemnts where it is
helpful to manage data in terms of records. Specifying O RECIO in the flags causes
the Systems/C runtime to respect record boundaries. If O RECIO a write(2) request
will only write a record-sized portion of data. Similarly, a read(2) request will only
read a record-sized portion of data. After each I/O operation, the file pointer moves
to the next record boundary. The ”type=record” attribute can be used as well as
O RECIO. The ”type=record” attribute causes the O RECIO flag to be set.

The read(2), write(2), sections have more information on different semantics when
O RECIO is present in flags. The fopen(3), fread(3), fwrite(3) sections have more
information on different semantics when the type=record attribute is specified.
Note that type=record attribute enables record I/O for fopen(3), fread(3), fwrite(3)
while the O RECIO flag enables record I/O for open(2), read(2) and write(2). When
type=record attribute is specified in open(2), it is translated to the O RECIO flag.

IMPLEMENTATION NOTES

Because fopen(3) uses open(2) to access files, the path prefixes discussed above are
also valid for fopen(3) path names. Furthermore, any attributes string fopen(3)
receives is similar simply passed to open(2).

Systems/C C Library 181

O APPEND mode is only supported on sequential files. An open of a PDS member
with O APPEND will cause a runtime abend when the file is subsequently closed.

RETURN VALUES

If successful, open() returns a non-negative integer, termed a file descriptor. It
returns -1 on failure, and sets errno to indicate the error.

ERRORS

The named file is opened unless:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname was too large for the given path prefix
style, or an entire path name exceeded 1023 characters.

[ENOENT] O CREAT is not set and the named file does not exist.

[ENOENT] A component of the path name that must exist does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] The required permissions (for reading and/or writing) are denied
for the given flags.

[EACCES] O CREAT is specified, the file does not exist, and creation of the file
was not permitted.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EISDIR] The named file is a directory or PDS, and the arguments specify it
is to be opened for writing.

[EROFS] The named file resides on a read-only file system, and the file is to
be modified.

[EMFILE] The process has already reached its limit for open file descriptors.

[ENFILE] The system file table is full.

[ENOMEM] There was insufficient memory available to allocate the supporting
data structures needed.

[ENXIO] The named file is a character special or block special file, and the
device associated with this special file does not exist.

[EINTR] The open() operation was interrupted by a signal.

182 Systems/C C Library

[EOPNOTSUPP] O SHLOCK or O EXLOCK is specified but the underlying filesystem does
not support locking.

[ENOSPC] O CREAT is specified, the file does not exist, and the directory or
PDS in which the entry for the new file is being placed cannot be
extended because there is no space left on the file system containing
the directory, or the PDS containing the member.

[EDQUOT] O CREAT is specified, the file does not exist, and the user’s allocation
quota on the file system on which the file is being created has been
exhausted.

[EFTYPE] An attempt was made to open a Format-F file where the LRECL
was not a multiple of the BLKSIZE, or a blocked Format-V file
where the LRECL was not less than BLKSIZE-4.

[EIO] An I/O error occurred while making the directory entry or allocating
the PDS directory entry for O CREAT.

[EFAULT] Path points outside the process’s allocated address space.

[EEXIST] O CREAT and O EXCL were specified and the file exists.

[EOPNOTSUPP] An attempt was made to open a socket (not currently implemented).

[EINVAL] An attempt was made to open a descriptor with an illegal combi-
nation of O RDONLY, O WRONLY, and O RDWR.

SEE ALSO

close(2), dup(2), getdtablesize(2), lseek(2), setmode(2),read(2), write(2)

Systems/C C Library 183

OSDDINFO(2)

NAME

osddinfo - retrieve information about a dataset from a DD name.

SYNOPSIS

#include <machine/syscio.h>

int osddinfo(char *ddname, char dsname[45], char member[9],
char *recfm_p, int *lrecl_p, int *blksize_p);

DESCRIPTION

The osddinfo() function is used to retrieve data set information based on the given
ddname. ddname is a NUL-terminated character string specifying the DD name of
the data set.

The remaining parameters are pointers to areas to contain return information. If
the pointers are NULL, then osddinfo() does not store the value. Because some
values may require invocation of additional operating systems services, it is best to
make these NULL if the information is not required.

The data set name associated with the DD name ddname is stored in the area
pointed-to by dsname.

If the DD name is allocated to a member of a PDS, the member name is stored in
the area pointed-to by member. If a PDS member is not allocated to the DD name,
the empty string is stored there.

The area pointed to by a non-NULL recfm p will contain the record-format flag of the
file. Possible values are defined in the ¡machine/syscio.h¿ header file and include:

RECFM U Undefined length records

RECFM F Fixed length records

RECFM V Variable length records

RECFM D Variable length ASCII records

RECFM T Track overflow

RECFM B Blocked records

RECFM S Spanned or Standard records

184 Systems/C C Library

RECFM A ASA control characters are present

RECFM M Machine control characters are present

The values for these are the defined by the JFCB DSECT.

Note that RECFM U is defined as RECFM F logically OR’d with RECFM V. So, care must
be taken to test for RECFM U before testing for RECFM F or RECFM V.

The area pointed to by a non-NULL lrecl p contains the data sets logical record length,
or 0. If the record format can be determined, and it is Variable Spanned, and the
record length is defined as LRECL=X, then the special value LRECL X is returned.
LRECL X is defined in the ¡machine/syscio.h¿ header file.

The area pointed to by a non-NULL blksize p contains the data sets block size, or 0.

RETURN VALUES

The osddinfo() return 0 if the DD name is defined and the information can be
retrieved. If osddinfo() cannot retrieve the information, or can’t allocate sufficient
memory to operate, it returns -1.

IMPLEMENTATION NOTES

The osddinfo() function uses the RJFJCB service to determine the dataset name and
member associated with a DD name. If the allocation that created the JFCB control
block did not include RECFM/LRECL/BLKSIZE statements, then osddinfo() uses
the OBTAIN service to retrieve the information from the VTOC.

SEE ALSO

ddnfind(2), ddnnext(2)

Systems/C C Library 185

PASSWD(2)

NAME

passwd - verify or change a user password

SYNOPSIS

#include <pwd.h>

int
__passwd(const char *username, const char *oldpass, const char *newpass);

DESCRIPTION

passwd() verifies or changes the password of the user specified by username. Old-
pass contains the current password and must always be present. Newpass optionally
contains the new password, or can be NULL.

If newpass is non-NULL, then the old password is verified, and if it matches newpass
becomes the new password.

If newpass is NULL, then the old password is simply verified, and the password
remains unchanged.

RETURN VALUES

If successful, passwd() returns a 0, otherwise -1 is returned and the global variable
errno is set to indicate the error.

ERRORS

passwd() The passwd() function will fail if:

[EACCES] The password in oldpass is not authorized.

[EINVAL] The username, oldpass or newpass is invalid. username, oldpass and
newpass must be 1 to 8 characters in length.

[ENEEDAUTH] The BPX.DAEMON facility is defined, but the current program is is
not considered controled by a security product (e.g. RACF.)

186 Systems/C C Library

[EPERM] The caller does not have permission for this operation. See the
BPX.DAEMON class in the IBM “OpenEdition Planning” manual.

[ESRCH] The specified username was not found.

SEE ALSO

getpwent(2), endpwent(3)

Systems/C C Library 187

PATHCONF(2)

NAME

pathconf, fpathconf - get configurable pathname variables for //HFS: files

SYNOPSIS

#include <unistd.h>

long
pathconf(const char *path, int name);

long
fpathconf(int fd, int name);

DESCRIPTION

The pathconf() and fpathconf() functions provide a method for applications to
determine the current value of a configurable system limit or option variable asso-
ciated with a pathname or file descriptor.

For pathconf(), the path argument is the name of an //HFS:-style file or directory.
For fpathconf(), the fd argument is an open file descriptor that references an
//HFS:-style file or directory. The name argument specifies the system variable to
be queried. Symbol constants for each name value are found in the include file
<unistd.h>.

The availalble values are as follows:

PC LINK MAX The maximum file link count.

PC MAX CANON The maximum number of bytes in terminal canonical input line.

PC MAX INPUT The minimum maximum number of bytes for which space is available
in a terminal input queue.

PC NAME MAX The maximum number of bytes in a file name.

PC PATH MAX The maximum number of bytes in a pathname.

PC PIPE BUF The maximum number of bytes which will be written atomically to a
pipe.

PC CHOWN RESTRICTED Return 1 if appropriate privileges are required for the
chown(2) system call, otherwise 0.

188 Systems/C C Library

PC NO TRUNC Return 1 if file names longer than KERN NAME MAX are truncated.

PC VDISABLE Returns the terminal character disabling value.

PC ACL Returns 1 if the security product supports access control lists, 0 otherwise.

PC ACL ENTRIES MAX Returns the maximum number of ACL entries that can be
placed on the file.

RETURN VALUES

if the call to pathconf() or fpathconf() is not successful, -1 is returned an errno
is set appropriately. Otherwise, if the variable is associated with functionality that
does not have a limit in the system, -1 is returned and errno is not modified.
Otherwise, the current variable value is returned.

ERRORS

If any of the following conditions occur, the pathconf() and fpathconf() functions
shall return -1 and set errno to the corresponding value.

[EINVAL] The value of the name argument is invalid.

[EINVAL] The implementation does not support an association of the variable
name with the associated file.

pathconf() will fail if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an
entire path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EIO] An I/O error occurred while reading from or writing to the file
system.

fpathconf() will fail if:

[EBADF] fd is not a valid open file descriptor.

[EIO] An I/O error occurred while reading from or writing to the file
system.

Systems/C C Library 189

PIPE(2)

NAME

pipe, pipe2 - create descriptor pair for interprocess communication

SYNOPSIS

#include <unistd.h>

int
pipe(int fildes[2]);

int
pipe2(int fildes[2], int flags);

The pipe() function creates a “pipe”, which is an object allowing bidirectional data
flow, and allocates a pair of file descriptors.

The pipe2() function allows control over the attributes of the file descriptors via
the flags argument. Values for flags are constructed by a bitwise-inclusive OR of
flags from the following list, defined in ¡fcntl.h¿:

O CLOEXEC Set the close-on-exec flag for the new file descriptors.

O NONBLOCK Set the non-blocking flag for the ends of the pipe.

If the flags argument is 0, the behavior is identical to a call to pipe().

The first descriptor is used as the “read end” of the pipe, the second is the “write
end”, so that data written to filedes[1] appears on (i.e. can be read from) fileds[0].
This allows the output of one program to be sent to another program: the source’s
standard output can be set up to be the “write end” of the pipe, and the sink’s
standard input is set up to tbe the “read end” of the pipe. The pipe itself persists
until all its associated descriptors are closed.

A pipe that has had an end closed is considered “widowed.” Writing on such a pipe
may cause the writing process to receive a SIGPIPE signal. Widowing a pipe is the
only way to deliver end-of-file to a reader: after the reader consumes any buffered
data, reading a widowed pipe returns a zero count.

IMPLEMENTATION NOTES

The pipe2() function calls the pipe() system call and then calls fcntl to set the
appropriate flags.

190 Systems/C C Library

RETURN VALUES

The pipe() function will fail if:

[EMFILE] Too many descriptors are active.

[ENFILE] The system file table is full.

[EFAULT] The fildes buffer is in an invalid area of the process’s address space.

SEE ALSO

read(2), write(2)

Systems/C C Library 191

PROCNAME(2)

NAME

procname - return the current procedure name

SYNOPSIS

#include <machine/tiot.h>

char *
__procname(void);

DESCRIPTION

The procname() function returns the current JCL procedure name of the exe-
cuting program on MVS, OS/390 and z/OS. The value returned is a pointer to a
NUL-terminated string. Trailing blanks are removed.

If the program was invoked directly, the returned name will be the empty string.

procname() returns a pointer to a static area, care should be taken to copy this
value before invoking procname() again.

SEE ALSO

jobname(2), stepname(2), userid(2)

192 Systems/C C Library

QUERYDUB(2)

NAME

querydub - return the current procedure name

SYNOPSIS

#include <unistd.h>

int __querydub(void);

DESCRIPTION

The querydub() function returns BPX ”dub” status of the current task, indicat-
ing if the task has already been dubbed, or can possibly be dubbed.

RETURN VALUES

If successful, querydub() returns one of these values:

QDB DUBBED FIRST The task has already been dubbed. This task and this RB caused
the dub.

QDB DUBBED The task has already been dubbed. Another task or another RB
caused the dub.

QDB DUB MAY FAIL The task has not been dubbed, and any attempt to do so might
fail (typically due to bad or missing authorizations.)

QDB DUB OKAY The task has not been dubbed, and any attempt will likely succeed.

QDB DUB AS PROCESS The task has not beed dubbed, but its address space has. A
dub of this task will result in a new process.

QDB DUB AS THREAD The task has not been dubbed, but its address space has. A
dub of this task will result in a new thread within the process.

If not successful, querydub() returns -1 and sets an error condition in errno.

SEE ALSO

isPosixOn(2)

Systems/C C Library 193

READ(2)

NAME

read - read input

SYNOPSIS

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>

size_t
read(int d, void *buf, size_t nbytes)

ssize_t
pread(int d, void *buf, size_t nbytes, off_t offset);

DESCRIPTION

read() attempts to read nbytes of data from the object referenced by the descriptor
d into the buffer pointed to by buf. The pread() function perform the same function,
but read from the specified position in the file without modifying the file pointer.

On objects capable of seeking, the read() starts at a position given by the pointer
associated with d (see lseek(2)). Upon return from read(), the pointer is incre-
mented by the number of bytes actually read.

Objects that are not capable of seeking always read from the current position. The
value of the pointer associated with such an object is undefined.

Upon successful completion, read(), pread() and readv() return the number of
bytes actually read and placed in the buffer. The system guarantees to read the
number of bytes requested if the descriptor references a normal file that has that
many bytes left before the end-of-file, but in no other case.

IMPLEMENTATION NOTES

If a file descriptor has been opened in O TEXT mode (the default), and references
record-structured (non-//HFS: and non-socket) file, records will be read from the
associated file, with trailing blanks removed, and a new-line character appended.
If the lrecl of the file is 1, or the file descriptor is a socket, or the file descriptor
references an HFS file, the bytes are read as if O BINARY had been specified.

194 Systems/C C Library

If the file descriptor has been opened with O RECIO flag, and the file descriptor ref-
erences a record-structured file, then the read operation is performed using “record
I/O”. In this situation, the read will read the next record in the file, returning that
many bytes. If nbytes is smaller than the record length, the file pointer will be
advanced to the start of the next record.

The pread() function is only supported for HFS files.

RETURN VALUES

If successful, the number of bytes actually read is returned. Upon reading end-of-
file, zero is returned. Otherwise, a -1 is returned and the global variable errno is
set to indicate the error.

When reading from a file with variable-length records using “record I/O”, it is
possible to encounter a zero-length record. Instead of returning zero (which would
indicate end-of-file), the read() function will return -1 and set errno to EAGAIN.
Thus, a program reading variable-length records can distinguish between end-of-file
and a zero-length record by checking the value of errno.

ERRORS

read() will succeed unless:

[EBADF] d is not a valid file or socket descriptor open for reading.

[EFAULT] buf points outside the allocated address space.

[EIO] An I/O error occurred while reading from the file system.

[EINTR] A read from a slow device was interrupted before any data arrived
by the delivery of a signal.

[EINVAL] The pointer associated with d was negative.

[EAGAIN] The file was marked for non-blocking I/O, and no data were ready
to be read, or the file is a variable-length record file using record
I/O and a zero-length record was encountered.

[ENXIO] The file is not a supported I/O format.

The pread() function may also return the following errors:

[EINVAL] The offset value was negative.

Systems/C C Library 195

[EOVERFLOW] The file is an HFS file and an attemp was made to read beyond the
maximum offset of the file.

[ESPIPE] The file descriptor is associated with a pipe, socket, or FIFO.

[ENXIO] The file does not support the operation, or the request was outside
the capabilities of the device.

SEE ALSO

dup(2), fcntl(2), open(2)

STANDARDS

The read() function call is expected to conform to IEEE Std1003.1-1990
(“POSIX”), as closely as the host file system allows. The readv() and pread()
functions are expected to conform to X/Open Portability Guide Issue 4, Version 2
(“XPG4.2”).

196 Systems/C C Library

READLINK(2)

NAME

readlink – read value of an //HFS:-style symbolic link

SYNOPSIS

#include <unistd.h>

int
readlink(const char *path, char *buf, int bufsiz);

DESCRIPTION

readlink() places the contents of the symbolic link path in the buffer buf, which
has size bufsiz. The readlink() function does not append a NUL character to buf.

RETURN VALUES

The call returns the count of characters placed in the buffer if it succeeds, or a -1 if
an error occurs, placing the error code in the global variable errno.

ERRORS

readlink() will fail if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EINVAL] The named file is not a symbolic link.

[EIO] An I/O error occurred while reading from the file system.

[EFAULT] Buf extends outside the process’s allocated address space.

Systems/C C Library 197

RENAME(2)

NAME

rename - change the name of a file

SYNOPSIS

#include <stdio.h>

int
rename(const char *from, const char *to);

DESCRIPTION

rename() causes the file named from to be renamed as to. If to exists, it is first
removed. Both from and to must be of the same type (that is, both DSN names,
or both PDS members, or both HFS directories or both HFS non-directories), and
must reside on the same file system. The types of from and to are determined by
the Systems/C file naming conventions. See open(2) for more information regarding
Systems/C file names.

IMPLEMENTATION NOTES

Only renaming of //DSN:-style and //HFS:-style names are supported in this release.

//DSN: style files must be entirely contained with 5 volumes, or rename() will fail.

RETURN VALUES

A 0 value is returned if the operation succeeds, otherwise rename() returns -1 and
the global variable errno indicates the reason for the failure.

ERRORS

rename() will fail and neither of the argument files will be affected if:

[ENAMETOOLONG] For HFS files, a component of either name exceeded 255 characters,
or the entire length of either path name exceeded 1023 characters.

198 Systems/C C Library

[ENAMETOOLONG] For DSN files, a name was longer than 44 characters.

[ENOENT] A component of the from path does not exist, or a path prefix of to
does not exist.

[EACCES] For HFS files, A component of either path prefix denies search per-
mission.

[EACCES] For DSN files, the VTOC LOCATE macro indicates an acces viola-
tion.

[EACCES] The requested link requires writing in an HFS directory, a PDS
directory or a VTOC with a mode that denies write permission.

[EPERM] For DSN files, permission was not granted to uncatalog the from
name, or permission was not granted to catalog the to name.

[EPERM] For DSN files, permission was not granted to perform the RENAME
operation.

[EPERM] The HFS directory containing from is marked sticky, and neither
the containing directory nor from are owned by the effective user
ID.

[EPERM] For HFS files, the to file exists, the HFS directory containing to is
marked sticky, and neither the containing directory nor to are owned
by the effective user ID.

[ELOOP] Too many symbolic links were encountered in translating either
pathname for HFS files.

[ENOMEM] For DSN files, insufficient memory was available to perform the
operation.

[ENOSYS] For DSN files, the from spans more than 5 volumes.

[ENOSYS] The rename operation involves unsupported file types.

[ENOTDIR] A component of either path prefix is not a directory for HFS files.

[ENOTDIR] from is an HFS directory, but to is not an HFS directory.

[EISDIR] to is an HFS directory, but from is not a HFS directory

[EXDEV] The link named by to and the file named by from are on different
logical devices (file systems). Or, the file types of to and from do not
match (i.e. to is a DSN and from is a DDN.) Note that this error
code will not be returned if the implementation permits cross-device
links.

[ENOSPC] The HFS directory, or VTOC, or PDS directory in which the entry
for the new name is being placed cannot be extended because there
is no space left.

Systems/C C Library 199

[EDQUOT] The HFS directory in which the entry for the new name is being
placed cannot be extended because the user’s quota of disk blocks
on the file system containing the directory has been exhausted.

[EIO] An I/O error occurred while making or updating an HFS directory
entry, or a VTOC or a PDS directory.

[EROFS] The requested link requires writing in an HFS directory, VTOC or
PDS directory on a read-only file system.

[EFAULT] Either the from or to argument is NULL, or either from or to was a
pointer outside of the allocated address space.

[EINVAL] from is an invalid name.

[ENOTEMPTY] to is a directory and is not empty.

SEE ALSO

open(2)

STANDARDS

The rename() function call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.1”) as closely as the host operating system allows.

200 Systems/C C Library

RMDIR(2)

NAME

rmdir – remove a directory file

SYNOPSIS

#include <unistd.h>

int
rmdir(const char *path);

DESCRIPTION

rmdir() removes an HFS directory file whose name is given by path. The directroy
must not have any entries other that ‘.’ and ‘..’.

RETURN VALUES

The rmdir() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The named file is removed unless:

[ENOTDIR] A component of the path is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named directory does not exist.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[ENOTEMPTY] The named directory contains files other than ‘.’ and ‘..’ in it.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] Write permission is denied on the directory containing the link to
be removed.

Systems/C C Library 201

[EPERM] The directory containing the directory to be removed is marked
sticky, and neither the containing directory nor the directory to be
removed are owned by the effective user ID.

[EBUSY] The directory to be removed is the mount point for a mounted file
system.

[EIO] An I/O error occurred while deleting the directory entry or deallo-
cating the inode.

[EROFS] The directory entry to be removed resides on a read- only file system.

[EFAULT] Path points outside the process’s allocated address space.

SEE ALSO

mkdir(2), unlink(2)

202 Systems/C C Library

SCHED YIELD(2)

NAME

sched yield – yield processor

SYNOPSIS

#include <sched.h>

int
sched_yield(void);

DESCRIPTION

The sched yield() system call forces the running process to relinquish the processor
until it again becomes the head of its process list. It takes no arguments.

RETURN VALUES

The sched yield() function returns the value 0 if successful; otherwise the value
-1 is returned and the global variable errno is set to indicate the error.

ERRORS

On failure errno will be set to the corresponding value:

[ENOSYS] The system is not configured to support this functionality.

STANDARDS

The sched yield() system call conforms to IEEE Std 1003.1b-1993 (“POSIX.1”).

Systems/C C Library 203

SEMCTL(2)

NAME

semctl - control operations on a semaphore set

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int
semctl(int semid, int semnum, int cmd, ...);

DESCRIPTION

semctl() performs the operation indicated by cmd on the semaphore set indicated
by semid. A fourth argument, a union semun arg, is required for certain values
of cmd. For the commands that use the arg parameter, union semun is defined as
follows:

union semun {
int val; /* value for SETVAL */
struct semid_ds *buf; /* buffer for IPC_STAT & IPC_SET */
u_short *array; /* array for GETALL & SETALL */

};

Commands are performed as follows:

IPC STAT Fetch the semaphore set’s struct semid ds, storing it in the mem-
ory pointed to by arg.buf.

IPC SET Changes the sem perm.uid, sem perm.gid, and sem perm.mode
members of the semaphore set’s struct semid ds to match those
of the struct pointed to by arg.buf. The calling process’s effective
uid must match either sem perm.uid or sem perm.cuid, or it must
have superuser privileges.

IPC RMID Immediately removes the semaphore set from the system. The
calling process’s effective uid must equal the semaphore set’s
sem perm.uid or sem perm.cuid, or the process must have supe-
ruser privileges.

204 Systems/C C Library

GETVAL Return the value of semaphore number semnum.

SETVAL Set the value of semaphore number semnum to arg.val.

GETPID Return the pid of the last process to perform an operation on
semaphore number semnum.

GETNCNT Return the number of processes waiting for semaphore number sem-
num’s value to become greater than its current value.

GETZCNT Return the number of processes waiting for semaphore number sem-
num’s value to become 0.

GETALL Fetch the value of all of the semaphores in the set into the array
pointed to by arg.array.

SETALL Set the values of all of the semaphores in the set to the values in
the array pointed to by arg.array.

The struct semid ds is defined as follows:

struct semid_ds {
struct ipc_perm sem_perm; /* operation permission struct */
struct sem *sem_base; /* pointer to first semaphore in set */
u_short sem_nsems; /* number of sems in set */
time_t sem_otime; /* last operation time */
long sem_pad1; /* SVABI/386 says I need this here */
time_t sem_ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

long sem_pad2; /* SVABI/386 says I need this here */
long sem_pad3[4]; /* SVABI/386 says I need this here */

};

The sem base field is provided for compatibility with other operating systems, but
on OS/390 and z/OS, this field will always be NULL.

RETURN VALUES

On success, when cmd is one of GETVAL, GETPID, GETNCNT or GETZCNT, semctl()
returns the corresponding value; otherwise, 0 is returned. On failure, -1 is returned,
and errno is set to indicate the error.

Systems/C C Library 205

ERRORS

semctl() will fail if:

[EINVAL] No semaphore set corresponds to semid.

[EINVAL] semnum is not in the range of valid semaphores for given semaphore
set.

[EPERM] The calling process’s effective uid does not match the uid of the
semaphore set’s owner or creator.

[EACCES] Permission denied due to mismatch between operation and mode of
semaphore set.

SEE ALSO

semget(2), semop(2)

206 Systems/C C Library

SEMGET(2)

NAME

semget - obtain a semaphore id

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int
semget(key_t key, int nsems, int flag);

DESCRIPTION

Based on the values of key and flag, semget() returns the identifier of a newly
created or previously existing set of semaphores. The key is analogous to a filename:
it provides a handle that names an IPC object. There are three ways to specify a
key:

• IPC PRIVATE may be specified, in which case a new IPC object will be created.

• An integer constant may be specified. If no IPC object corresponding to key
is specified and the IPC CREAT bit is set in flag, a new one will be created.

• ftok() may be used to generate a key from a pathname. See ftok(3).

The mode of the newly created IPC object is determined by OR’ing the following
constants into the flag parameter:

SEM R Read access for user.

SEM A Alter access for user.

(SEM R>>3) Read access for group.

(SEM A>>3) Alter access for group.

(SEM R>>6) Read access for other.

(SEM A>>6) Alter access for other.

If a new set of semaphores is being created, nsems is used to indicate the number
of semaphores the set should contain. Otherwise, nsems may be specified as 0.

Systems/C C Library 207

RETURN VALUES

semget() returns the id of a semaphore set if successful; otherwise, -1 is returned
and errno is set to indicate the error.

ERRORS

semget() will fail if:

[EACCES] Access permission failure.

[EEXIST] IPC CREAT and IPC EXCL were specified, and a semaphore set cor-
responding to key already exists.

[EINVAL] The number of semaphores requested exceeds the system imposed
maximum per set.

[ENOSPC] Insufficiently many semaphores are available.

[ENOSPC] The system could not allocate a struct semid ds.

[ENOENT] No semaphore set was found corresponding to key, and IPC CREAT
was not specified.

SEE ALSO

semctl(2), semop(2), ftok(3)

208 Systems/C C Library

SEMOP(2)

NAME

semop - atomic array of operations on a semaphore set

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int
semop(int semid, struct sembuf array[], unsigned nops);

DESCRIPTION

semop() atomically performs the array of operations indicated by array on the
semaphore set indicated by semid. The length of array is indicated by nops. Each
operation is encoded in a struct sembuf, which is defined as follows:

struct sembuf {
u_short sem_num; /* semaphore # */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

};

For each element in array, sem op and sem flg determine an operation to be
performed on semaphore number sem num in the set. The values SEM UNDO and
IPC NOWAIT may be OR’ed into the sem flg member in order to modify the behav-
ior of the given operation.

The operation performed depends as follows on the value of sem op:

• When sem op is positive, the semaphore’s value is incremented by sem op’s
value. If SEM UNDO is specified, the semaphore’s adjust on exit value is decre-
mented by sem op’s value. A positive value for sem op generally corresponds
to a process releasing a resource associated with the semaphore.

• The behavior when sem op is negative depends on the current value of the
semaphore:

Systems/C C Library 209

– If the current value of the semaphore is greater than or equal to the
absolute value of sem op, then the value is decremented by the absolute
value of sem op. If SEM UNDO is specified, the semaphore’s adjust on exit
value is incremented by the absolute value of sem op.

– If the current value of the semaphore is less than sem op’s value, one of
the following happens:

∗ If IPC NOWAIT was specified, then semop() returns immediately with
a return value of EAGAIN.

∗ If some other process has removed the semaphore with the IPC RMID
option of semctl(), then fnnamesemop() returns immediately with
a return value of EINVAL.

∗ Otherwise, the calling process is put to sleep until the semaphore’s
value is greater than or equal to the absolute value of sem op. When
this condition becomes true, the semaphore’s value is decremented
by the absolute value of sem op, and the semaphore’s adjust on exit
value is incremented by the absolute value of sem op.

A negative value for sem op generally means that a process is waiting for
a resource to become available.

• When sem op is zero, the process waits for the semaphore’s value to become
zero. If it is already zero, the call to semop() can return immediately. Oth-
erwise, the calling process is put to sleep until the semaphore’s value becomes
zero.

For each semaphore a process has in use, the operating system maintains an ‘adjust
on exit’ value, as alluded to earlier. When a process exits, either voluntarily or
involuntarily, the adjust on exit value for each semaphore is added to the semaphore’s
value. This can be used to insure that a resource is released if a process terminates
unexpectedly.

RETURN VALUES

The semop() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

semop() will fail if:

[EINVAL] No semaphore set corresponds to semid.

[EACCES] Permission denied due to mismatch between operation and mode of
semaphore set.

210 Systems/C C Library

[EAGAIN] The semaphore’s value was less than sem op, and IPC NOWAIT was
specified.

[E2BIG] Too many operations were specified.

[EFBIG] sem num was not in the range of valid semaphores for the set.

SEE ALSO

semctl(2), semget(2)

Systems/C C Library 211

SETGROUPS(2)

NAME

setgroups - set group access list

SYNOPSIS

#include <sys/param.h>
#include <unistd.h>

int
setgroups(int ngroups, const gid_t *gidset);

DESCRIPTION

setgroups() sets the group access list of the current user process according to the
array gidset. The parameter ngroups indicates the number of entries in the array
and must be no more than NGROUPS, as defined in <sys/param.h>.

Only the super-user may set new groups.

RETURN VALUES

The setgroups() function returns the value 0 if successful; otherwise the value -1
is returned and the global variable errno is set to indicate the error.

ERRORS

The setgroups() call will fail if:

[EPERM] The caller is not the super-user.

[EFAULT] The address specified for gidset is outside the process address space.

SEE ALSO

getgroups(2)

212 Systems/C C Library

SETMODE(2)

NAME

setmode - sets the file text vs. binary translation mode.

SYNOPSIS

#include <fcntl.h>

int
_setmode(int d, int mode)

DESCRIPTION

setmode() alters the binary vs. text flag of the file descriptor d, setting it to the
given mode. setmode returns the previous mode value.

mode must be either O TEXT or O BINARY. O TEXT sets the file descriptor to text
mode, O BINARY to binary mode. See open(2) for a description of these I/O trans-
lation modes.

setmode() is typically used to change the default translation mode of stdin and
stdout, but can be used on any open file. setmode() should be applied before
performing any input or output on the file descriptor.

RETURN VALUES

If successful, the previous mode value is returned. Otherwise, a -1 is returned and
the global variable errno is set to indicate the error.

ERRORS

setmode() will succeed unless:

[EBADF] d is not a valid, open file descriptor.

[EINVAL] mode is not O TEXT nor O BINARY.

SEE ALSO

fcntl(2), open(2), read(2), write(2)

Systems/C C Library 213

SETPGID(2)

NAME

setpgid, setpgrp - set process group

SYNOPSIS

#include <unistd.h>

int
setpgid(pid_t pid, pid_t pgrp);

int
setpgrp(pid_t pid, pid_t pgrp);

DESCRIPTION

setpgid() sets the process group of the specified process pid to the specified pgrp.
If pid is zero, then the call applies to the current process.

If the invoker is not the super-user, then the affected process must have the same
effective user-id as the invoker or be a descendant of the invoking process.

RETURN VALUES

The setpgid() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

setpgid() will fail and the process group will not be altered if:

[EACCES] Pid is a valid child of the current process, but pid has been ex-
ecve(2)’d. Access to the target process was denied.

[EINVAL] pgrp is an invalid process group.

[EPERM] The effective user ID of the requested process is different from that of
the caller and the process is not a descendent of the calling process.

[ESRCH] The requested process does not exist.

214 Systems/C C Library

SEE ALSO

getpgrp(2)

STANDARDS

The setpgid() function call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.1”) as closely as the host system allows.

COMPATIBILITY

setpgrp() is identical to setpgid(), and is provided for calling convention compat-
ibility with historical versions of BSD UNIX.

Systems/C C Library 215

SETREGID(2)

NAME

setregid - set real and effective group ID

SYNOPSIS

#include <unistd.h>

int
setregid(gid_t rgid, gid_t egid);

DESCRIPTION

The real and effective group ID’s of the current process are set to the arguments.
Unprivileged users may change the real group ID to the effective group ID and
vice-versa; only the super-user may make other changes.

Supplying a value of -1 for either the real or effective group ID forces the system to
substitute the current ID in place of the -1 parameter.

Historically, the setregid() function was intended to allow swapping the real and
effective group IDs in set-group-ID programs to temporarily relinquish the set-group-
ID value. This function did not work correctly, and its purpose is now better served
by the use of the setegid() function (see setuid(2)).

When setting the real and effective group IDs to the same value, the standard
setgid() function is preferred.

RETURN VALUES

The setregid() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

[EAGAIN] A RACF failure has occured.

[EINVAL] One of the parms is an invalid user id.

[EPERM] The current process is not the super-user and a change other than
changing the effective group-id to the real group-id was specified.

216 Systems/C C Library

SEE ALSO

getgid(2), setegid(2), setgid(2), setuid(2)

Systems/C C Library 217

SETREUID(2)

NAME

setreuid - set real and effective user ID’s

SYNOPSIS

#include <unistd.h>

int
setreuid(uid_t ruid, uid_t euid);

DESCRIPTION

The real and effective user IDs of the current process are set according to the argu-
ments. If ruid or euid is -1, the current uid is filled in by the system. Unprivileged
users may change the real user ID to the effective user ID and vice-versa; only the
super-user may make other changes.

The setreuid() function has been used to swap the real and effective user IDs in
set-user-ID programs to temporarily relinquish the set-user-ID value. This purpose
is now better served by the use of the seteuid() function (see setuid(2)).

When setting the real and effective user IDs to the same value, the standard setuid()
function is preferred.

RETURN VALUES

The setreuid() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

[EAGAIN] A RACF failure has occured.

[EINVAL] One of the parms is an invalid user id.

[EPERM] The current process is not the super-user and a change other than
changing the effective user-id to the real user-id was specified.

SEE ALSO

getuid(2), seteuid(2), setuid(2)

218 Systems/C C Library

SETSID(2)

NAME

setsid - create session and set process group ID

SYNOPSIS

#include <unistd.h>

pid_t
setsid(void);

DESCRIPTION

The setsid() function creates a new session. The calling process is the session leader
of the new session, is the process group leader of a new process group and has no
controlling terminal. The calling process is the only process in either the session or
the process group.

RETURN VALUES

Upon successful completion, the setsid() function returns the value of the process
group ID of the new process group, which is the same as the process ID of the calling
process. If an error occurs, setsid() returns -1 and the global variable errno is set
to indicate the error.

ERRORS

The setsid() function will fail if:

[EPERM] The calling process is already a process group leader, or the process
group ID of a process other than the calling process matches the
process ID of the calling process.

SEE ALSO

setpgid(2), tcgetpgrp(3), tcsetpgrp(3)

Systems/C C Library 219

STANDARDS

The setsid() function is expected to be compliant with the ISO/IEC 9945-1:1990
(“POSIX.1”) specification as closely as the host system allows.

220 Systems/C C Library

SETUID(2)

NAME

setuid, seteuid, setgid, setegid - set user and group ID

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

int
setuid(uid_t uid);

int
seteuid(uid_t euid);

int
setgid(gid_t gid);

int
setegid(gid_t egid);

DESCRIPTION

The setuid() function sets the real and effective user IDs and the saved set-user-ID
of the current process to the specified value. The setuid() function is permitted if
the specified ID is equal to the real user ID or the effective user ID of the process,
or if the effective user ID is that of the super user.

The setgid() function sets the real and effective group IDs and the saved set-group-
ID of the current process to the specified value. The setgid() function is permitted
if the specified ID is equal to the real group ID or the effective group ID of the
process, or if the effective user ID is that of the super user.

The seteuid() function (setegid()) sets the effective user ID (group ID) of the
current process. The effective user ID may be set to the value of the real user ID or
the saved set-user-ID (see execve(2)); in this way, the effective user ID of a set-user-
ID executable may be toggled by switching to the real user ID, then re-enabled by
reverting to the set-user-ID value. Similarly, the effective group ID may be set to
the value of the real group ID or the saved set-group-ID.

Systems/C C Library 221

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

The functions will fail if:

[EAGAIN] A problem in RACF access occurred.

[EINVAL] An invalid user (group) id was specified.

[EPERM] The user is not the super user and the ID specified is not the real,
effective ID, or saved ID.

SEE ALSO

getgid(2), getuid(2), setregid(2), setreuid(2)

STANDARDS

The setuid() and setgid() functions are compliant with the ISO/IEC 9945-1:1990
(“POSIX.1”) specification with POSIX SAVED IDS not defined with the permitted
extensions from Appendix B.4.2.2. The seteuid() and setegid() functions are ex-
tensions based on the POSIX concept of POSIX SAVED IDS, and have been proposed
for a future revision of the standard.

222 Systems/C C Library

SHMAT(2)

NAME

shmat, shmdt - attach or detach shared memory

SYNOPSIS

#include <machine/param.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

void *
shmat(int shmid, void *addr, int flag);

int
shmdt(void *addr);

DESCRIPTION

shmat() attaches the shared memory segment identified by shmid to the calling
process’s address space. The address where the segment is attached is determined
as follows:

• If addr is 0, the segment is attached at an address selected by the system.

• If addr is nonzero and SHM RND is not specified in flag, the segment is attached
the specified address.

• If addr is specified and SHM RND is specified, addr is rounded down to the
nearest multiple of SHMLBA.

shmdt() detaches the shared memory segment at the address specified by addr from
the calling process’s address space.

RETURN VALUES

Upon success, shmat() returns the address where the segment is attached; other-
wise, -1 is returned and errno is set to indicate the error.

The shmdt() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

Systems/C C Library 223

ERRORS

shmat() will fail if:

[EINVAL] No shared memory segment was found corresponding to shmid.

[EINVAL] addr was not an acceptable address.

SEE ALSO

shmctl(2), shmget(2)

224 Systems/C C Library

SHMCTL(2)

NAME

shmctl - shared memory control

SYNOPSIS

#include <machine/param.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int
shmctl(int shmid, int cmd, struct shmid_ds *buf);

DESCRIPTION

The shmctl() function performs the action specified by cmd on the shared memory
segment identified by shmid:

IPC STAT Fetch the segment’s struct shmid ds, storing it in the memory
pointed to by buf.

IPC SET Changes the shm perm.uid, shm perm.gid, and shm perm.mode
members of the segment’s struct shmid ds to match those of the
struct pointed to by buf. The calling process’s effective uid must
match either shm perm.uid or shm perm.cuid, or it must have su-
peruser privileges.

IPC RMID Removes the segment from the system. The removal will not take
effect until all processes having attached the segment have exited;
however, once the IPC RMID operation has taken place, no further
processes will be allowed to attach the segment. For the oper-
ation to succeed, the calling process’s effective uid must match
shm perm.uid or shm perm.cuid, or the process must have supe-
ruser privileges.

The shmid ds struct is defined as follows:

struct shmid_ds {
struct ipc_perm shm_perm; /* operation permission structure */
int shm_segsz; /* size of segment in bytes */

Systems/C C Library 225

pid_t shm_lpid; /* process ID of last shared memory op */
pid_t shm_cpid; /* process ID of creator */
short shm_nattch; /* number of current attaches */
time_t shm_atime; /* time of last shmat() */
time_t shm_dtime; /* time of last shmdt() */
time_t shm_ctime; /* time of last change by shmctl() */
void *shm_internal; /* sysv stupidity */

};

The shm internal field is provided for compatibility with other functions.

RETURN VALUES

The shmctl() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

shmctl() will fail if:

[EINVAL] Invalid operation, or no shared memory segment was found corre-
sponding to shmid.

[EPERM] The calling process’s effective uid does not match the uid of the
shared memory segment’s owner or creator.

[EACCES] Permission denied due to mismatch between operation and mode of
shared memory segment.

SEE ALSO

shmat(2), shmdt(2), shmget(2), ftok(3)

226 Systems/C C Library

SHMGET(2)

NAME

shmget - obtain a shared memory identifier

SYNOPSIS

#include <machine/param.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int
shmget(key_t key, int size, int flag);

DESCRIPTION

Based on the values of key and flag, shmget() returns the identifier of a newly
created or previously existing shared memory segment. The key is analogous to a
filename: it provides a handle that names an IPC object. There are three ways to
specify a key:

• IPC PRIVATE may be specified, in which case a new IPC object will be created.

• An integer constant may be specified. If no IPC object corresponding to key
is specified and the IPC CREAT bit is set in flag, a new one will be created.

• ftok() may be used to generate a key from a pathname. See ftok(3).

The mode of a newly created IPC object is determined by OR’ing the following
constants into the flag parameter:

SHM R Read access for user.

SHM W Write access for user.

(SHM R>>3) Read access for group.

(SHM W>>3) Write access for group.

(SHM R>>6) Read access for other.

(SHM W>>6) Write access for other.

When creating a new shared memory segment, size indicates the desired size of the
new segment in bytes. The size of the segment may be rounded up to a multiple
convenient to the system (i.e., the page size).

Systems/C C Library 227

RETURN VALUES

Upon successful completion, shmget() returns the positive integer identifier of a
shared memory segment. Otherwise, -1 is returned and errno set to indicate the
error.

ERRORS

shmget() will fail if:

[EINVAL] Size specified is greater than the size of the previously existing seg-
ment. Size specified is less than the system imposed minimum, or
greater than the system imposed maximum.

[ENOENT] No shared memory segment was found matching key, and IPC CREAT
was not specified.

[ENOSPC] The system was unable to allocate enough memory to satisfy the
request.

[EEXIST] IPC CREAT and IPC EXCL were specified, and a shared memory seg-
ment corresponding to key already exists.

SEE ALSO

shmat(2), shmctl(2), shmdt(2), ftok(3)

228 Systems/C C Library

SIGACTION(2)

NAME

sigaction – software signal facilities

SYNOPSIS

#include <signal.h>

struct sigaction {
union {

void (*__sa_handler)(int);
void (*__sa_sigaction)(int, struct __siginfo *, void *);

} __sigaction_u; /* signal handler */
int sa_flags; /* see signal options below */
sigset_t sa_mask; /* signal mask to apply */

};

#define sa_handler __sigaction_u.__sa_handler
#define sa_sigaction __sigaction_u.__sa_sigaction

int
sigaction(int sig, const struct sigaction * restrict act,

struct sigaction * restrict oact);

int __abendcode(void);
int __rsncode(void);

DESCRIPTION The system defines a set of signals that may be delivered to a
process. Signal delivery resembles the occurrence of a hardware interrupt: the
signal is normally blocked from further occurrence, the current process context is
saved, and a new one is built. A process may specify a handler to which a signal
is delivered, or specify that a signal is to be ignored. A process may also specify
that a default action is to be taken by the system when a signal occurs. A signal
may also be blocked, in which case its delivery is postponed until it is unblocked.
The action to be taken on delivery is determined at the time of delivery. Normally,
signal handlers execute on the current stack of the process. This may be changed,
on a per-handler basis, so that signals are taken on a special signal stack.

Signal routines normally execute with the signal that caused their invocation
blocked, but other signals may yet occur. A global signal mask defines the set
of signals currently blocked from delivery to a process. The signal mask for a pro-
cess is initialized from that of its parent (normally empty). It may be changed with
a sigprocmask(2) call, or when a signal is delivered to the process.

Systems/C C Library 229

When a signal condition arises for a process, the signal is added to a set of signals
pending for the process. If the signal is not currently blocked by the process then it
is delivered to the process. Signals may be delivered any time a process enters the
operating system (e.g., during a system call, page fault or trap, or clock interrupt). If
multiple signals are ready to be delivered at the same time, any signals that could be
caused by traps are delivered first. Additional signals may be processed at the same
time, with each appearing to interrupt the handlers for the previous signals before
their first instructions. The set of pending signals is returned by the sigpending(2)
system call. When a caught signal is delivered, the current state of the process is
saved, a new signal mask is calculated (as described below), and the signal handler
is invoked. The call to the handler is arranged so that if the sig- nal handling routine
returns normally the process will resume execution in the context from before the
signal’s delivery. If the process wishes to resume in a different context, then it must
arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration
of the process’ signal handler (or until a sigprocmask(2) system call is made). This
mask is formed by taking the union of the current signal mask set, the signal to be
delivered, and the signal mask associated with the handler to be invoked.

The sigaction() system call assigns an action for a signal specified by sig. If act is
non-zero, it specifies an action (SIG DFL, SIG IGN, or a handler routine) and mask
to be used when delivering the specified signal. If oact is non-zero, the previous
handling information for the signal is returned to the user.

Once a signal handler is installed, it normally remains installed until another sigac-
tion() system call is made, or an execve(2) is performed. A signal-specific default
action may be reset by setting sa handler to SIG DFL. The defaults are process ter-
mination, possibly with core dump; no action; stopping the process; or continuing
the process. See the signal list below for each signal’s default action. If sa handler
is SIG DFL, the default action for the signal is to discard the signal, and if a signal is
pending, the pending signal is discarded even if the signal is masked. If sa handler is
set to SIG IGN current and pending instances of the signal are ignored and discarded.

Options may be specified by setting sa flags. The meaning of the various bits is as
follows:

SA NOCLDSTOP If this bit is set when installing a catching function for the SIGCHLD
signal, the SIGCHLD signal will be generated only when a child process exits,
not when a child process stops.

SA NOCLDWAIT If this bit is set when calling sigaction() for the SIGCHLD signal, the
system will not create zombie processes when children of the calling process
exit. If the calling process subsequently issues a wait(2) (or equivalent), it
blocks until all of the calling process’s child processes terminate, and then
returns a value of -1 with errno set to ECHILD. The same effect of avoiding
zombie cre- ation can also be achieved by setting sa handler for SIGCHLD to
SIG IGN.

230 Systems/C C Library

SA ONSTACK If this bit is set, the system will deliver the signal to the process on a
signal stack, specified with sigaltstack(2).

SA NODEFER If this bit is set, further occurrences of the delivered signal are not
masked during the execution of the handler.

SA RESETHAND If this bit is set, the handler is reset back to SIG DFL at the moment
the signal is delivered.

SA RESTART See paragraph below.

SA SIGINFO If this bit is set, the handler function is assumed to be pointed to by
the sa sigaction member of struct sigaction and should match the prototype
shown above or as below in EXAMPLES. This bit should not be set when
assigning SIG DFL or SIG IGN.

If a signal is caught during some system calls, the call may be forced to terminate
with the error EINTR, the call may return with a data transfer shorter than requested,
or the call may be restarted. Restart of pending calls is requested by setting the
SA RESTART bit in sa flags.

After a fork(2) or vfork(2) all signals, the signal mask, the signal stack, and the
restart/interrupt flags are inherited by the child.

The execve(2) system call reinstates the default action for all signals which were
caught and resets all signals to be caught on the user stack. Ignored signals remain
ignored; the signal mask remains the same; signals that restart pending system calls
continue to do so.

The following is a list of all signals with names as in the include file <signal.h>:

NAME Default Action Description
SIGHUP terminate process terminal line hangup
SIGINT terminate process interrupt program
SIGQUIT create core image quit program
SIGILL create core image illegal instruction
SIGTRAP create core image trace trap
SIGABRT create core image abort(3) call (formerly SIGIOT)
SIGEMT create core image emulate instruction executed
SIGFPE create core image floating-point exception
SIGKILL terminate process kill program
SIGBUS create core image bus error
SIGSEGV create core image segmentation violation
SIGSYS create core image non-existent system call invoked
SIGPIPE terminate process write on a pipe with no reader
SIGALRM terminate process real-time timer expired
SIGTERM terminate process software termination signal
SIGURG discard signal urgent condition present on

Systems/C C Library 231

socket
SIGSTOP stop process stop (cannot be caught or

ignored)
SIGTSTP stop process stop signal generated from

keyboard
SIGCONT discard signal continue after stop
SIGCHLD discard signal child status has changed
SIGTTIN stop process background read attempted from

control terminal
SIGTTOU stop process background write attempted to

control terminal
SIGIO discard signal I/O is possible on a descriptor

(see fcntl(2))
SIGXCPU terminate process cpu time limit exceeded (see

setrlimit(2))
SIGXFSZ terminate process file size limit exceeded (see

setrlimit(2))
SIGVTALRM terminate process virtual time alarm (see

setitimer(2))
SIGPROF terminate process profiling timer alarm (see

setitimer(2))
SIGWINCH discard signal Window size change
SIGINFO discard signal status request from keyboard
SIGUSR1 terminate process User defined signal 1
SIGUSR2 terminate process User defined signal 2
SIGDANGER terminate process
SIGTHSTOP terminate process
SIGTHCONT terminate process
SIGTRACE terminate process
SIGDCE terminate process
SIGDUMP terminate process
SIGABND terminate process ABEND was encountered
SIGPOLL terminate process
SIGIOERR terminate process

NOTE

The sa mask field specified in act is not allowed to block SIGKILL, SIGSTOP or
SIGABND. Any attempt to do so will be silently ignored.

It is good practice to make a copy of the global variable errno and restore it before
returning from the signal handler. This protects against the side effect of errno
being set by functions called from inside the signal handler.

232 Systems/C C Library

SIGABND Notes

The signal SIGABND can be used to establish a signal handler function to invoke
when an ABEND is encountered. The Dignus runtime defines the two functions
abendcode and rsncode that can be used to retrieve the ABEND and REA-

SON codes from the ABEND information. These values are only valid within the
signal handler.

Returning from a SIGABND handler restores execution at the point of the ABEND
and will result in an infinite loop if the handler remains in effect. That is, the
handler returns, the processor state is restored to the instruction that issued the
ABEND, the ABEND occurs and the signal handler is re-entered. If the state of the
SIGABND handler is SIG DFL then the ABEND will be percolated to be processed in
the normal manner.

The SA RESETHAND flag can be used to set the SIGABND to SIG DFL on entry to
the signal handler; so that the handler may be executed once and then when the
processor state is restored, normal ABEND handling will occur.

The Systems/C library issues an ABEND 978 when stack space has been exhausted.
In order to be invoked for an ABEND 978, the signal handler must be defined to
execute on the alternate signal stack; or the ABEND 978 will simply be re-issued
to percolate via normal ABEND processing.

non-POSIX signal handling

For POSIX environment programs, the system defaults to using the POSIX sig-
nal handling interfaces in z/OS. In non-POSIX environments (BATCH/TSO), the
system defaults to non-POSIX signal handling.

In non-POSIX signal handling, the TRAP(ON) option must be available to enable
recognition of SIGILL, SIGSEGV, SIGFPE and SIGABND. When TRAP is ON, the
runtime environment establishes an ESTAE exit to process these events and present
the signals to the program. When TRAP is OFF, no ESTAE is established and
normal system ABEND processing will occur without a signal being generated.

Also in a non-POSIX environment, the raise(3) function may be used to initiate
a signal within a program, but since POSIX signal handling is not enabled, the
program will not be able to receive a signal from an external process.

RETURN VALUES

The sigaction() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

Systems/C C Library 233

EXAMPLES

There are two possible prototypes the handler may match:

ANSI C:

void handler(int);

POSIX SA SIGINFO:

void handler(int, siginfo_t *info, ucontext_t *uap);

The handler function should match the SA SIGINFO prototype if the SA SIGINFO bit
is set in sa flags. It then should be pointed to by the sa sigaction member of struct
sigaction. Note that you should not assign SIG DFL or SIG IGN this way.

If the SA SIGINFO flag is not set, the handler function should match the ANSI C
prototype and be pointed to by the sa handler member of struct sigaction.

The sig argument is the signal number, one of the SIG... values from <signal.h>.

The uap argument to a POSIX SA SIGINFO handler points to an instance of
ucontext t.

ERRORS

The sigaction() system call will fail and no new signal handler will be installed if
one of the following occurs:

[EFAULT] Either act or oact points to memory that is not a valid part of the
process address space.

[EINVAL] The sig argument is not a valid signal number.

[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or
SIGSTOP.

[EINVAL] An attempt is made to ignore SIGABND.

SEE ALSO

kill(2), ptrace(2), sigaltstack(2), sigblock(2), sigpause(2), sigpending(2), sigproc-
mask(2), sigsetmask(2), sigsuspend(2), wait(2), fpsetmask(3), setjmp(3), siginter-
rupt(3), sigsetops(3), ucontext(3)

234 Systems/C C Library

STANDARDS

The sigaction() system call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.1”).

Systems/C C Library 235

SIGPENDING(2)

NAME

sigpending – get pending signals

SYNOPSIS

#include <signal.h>

int
sigpending(sigset_t *set);

DESCRIPTION

The sigpending() system call returns a mask of the signals pending for delivery to
the calling process in the location indicated by set. Signals may be pending because
they are currently masked, or transiently before delivery (although the latter case
is not normally detectable).

RETURN VALUES

The sigpending()— function returns the value 0 if successful; otherwise the value
-1 is returned and the global variable errno is set to indicate the error.

ERRORS

The sigpending() system call will fail if:

[EFAULT] The set argument specified an invalid address.

[ENOSYS] The caller is not running in a POSIX environment.

SEE ALSO

sigaction(2), sigprocmask(2), sigsuspend(2), sigsetops(2)

STANDARDS

The sigpending() system call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.1”).

236 Systems/C C Library

SIGPROCMASK(2)

NAME

sigprocmask – manipulate current signal mask

SYNOPSIS

#include <signal.h>

int
sigprocmask(int how, const sigset_t * restrict set,

sigset_t * restrict oset);

DESCRIPTION

The sigprocmask() system call examines and/or changes the current signal mask
(those signals that are blocked from delivery). Signals are blocked if they are mem-
bers of the current signal mask set.

If set is not null, the action of sigprocmask() depends on the value of the how
argument. The signal mask is changed as a function of the specified set and the
current mask. The function is specified by how using one of the following values
from ¡signal.h¿:

SIG BLOCK The new mask is the union of the current mask and the specified set.

SIG UNBLOCK The new mask is the intersection of the current mask and the comple-
ment of the specified set.

SIG SETMASK The current mask is replaced by the specified set.

If oset is not null, it is set to the previous value of the signal mask. When set is
null, the value of how is insignificant and the mask remains unset providing a way
to examine the signal mask without modification.

The system quietly disallows SIGKILL or SIGSTOP to be blocked.

RETURN VALUES

The sigprocmask() function returns the value 0 if successful; otherwise the value
-1 is returned and the global variable errno is set to indicate the error.

Systems/C C Library 237

ERRORS

The sigprocmask() system call will fail and the signal mask will be unchanged if
one of the following occurs:

[EINVAL] The how argument has a value other than those listed here.

SEE ALSO

kill(2), sigaction(2), sigpending(2), sigsuspend(2), fpsetmask(3), sigsetops(3)

STANDARDS

The sigprocmask() system call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.1”).

238 Systems/C C Library

SIGQUEUE(2)

NAME

sigqueue - queue a signal to a process.

SYNOPSIS

#include <signal.h>

int
sigqueue(pid_t pid, int signo, const union sigval value);

DESCRIPTION

The sigqueue() function causes the signal specified by signo to be sent with the
value specified by value to the process specified by pid. If signo is zero (the null
signal), error checking is performed but no signal is actually sent. The null signal
can be used to check the validity of pid.

The conditions required for a process to have permission to queue a signal to another
process are the same as for the kill(2) function. The sigqueue() function queues a
signal to a single process specified by the pid argument.

The sigqueue() system call returns immediately. If the resources were available to
queue the signal, the signal will be queued and sent to the receiving process.

If the value of pid causes signo to be generated for the sending process, and if signo
is not blocked for the calling thread and if no other thread has signo unblocked or
is waiting in a sigwait() system call for signo, either signo or at least the pending,
unblocked signal will be delivered to the calling thread before sigqueue() returns.

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

The sigqueue() system call will fail if:

Systems/C C Library 239

[EAGAIN] No resources are available to queue the signal. The process has
already queued (MAXQUEUEDSIGS) signals that are still pending
at the receiver(s), or a system-wide resource limit has been exceeded.

[EINVAL] The value of the signo argument is an invalid or unsupported signal
number.

[EPERM] The process does not have the appropriate privilege to send the
signal to the receiving process.

[ESRCH] The process pid does not exist.

SEE ALSO

kill(2), sigaction(2), sigpending(2), sigsuspend(2), sigtimedwait(2), sigwait(2), sig-
waitinfo(2), pause(3), pthread sigmask(3), siginfo(3)

STANDARDS

The sigqueue() system call conforms to IEEE Std 1003.1-2004 (”POSIX.1”).

240 Systems/C C Library

SIGSUSPEND(2)

NAME

sigsuspend – atomically release blocked signals and wait for interrupt

SYNOPSIS

#include <signal.h>

int
sigsuspend(const sigset_t *sigmask);

DESCRIPTION

The sigsuspend() system call temporarily changes the blocked signal mask to the
set to which sigmask points, and then waits for a signal to arrive; on return the
previous set of masked signals is restored. The signal mask set is usually empty to
indicate that all signals are to be unblocked for the duration of the call.

In normal usage, a signal is blocked using sigprocmask(2) to begin a critical sec-
tion, variables modified on the occurrence of the signal are examined to determine
that there is no work to be done, and the process pauses awaiting work by using
sigsuspend() with the previous mask returned by sigprocmask(2).

RETURN VALUES

The sigsuspend function requires POSIX signal handling, if POSIX signal handling
is not enabled, sigsuspend immediately returns -1 with errno set to ENOSYS.

Otherwise, the sigsuspend() system call will terminate by being interrupted, re-
turning -1 with errno set to EINTR.

SEE ALSO

sigaction(2), sigpending(2), sigprocmask(2), sigsetops(3)

STANDARDS

The sigsuspend() system call is expected to conform to ISO/IEC 9945-1:1990
(“POSIX.1”).

FreeBSD 6.2 May 16, 1995 FreeBSD 6.2

Systems/C C Library 241

SIGWAIT(2)

NAME

sigwait – select a set of signals

SYNOPSIS

#include <signal.h>

int
sigwait(const sigset_t * restrict set, int * restrict sig);

DESCRIPTION

The sigwait() system call selects a set of signals, specified by set. If none of the
selected signals are pending, sigwait() waits until one or more of the selected signals
has been generated. Then sigwait() atomically clears one of the selected signals
from the set of pending signals for the process and sets the location pointed to by
sig to the signal number that was cleared.

The signals specified by set should be blocked at the time of the call to sigwait().

IMPLEMENATION NOTES

The sigwait() function depends on POSIX signals, if they are not enabled sigwait()
immediately returns the value ENOSYS.

RETURN VALUES

If successful, sigwait() returns 0 and sets the location pointed to by sig to the
cleared signal number. Otherwise, an error number is returned.

ERRORS

The sigwait() system call will fail if:

[EINVAL] The set argument specifies one or more invalid signal numbers.

[ENOSYS] sigwait() is invoked with POSIX signals disabled.

242 Systems/C C Library

SEE ALSO

sigaction(2), sigpending(2), sigsuspend(2), pause(3), pthread sigmask(3)

STANDARDS

The sigwait() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”).

Systems/C C Library 243

SMF RECORD(2)

NAME

smf record - generate an SMF record

SYNOPSIS

#include <unistd.h>

int
__smf_record(int type, int subtype, int length, char *record);

DESCRIPTION

The smf record() function generates an SMF record in the SMF data set with
a type of type and a subtype of subtype. The record to write is is specified by the
address record and is of length characters.

The caller must be APF-authorized, or permitted to the appropriate BPX.SMF
facilty type or BPX.SMF.type.subtype resource.

For more information about SMF records consult the IBM document ”z/OS MVS
System Management Facilities (SMF)”.

For more information about creating facility authorizations, consult the IBM docu-
ment ” z/OS UNIX System Services Planning.”.

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

The smf record() system call will fail if:

[EINVAL] The value of the length operand is incorrect.

[EMVSERR] The SMF service returned a failing return code.

[ENOMEM] Insufficent storage was available.

[EPERM] Not sufficiently authorized or permission problems when accessing
the BPX.SMF resource.

244 Systems/C C Library

STAT(2)

NAME

stat, lstat, fstat - get //HFS: file status

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

int
stat(const char *path, struct stat *sb);

int
lstat(const char *path, struct stat *sb);

int
fstat(int fd, struct stat *sb);

DESCRIPTION

The stat() function obtains information about the file pointed to by path. Read,
write or execute permission of the named file is not required, but all directories
listed in the path name leading to the file must be searchable.

lstat() is similar to stat() except in the case where the named file is a symbolic
link, in which case lstat() returns information about the link, while stat() returns
information about the file the link references.

The fstat() function obtains the same information about an open file known by the
file descriptor fd.

stat() and lstat() may only be applied to //HFS:-style files. fstat() can only be
used in combination with a file descriptor associated with an //HFS:-style file.

The sb argument is a pointer to a stat() structure as defined by <sys/stat.h>
(shown below) and into which information is placed concerning the file.

struct stat {
dev_t st_dev; /* inode’s device */
ino_t st_ino; /* inode’s number */
mode_t st_mode; /* inode protection mode */
nlink_t st_nlink; /* number of hard links */

Systems/C C Library 245

uid_t st_uid; /* user ID of the file’s owner */
gid_t st_gid; /* group ID of the file’s group */
dev_t st_rdev; /* device type */

#ifndef _POSIX_SOURCE
struct timespec st_atimespec; /* time of last access */
struct timespec st_mtimespec; /* time of last data modification */
struct timespec st_ctimespec; /* time of last file status change */

#else
time_t st_atime; /* time of last access */
long st_atimensec; /* nsec of last access */
time_t st_mtime; /* time of last data modification */
long st_mtimensec; /* nsec of last data modification */
time_t st_ctime; /* time of last file status change */
long st_ctimensec; /* nsec of last file status change */

#endif
off_t st_size; /* file size, in bytes */
int64_t st_blocks; /* blocks allocated for file */
u_int32_t st_blksize; /* optimal blocksize for I/O */
u_int32_t st_flags; /* user defined flags for file */
u_int32_t st_gen; /* file generation number */

};

The time-related fields of struct stat are as follows:

st atime Time when file data last accessed. Changed by the mknod(2),
utime(2) and read(2) system calls.

st mtime Time when file data last modified. Changed by the mknod(2),
utime(2) and write(2) system calls.

st ctime Time when file status was last changed. Changed by the chmod(2),
chown(2), link(2), mknod(2), rename(2), unlink(2), utime(2) and
write(2) system calls.

If POSIX SOURCE is not defined, the time-related fields are defined as:

#ifndef _POSIX_SOURCE
#define st_atime st_atimespec.tv_sec
#define st_mtime st_mtimespec.tv_sec
#define st_ctime st_ctimespec.tv_sec
#endif

The size-related fields of struct stat are as follows:

st blksize The optimal I/O block size for the file.

246 Systems/C C Library

st blocks The actual number of blocks allocated for the file in 512-byte units.
This number may be zero.

The status information word st mode has the following bits:

#define S_IFMT 0170000 /* type of file */
#define S_IFIFO 0010000 /* named pipe (fifo) */
#define S_IFCHR 0020000 /* character special */
#define S_IFDIR 0040000 /* directory */
#define S_IFBLK 0060000 /* block special */
#define S_IFREG 0100000 /* regular */
#define S_IFLNK 0120000 /* symbolic link */
#define S_IFSOCK 0140000 /* socket */
#define S_IFWHT 0160000 /* whiteout */
#define S_ISUID 0004000 /* set user id on execution */
#define S_ISGID 0002000 /* set group id on execution */
#define S_ISVTX 0001000 /* save swapped text even after use */
#define S_IRUSR 0000400 /* read permission, owner */
#define S_IWUSR 0000200 /* write permission, owner */
#define S_IXUSR 0000100 /* execute/search permission, owner */

For a list of access modes, see <sys/stat.h>, access(2) and chmod(2).

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

stat() and lstat() will fail if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EFAULT] sb or name points to an invalid address.

Systems/C C Library 247

[EIO] An I/O error occurred while reading from or writing to the file
system.

fstat() will fail if:

[EBADF] fd is not a valid open file descriptor.

[EFAULT] sb points to an invalid address.

[EIO] An I/O error occurred while reading from or writing to the file
system.

SEE ALSO

access(2), chmod(2), chown(2), utime(2), symlink(2)

STANDARDS

The stat() and fstat() function calls are expected to conform to ISO/IEC 9945-
1:1990 (“POSIX.1”) for //HFS:-style files.

248 Systems/C C Library

STEPNAME(2)

NAME

stepname - return the current step name of the running program

SYNOPSIS

#include <machine/tiot.h>

char *
__stepname(void);

DESCRIPTION

The stepname() function returns the current JCL step name of the executing
program on MVS, OS/390 and z/OS. The value returned is a pointer to a NUL-
terminated string. Trailing blanks are removed.

stepname() returns a pointer to a static area, care should be taken to copy this
value before invoking stepname() again.

SEE ALSO

jobname(2), procname(2), userid(2)

Systems/C C Library 249

SYMLINK(2)

NAME

symlink – make symbolic link to a file

SYNOPSIS

#include <unistd.h>

int
symlink(const char *name1, const char *name2);

DESCRIPTION

A symbolic link name2 is created to name1 (name2 is the name of the file created,
name1 is the string used in creating the symbolic link). Either name may be an
//HFS:-style arbitrary path name; the files need not be on the same file system.

RETURN VALUES

The symlink() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The symbolic link succeeds unless:

[ENOTDIR] A component of the name2 prefix is not a directory.

[ENAMETOOLONG] A component of either pathname exceeded 255 characters, or the
entire length of either path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] A component of the name2 path prefix denies search permission.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EEXIST] Name2 already exists.

250 Systems/C C Library

[EIO] An I/O error occurred while making the directory entry for name2,
or allocating the inode for name2, or writing out the link contents
of name2.

[EROFS] The file name2 would reside on a read-only file system.

[ENOSPC] The directory in which the entry for the new symbolic link is being
placed cannot be extended because there is no space left on the file
system containing the directory.

[ENOSPC] The new symbolic link cannot be created because there is no space
left on the file system that will contain the symbolic link.

[EDQUOT] The directory in which the entry for the new symbolic link is being
placed cannot be extended because the user’s quota of disk blocks
on the file system containing the directory has been exhausted.

[EDQUOT] The new symbolic link cannot be created because the user’s quota
of disk blocks on the file system that will contain the symbolic link
has been exhausted.

[EDQUOT] The user’s quota of inodes on the file system on which the symbolic
link is being created has been exhausted.

[EIO] An I/O error occurred while making the directory entry or allocating
space.

[EFAULT] Name1 or name2 points outside the process’s allocated address
space.

SEE ALSO

link(2), lstat(2), readlink(2), unlink(2)

Systems/C C Library 251

SVC99(2)

NAME

svc99 - issue SVC99/DYNALLOC macro

SYNOPSIS

#include <machine/svc99.h>

int
__svc99(__S99RB *request_block_ptr);

DESCRIPTION

The svc99 function is used to execute the MVS SVC 99 or DYNALLOC interface.
This low-level operating system interface provides for dynamically allocating or deal-
locating a resource, concatenating or deconcatenating data sets, or retrieving infor-
mation about a data set.

The request block ptr points to a S99RB structure that contains the following fields:

S99RBLN Length (initialized to 20). output.

S99VERB SVC99 action code.

S99FLAG1 FLAGS action code.

S99ERROR Error code.

S99INFO Information reason code.

S99TXTPP 31-bit pointer to array of text units.

S99S99X 31-bit pointer to request block extension (RBX).

S99FLAGS2 FLAGS2 field-bit pointer to request block extension.

The request block ptr, any text units and the request block extension must be
allocated in 31-bit addressable storage. (malloc31() can be employed in 64-bit
programs to allocate 31-bit addressable storage.)

The S99TXTPP field points to an array of ”Text Units” that provide further param-
eters and information to the DYNALLOC request, e.g. DDNAME, DSNAME, DSORG,
etc...

252 Systems/C C Library

A Text Unit begins with a 2-byte key that is the code for the information. The key
is followed by a 2-byte field indicating the number of elements of the Text Unit (this
is often simply 1.) Each element is a length-prefixed ”blob” of data. The data is a
2-byte length field followed by the data bytes. This data is called the Text Unit’s
”parameter.”

The S99TXTPP field of the S99RB structure points to an array of pointers to text
units. The end of this array is marked with the high-order bit set (the VL-bit.)
Thus, the basic structure is:

S99RBptr -> S99RB

S99RB
+----------------+
| ... |
|----------------| Text Units
| S99TXTPP | ----> +-----------------+
|----------------| | 0 | TxtUnit Ptr | --> TXTUNIT #0
| ... | | --------------- |
+----------------+ ...

| 0 | TxtUnit Ptr | --> TXTUNIT #n-1
| --------------- |
| 8 | TxtUnit Ptr | --> TXTUNIT #n
+-----------------+

For more information about the DYNALLOC macro, ”Text Units” and other functions
svc99() provides - refer to the ”z/OS MVS Programm Authorized Assembler

Services Guide” from IBM.

EXAMPLES

This program dynamically allocates a file named ”MYFILE.EXAMPLE”, with an
allocation unit of TRACK, a primary quantity of 20 and a secondary quantity of 1,
with a logical record length of 80, a block size of 80 and a fixed record format.

#include <stdio.h>
#include <machine/svc99.h>

int
main(void)
{

int rc;
__S99RB request_block;
char *tus[10] = { /* array of text unit pointers */

Systems/C C Library 253

/* TU # Data Data */
/* Code Elems Len */
"\0\x02" "\0\x01" "\0\x0E" "MYFILE.EXAMPLE", /* DSN=MYFILE.EXAMPLE */
"\0\x05" "\0\x01" "\0\x01" "\x02", /* DISP=(,CATLG) */
"\0\x07" "\0\0", /* SPACE=(TRK,.. */
"\0\x0A" "\0\x01" "\0\x03" "\0\0\x14", /* primary=20 */
"\0\x0B" "\0\x01" "\0\x03" "\0\0\x01", /* secondary=1 */
"\0\x15" "\0\x01" "\0\x05" "SYSDA", /* UNIT=SYSDA */
"\0\x30" "\0\x01" "\0\x02" "\0\x50", /* BLKSIZE=80 */
"\0\x3C" "\0\x01" "\0\x02" "\x40\0", /* DSORG=PS */
"\0\x42" "\0\x01" "\0\x02" "\0\x50", /* LRECL=80 */
"\0\x49" "\0\x01" "\0\x01" "\x80" /* RECFM=F */

};

/* The last element of the Text Units array must have */
/* it’s VL-bit set */
tus[9] = (char *) (((unsigned int)tus[9]) | 0x80000000);

/* Set up the SVC99 request block */
memset(&request_block, 0, sizeof(request_block));
request_block.S99RBLEN = 20; /* always set to 20 */
request_block.S99RBVERB = S99VRBAL; /* Allocation */
request_block.S99FLAG1 |= S99NOCNV; /* Do not use an existing allocation */
request_block.S99TXTPP = tus;

rc = __svc99(&request_block);
if(rc != 0) {

printf(" SVC99 failed - Error code = %d Information code = %d\n,
request_block.S99ERROR, request_block.S99INFO);

}
}

254 Systems/C C Library

The following example demonstrates how to retrieve information about a file using
the information retrieval function of the DYNALLOC interface. It provides a function
that, given a Data Set Name displays the Data Set Organization:

#include <stdio.h>
#include <machine/svc99.h>

/*
*
* Interpret the DSORG value returned from SVC 99 Inquire DALRTORG
* query
**/
char *
DSORG_name(int dsorg)
{
switch(dsorg) {

case 0x0000: return "**UNKNOW**"; break;
case 0x0004: return "TR"; break; /* TCAM 3705 */
case 0x0008: return "VSAM"; break; /* VSAM */
case 0x0020: return "TQ"; break; /* TCAM message queue */
case 0x0040: return "TX"; break; /* TCAM line group */
case 0x0080: return "GS"; break; /* Graphics */
case 0x0200: return "PO"; break; /* Partitioned Organization */
case 0x0300: return "POU"; break; /* Partitioned Organization */

/* Unmovable */
case 0x0400: return "MQ"; break; /* Government of message */

/* transfer to or from */
/* telecommunications */
/* message processing queue */

case 0x0800: return "CQ"; break; /* Direct access message */
/* queue */

case 0x1000: return "CX"; break; /* Communication line group */
case 0x2000: return "DA"; break; /* Direct Access */
case 0x2100: return "DAU"; break; /* Direct Access Unmovable */
case 0x4000: return "PS"; break; /* Physical Sequential */
case 0x4100: return "PSU"; break; /* Physical Sequential */

/* Unmovable */
case 0x8000: return "IS"; break; /* Indexed Sequential? */
case 0x8100: return "ISU"; break; /* Indexed Sequential Unmovable?*/
default: return "???"; break;

}
}

/*
* get_DSN_org()
* Given a DS name - get the data set organization

Systems/C C Library 255

**/
get_DSN_org(char *dsn)
{

int dsorg, rc;

/* TXT UNITs */
unsigned char TUdsname[100] = {

0, DINDSNAM, /* KEY - DSNAME */
0, 1, /* # of entries (1) */
0, 0, /* length of entry (set below) */

/* remaining space used for the DSNAME (set below) */
} ;

unsigned char TUdsorg[] = {
0, DINRTORG, /* KEY - request DSORG */
0, 1, /* # of entries (1) */
0, 2, /* parm length of 2 */
0, 0 /* the parm bytes */

} ;

/* TXT units array */
unsigned char **TextUnits[] = { TUdsname,

(char **)(((int)TUdsorg) | 0x80000000) /* VL-bit */
};

__S99RBX request_block_extension = {
"S99RBX",
0x01,
0x00, /* No messages */

} ;

__S99RB request_block = {
20, /* length - always 20 */
S99VRBIN, /* S99VERB - Inquire function */
0, /* S99FLAG1 */
0, /* S99ERROR */
0, /* S99INFO */
&TextUnits, /* S99TXTPP */
&request_block_extension, /* S99S99X */
0 /* S99FLAG2 */

} ;

/* Set the DS NAME - up to 94 characters, blank padded */
/* IBM allows 44 characters here, but we have extra */
/* space to allow the user to use quotes, etc.. */
{
int i, len;

256 Systems/C C Library

char *cp;
i=0;
len = 0;
cp = dsn;
while(*cp) {

if(i<94) {
TUdsname[i+6] = *cp;
i++;
len++;

}
cp++;

}
/* blank pad remaining bytes */
for(;i<94;i++) TUdsname[i+6] = ’ ’;

/* Set the length of the TU data */
TUdsname[4] = (len >> 8);
TUdsname[5] = len;

}

rc = __svc99(&request_block);
if(rc == 0 && request_block_extension.S99EERR == 0 &&

request_block_extension.S99EINFO == 0) {
/* Get the DSORG flag from the DINRTORG TextUnit */

/* DYNALLOC doesn’t fail the request if it can’t */
/* determine the DSORG, so you should check the Request Block */
/* Extension. */

dsorg = (TUdsorg[6] << 8) | TUdsorg[7];
printf("get_DSN_org(\"%s\") - returned DSORG is 0x%04x (%s)\n",

dsn, dsorg, DSORG_name(dsorg));
} else {

printf("get_DSN_org(\"%s\") - SVC99 failed - rc is %d\n", dsn, rc);
printf(" S99ERROR is 0x%04x\n", request_block.S99ERROR);
if(request_block.S99ERROR == 0x0440) {

/* DSN or Pathname not found */
printf(" DSN not found\n");

}
printf(" S99INFO is 0x%04x\n", request_block.S99INFO);
printf(" S99EERR is 0x%04x\n", request_block_extension.S99EERR);
printf(" S99EINFO is 0x%04x\n", request_block_extension.S99EINFO);

}
}

Systems/C C Library 257

RETURN VALUES

The svc99() function returns the value 0 if successful; -1 on error, otherwise it
returns the return code from the SVC 99 invocation.

In a 64-bit environment, svc99() verifies that the given request block address is
in 31-bit addressable; if not it returns -1.

ISSUES

The svc99 function is only available on z/OS.

SEE ALSO

”z/OS MVS Programm Authorized Assembler Services Guide”, malloc31(3),
dynall(2).

258 Systems/C C Library

SYNC(2)

NAME

sync - schedule //HFS: filesystem updates

SYNOPSIS

#include <unistd.h>

void
sync(void);

DESCRIPTION

The sync() function forces a write of dirty (modified) file system buffers in memory
cache out to disk. The operating system keeps this information in memory to reduce
the number of disk I/O transfers required by the system.

The function fsync(2) may be used to synchronize individual file descriptors for
//HFS:-style files.

sync() schedules the write of file system updates, and may return before all writing
is complete.

RETURN VALUES

The sync() function returns the value 0 if successful; otherwise the value -1 is
returned.

SEE ALSO

fsync(2)

Systems/C C Library 259

TRUNCATE(2)

NAME

truncate, ftruncate - truncate or extend a file to a specified length

SYNOPSIS

#include <unistd.h>

int
truncate(const char *path, off_t length);

int
ftruncate(int fd, off_t length);

DESCRIPTION

truncate() causes the file named by path or referenced by fd to be truncated or
extended to length bytes in size. If the file was larger than this size, the extra data
is lost. If the file was smaller than this size, it will be extended as if by writing bytes
with the value zero. With ftruncate(), the file must be open for writing.

For non-//HFS:-style names, truncate() is implemented by opening the file and
invoking ftruncate().

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

truncate() succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

260 Systems/C C Library

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] The named file is not writable by the user.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EISDIR] The named file is a directory.

[EROFS] The named file resides on a read-only file system.

[EIO] An I/O error occurred updating the file.

[EFAULT] Path points outside the process’s allocated address space.

ftruncate() succeeds unless:

[EBADF] The fd is not a valid descriptor.

[EINVAL] The fd references a socket, not a file.

[EINVAL] The fd is not open for writing.

[EIO] An I/O error occurred updating the file.

SEE ALSO

open(2)

ISSUES

Use of truncate() to extend a file is not portable.

Systems/C C Library 261

UMASK(2)

NAME

umask – set file creation mode mask for //HFS:-style files

SYNOPSIS

#include <sys/stat.h>

mode_t
umask(mode_t numask);

DESCRIPTION

The umask() function sets the process’s file mode creation mask to numask and
returns the previous value of the mask. The 9 low-order access permission bits of
numask are used by system calls, including open(2), mkdir(2), and mkfifo(2), to turn
off corresponding bits requested in file mode for //HFS:-style files. (See chmod(2)).
This clearing allows each user to restrict the default access to his files.

Child POSIX processes inherit the mask of the calling process.

RETURN VALUES

If OpenEdition services are available, the previous value of the file mode mask is
returned. Otherwise, a value of zero is returned.

ERRORS

If OpenEdition services are not available, umask() returns a value of zero and sets
errno to ENOSYS.

ISSUES

Unfortunately, there is no way to distinguish a return value of 0 from an intended
file mask value of 0. In typical POSIX implementations, umask() cannot fail.

262 Systems/C C Library

UNLINK(2)

NAME

unlink – remove HFS: directory entries or //DSN: files

SYNOPSIS

#include <unistd.h>

int
unlink(const char *path);

DESCRIPTION

For //HFS:-style files, the unlink() function removes the link named by path from
its directory and decrements the link count of the file which was referenced by the
link. If that decrement reduces the link count of the file to zero, and no process
has the file open, then all resources associated with the file are reclaimed. If one or
more process have the file open when the last link is removed, the link is removed,
but the removal of the file is delayed until all references to it have been closed. path
may not be a directory.

For //DSN:-style files, the unlink() function removes the entry by invoking the OS
DYNALLOC service to allocate a the entry with a disposition of DELETE. unlink()
then uses DYNALLOC to un-allocate the file, causing it to be deleted.

unlink() is only supported for //HFS: and //DSN:-style file names.

RETURN VALUES

The unlink() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The unlink() succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

Systems/C C Library 263

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] Write permission is denied on the directory containing the link to
be removed.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EPERM] The named file is a directory.

[EPERM] The directory containing the file is marked sticky, and neither the
containing directory nor the file to be removed are owned by the
effective user ID.

[EBUSY] The entry to be unlinked is the mount point for a mounted file
system.

[EIO] An I/O error occurred while deleting the directory entry or deallo-
cating the inode.

[EIO] The DYNALLOC service failed for //DSN:-style files.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the process’s allocated address space.

SEE ALSO

close(2), link(2), rmdir(2)

ISSUES

The unlink() function only supports un-linking of //DSN: or //HFS:-style files.

264 Systems/C C Library

UNLOCKPT(2)

NAME

unlockpt - pseudo-terminal access function

SYNOPSIS

#include <stdlib.h>

int
unlockpt(int filedes);

DESCRIPTION

The unlockpt() unlocks a slave pseudoterminal from its master counterpart, allow-
ing the slave to opened. filedes is a file descriptor that is the result of an open(2) of
the master pseudoterminal.

Secure connections can be provided by using grantpt(2) and unlockpt(), or by
simply issuing the first open against the slave pseudoterminal from the userid or
process that opened the master terminal.

RETURN VALUES

If successful, unlockpt() returns the value 0, otherwise a -1 is returned and the
global variable errno is set to indicate the error.

ERRORS

unlockpt() will fail if:

[EACCESS] Either a grantpt(2) has not yet been issued, or unlockpt() has
already been issued.

[EBADF] filedes is invalid, or was not opened for writing

[EINVAL] filedes is not a master pseudoterminal

SEE ALSO

grantpt(2), ptsname(3)

Systems/C C Library 265

USERID(2)

NAME

userid - return the current user name

SYNOPSIS

#include <machine/tiot.h>

char *
__userid(void);

DESCRIPTION

The userid() function returns the current user name of the executing program
on OS/390 and z/OS. The value returned is a pointer to a NUL-terminated string.
Trailing blanks are removed from the name returned by the system.

userid() returns a pointer to a static area, care should be taken to copy this value
before invoking userid() again.

RETURN VALUES

If successful, userid() returns a pointer to a static area that contains the current
used id. If the user id is unavailable, userid() returns NULL.

SEE ALSO

jobname(2), stepname(2), procname(2)

266 Systems/C C Library

UTIMES(2)

NAME

utimes, futimes - set //HFS: file access and modification times

SYNOPSIS

#include <sys/time.h>

int
utimes(const char *path, const struct timeval *times);

int
futimes(int fd, const struct timeval *times);

DESCRIPTION

The access and modification times of the //HFS: file named by path or referenced
by fd are changed as specified by the argument times.

If times is NULL, the access and modification times are set to the current time. The
caller must be the owner of the file, have permission to write the file, or be the
super-user.

If times is non-NULL, it is assumed to point to an array of two timeval structures.
The access time is set to the value of the first element, and the modification time is
set to the value of the second element. The caller must be the owner of the file or
be the super-user.

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

utimes() will fail if:

[EACCES] Search permission is denied for a component of the path prefix; or
the times argument is NULL and the effective user ID of the process
does not match the owner of the file, and is not the super-user, and
write access is denied.

Systems/C C Library 267

[EFAULT] path or times points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading or writing the affected inode.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[ENAMETOOLONG] A component of a pathname exceeded NAME MAX characters, or an
entire path name exceeded PATH MAX characters.

[ENOENT] The named file does not exist.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The times argument is not NULL and the calling process’s effective
user ID does not match the owner of the file and is not the super-
user.

[EROFS] The file system containing the file is mounted read-only.

futimes() will fail if:

[EBADF] fd does not refer to a valid descriptor.

Either function will fail if:

[EACCES] The times argument is NULL and the effective user ID of the process
does not match the owner of the file, and is not the super-user, and
write access is denied.

[EFAULT] times points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading or writing the affected file
information.

[EPERM] The times argument is not NULL and the calling process’s effective
user ID does not match the owner of the file and is not the super-
user.

[EROFS] The file system containing the file is mounted read-only.

SEE ALSO

stat(2), utime(3)

268 Systems/C C Library

VFORK(2)

NAME

vfork – spawn new process in a virtual memory efficient way

SYNOPSIS

#include <unistd.h>

pid_t
vfork(void);

DESCRIPTION

The vfork() system call can be used to create new processes without fully copy-
ing the address space of the old process. It is useful when the purpose of fork(2)
would have been to create a new system context for an execve(2). The vfork()
function differs from fork(2) in that the child may ”borrow” the parent’s memory
and thread of control until a call to execve(2) or an exit (either by a call to exit(2)
or abnormally). The parent process may be suspended while the child is using its
resources.

The vfork() system call returns 0 in the child’s context and (later) the pid of the
child in the parent’s context.

The vfork() system call can normally be used just like fork(2). It does not work,
however, to return while running in the child’s context from the procedure that
called vfork() since the eventual return from vfork() would then return to a no
longer existent stack frame. The only function calls allowed in the child process are
an execve(2) to load a new program image or exit(2) to exit the child.

RETURN VALUES

Same as for fork(2).

SEE ALSO

execve(2), manref exit2, manreffork2, manrefwait2, manrefexit3

Systems/C C Library 269

ISSUES

The vfork() function has been marked as obsolete and may be removed from future
standards. Portable programs should use the fork(2) function.

270 Systems/C C Library

WAIT(2)

NAME

wait, waitpid, wait3 - wait for process termination

SYNOPSIS

#include <sys/types.h>
#include <sys/wait.h>

pid_t
wait(int *status);

#include <sys/time.h>
#include <sys/resource.h>

pid_t
waitpid(pid_t wpid, int *status, int options);

pid_t
wait3(int *status, int options, struct rusage *rusage);

DESCRIPTION

The wait() function suspends execution of its calling process until status information
is available for a terminated child process, or a signal is received. On return from a
successful wait() call, the status area contains termination information about the
process that exited as defined below.

For waitpid() the wpid parameter specifies the set of child processes for which to
wait. If wpid is -1, the call waits for any child process. If wpid is 0, the call waits
for any child process in the process group of the caller. If wpid is greater than zero,
the call waits for the process with process id wpid. If wpid is less than -1, the call
waits for any process whose process group id equals the absolute value of wpid.

For waitpid() and wait3(), the status parameter is defined below. The options
parameter contains the bitwise OR of any of the following options. The WNOHANG
option is used to indicate that the call should not block if there are no processes
that wish to report status. If the WUNTRACED option is set, children of the current
process that are stopped due to a SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP
signal also have their status reported.

For wait3(), if rusage is non-zero, a summary of the resources used by the termi-
nated process and all its children is returned.

Systems/C C Library 271

When the WNOHANG option is specified and no processes wish to report status,
wait3() returns a process id of 0.

The wait() call is identical to waitpid() with an options value of zero.

The following macros may be used to test the manner of exit of the process. One
of the first three macros will evaluate to a non-zero (true) value:

WIFEXITED(status) True if the process terminated normally by a call to exit(2) or
exit(3).

WIFSIGNALED(status) True if the process terminated due to receipt of a signal.

WIFSTOPPED(status) True if the process has not terminated, but has stopped and
can be restarted. This macro can be true only if the wait call speci-
fied the WUNTRACED option or if the child process is being traced.

Depending on the values of those macros, the following macros produce the remain-
ing status information about the child process:

WEXITSTATUS(status) If WIFEXITED(status) is true, evaluates to the low-order 8
bits of the argument passed to exit(2) or exit(3) by the child.

WTERMSIG(status) If WIFSIGNALED(status) is true, evaluates to the number of the
signal that caused the termination of the process.

WCOREDUMP(status) If WIFSIGNALED(status) is true, evaluates as true if the termi-
nation of the process was accompanied by the creation of a core file
containing an image of the process when the signal was received.

WSTOPSIG(status) If WIFSTOPPED(status) is true, evaluates to the number of the
signal that caused the process to stop.

NOTES

A status of 0 indicates normal termination.

If a parent process terminates without waiting for all of its child pro- cesses to
terminate, the remaining child processes are assigned the par- ent process 1 ID (the
init process ID).

If a signal is caught while any of the wait() calls are pending, the call may be
interrupted or restarted when the signal-catching routine returns, depending on the
options in effect for the signal.

272 Systems/C C Library

RETURN VALUES

If wait() returns due to a stopped or terminated child process, the process ID of
the child is returned to the calling process. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

If wait3(), or waitpid() returns due to a stopped or terminated child process, the
process ID of the child is returned to the calling process. If there are no children not
previously awaited, -1 is returned with errno set to ECHILD. Otherwise, if WNOHANG
is specified and there are no stopped or exited children, 0 is returned. If an error is
detected or a caught signal aborts the call, a value of -1 is returned and errno is
set to indicate the error.

ERRORS

wait() will fail and return immediately if:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EFAULT] The status or rusage arguments point to an illegal address. (May
not be detected before exit of a child process.)

[EINTR] The call was interrupted by a caught signal, or the signal did not
have the SA RESTART flag set.

STANDARDS

The wait() and waitpid() functions are defined by POSIX; wait3() is not specified
by POSIX. The WCOREDUMP() macro is an extension to the POSIX interface.

SEE ALSO

exit(2), exit(3)

Systems/C C Library 273

WRITE(2)

NAME

write, pwrite - write output

SYNOPSIS

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>

size_t
write(int d, const void *buf, size_t nbytes)

ssize_t
pwrite(int d, const void *buf, size_t nbytes, off_t offset);

DESCRIPTION

write() attempts to write nbytes of data to the object referenced by the descriptor
d from the buffer pointed to by buf.

On objects capable of seeking, the write() starts at a position given by the pointer
associated with d, see lseek(2). Upon return from write(), the pointer is incre-
mented by the number of bytes which were written.

Objects that are not capable of seeking always write from the current position. The
value of the pointer associated with such an object is undefined.

When using non-blocking I/O on objects such as sockets that are subject to flow
control, or when the file is opened with O RECIO flag, write() may write fewer bytes
than requested; the return value must be noted, and the remainder of the operation
should be retried when possible.

IMPLEMENTATION NOTES

When writing to objects which have been opened in O TEXT mode (the default in the
Systems/C library), and the associated file is a record-structured file (non //HFS:
and non-socket), records are padded with blanks after a new-line is encountered up to
the record length. If the record if completely filled before a new-line is encountered,
the record is completed and subsequent text appears on the next record, i.e. text
“wraps around”. Any padding bytes added are not reflected in the return value. If

274 Systems/C C Library

the lrecl of the file is 1 , writes are performed as if the file had been opened with
O BINARY specified.

If the file descriptor has been opened with O RECIO flag, then the write operation
is performed using “record I/O”. In this situation, the operation will write only
record length bytes, any bytes in the buffer past the record length are discarded. If
the output file is a variable-length record, then the write will generate the proper
record-length specification based on the nbytes specified. For files with a fixed record
length, if nbytes specifies a value smaller than the record length, the remainder of
the record is filled with NUL (zero) bytes. Also note that a write of zero bytes to
a variable record length file when using “record I/O” will generate a record with a
zero record length. Care should be taken to ensure that is the desired result as other
programs that read the file may be confused by the zero record length record. After
the write operation, the file pointer will be advanced to start of the next record.

The pwrite() function is only supported for HFS files.

RETURN VALUES

Upon successful completion the number of bytes which were written is returned.
Otherwise a -1 is returned and the global variable errno is set to indicate the error.

ERRORS

write() will fail and the file pointer will remain unchanged if:

[EAGAIN] The file was marked for non-blocking I/O, and no data could be
written immediately.

[EBADF] d is not a valid descriptor open for writing.

[EDQUOT] The user’s quota of disk blocks on the file system containing the file
has been exhausted.

[EINVAL] The pointer associated with d was negative.

[EIO] An I/O error occurred while reading from or writing to the file
system.

[ENOSPC] There is no free space remaining on the file system containing the
file.

[ENXIO] The file is not a supported I/O format.

The pwrite() function may also return the following errors:

Systems/C C Library 275

[EINVAL] The offset value was negative.

[ESPIPE] The file descriptor is associated with a pipe, socket, or FIFO.

[ENXIO] The file does not support the operation, or the request was outside
the capabilities of the device.

SEE ALSO

fcntl(2), lseek(2), open(2)

STANDARDS

The write() function call is expected to conform to IEEE Std1003.1-1990
(“POSIX”), as close as the host file system makes possible.

276 Systems/C C Library

TCP/IP related functions

The functions described here are related to the TCP/IP implementation in the
Systems/C library.

The functions described here are implemented in terms of the IBM TCP/IP im-
plementation on OS/390. The descriptions include features which may not yet be
available on that implementation (e.g. the address family AF UNIX is not supported
in IBM’s implementation.) The description of these features are provided for com-
pleteness.

Systems/C C Library 277

ACCEPT(2)

NAME

accept - accept a connection on a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
accept(int s, struct sockaddr *addr, socklen_t *addrlen)

DESCRIPTION

The argument s is a socket that has been created with socket(2), bound to an
address with bind(2), and is listening for connections after a listen(2). The accept()
argument extracts the first connection request on the queue of pending connections,
creates a new socket with the same properties of s and allocates a new file descriptor
for the socket. If no pending connections are present on the queue, and the socket is
not marked as non-blocking, accept() blocks the caller until a connection is present.
If the socket is marked non-blocking and no pending connections are present on the
queue, accept() returns an error as described below. The accepted socket may not
be used to accept more connections. The original socket s remains open.

The argument addr is a result parameter that is filled in with the address of the con-
necting entity, as known to the communications layer.The exact format of the addr
parameter is determined by the domain in which the communication is occurring.
The addrlen is a value-result parameter; it should initially contain the amount of
space pointed to by addr; on return it will contain the actual length (in bytes) of the
address returned. This call is used with connection-based socket types, currently
with SOCK STREAM.

It is possible to select(2) a socket for the purposes of doing an accept() by selecting
it for read.

For certain protocols which require an explicit confirmation, such as ISO or
DATAKIT, accept() can be thought of as merely dequeueing the next connection
request and not implying confirmation. Confirmation can be implied by a normal
read or write on the new file descriptor, and rejection can be implied by closing the
new socket.

One can obtain user connection request data without confirming the connection by
issuing a recvmsg(2) call with an msg iovlen of 0 and a nonzero msg controllen,

278 Systems/C C Library

or by issuing a getsockopt(2) request. Similarly,one can provide user connection
rejection information by issuing a sendmsg(2) call with providing only the control
information, or by calling setsockopt(2).

RETURN VALUES

The call returns -1 on error. If it succeeds, it returns a non-negative integer that is
a descriptor for the accepted socket.

ERRORS

The accept() will fail if:

[EBADF] The descriptor is invalid.

[EINTR] The accept() operation was interrupted.

[EMFILE] The per-process descriptor table is full.

[ENFILE] The system file table is full.

[ENOTSOCK] The descriptor references a file, not a socket.

[EINVAL] listen(2) has not been called on the socket descriptor.

[EFAULT] The addr parameter is not in a writable part of the user address
space.

[EWOULDBLOCK] The socket is marked non-blocking and no connections are present
to be accepted.

SEE ALSO

bind(2), connect(2), getpeername(2), listen(2), select(2), socket(2)

Systems/C C Library 279

BIND(2)

NAME

bind - assign a local protocol address to a socket.

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
bind(int s, const struct sockaddr *addr, socklen_t addrlen)

DESCRIPTION

bind() assigns the local protocol address to a socket. When a socket is created with
socket(2) it exists in an address family space but has no protocol address assigned.
bind() requests that addr be assigned to the socket.

NOTES

Binding an address in the UNIX domain creates a socket in the file system that
must be deleted by the caller when it is no longer needed (using unlink(2)). UNIX
domain sockets are currently unsupported in IBM’s TCP/IP implementation, on
which the Systems/C library is based. The documentation related to UNIX domain
sockets is included for completeness.

The rules used in address binding vary between communication domains.

RETURN VALUES

If the bind is successful, a 0 value is returned. A return value of -1 indicates an
error, which is further specified in the global errno.

ERRORS

The bind() call will fail if:

[EBADF] s is not a valid descriptor.

280 Systems/C C Library

[ENOTSOCK] s is not a socket.

[EADDRNOTAVAIL] The specified address is not available from the local machine.

[EADDRINUSE] The specified address is already in use.

[EACCES] The requested address is protected, and the current user has inad-
equate permission to access it.

[EFAULT] The addr parameter is not in a valid part of the user address space.

The following errors are specific to binding addresses in the UNIX domain.

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] A prefix component of the path name does not exist.

[ELOOP] Too many symbolic links were encountered in translating thepath-
name.

[EIO] An I/O error occurred while making the directory entry or allocating
the inode.

[EROFS] The name would reside on a read-only file system.

[EISDIR] An empty pathname was specified.

SEE ALSO

connect(2), getsockname(2), listen(2), socket(2)

Systems/C C Library 281

CONNECT(2)

NAME

connect - initiate a connection on a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
connect(int s, const struct sockaddr *name, socklen_t namelen)

DESCRIPTION

The parameter s is a socket. If it is of type SOCK DGRAM, this call specifies the peer
with which the socket is to be associated; this address is that to which datagrams
are to be sent, and the only address from which datagrams are to be received. If the
socket is of type SOCK STREAM, this call attempts to make a connection to another
socket.

The other socket is specified by name, which is an address in the communications
space of the socket. Each communications space interprets the name parameter
in its own way. Generally, stream sockets may successfully connect() only once;
datagram sockets may use connect() multiple times to change their association.
Datagram sockets may dissolve the association by connecting to an invalid address,
such as a null address.

RETURN VALUES

If the connection or binding succeeds, 0 is returned. Otherwise a -1 is returned,
and a more specific error code is stored in errno.

ERRORS

The connect() call fails if:

[EBADF] s is not a valid descriptor.

[ENOTSOCK] s is a descriptor for a file, not a socket.

282 Systems/C C Library

[EADDRNOTAVAIL] The specified address is not available on this machine.

[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this
socket.

[EISCONN] The socket is already connected.

[ETIMEDOUT] connection establishment timed out without establishing a connec-
tion.

[ECONNREFUSED] The attempt to connect was forcefully rejected.

[ENETUNREACH] The network isn’t reachable from this host.

[EADDRINUSE] The address is already in use.

[EFAULT] The name parameter specifies an area outside the process address
space.

[EINPROGRESS] The socket is non-blocking and the connection cannot be completed
immediately. It is possible to select(2) for completion by selecting
the socket for writing.

[EALREADY] The socket is non-blocking and a previous connection attempt has
not yet been completed.

The following errors are specific to connecting names in the UNIX domain. These
errors may not apply in future versions of the UNIX IPC domain. Also, they are
not currently support in the IBM TCP/IP implementation.

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named socket does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] Write access to the named socket is denied.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

SEE ALSO

accept(2), getpeername(2), getsockname(2), select(2), socket(2)

Systems/C C Library 283

GETCLIENTID(2)

NAME

getclientid - get the identifier for the calling application

SYNOPSIS

#include <sys/socket.h>
#include <sys/types.h>

int getclientid(int domain, struct clientid *clientid);

int __getclientid(int domain, struct clientid *clientid);

DESCRIPTION

The getclientid() function call returns the identifier by which the calling appli-
cation is known to the TCP/IP address space. The clientid can be used in the
givesocket(2) and takesocket(2) calls. However, this function is supplied for use by
existing programs that depend on the address space name returned.

domain is the address domain requested.

clientid as a pointer to the struct clientid to be filled.

The getclientid() function returns the process identifier (PID) format of the
clientid structure. This version provides improved performance and integrity over
the getclientid() function. getclientid() is only available if BPX sockets are
being used.

See givesocket(2) for more information regarding the clientid structure.

RETURN VALUES

On success, getclientid() returns 0. getclientid() returns -1 on failure and sets
errno to indicate the error:

[EFAULT] clientid points outside the caller’s allocated address space.

[ENOSYS] getclientid was invoked when the EZASMI socket interface was
being used.

284 Systems/C C Library

GETHOSTID(2)

NAME

gethostid - get unique identifier of current host

SYNOPSIS

#include <unistd.h>

long
gethostid(void)

DESCRIPTION

gethostid() returns the 32-bit identifier for the current host. Historically, this has
been the unique DARPA internet address for the local machine.

RETURN VALUES

If the call fails, a value of -1 is returned and an error code may be placed in the
global location errno. However, -1 is also a valid host id value.

ERRORS

The following errors may be returned by gethostid():

[ENOMEM] There is inadequate memory to initialize the TCP/IP system

[EINVAL] The TCP/IP subsystem name is invalid

[ENOSYS] The TCP/IP system is not available

SEE ALSO

gethostname(2)

Systems/C C Library 285

ISSUES

32 bits for the unique identifier is too small. On UNIX systems, the return value -1
is not reserved; furthermore, -1 may be a correct return value for the host identifier.
errno should be set to zero before the call to gethostid() and then examined if
gethostid() return -1.

286 Systems/C C Library

GETHOSTNAME(2)

NAME

gethostname - get name of current host

SYNOPSIS

#include <unistd.h>

int
gethostname(char *name, int namelen)

DESCRIPTION

gethostname() returns the standard host name for the current host.. The pa-
rameter namelen specifies the size of the name array. The returned name is null-
terminated unless insufficient space is provided.

RETURN VALUES

If the call succeeds a value of 0 is returned. If the call fails, a value of -1 is returned
and an error code is placed in the global location errno.

ERRORS

The following errors may be returned by gethostname():

[EFAULT] The name or namelen parameter gave an invalid address.

SEE ALSO

gethostid(2)

ISSUES

Host names are limited to MAXHOSTNAMELEN (from <sys/param.h>) characters, cur-
rently 256.

Systems/C C Library 287

GETPEERNAME(2)

NAME

getpeername - get name of connected peer

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
getpeername(int s, struct sockaddr *name, socklen_t *namelen)

DESCRIPTION

getpeername() returns the name of the peer connected to socket s. The namelen
parameter should be initialized to indicate the amount of space pointed to by name.
On return it contains the actual size of the name returned (in bytes). The name is
truncated if the buffer provided is too small.

RETURN VALUES

A 0 is returned if the call succeeds, -1 if it fails.

ERRORS

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to perform the
operation.

[EFAULT] The name parameter points to memory not in a valid part of the
process address space.

SEE ALSO

accept(2), bind(2), getsockname(2), socket(2)

288 Systems/C C Library

GETSOCKNAME(2)

NAME

getsockname - get socket name

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
getsockname(int s, struct sockaddr *name, socklen_t *namelen)

DESCRIPTION

getsockname() returns the current name for the specified socket. The namelen
parameter should be initialized to indicate the amount of space pointed to by name.
On return it contains the actual size of the name returned (in bytes).

RETURN VALUES

A 0 is returned if the call succeeds, -1 if it fails.

ERRORS

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOBUFS] Insufficient resources were available in the system to perform the
operation.

[EFAULT] The name parameter points to memory not in a valid part of the
process address space.

SEE ALSO

bind(2), getpeername(2), socket(2)

Systems/C C Library 289

ISSUES

Names bound to sockets in the UNIX domain are inaccessible; getsockname()
returns a zero length name.

290 Systems/C C Library

GETSOCKOPT(2)

NAME

getsockopt, setsockopt - get and set options on sockets

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
getsockopt(int s, int level, int optname,
void *optval, socklen_t *optlen)

int
setsockopt(int s, int level, int optname,
const void *optval, socklen_t optlen)

DESCRIPTION

getsockopt() and setsockopt() manipulate the options associated with a socket.
Options may exist at multiple protocol levels; they are always present at the upper-
most “socket” level.

When manipulating socket options the level at which the option resides and the
name of the option must be specified. To manipulate options at the socket level,
level is specified as SOL SOCKET. To manipulate options at any other level the protocol
number of the appropriate protocol controlling the option is supplied. For example,
to indicate that an option is to be interpreted by the TCP protocol, level should be
set to the protocol number of TCP; see getprotoent(3)

The parameters optval and optlen are used to access option values for setsockopt().
For getsockopt() they identify a buffer in which the value for the requested op-
tion(s) are to be returned. For getsockopt(), optlen is a value-result parameter,
initially containing the size of the buffer pointed to by optval, and modified on return
to indicate the actual size of the value returned. If no option value is to be supplied
or returned, optval may be NULL.

optname and any specified options are passed uninterpreted to the appropriate pro-
tocol module for interpretation. The include file <sys/socket.h> contains defini-
tions for socket level options, described below. Options at other protocol levels vary
in format and name.

Systems/C C Library 291

Most socket-level options utilize an int parameter for optval. For setsockopt(),
the parameter should be non-zero to enable a boolean option, or zero if the op-
tion is to be disabled. SO LINGER uses a struct linger parameter, defined in
<sys/socket.h>, which specifies the desired state of the option and the linger inter-
val (see below). SO SNDTIMEO and SO RCVTIMEO use a struct timeval parameter,
defined in <sys/time.h>.

The following options are recognized at the socket level. Except as noted, each may
be examined with getsockopt() and set with setsockopt().

SO DEBUG enables recording of debugging information

SO REUSEADDR enables local address reuse

SO REUSEPORT enables duplicate address and port bindings

SO KEEPALIVE enables keep connections alive

SO DONTROUTE enables routing bypass for outgoing messages

SO LINGER linger on close if data present

SO BROADCAST enables permission to transmit broadcast messages

SO OOBINLINE enables reception of out-of-band data in band

SO SNDBUF set buffer size for output

SO RCVBUF set buffer size for input

SO SNDLOWAT set minimum count for output

SO RCVLOWAT set minimum count for input

SO SNDTIMEO set timeout value for output

SO RCVTIMEO set timeout value for input

SO TYPE get the type of the socket (get only)

SO ERROR get and clear error on the socket (get only)

SO DEBUG enables debugging in the underlying protocol modules. SO REUSEADDR
indicates that the rules used in validating addresses supplied in a bind(2) call should
allow reuse of local addresses. SO REUSEPORT allows completely duplicate bindings
by multiple processes if they all set SO REUSEPORT before binding the port. This
option permits multiple instances of a program to each receive UDP/IP multicast
or broadcast datagrams destined for the bound port. SO KEEPALIVE enables the
periodic transmission of messages on a connected socket. Should the connected
party fail to respond to these messages, the connection is considered broken and
processes using the socket are notified via a SIGPIPE signal when attempting to send
data. SO DONTROUTE indicates that outgoing messages should bypass the standard

292 Systems/C C Library

routing facilities. Instead, messages are directed to the appropriate network interface
according to the network portion of the destination address.

SO LINGER controls the action taken when unsent messages are queued on socket
and a close(2) is performed. If the socket promises reliable delivery of data and
SO LINGER is set, the system will block the process on the close(2) attempt until it
is able to transmit the data or until it decides it is unable to deliver the information
(a timeout period, termed the linger interval, is specified in seconds in the setsock-
opt() call when SO LINGER is requested). If SO LINGER is disabled and a close(2)
is issued, the system will process the close in a manner that allows the process to
continue as quickly as possible.

The option SO BROADCAST requests permission to send broadcast datagrams on the
socket. Broadcast was a privileged operation in earlier versions of some systems.
With protocols that support out-of-band data, the SO OOBINLINE option requests
that out-of-band data be placed in the normal data input queue as received; it will
then be accessible with recv(2) or read(2) calls without the MSG OOB flag. Some
protocols always behave as if this option is set. SO SNDBUF and SO RCVBUF are
options to adjust the normal buffer sizes allocated for output and input buffers,
respectively. The buffer size may be increased for high-volume connections, or may
be decreased to limit the possible backlog of incoming data.

SO SNDLOWAT is an option to set the minimum count for output operations. Most
output operations process all of the data supplied by the call, delivering data to the
protocol for transmission and blocking as necessary for flow control. Nonblocking
output operations will process as much data as permitted subject to flow control
without blocking, but will process no data if flow control does not allow the smaller
of the low water mark value or the entire request to be processed. A select(2)
operation testing the ability to write to a socket will return true only if the low
water mark amount could be processed. The default value for SO SNDLOWAT is set
to a convenient size for network efficiency, often 1024. SO RCVLOWAT is an option
to set the minimum count for input operations. In general, receive calls will block
until any (non-zero) amount of data is received, then return with the smaller of the
amount available or the amount requested. The default value for SO RCVLOWAT is
1. If SO RCVLOWAT is set to a larger value, blocking receive calls normally wait until
they have received the smaller of the low water mark value or the requested amount.
Receive calls may still return less than the low water mark if an error occurs, a signal
is caught, or the type of data next in the receive queue is different from that which
was returned.

SO SNDTIMEO is an option to set a timeout value for output operations. It accepts
a struct timeval parameter with the number of seconds and microseconds used
to limit waits for output operations to complete. If a send operation has blocked
for this much time, it returns with a partial count or with the error EWOULDBLOCK
if no data were sent. In the current implementation, this timer is restarted each
time additional data are delivered to the protocol, implying that the limit applies
to output portions ranging in size from the low water mark to the high water mark
foroutput. SO RCVTIMEO is an option to set a timeout value for input operations. It

Systems/C C Library 293

accepts a struct timeval parameter with the number of seconds and microseconds
used to limit waits for input operations to complete. In the current implementation,
this timer is restarted each time additional data are received by the protocol, and
thus the limit is in effect an inactivity timer. If a receive operation has been blocked
for this much time without receiving additional data, it returns with a short count
or with the error EWOULDBLOCK if no data were received.

Finally, SO TYPE and SO ERROR are options used only with getsockopt(). SO TYPE
returns the type of the socket, such as SOCK STREAM; it is useful for servers that
inherit sockets on startup. SO ERROR returns any pending error on the socket and
clears the error status. It may be used to check for asynchronous errors on connected
datagram sockets or for other asynchronous errors.

IMPLEMENTATION NOTES

Although many options are described here, only the ones available with IBM
TCP/IP are actually supported. Consult the IBM TCP/IP documentation for more
information.

RETURN VALUES

A 0 is returned if the call succeeds, -1 if it fails.

ERRORS

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOPROTOOPT] The option is unknown at the level indicated.

[EFAULT] The address pointed to by optval is not in a valid part of the process
address space. For getsockopt(), this error may also be returned
if optlen is not in a valid part of the process address space.

SEE ALSO

ioctl(2), socket(2), getprotoent(3)

294 Systems/C C Library

GIVESOCKET(2)

NAME

givesocket - Tell TCP/IP to make the socket available

SYNOPSIS

#include <sys/socket.h>
int givesocket(int d, struct clientid *clientid,
int *token);

DESCRIPTION

givesocket() instructs TCP/IP to create a token indicating that the specified socket
descriptor d is available to a takesocket() call issued by another program. The
created token is returned via the token pointer, and should be used in a subsequent
takesocket() call. Any connected stream socket can be given.

This is typically used by a master/driving program which uses accept() to handle
incoming connections, then uses givesocket() to “give” the sockets to the appli-
cation programs that actually handle the data. The token set by givesocket() is
passed to the application program to use in a takesocket() call.

The master program passes a clientid structure to the TCP/IP system to identify
the receiver of the socket.

clientid is of the form:

struct clientid {
int domain;
union {

char name[8];
struct {

int NameUpper;
pid_t pid;

} c_pid;
} c_name;
char subtaskname[8];

struct {
char type;
union {

char specific[19];

Systems/C C Library 295

struct {
char unused[3];
int SockToken;

} c_close;
} c_func;

} c_reserved;
};

domain is the domain of the input socket descriptor.

If the clientid was set by a getclientid() call, c name.name can be set to the ap-
plication program’s address space name, left-justified and padded with blanks. The
application program can run in the same address space as the master program, in
which case this field is set to the master program’s address space. Or, c name.name
can be set to blanks, so any OS/390 address space can take the socket.

If the clientid was set by a getclientid() call, subtaskname can be set to the task
identifier of the taker. This, combined with a c name.name value, allows only a pro-
cess with this c name.name and subtaskname to take the socket. Or, subtaskname
can be set to blanks. If c name.name has a value and subtaskname is blank, any
task with that c name.name can take the socket.

c reserved.type can be set to SO CLOSE, to indicate the socket should be auto-
matically closed by givesocket(), and a unique socket identifying token is to be
returned in c close.SockToken. The c close.SockToken should be passed to the
taking program to be used as input to takesocket() instead of the socket descriptor.
The now closed socket descriptor could be re-used by the time the takesocket() is
called, so the c close.SockToken should be used for takesocket().

c close.SockToken is a unique socket identifying token returned by givesocket
to be used as input to takesocket(), instead of the socket descriptor when
c reserved.type has been set to SO CLOSE.

c reserved specifies binary zeros if an automatic close of a socket is not to be done
by givesocket().

Using name and subtaskname for givesocket/takesocket:

1. The giving program calls getclientid() to obtain its client ID. The giving
program calls givesocket() to make the socket available for a takesocket()
call. The giving program passes its client ID along with the token for the
descriptor of the socket to be given to the taking program by the taking
program’s startup parameter list.

2. The taking program calls takesocket(), specifying the giving program’s client
ID and socket descriptor token.

296 Systems/C C Library

3. Waiting for the taking program to take the socket, the giving program uses
select() to test the given socket for an exception condition. When select() re-
ports that an exception condition is pending, the giving program calls close()
to free the given socket.

4. If the giving program closes the socket before a pending exception condition is
indicated, the TCP connection is immediately reset, and the taking program’s
call to takesocket() is unsuccessful. Calls other than the close() call issued
on a given socket return -1, with errno set to EBADF.

Note: For backward compatibility, a client ID can point to the struct client ID
structure obtained when the target program calls getclientid(). In this case, only
the target program, and no other programs in the target program’s address space,
can take the socket.

RETURN VALUES

On success, givesocket() returns 0. On error, givesocket() returns -1 and sets
errno to the specific error.

[EBADF] The descriptor d was not a valid socket descriptor.

[EFAULT] The clientid parameter points outside the caller’s allocated address
space.

[EINVAL] The clientid parameter does not specify a valid client id or the do-
main doesn’t match the domain of the input socket descriptor.

NOTES

This givesocket() function is different from other C libraries available on OS/390,
in that it returns the token to pass to takesocket() as a third parameter. When
porting programs from other C implementations, be sure to take this difference into
account.

SEE ALSO

accept(2), close(2), getclientid(2), listen(2), select(2), takesocket(2)

Systems/C C Library 297

IOCTL(2)

NAME

ioctl - control device

SYNOPSIS

#include <sys/ioctl.h>

int
ioctl(int d, unsigned long request, ...)

DESCRIPTION

The ioctl() function manipulates the underlying device parameters of special files.
In particular, many operating characteristics of character special files (e.g. termi-
nals) may be controlled with ioctl() requests. The argument d must be an open file
descriptor.

The third argument to ioctl is traditionally named char *argp. Most uses of ioctl
however, require the third argument to be a caddr t or an int.

An ioctl request has encoded in it whether the argument is an “in” parameter or
“out” parameter, and the size of the argument argp in bytes. Macros and defines
used in specifying an ioctl request are located in the file <sys/ioctl.h>.

IMPLEMENTATION NOTES

The Systems/C ioctl() is implemented using the IBM TCP/IP ioctl interface, and
thus only supports those IOCTLs that interface provides:

FIONBIO Sets or clears blocking status.

FIONREAD Returns the number of immediately readable
bytes for the socket.

SIOCADDRT Adds a specified routing table entry.

SIOCATMARK Determines whether the current location in the
input data is pointing to out-of-band data.

SIOCDELRT Deletes a specified routine table entry.

298 Systems/C C Library

SIOCGIFADDR Requests the network interface address for an
interface name.

SIOCGIFBRDADDR Requests the network interface broadcast ad-
dress for an interface name.

SIOCGIFCONF Requests the network interface configuration.
The configuration consists of a variable number
of 32-byte arrays.

SIOCGIFDSTADDR Requests the network interface destination ad-
dress.

SIOCGIFFLAGS Requests the network interface flags.

SIOCGIFMETRIC Requests the network interface routing metric.

SIOCGIFNETMASK Requests the network interface network mask.

SIOCSIFMETRIC Sets the network interface routing metric.

SIOCSIFDSTADDR Sets the network interface destination address.

SIOCSIFFLAGS Sets the network interface flags.

SIOCTTLSCTL Query or control the use of AT-TLS informa-
tion for a connection.

RETURN VALUES

If an error has occurred, a value of -1 is returned and errno is set to indicate the
error.

ERRORS

ioctl() will fail if:

[EBADF] d is not a valid descriptor.

[ENOTTY] d is not associated with a character special device.

[ENOTTY] The specified request does not apply to the kind of object that the
descriptor d references.

[EINVAL] Request or argp is not valid.

[ENOMEM] Insufficient memory is available to satisfy the request.

[EPROTOYPE] Socket is not TCP.

Systems/C C Library 299

[EINVAL] Invalid parameters passed to request.

[EPERM] Permission denied for request.

[ENOTCONN] Operation attempted on socket that wasn’t connected.

[EPIPE] Request was made on socket that is no longer establihed.

[EOPNOSUPP] Request is not supported.

[EACCESS] Access denied for request.

[EALREADY] Request is already made or is in process.

[EPROTO] Invalid protocol specified in request.

[EINPROGRESS] A socket handshake is in progress.

[EWOULDBLOCK] The socket is non-blocking and an SSL handshake is in progress.

[ENOBUFS] The specified return area is too small.

The errno value can also be set according to the return value from the underlying
IBM implementation. Consult the IBM “IP Communications Server” documenta-
tion for the particular ioctl() request and possible errno settings.

300 Systems/C C Library

LISTEN(2)

NAME

listen - listen for connections on a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
listen(int s, int backlog)

DESCRIPTION

To accept connections, a socket is first created with socket(2), a willingness to accept
incoming connections and a queue limit for incoming connections are specified with
listen(), and then the connections are accepted with accept(2). The listen() call
applies only to sockets of type SOCK STREAM or SOCK SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connec-
tions may grow to. If a connection request arrives with the queue full the client may
receive an error with an indication of ECONNREFUSED, or, if the underlying protocol
supports retransmission, the request may be ignored so that retries may succeed.

RETURN VALUES

A 0 return value indicates success; -1 indicates an error.

ERRORS

listen() will fail if:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is not a socket.

[EOPNOTSUPP] The socket is not of a type that supports the operation listen().

SEE ALSO

accept(2), connect(2), socket(2), sysctl(3)

Systems/C C Library 301

POLL(2)

NAME

poll – synchronous I/O multiplexing

SYNOPSIS

#include <poll.h>

int
poll(struct pollfd fds[], nfds_t nfds, int timeout);

DESCRIPTION

The poll function examines a set of file descriptors to see if some of them are ready
for I/O. The fds argument is a pointer to an array of pollfd structures as defined in
¡poll.h¿ (shown below). The nfds argument determines the size of the fds array.

struct pollfd {
int fd; /* file descriptor */
short events; /* events to look for */
short revents; /* events returned */

};

The fields of struct pollfd are as follows:

fd File descriptor to poll. If fd is equal to -1 then revents
is cleared (set to zero), and that pollfd is not checked.

events Events to poll for. (See below.)

revents Events which may occur. (See below.)

The event bitmasks in events and revents have the following bits:

POLLIN Data other than high priority data may be read without
blocking.

POLLRDNORM Normal data may be read without blocking.

302 Systems/C C Library

POLLRDBAND Data with a non-zero priority may be read without
blocking.

POLLPRI High priority data may be read without blocking.

POLLOUT

POLLWRNORM Normal data may be written without blocking.

POLLWRBAND Data with a non-zero priority may be written without
blocking.

POLLERR An exceptional condition has occurred on the device or
socket. This flag is always checked, even if not present
in the events bitmask.

POLLHUP The device or socket has been disconnected. This flag is
always checked, even if not present in the events bitmask.
Note that POLLHUP and POLLOUT should never be
present in the revents bitmask at the same time.

POLLNVAL The file descriptor is not open. This flag is always
checked, even if not present in the events bitmask.

If timeout is neither zero nor INFTIM (-1), it specifies a maximum interval to wait for
any file descriptor to become ready, in milliseconds. If timeout is INFTIM (-1), the
poll blocks indefinitely. If timeout is zero, then poll will return without blocking.

RETURN VALUES

The poll system call returns the number of descriptors that are ready for I/O, or
-1 if an error occurred. If the time limit expires, poll returns 0. If poll returns
with an error, including one due to an interrupted system call, the fds array will be
unmodified.

COMPATIBILITY

This implementation is an emulation based on the select(2) function.

ERRORS

An error return from poll() indicates:

[EFAULT] The fds argument points outside the process’s allocated
address space.

Systems/C C Library 303

[EINTR] A signal was delivered before the time limit expired and
before any of the selected events occurred.

[EINVAL] The specified time limit is negative.

SEE ALSO

accept(2), connect(2), kqueue(2), read(2), recv(2), select(2), send(2), write(2)

304 Systems/C C Library

RECV(2)

NAME

recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

ssize_t
recv(int s, void *buf, size_t len, int flags)

ssize_t
recvfrom(int s, void *buf, size_t len, int flags,
struct sockaddr *from, int *fromlen)

ssize_t
recvmsg(int s, struct msghdr *msg, int flags)

DESCRIPTION

recvfrom() and recvmsg() are used to receive messages from a socket, and may
be used to receive data on a socket whether or not it is connection-oriented.

If from is non-nil, and the socket is not connection-oriented, the source address of
the message is filled in. fromlen is a value-result parameter, initialized to the size of
the buffer associated with from, and modified on return to indicate the actual size
of the address stored there.

The recv() call is normally used only on a connected socket (see connect(2)) and is
identical to recvfrom() with a nil from parameter. As it is redundant, it may not
be supported in future releases.

All three routines return the length of the message on successful completion. If
a message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from (see socket(2)).

If no messages are available at the socket, the receive call waits for a message to
arrive, unless the socket is nonblocking (see fcntl(2)) in which case the value -1 is
returned and the external variable errno set to EAGAIN. The receive calls normally
return any data available, up to the requested amount, rather than waiting for
receipt of the full amount requested; this behavior is affected by the socket-level
options SO RCVLOWAT and SO RCVTIMEO described in getsockopt(2).

Systems/C C Library 305

The select(2) call may be used to determine when more data arrive.

The flags argument to a recv call is formed by or’ing one or more of the values:

MSG OOB process out-of-band data

MSG PEEK peek at incoming message

MSG WAITALL wait for full request or error

The MSG OOB flag requests receipt of out-of-band data that would not be received
in the normal data stream. Some protocols place expedited data at the head of
the normal data queue, and thus this flag cannot be used with such protocols. The
MSG PEEK flag causes the receive operation to return data from the beginning of
the receive queue without removing that data from the queue. Thus, a subsequent
receive call will return the same data. The MSG WAITALL flag requests that the
operation block until the full request is satisfied. However, the call may still return
less data than requested if a signal is caught, an error or disconnect occurs, or the
next data to be received is of a different type than that returned.

The recvmsg() call uses a msghdr structure to minimize the number of di-
rectly supplied parameters. This structure has the following form, as defined in
<sys/socket.h>:

struct msghdr {
caddr_t msg_name; /* optional address */
u_int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather */

/* array */
u_int msg_iovlen; /* # elements in */

/* msg_iov */
caddr_t msg_control; /* ancillary data, */

/* see below */
u_int msg_controllen; /* ancillary data, */

/* buffer len */
int msg_flags; /* flags on */

/* received message */
};

Here msg name and msg namelen specify the destination address if the socket is
unconnected; msg name may be given as a null pointer if no names are desired or
required. msg iov and msg iovlen describe scatter gather locations, as discussed
in read(2). msg control, which has length msg controllen, points to a buffer for
other protocol control related messages or other miscellaneous ancillary data. The
messages are of the form:

306 Systems/C C Library

struct cmsghdr {
u_int cmsg_len; /* data byte count, */

/* including hdr */
int cmsg_level; /* originating */

/* protocol */
int cmsg_type; /* protocol-specific */

/* type */
/* followed by

u_char cmsg_data[]; */
};

As an example, one could use this to learn of changes in the data-stream in
XNS/SPP, or in ISO, to obtain user-connection-request data by requesting a recvmsg
with no data buffer provided immediately after an accept() call.

Process credentials can also be passed as ancillary data for AF UNIX domain sockets
using a cmsg type of SCM CREDS. In this case, cmsg data should be a structure of
type cmsgcred, which is defined in <sys/socket.h> as follows:

struct cmsgcred {
pid_t cmcred_pid; /* PID of */

/* sending process */
uid_t cmcred_uid; /* real UID of */

/* sending process */
uid_t cmcred_euid; /* effective UID of */

/* sending process */
gid_t cmcred_gid; /* real GID of */

/* sending process */
short cmcred_groups; /* number or groups */
gid_t cmcred_groups[CMGROUP_MAX]; /* groups */

};

[Note that AF UNIX domain sockets are currently not supported in the Systems/C
TCP/IP library, as they are unsupported by the IBM TCP/IP implemention. This
information is provided for reference.]

The kernel will fill in the credential information of the sending process and deliver
it to the receiver.

The msg flags field is set on return according to the message received. MSG EOR
indicates end-of-record; the data returned completed a record (generally used with
sockets of type SOCK SEQPACKET). MSG TRUNC indicates that the trailing portion of a
datagram was discarded because the datagram was larger than the buffer supplied.
MSG CTRUNC indicates that some control data were discarded due to lack of space
in the buffer for ancillary data. MSG OOB is returned to indicate that expedited or
out-of-band data were received.

Systems/C C Library 307

RETURN VALUES

These calls return the number of bytes received, or -1 if an error occurred. Note
that a return value of 0 indicates the connection has been closed (no bytes received.)

ERRORS

The calls fail if:

[EBADF] The argument s is an invalid descriptor.

[ENOTCONN] The socket is associated with a connection-oriented protocol and
has not been connected (see connect(2) and accept(2)).

[ENOTSOCK] The argument s does not refer to a socket.

[EAGAIN] The socket is marked non-blocking, and the receive operation would
block, or a receive timeout had been set, and the time-out expired
before data were received.

[EINTR] The receive was interrupted by delivery of a signal before any data
were available.

[EFAULT] The receive buffer pointer(s) point outside the process’s address
space.

SEE ALSO

getsockopt(2), read(2), select(2), socket(2)

308 Systems/C C Library

SELECT(2)

NAME

select - synchronous I/O multiplexing

SYNOPSIS

#include <sys/types.h>
#include <sys/time.h>
#include <unistd.h>

int
select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout)

FD_SET(fd, &fdset)

FD_CLR(fd, &fdset)

FD_ISSET(fd, &fdset)

FD_ZERO(&fdset)

DESCRIPTION

select() examines the I/O descriptor sets whose addresses are passed in readfds,
writefds, and exceptfds to see if some of their descriptors are ready for reading, are
ready for writing, or have an exceptional condition pending, respectively. The only
exceptional condition detectable is out-of-band data received on a socket. The first
nfds descriptors are checked in each set; i.e., the descriptors from 0 through nfds-1 in
the descriptor sets are examined. On return, select() replaces the given descriptor
sets with subsets consisting of those descriptors that are ready for the requested
operation. select() returns the total number of ready descriptors in all the sets.

The descriptor sets are stored as bit fields in arrays of integers. The following macros
are provided for manipulating such descriptor sets:

FD ZERO(&fdset) initializes a descriptor set
fdset to the null set.

FD SET(fd, &fdset) includes a particular de-
scriptor fd in fdset.

FD CLR(fd, &fdset) removes fd from fdset.

Systems/C C Library 309

FD ISSET(fd, &fdset) is non-zero if fd is a mem-
ber of fdset, zero other-
wise.

The behavior of these macros is undefined if a descriptor value is less than zero
or greater than or equal to FD SETSIZE, which is normally at least equal to the
maxmum number of descriptors supported by the system.

If timeout is a non-nil pointer, it specifies a maximum interval to wait for the selection
to complete. If timeout is a NULL pointer, the select blocks indefinitely. To effect a
poll, the timeout argument should be non-NULL, pointing to a zero-valued timeval
structure.

Any of readfds, writefds, and exceptfds may be given as NULL pointers if no descriptors
are of interest.

RETURN VALUES

select() returns the number of ready descriptors that are contained in the descriptor
sets, or -1 if an error occurred. If the time limit expires, select() returns 0. If se-
lect() returns with an error, including one due to an interrupted call, the descriptor
sets will be unmodified.

ERRORS

An error return from select() indicates:

[EBADF] One of the descriptor sets specified an invalid descriptor.

[EINTR] A signal was delivered before the time limit expired and before any
of the selected events occurred.

[EINVAL] The specified time limit is invalid. One of its components is negative
or too large.

[EINVAL] nfds was invalid.

SEE ALSO

accept(2), connect(2), getdtablesize(2), gettimeofday(2), read(2), recv(2), send(2),
write(2)

310 Systems/C C Library

NOTES

The default size of FD SETSIZE is currently 1024. In order to accommodate programs
which might potentially use a larger number of open files with select() , it is possible
to increase this size by having the program define FD SETSIZE before the inclusion
of any header which includes <sys/types.h>.

If nfds is greater than the number of open files, select() is not guaranteed to examine
the unused file descriptors. For historical reasons, select() will always examine the
first 256 descriptors.

ISSUES

select() should probably return the time remaining from the original timeout, if
any, by modifying the time value in place. This may be implemented in future
versions of the system. Thus, it is unwise to assume that the timeout value will be
unmodified by the select() call.

Systems/C C Library 311

SELECTEX(2)

NAME

selectex - synchronous I/O multiplexing with extensions for message queues

SYNOPSIS

#include <sys/types.h>
#include <sys/time.h>
#include <unistd.h>

int
selectex(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout,
int *ecbptr)

DESCRIPTION

The selectex() call operates in a manner similar to select(2), except that it provides
an extension to allow for using an ECB that defines an event not described by the
descriptors in the readfds, writefds or exceptfds.

selectex() monitors activity on the file descriptors until a timeout occurs, or until
the ECB is posted.

See select(2) for more information and a description of the nfds, readfds, writefds,
exceptfds and timeout parameters and return values.

If non-NULL, ecbptr can be a pointer to a single ECB or a list of ECBs. If ecbptr is
NULL, selectex() is equivalent to select(2).

To specify a single ECB, the high-order bit of ecbptr must be ’0’. To specify a list
of up to 59 ECBS, the high-order bit of ecbptr must be ’1’. The high-order bit of
the last pointer in the list must be ’1’.

SEE ALSO

select(2)

312 Systems/C C Library

SEND(2)

NAME

send, sendto, sendmsg - send a message from a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

ssize_t
send(int s, const void *msg, size_t len, int flags)

ssize_t
sendto(int s, const void *msg, size_t len, int flags,
const struct sockaddr *to, socklen_t tolen)

ssize_t
sendmsg(int s, const struct msghdr *msg, int flags)

DESCRIPTION

send(), sendto(), and sendmsg() are used to transmit a message to another
socket. send() may be used only when the socket is in a connected state, while
sendto() and sendmsg() may be used at any time.

The address of the target is given by to with tolen specifying its size. The length of
the message is given by len. If the message is too long to pass atomically through
the underlying protocol, the error EMSGSIZE is returned, and the message is not
transmitted.

No indication of failure to deliver is implicit in a send(). Locally detected errors
are indicated by a return value of -1.

If no messages space is available at the socket to hold the message to be transmitted,
then send() normally blocks, unless the socket has been placed in non-blocking I/O
mode. The select(2) call may be used to determine when it is possible to send more
data.

The flags parameter may include one or more of the following:

#define MSG_OOB 0x1 /* process out-of-band */
/* data */

Systems/C C Library 313

#define MSG_PEEK 0x2 /* peek at incoming */
/* message */

#define MSG_DONTROUTE 0x4 /* bypass routing, */
/* use direct interface */

#define MSG_EOR 0x8 /* data completes record */
#define MSG_EOF 0x100 /* data completes */

/* transaction */

The flag MSG OOB is used to send “out-of-band” data on sockets that support this
notion (e.g. SOCK STREAM); the underlying protocol must also support “out-of-band”
data. MSG EOR is used to indicate a record mark for protocols which support the
concept. MSG EOF requests that the sender side of a socket be shut down, and that
an appropriate indication be sent at the end of the specified data; this flag is only
implemented for SOCK STREAM sockets in the PF INET protocol family, and is used
to implement Transaction TCP. [Note that the Systems/C library depends on the
IBM TCP/IP implementation, which may not implement this and other features.]
MSG DONTROUTE is usually used only by diagnostic or routing programs.

See recv(2) for a description of the msghdr structure.

RETURN VALUES

The call returns the number of characters sent, or -1 if an error occurred.

ERRORS

send(), sendto(), and sendmsg() fail if:

[EBADF] An invalid descriptor was specified.

[EACCES] The destination address is a broadcast address, and SO BROADCAST
has not been set on the socket.

[ENOTSOCK] The argument s is not a socket.

[EFAULT] An invalid user space address was specified for a parameter.

[EMSGSIZE] The socket requires that message be sent atomically, and the size of
the message to be sent made this impossible.

[EAGAIN] The socket is marked non-blocking and the requested operation
would block.

[ENOBUFS] The system was unable to allocate an internal buffer. The operation
may succeed when buffers become available.

314 Systems/C C Library

[ENOBUFS] The output queue for a network interface was full. This generally
indicates that the interface has stopped sending, but may be caused
by transient congestion.

[EHOSTUNREACH] The remote host was unreachable.

ISSUES

These functions are implemented with the IBM TCP/IP interface. Not all facilities
described here may be available.

Because sendmsg() doesn’t necessarily block until the data has been transferred,
it is possible to transfer an open file descriptor across an AF UNIX domain socket
(see recv(2)), then close() it before it has actu ally been sent, the result being that
the receiver gets a closed file descriptor. It is left to the application to implement
an acknowledgment mechanism to prevent this from happening.

SEE ALSO

getsockopt(2), recv(2), select(2), socket(2), write(2)

Systems/C C Library 315

SETSOCKPARM(2)

NAME

setsockparm - define IBM TCP/IP socket function parameters

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

void
__setsockparm(int opt, ...)

DESCRIPTION

setsockparm() is used to provide low-level initialization options to the underlying
IBM TCP/IP implementation.

The call(s) to setsockparm must be made before any other socket calls.

The opt parameter describes an option to set.

The following options are supported:

SP TCPNAME Defines the job name to be used during socket initializa-
tion. The value following the opt parameter is a pointer
to a null-terminated character string

SP ADSNAME Defines the address name to be used during socket ini-
tialization The value following the opt parameter is a
pointer to a null-terminated character string.

SP SUBTASK Defines the subtask name. The subtask name is a field
up to 8 characters which identifies the subtask. Useful
for address spaces that contain multiple subtasks.

EXAMPLE

This example defines the TCP job name to be "TCPIP" and the address name to be
"TSO001":

316 Systems/C C Library

char tcpname[9] = "TCPIP";
char adsname[9] = "TSO0001";

__setsockparm(__SP_TCPNAME, tcpname);
__setsockparm(__SP_ADSNAME, adsname);

SEE ALSO

See the IBM Communications Server: IP Application Programming Interface Guide
for a complete description of the valid values for the TCP/IP JOB and address
names.

Systems/C C Library 317

SOCKET(2)

NAME

socket - create an endpoint for communication

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
socket(int domain, int type, int protocol)

DESCRIPTION

socket() creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which communi-
cation will take place; this selects the protocol family which should be used. These
families are defined in the include file <sys/socket.h>.

The currently understood formats are

PF LOCAL (Host-internal protocols, formerly called PF UNIX),

PF INET (ARPA Internet protocols),

PF ISO (ISO protocols),

PF CCITT (ITU-T protocols, like X.25),

PF NS (Xerox Network Systems protocols)

[Note, the Systems/C TCP/IP implementation relies on the IBM TCP/IP imple-
mentation, which only provides PF INET, PF UNIX and PF RAW. The other communi-
cation domains are provided for reference.]

These communication domains were previously named AF UNIX, AF INET, AF ISO,
AF CCITT and AF NS. The older names are provided for compatibility.

The socket has the indicated type, which specifies the semantics of communication.
Currently defined types are:

• SOCK STREAM

318 Systems/C C Library

• SOCK DGRAM

• SOCK RAW

• SOCK SEQPACKET

• SOCK RDM

[Note, the Systems/C TCP/IP implementation depends on the IBM implementa-
tion, which only provides SOCK STREAM, SOCK DGRAM and SOCK RAW. Information on
the other socket types is included for reference.]

A SOCK STREAM type provides sequenced, reliable, two-way connection based byte
streams. An out-of-band data transmission mechanism may be supported. A
SOCK DGRAM socket supports datagrams (connectionless, unreliable messages of a
fixed (typically small) maximum length). A SOCK SEQPACKET socket may provide
a sequenced, reliable, two-way connection-based data transmission path for data-
grams of fixed maximum length; a consumer may be required to read an entire
packet with each read system call. This facility is protocol specific, and presently
implemented only for PF NS. SOCK RAW sockets provide access to internal network
protocols and interfaces. The types SOCK RAW, which is available only to the super-
user, and SOCK RDM, which is planned, but not yet implemented, are not described
here.

The protocol specifies a particular protocol to be used with the socket. Normally
only a single protocol exists to support a particular socket type within a given
protocol family. However, it is possible that many protocols may exist, in which
case a particular protocol must be specified in this manner. The protocol number to
use is particular to the communication domain in which communication is to take
place. Some possible values for protocol are 0, IPPROTO UDP or IPPROTO TCP.

Sockets of type SOCK STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a connected state before any data may be sent or received on it. A
connection to another socket is created with a connect(2) call. Once connected, data
may be transferred using read(2) and write(2) calls or some variant of the send(2)
and recv(2) calls. (Some protocol families, such as the Internet family, support the
notion of an “implied connect,” which permits data to be sent piggy-backed onto a
connect operation by using the sendto(2) call.) When a session has been completed a
close(2) may be performed. Out-of-band data may also be transmitted as described
in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK STREAM insure that data
is not lost or duplicated. If a piece of data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, then
the connection is considered broken and calls will indicate an error with -1 returns
and with ETIMEDOUT as the specific code in the global variable errno. The protocols
optionally keep sockets “warm” by forcing transmissions roughly every minute in
the absence of other activity. An error is then indicated if no response can be elicited
on an otherwise idle connection for a extended period (e.g. 5 minutes). A SIGPIPE

Systems/C C Library 319

signal is raised if a process sends on a broken stream; this causes naive processes,
which do not handle the signal, to exit. SOCK SEQPACKET sockets employ the same
system calls as SOCK STREAM sockets. The only difference is that read(2) calls will
return only the amount of data requested, and any remaining in the arriving packet
will be discarded. SOCK DGRAM and SOCK RAW sockets allow sending of datagrams
to correspondents named in send(2) calls. Datagrams are generally received with
recvfrom(2), which returns the next datagram with its return address.

The operation of sockets is controlled by socket level options. These options are
defined in the file <sys/socket.h>. Setsockopt(2) and getsock opt(2) are used to
set and get options, respectively.

RETURN VALUES

A -1 is returned if an error occurs, otherwise the return value is a descriptor refer-
encing the socket.

ERRORS

The socket() call fails if:

[EPROTONOSUPPORT] The protocol type or the specified protocol is not supported
within this domain.

[EMFILE] The per-process descriptor table is full.

[ENFILE] The system file table is full.

[EACCES] Permission to create a socket of the specified type and/or protocol
is denied.

[ENOBUFS] Insufficient buffer space is available. The socket cannot be created
until sufficient resources are freed.

IMPLEMENTATION NOTES

Although many options are described here, only the ones available with IBM
TCP/IP are actually supported. Consult the IBM TCP/IP documentation for more
information.

SEE ALSO

accept(2), bind(2), connect(2), getpeername(2), getsockname(2), getsockopt(2),
ioctl(2), listen(2), read(2), recv(2), select(2), send(2), shutdown(2), socketpair(2),
write(2), getprotoent(3)

320 Systems/C C Library

SHUTDOWN(2)

NAME

shutdown - shut down part of a full-duplex connection

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int
shutdown(int s, int how)

DESCRIPTION

The shutdown() call causes all or part of a full-duplex connection on the socket
associated with s to be shut down. If how is SHUT RD (0), further receives will
be disallowed. If how is SHUT WR (1), further sends will be disallowed. If how is
SHUT RDWR (2), further sends and receives will be disallowed.

RETURN VALUES

A 0 is returned if the call succeeds, -1 if it fails.

ERRORS

The call succeeds unless:

[EBADF] s is not a valid descriptor.

[ENOTSOCK] s is a file, not a socket.

[ENOTCONN] The specified socket is not connected.

SEE ALSO

connect(2), socket(2)

Systems/C C Library 321

STANDARDS

The shutdown() function is expected to comply with IEEE P1003.1g (“POSIX”),
when finalized.

322 Systems/C C Library

TAKESOCKET(3)

NAME

takesocket - acquire a socket from another program

SYNOPSIS

#include <sys/types.h>
#include <socket.h>

int takesocket(struct clientid *clientid,int token);

DESCRIPTION

The takesocket() function acquires a socket from another program viathe token
passed from the other program. Typically, the other program passes its client ID and
givesocket token, and/or process id (PID), to your program through your program’s
startup parameter list.

clientid is a pointer to the clientid of the application from which you are taking a
socket.

token is the token generated by a givesocket() call, which represents the socket to
be taken.

If your program is using the PID to ensure integrity between givesocket() and
takesocket(), before issuing the takesocket() call, your program should set the
c pid.pid field of the clientid structure to the PID of the giving program (i.e.
program that issued the givesocket() call). This identifies the process from which
the socket is to be taken. If the c reserved.type field of the clientid structure
was set to SO CLOSE on the givesocket() call, c close.SockToken of the clientid
structure should be used as input to takesocket() instead of the normal socket
descriptor. See givesocket(2) for a description of the clientid structure.

RETURN VALUE

takesocket() returns the new socket descriptor, or -1 on error. If the return value
is -1, errno is set to:

[EACCES] The other application did not give the socket to this application.

[EBADF] The token parameter does not specify a valid token from the other
application, or the socket has already been taken.

Systems/C C Library 323

[EFAULT] The clientid parameter points outside the process’s allocated ad-
dress space.

[EINVAL] The clientid parameter does not specify a valid client identifier.
Either the client process cannot be found, or the client exists, but
has no outstanding “given” sockets.

[EMFILE] The file descriptor table is full.

SEE ALSO

getclientid(2), givesocket(2)

324 Systems/C C Library

Gen Library

Historically, the “gen” portion of a C library are those files which are automatically
generated, or which are generated in a platform-specific manner. For the Systems/C
library, the distinction isn’t as meaningful as it may be on other platforms.

Systems/C C Library 325

ATOE(3)

NAME

atoe, etoa, stratoe, stretoa, strnatoe, strnetoa, bcopy atoe, bcopy etao
- ASCII/EBCDIC character translation functions

SYNOPSIS

#include <machine/atoe.h>

unsigned int __atoe(unsigned int char);

unsigned int __etoa(unsigned int char);

void __stratoe(unsigned char * string);

void __stretoa(unsigned char * string);

void __strnatoe(unsigned char *string, int len);

void __strnetoa(unsigned char *string, int len);

void __bcopy_atoe(unsigned char *src, unsigned char *dst, int len);

void __bcopy_etoa(unsigned char *src, unsigned char *dst, int len);

DESCRIPTION

The atoe() and etoa() functions translate a value in the range 0-255 to/from
ASCII and EBCDIC. The translation table employed is the same used by the Sys-
tems/C compiler and utilties, and assumes the IBM 1047 code page.

The stratoe() and stretoa() functions apply the translation directly to a NUL-
terminate string.

The strnatoe() and strnetoa() functions apply the translation to a string; the
translation stops when either the NUL terminating character is discovered, or the
length len is reached.

The bcopy atoe() and bcopy etoa() functions copy len bytes from the src
address to the dst address, translating the bytes as they are copied. If len is zero,
no bytes are copied.

326 Systems/C C Library

SEE ALSO

bcopy(3), strcpy(3), strncpy(3)

Systems/C C Library 327

TO XX(3)

NAME

to b1, to b2, to b4, to d1, to d2, to d4, to h1, to h2, to h4 - floating
point conversion functions

SYNOPSIS

These functions don’t appear in any header file, thus, the #pragma map statements
must be properly provided to use them.

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

#pragma map(__to_b1, "@@TO@B1")
float __to_b1(unsigned int flags, void *input_p)

#pragma map(__to_b2, "@@TO@B2")
double __to_b2(unsigned int flags, void *input_p)

#pragma map(__to_b4, "@@TO@B4")
long double __to_b4(unsigned int flags, void *input_p)

#pragma map(__to_d1, "@@TO@D1")
_Decimal32 __to_d1(unsigned int flags, void *input_p)

#pragma map(__to_d2, "@@TO@D2")
_Decimal64 __to_d2(unsigned int flags, void *input_p)

#pragma map(__to_d4, "@@TO@D4")
_Decimal128 __to_d4(unsigned int flags, void *input_p)

#pragma map(__to_h1, "@@TO@H1")
float __to_h1(unsigned int flags, void *input_p)

#pragma map(__to_h2, "@@TO@H2")
double __to_h2(unsigned int flags, void *input_p)

#pragma map(__to_h4, "@@TO@H4")
long double __to_h4(unsigned int flags, void *input_p)

#ifdef __cplusplus
}

328 Systems/C C Library

#endif /* __cplusplus */

DESCRIPTION

These functions convert the input floating point value addressed by input p, return-
ing an IEEE (BFP), Decimal Floating Point (DFP) or Hexadecimal Floating point
(HFP) value. The to b1, to b2 and to b4 functions return IEEE (BFP)
values of the specified return type. The to d1, to d2 and to d4 return Dec-
imal Floating Point (DFP) values of the given sizes. The to h1, to h2 and
to h4 return Hexadecimal Floating Point (HFP) values of the given sizes. The

flags parameter provides flags indicating the type of the input value addressed by
input p.

These functions do not require any particular hardware architecture support.

The value of the flags parameter describes the input parameter and the requested
rounding mode of the result. These two values are OR’d together to create the
value. For the type of input parameter, one of the following values should be used:

0x000 HFP float

0x100 HFP double

0x200 HFP long double

0x500 BFP float

0x600 BFP double

0x700 BFP long double

0x800 DFP Decimal32

0x900 DFP Decimal64

0xA00 DFP Decimal128

The following values should be used to indicate the rounding mode:

0x00 Round DFP values as indicated in fe dec getround().

0x01 Round BFP values as indicated by fegetround().

0x08 Round to Nearest Ties Even

0x09 Round Toward Zero

0x0A Round Toward +Infinity

Systems/C C Library 329

0x0B Rount Toward -Infinity

0x0C Round to Nearest, Ties Away from Zero

0x0D Round to Nearest, Ties Toward from Zero

0x0E Round Away from Zero

0x0F Round Prepare for Shorter Precision

If the conversion specified in conv flag is not valid a a value of 0.0 is returned.

SEE ALSO

An explanation of the rounding modes can be found in the z/Architecture Principles
of Operations.

fenv(3)

330 Systems/C C Library

ALARM(3)

NAME

alarm – set signal timer alarm

SYNOPSIS

#include <unistd.h>

unsigned int
alarm(unsigned int seconds);

DESCRIPTION

This interface is made obsolete by setitimer(2).

The alarm() function sets a timer to deliver the signal SIGALRM to the calling
process after the specified number of seconds. If an alarm has already been set with
alarm() but has not been delivered, another call to alarm() will supersede the
prior call. The request alarm(0) voids the current alarm and the signal SIGALRM
will not be delivered.

Due to setitimer(2) restriction the maximum number of seconds allowed is
100000000.

RETURN VALUES

The return value of alarm() is the amount of time left on the timer from a previous
call to alarm(). If no alarm is currently set, the return value is 0.

SEE ALSO

setitimer(2), sigaction(2), sigpause(2), sigvec(2), signal(3), sleep(3)

Systems/C C Library 331

ASSERT(3)

NAME

assert - expression verification macro

SYNOPSIS

#include <assert.h>

assert(expression)

DESCRIPTION

The assert() macro tests the given expression and if it is false, the calling process
is terminated. A diagnostic message is written to stderr and the function abort(3)
is called effectively terminating the program.

If expression is true, the assert() macro does nothing.

The assert() macro may be removed at compile time with the -DNDEBUG option,
see the -D option description in the compiler documentation.

DIAGNOSTICS

The following diagnostic message is written to stderr if expression is false:

"assertion \"%s\" failed: file \"%s\", line %d\n", \
"expression", __FILE__, __LINE__

SEE ALSO

abort(3)

332 Systems/C C Library

BITSTRING(3)

NAME

bit alloc, bit clear, bit decl, bit ffs, bit nclear, bit nset, bit set, bitstr size, bit test
- bit-string manipulation macros

SYMNOPSIS

#include <bitstring.h>

bitstr_t *
bit_alloc(int nbits);

void
bit_decl(bitstr_t *name, int nbits);

void
bit_clear(bitstr_t *name, int bit);

void
bit_ffc(bitstr_t *name, int nbits, int *value);

void
bit_ffs(bitstr_t *name, int nbits, int *value);

void
bit_nclear(bitstr_t *name, int start, int stop);

void
bit_nset(bitstr_t *name, int start, int stop);

void
bit_set(bitstr_t *name, int bit);

int
bitstr_size(int nbits);

int
bit_test(bitstr_t *name, int bit);

DESCRIPTION

These macros operate on strings of bits.

Systems/C C Library 333

The macro bit alloc() returns a pointer of type “bitstr t *” to sufficient space
to store nbits bits, or NULL if no space is available.

The macro bit decl() allocates sufficient space to store nbits bits on the stack.

The macro bitstr size() returns the number of elements of type bitstr t neces-
sary to store nbits bits. This is useful for copying bit strings.

The macros bit clear() and bit set() clear or set the zero-based numbered bit
bit, in the bit string name.

The bit nset() and bit nclear() macros set or clear the zero-based numbered
bits from start through stop in the bit string name.

The bit test() macro evaluates to non-zero if the zero-based numbered bit bit of
bit string name is set, and zero otherwise.

The bit ffs() macro stores in the location referenced by value the zero-based
number of the first bit set in the array of nbits bits referenced by name. If no bits
are set, the location referenced by value is set to -1.

The macro bit ffc() stores in the location referenced by value the zero-based
number of the first bit not set in the array of nbits bits referenced by name. If all
bits are set, the location referenced by value is set to -1.

The arguments to these macros are evaluated only once and may safely have side
effects.

EXAMPLES

#include <limits.h>
#include <bitstring.h>

...
#define LPR_BUSY_BIT 0
#define LPR_FORMAT_BIT 1
#define LPR_DOWNLOAD_BIT 2
...
#define LPR_AVAILABLE_BIT 9
#define LPR_MAX_BITS 10

make_lpr_available()
{

bitstr_t bit_decl(bitlist, LPR_MAX_BITS);
...
bit_nclear(bitlist, 0, LPR_MAX_BITS - 1);
...

334 Systems/C C Library

if (!bit_test(bitlist, LPR_BUSY_BIT)) {
bit_clear(bitlist, LPR_FORMAT_BIT);
bit_clear(bitlist, LPR_DOWNLOAD_BIT);
bit_set(bitlist, LPR_AVAILABLE_BIT);

}
}

SEE ALSO

memory(3)

Systems/C C Library 335

CLOCK(3)

NAME

clock - determine processor time used

SYNOPSIS

#include <time.h>

clock_t
clock(void)

DESCRIPTION

The clock() function determines the amount of processor time used since the invo-
cation of the calling process, measured in CLOCKS PER SEC’s of a second.

RETURN VALUES

The clock() function returns the amount of time used unless an error occurs, in
which case the return value is -1.

STANDARDS

The clock() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

336 Systems/C C Library

CTERMID(3)

NAME

ctermid – generate terminal pathname

SYNOPSIS

#include <stdio.h>

char *
ctermid(char *buf);

char *
ctermid_r(char *buf);

DESCRIPTION

The ctermid() function generates a string, that, when used as a pathname, refers
to the current controlling terminal of the calling process.

If buf is the NULL pointer, a pointer to a static area is returned. Otherwise, the
pathname is copied into the memory referenced by buf. The argument buf is assumed
to be at least L ctermid (as defined in the include file <stdio.h>) bytes long.

The ctermid r() function provides the same functionality as ctermid() except
that if buf is a NULL pointer, NULL is returned.

The current implementation simply returns ‘/dev/tty’ when running under
OpenEdition. In any other environment, it returns the empty string.

RETURN VALUES

Upon successful completion, a non-NULL pointer is returned. Otherwise, a NULL
pointer is returned and the global variable errno is set to indicate the error.

ERRORS

The current implementation detects no error conditions.

Systems/C C Library 337

SEE ALSO

ttyname(3)

STANDARDS

The ctermid() function conforms to IEEE Std 1003.1-1988 (“POSIX.1”).

ISSUES

By default the ctermid() function writes all information to an internal static object.
Subsequent calls to ctermid() will modify the same object.

338 Systems/C C Library

DIRECTORY(3)

NAME

opendir, readdir, rewinddir, closedir, dirfd - directory operations

SYNOPSIS

#include <sys/types.h>
#include <dirent.h>

DIR *
opendir(const char *filename);

struct dirent *
readdir(DIR *dirp);

void
rewinddir(DIR *dirp);

int
closedir(DIR *dirp);

int
dirfd(DIR *dirp);

DESCRIPTION

The opendir() function opens the //HFS:-style directory named by filename, as-
sociates a directory stream with it and returns a pointer to be used to identify the
directory stream in subsequent operations. The pointer NULL is returned if file-
name cannot be accessed, or if it cannot malloc(3) enough memory to hold the
directory stream and related information.

The readdir() function returns a pointer to the next directory entry. It returns
NULL upon reaching the end of the directory.

The rewinddir() function resets the position of the named directory stream to the
beginning of the directory.

The closedir() function closes the named directory stream and frees the structure
associated with the dirp pointer, returning 0 on success. On failure, -1 is returned
and the global variable errno is set to indicate the error.

The dirfd() function returns the integer file descriptor associated with the named
directory stream, see open(2).

Systems/C C Library 339

Sample code which searches a directory for entry “name” is:

len = strlen(name);
dirp = opendir(".");
while ((dp = readdir(dirp)) != NULL)

if (dp->d_namlen == len && !strcmp(dp->d_name, name)) {
(void)closedir(dirp);
return FOUND;

}
(void)closedir(dirp);
return NOT_FOUND;

SEE ALSO

close(2), lseek(2), open(2), read(2)

340 Systems/C C Library

DLOPEN(3)

NAME

dlopen, dlsym, dlfunc, dlerror, dlclose – programmatic interface to dynamic linking

SYNOPSIS

#include <dlfcn.h>

void *
dlopen(const char *path, int mode);

void *
dlsym(void * restrict handle, const char * restrict symbol);

dlfunc_t
dlfunc(void * restrict handle, const char * restrict symbol);

const char *
dlerror(void);

int
dlclose(void *handle);

DESCRIPTION

These functions provide a simple programmatic interface to the services of the
Dignus shared libraries. Operations are provided to add new shared objects to
a program’s address space, to obtain the address bindings of symbols defined by
such objects, and to remove such objects when their use is no longer required.

Contact Dignus for information regarding how to construct shared objects using the
the PLINK utility.

The dlopen() function provides access to the shared object in path, returning a
descriptor that can be used for later references to the object in calls to dlsym()
and dlclose(). If path was not in the address space prior to the call to dlopen(), it
is placed in the address space. If path has already been placed in the address space
in a previous call to dlopen(), it is not added a second time, although a reference
count of dlopen() operations on path is maintained. A null pointer supplied for
path is interpreted as a reference to the main executable of the process. The mode
argument controls the way in which external function references from the loaded
object are bound to their referents. It must contain one of the following values,
possibly ORed with additional flags which will be described subsequently:

Systems/C C Library 341

RTLD NOW All external function references are bound imme-
diately by dlopen().

RTLD NOW is used to ensure any undefined symbols are discovered during the call to
dlopen().

One of the following flags may be ORed into the mode argument:

RTLD GLOBAL Symbols from this shared object and its directed
acyclic graph (DAG) of needed objects will be
available for resolving undefined references from
all other shared objects.

RTLD LOCAL Symbols in this shared object and its DAG of
needed objects will be available for resolving un-
defined references only from other objects in the
same DAG. This is the default, but it may be
specified explicitly with this flag.

If dlopen() fails, it returns a null pointer, and sets an error condition which may
be interrogated with dlerror().

The dlsym() function returns the address binding of the symbol described in the
null-terminated character string symbol, as it occurs in the shared object identified
by handle. The symbols exported by objects added to the address space by dlopen()
can be accessed only through calls to dlsym(). Such symbols do not supersede any
definition of those sym bols already present in the address space when the object is
loaded, nor are they available to satisfy normal dynamic linking references.

If dlsym() is called with the special handle RTLD DEFAULT, the search for the symbol
follows the algorithm used for resolving undefined symbols when objects are loaded.
The objects searched are as follows, in the given order:

1. The referencing object itself (or the object from which the call to
dlsym() is made.)

2. All objects loaded at program start-up.

3. All objects loaded via dlopen() with the RTLD GLOBAL flag set in the
mode argument.

4. All objects loaded via dlopen() which are in needed-object DAGs
that also contain the referencing object.

If dlsym() is called with the special handle RTLD NEXT, then the search for the
symbol is limited to the shared objects which were loaded after the one issuing
the call to dlsym(). Thus, if the function is called from the main program, all

342 Systems/C C Library

the shared libraries are searched. If it is called from a shared library, all subsequent
shared libraries are searched. RTLD NEXT is useful for implementing wrappers around
library functions. For example, a wrapper function getpid() could access the “real”
getpid() with dlsym(RTLD NEXT, "getpid"). (Actually, the dlfunc() interface,
below, should be used, since getpid() is a function and not a data object.)

If dlsym() is called with the special handle RTLD SELF, then the search for the
symbol is limited to the shared object issuing the call to dlsym() and those shared
objects which were loaded after it.

The dlsym() function returns a null pointer if the symbol cannot be found, and
sets an error condition which may be queried with dlerror().

The dlerror() function returns a null-terminated character string describing the
last error that occurred during a call to dlopen(), dladdr(), dlinfo(), dlsym(),
dlfunc(), or dlclose(). If no such error has occurred, dlerror() returns a null
pointer. At each call to dlerror(), the error indication is reset. Thus in the case
of two calls to dlerror(), where the second call follows the first immediately, the
second call will always return a null pointer.

The dlclose() function deletes a reference to the shared object refer enced by handle.
If the reference count drops to 0, the object is removed from the address space,
and handle is rendered invalid. If dlclose() is successful, it returns a value of 0.
Otherwise it returns -1, and sets an error condition that can be interrogated with
dlerror().

NOTES

Shared objects require special compilation and linking procedures. Contact Dignus
for more information.

ERRORS

The dlopen(), dlsym(), and dlfunc() functions return a null pointer in the event
of errors. The dlclose() function returns 0 on success, or -1 if an error occurred.
Whenever an error has been detected, a message detailing it can be retrieved via a
call to dlerror().

SEE ALSO

PLINK in the Systems/C utilities manual.

Systems/C C Library 343

ERR(3)

NAME

err, verr, errc, verrc, errx, verrx, warn, vwarn, warnc, vwarnc, warnx, vwarnx,
err set exit, err set file - formatted error messages

SYNOPSIS

#include <err.h>

void
err(int eval, const char *fmt, ...);

void
err_set_exit(void (*exitf)(int));

void
err_set_file(void *vfp);

void
errc(int eval, int code, const char *fmt, ...);

void
errx(int eval, const char *fmt, ...);

void
warn(const char *fmt, ...);

void
warnc(int code, const char *fmt, ...);

void
warnx(const char *fmt, ...);

#include <stdarg.h>

void
verr(int eval, const char *fmt, va_list args);

void
verrc(int eval, int code, const char *fmt, va_list args);

void
verrx(int eval, const char *fmt, va_list args);

344 Systems/C C Library

void
vwarn(const char *fmt, va_list args);

void
vwarnc(int code, const char *fmt, va_list args);

void
vwarnx(const char *fmt, va_list args);

DESCRIPTION

The err() and warn() family of functions display a formatted error message on the
standard error output, or on another file specified using the err set file() function.
In all cases, the last component of the program name, a colon character, and a
space are output. If the fmt argument is not NULL, the printf(3) -like formatted
error message is output. The output is terminated by a newline character.

The err(), errc(), verr(), verrc(), warn(), warnc(), vwarn(), and vwarnc()
functions append an error message obtained from strerror(3) based on a code or the
global variable errno, preceded by another colon and space unless the fmt argument
is NULL.

In the case of the errc(), verrc(), warnc(), and vwarnc() functions, the code
argument is used to look up the error message.

The err(), verr(), warn(), and vwarn() functions use the global variable errno
to look up the error message.

The errx() and warnx() functions do not append an error message.

The err(), verr(), errc(), verrc(), errx(), and verrx() functions do not return,
but exit with the value of the argument eval. It is recommended that the standard
values defined in sysexits(3) be used for the value of eval. The err set exit()
function can be used to specify a function which is called before exit(3) to perform
any necessary cleanup; passing a null function pointer for exitf resets the hook to
do nothing. The err set file() function sets the output stream used by the other
functions. Its vfp argument must be either a pointer to an open stream (possibly
already converted to void *) or a null pointer (in which case the output stream is
set to standard error).

EXAMPLES

Display the current errno information string and exit:

Systems/C C Library 345

if ((p = malloc(size)) == NULL)
err(1, NULL);

if ((fd = open(file_name, O_RDONLY, 0)) == -1)
err(1, "%s", file_name);

Display an error message and exit:

if (tm.tm_hour < START_TIME)
errx(1, "too early, wait until %s", start_time_string);

Warn of an error:

if ((fd = open(raw_device, O_RDONLY, 0)) == -1)
warnx("%s: %s: trying the block device",

raw_device, strerror(errno));
if ((fd = open(block_device, O_RDONLY, 0)) == -1)

err(1, "%s", block_device);

Warn of an error without using the global variable errno:

error = my_function(); /* returns a value from <errno.h> */
if (error != 0)

warnc(error, "my_function");

SEE ALSO

exit(3), fmtmsg(3), printf(3), strerror(3), sysexits(3)

346 Systems/C C Library

EXEC(3)

NAME

execl, execlp, execle, execv, execvp - execute a file

SYNOPSIS

#include <unistd.h>

extern char **environ;

int
execl(const char *path, const char *arg, ...);

int
execlp(const char *file, const char *arg, ...);

int
execle(const char *path, const char *arg, ...);

int
execv(const char *path, char *const argv[]);

int
execvp(const char *file, char *const argv[]);

DESCRIPTION

The exec family of functions replaces the current process image with a new process
image. The functions described in this manual page are front-ends for the function
execve(2). (See the manual page for execve(2) for detailed information about the
replacement of the current process.)

The initial argument for these functions is the //HFS:-style pathname of a file which
is to be executed.

The const char *arg and subsequent ellipses in the execl(), execlp(), and exe-
cle() functions can be thought of as arg0, arg1, ..., argn. Together they describe
a list of one or more pointers to nul-terminated strings that represent the argument
list available to the executed program. The first argument, by convention, should
point to the file name associated with the file being executed. The list of arguments
must be terminated by a NULL pointer.

Systems/C C Library 347

The execv(), and execvp() functions provide an array of pointers to nul-terminated
strings that represent the argument list available to the new program. The first
argument, by convention, should point to the file name associated with the file
being executed. The array of pointers must be terminated by a NULL pointer.

The execle() function also specify the environment of the executed process by
following the NULL pointer that terminates the list of arguments in the argument
list or the pointer to the argv array with an additional argument. This additional
argument is an array of pointers to nul-terminated strings and must be terminated
by a NULL pointer. The other functions take the environment for the new process
image from the external variable environ in the current process.

Some of these functions have special semantics.

The functions execlp() and execvp() will duplicate the actions of the shell in
searching for an executable file if the specified file name does not contain a slash
“/” character. The search path is the path specified in the environment by “PATH”
variable. If this variable isn’t specified, the default path is set according to the
PATH DEFPATH definition in <paths.h>, which is set to “/usr/bin:/bin”. In addi-
tion, certain errors are treated specially.

If an error is ambiguous (for simplicity, we shall consider all errors except ENOEXEC as
being ambiguous here, although only the critical error EACCES is really ambiguous),
then these functions will act as if they stat the file to determine whether the file
exists and has suitable execute permissions. If it does, they will return immediately
with the global variable errno restored to the value set by execve(). Otherwise, the
search will be continued. If the search completes without performing a successful
execve() or terminating due to an error, these functions will return with the global
variable errno set to EACCES or ENOENT according to whether at least one file with
suitable execute permissions was found.

If the header of a file isn’t recognized (the attempted execve() returned ENOEXEC),
these functions will execute the shell with the path of the file as its first argument.
(If this attempt fails, no further searching is done.)

RETURN VALUES

If any of the exec() functions returns, an error will have occurred. The return value
is -1, and the global variable errno will be set to indicate the error.

ERRORS

The execl(), execle(), execlp() and execvp() functions may fail and set errno
for any of the errors specified for the library functions execve(2) and malloc(3).

The execv() function may fail and set errno for any of the errors specified for the
library function execve(2).

348 Systems/C C Library

SEE ALSO

execve(2)

STANDARDS

The execl(), execv(), execle(), execlp() and execvp() functions conform to
IEEE Std 1003.1-1988 (“POSIX.1”).

Systems/C C Library 349

FMTCHECK(3)

NAME

fmtcheck - sanitizes user-supplied printf(3)-style format string

SYNOPSIS

#include <stdio.h>

const char *
fmtcheck(const char *fmt_suspect, const char *fmt_default);

DESCRIPTION

The fmtcheck() scans fmt suspect and fmt default to determine if fmt suspect will
consume the same argument types as fmt default and to ensure that fmt suspect is
a valid format string.

The printf(3) family of functions cannot verify the types of arguments that they
are passed at run-time. In some cases, it is useful or necessary to use a user-
supplied format string with no guarantee that the format string matches the specified
arguments.

The fmtcheck() function was designed to be used in these cases, as in:

printf(fmtcheck(user_format, standard_format), arg1, arg2);

In the check, field widths, fillers, precisions, etc. are ignored (unless the field width
or precision is an asterisk ‘*’ instead of a digit string). Also, any text other than
the format specifiers is completely ignored.

RETURN VALUES

If fmt suspect is a valid format and consumes the same argument types as fmt default,
then the fmtcheck() will return fmt suspect. Otherwise, it will return fmt default.

SEE ALSO

printf(3)

350 Systems/C C Library

ISSUES

The fmtcheck() function does not understand all of the conversions that printf(3)
does.

Systems/C C Library 351

FMTMSG(3)

NAME

fmtmsg - display a detailed diagnostic message

SYNOPSIS

#include <fmtmsg.h>

int
fmtmsg(long classification, const char *label, int severity,

const char *text, const char *action, const char *tag);

DESCRIPTION

The fmtmsg() function displays a detailed diagnostic message, based on the sup-
plied arguments, to stderr and/or the system console.

The classification argument is the bitwise inclusive OR of zero or one of the manifest
constants from each of the classification groups below. The Output classification
group is an exception since both MM PRINT and MM CONSOLE may be specified.

Output

MM PRINT Output should take place on stderr.

MM CONSOLE Output should take place on the system console.

Source of Condition (Major)

MM HARD The source of the condition is hardware related.

MM SOFT The source of the condition is software related.

MM FIRM The source of the condition is firmware related.

Source of Condition (Minor)

MM APPL The condition was detected at the application level.

MM UTIL The condition was detected at the utility level.

MM OPSYS The condition was detected at the operating system level.

352 Systems/C C Library

Status

MM RECOVER The application can recover from the condition.

MM NRECOV The application is unable to recover from the condition.

Alternatively, the MM NULLMC manifest constant may be used to specify no classifi-
cation.

The label argument indicates the source of the message. It is made up of two fields
separated by a colon (‘:’). The first field can be up to 10 bytes, and the second field
can be up to 14 bytes. The MM NULLLBL manifest constant may be used to specify
no label.

The severity argument identifies the importance of the condition. One of the fol-
lowing manifest constants should be used for this argument.

MM HALT The application has confronted a serious fault and is halting.

MM ERROR The application has detected a fault.

MM WARNING The application has detected an unusual condition, that could be
indicative of a problem.

MM INFO The application is providing information about a non-error condi-
tion.

MM NOSEV No severity level supplied.

The text argument details the error condition that caused the message. There is no
limit on the size of this character string. The MM NULLTXT manifest constant may
be used to specify no text.

The action argument details how the error-recovery process should begin. Upon
output, fmtmsg() will prefix “TO FIX:” to the beginning of the action argument.
The MM NULLACT manifest constant may be used to specify no action.

The tag argument should reference online documentation for the message. This
usually includes the label and a unique identifying number. An example tag is
“BSD:ls:168”. The MM NULLTAG manifest constant may be used to specify no tag.

RETURN VALUES

The fmtmsg() function returns MM OK upon success, MM NOMSG to indicate output to
stderr failed, MM NOCON to indicate output to the system console failed, or MM NOTOK
to indicate output to stderr and the system console failed.

Systems/C C Library 353

ENVIRONMENT

The MSGVERB (message verbosity) environment variable specifies which arguments
to fmtmsg() will be output to stderr, and in which order. MSGVERB should be
a colon (‘:’) separated list of identifiers. Valid identifiers include: label, severity,
text, action, and tag. If invalid identifiers are specified or incorrectly separated,
the default message verbosity and ordering will be used. The default ordering is
equivalent to a MSGVERB with a value of “label:severity:text:action:tag”.

EXAMPLES

The code:

fmtmsg(MM_UTIL | MM_PRINT, "BSD:ls", MM_ERROR,
"illegal option -- z", "refer to manual", "BSD:ls:001");

will output:

BSD:ls: ERROR: illegal option -- z
TO FIX: refer to manual BSD:ls:001

to stderr.

The same code, with MSGVERB set to “text:severity:action:tag”, produces:

illegal option -- z: ERROR
TO FIX: refer to manual BSD:ls:001

STANDARDS

The fmtmsg() function conforms to IEEE Std 1003.1-2001 (“POSIX.1”).

ISSUES

Specifying MM NULLMC for the classification argument makes little sense, since with-
out an output specified, fmtmsg() is unable to do anything useful.

In order for fmtmsg() to output to the system console, the effective user must
have appropriate permission to write to /dev/console. This means that on most
systems fmtmsg() will return MM NOCON unless the effective user is root, or has other
appropriate permissions.

354 Systems/C C Library

FNMATCH(3)

NAME

fnmatch - match filename or pathname

SYNOPSIS

#include <fnmatch.h>

int
fnmatch(const char *pattern, const char *string, int flags);

DESCRIPTION

The fnmatch() function matches patterns according to the rules used by the shell.
It checks the string specified by the string argument to see if it matches the pattern
specified by the pattern argument.

The flags argument modifies the interpretation of pattern and string. The value of
flags is the bitwise inclusive OR of any of the following constants, which are defined
in the include file <fnmatch.h>.

FNM NOESCAPE Normally, every occurrence of a backslash (‘́) followed by a character
in pattern is replaced by that character. This is done to negate any
special meaning for the character. If the FNM NOESCAPE flag is set,
a backslash character is treated as an ordinary character.

FNM PATHNAME Slash characters in string must be explicitly matched by slashes in
pattern. If this flag is not set, then slashes are treated as regular
characters.

FNM PERIOD Leading periods in string must be explicitly matched by periods
in pattern. If this flag is not set, then leading periods are treated
as regular characters. The definition of “leading” is related to the
specification of FNM PATHNAME. A period is always “leading” if it is
the first character in string. Additionally, if FNM PATHNAME is set, a
period is leading if it immediately follows a slash.

FNM LEADING DIR Ignore “/*” rest after successful pattern matching.

FNM CASEFOLD Ignore case distinctions in both the pattern and the string.

Systems/C C Library 355

RETURN VALUES

The fnmatch() function returns zero if string matches the pattern specified by
pattern, otherwise, it returns the value FNM NOMATCH.

SEE ALSO

glob(3), regex(3)

STANDARDS

The fnmatch() function conforms to IEEE Std 1003.2 (“POSIX.2”).

ISSUES

The pattern ‘*’ matches the empty string, even if FNM PATHNAME is specified.

356 Systems/C C Library

FTOK(3)

NAME

ftok - create IPC identifier from //HFS:-style path name

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>

key_t
ftok(const char *path, int id);

DESCRIPTION

The ftok() function attempts to create a unique key suitable for use with the
msgget(3), semget(2) and shmget(2) functions given the //HFS:-style path of an
existing file and a user-selectable id.

The specified path must specify an existing HFS file that is accessible to the calling
process or the call will fail. Also, note that links to files will return the same key,
given the same id.

RETURN VALUES

The ftok() function will return -1 if path does not exist, is not an HFS file, or if it
cannot be accessed by the calling process.

ISSUES

The returned key is computed based on the device minor number and inode of the
specified path in combination with the lower 8 bits of the given id. Thus it is quite
possible for the routine to return duplicate keys.

Systems/C C Library 357

GETCWD(3)

NAME

getcwd, getwd – get working directory pathname

SYNOPSIS

#include <unistd.h>

char *
getcwd(char *buf, size_t size);

char *
getwd(char *buf);

DESCRIPTION

The getcwd() function copies the absolute pathname of the current working di-
rectory into the memory referenced by buf and returns a pointer to buf. The size
argument is the size, in bytes, of the array referenced by buf.

If buf is NULL, space is allocated as necessary to store the pathname. This space
may later be free(3)’d.

The function getwd() is a compatibility routine which calls getcwd() with its buf
argument and a size of MAXPATHLEN (as defined in the include file <sys/param.h>).
Obviously, buf should be at least MAXPATHLEN bytes in length.

RETURN VALUES

Upon successful completion, a pointer to the pathname is returned. Otherwise a
NULL pointer is returned and the global variable errno is set to indicate the error.
In addition, getwd() copies the error message associated with errno into the memory
referenced by buf.

ERRORS

The getcwd() function will fail if:

[EACCES] Read or search permission was denied for a component of the path-
name.

358 Systems/C C Library

[EINVAL] The size argument is zero.

[ENOENT] A component of the pathname no longer exists.

[ENOMEM] Insufficient memory is available.

[ERANGE] The size argument is greater than zero but smaller than the length
of the pathname plus 1.

Systems/C C Library 359

GETCONTEXT(3)

NAME

getcontext, setcontext – get and set user thread context

SYNOPSIS

#include <ucontext.h>

int
getcontext(ucontext_t *ucp);

int
setcontext(const ucontext_t *ucp);

DESCRIPTION

The getcontext() function saves the current thread’s execution context in the
structure pointed to by ucp. This saved context may then later be restored by
calling setcontext().

The setcontext() function makes a previously saved thread context the current
thread context, i.e., the current context is lost and setcontext() does not return.
Instead, execution continues in the context specified by ucp, which must have been
previously initialized by a call to getcontext(), makecontext(3), or by being passed
as an argument to a signal handler (see sigaction(2)).

If ucp was initialized by getcontext(), then execution continues as if the original
getcontext() call had just returned (again).

If ucp was initialized by makecontext(3), execution continues with the invoca-
tion of the function specified to makecontext(3). When that function returns,
ucp->uc link determines what happens next: if ucp->uc link is NULL, the pro-
cess exits; otherwise, setcontext(ucp->uc link) is implicitly invoked.

If ucp was initialized by the invocation of a signal handler, execution continues at
the point the thread was interrupted by the signal.

RETURN VALUES

If successful, getcontext() returns zero and setcontext() does not return; other-
wise -1 is returned.

360 Systems/C C Library

ERRORS

No errors are defined for getcontext() or setcontext().

IMPLEMENTATION NOTES

The getcontext() and setcontext() functions take advantage of the EXTRACT
PSW (EPSW) and RESUME PROGRAM (RP) instructions. These are available in all
z/Architecture and most ESA/390 environments. These functions will not oper-
ate in environments that don’t provide those instructions.

SEE ALSO

sigaction(2), sigaltstack(2), makecontext(3), ucontext(3)

Systems/C C Library 361

GETGRENT(3)

getgrent, getgrnam, getgrgid, setgroupent, setgrent, endgrent - group database op-
erations

SYNOPSIS

#include <sys/types.h>
#include <grp.h>

struct group *
getgrent(void);

struct group *
getgrnam(const char *name);

struct group *
getgrgid(gid_t gid);

int
setgroupent(int stayopen);

int
setgrent(void);

void
endgrent(void);

DESCRIPTION

These functions operate on the group database. Each entry of the database is
mapped to the structure group found in the include file <grp.h>:

struct group {
char *gr_name; /* group name */
char *gr_passwd; /* group password */
int gr_gid; /* group id */
char **gr_mem; /* group members */

};

The functions getgrnam() and getgrgid() search the group database for the given
group name pointed to by name or the group id specifeid by gid, respectively, re-
turning the first one encountered. Identical group names or group gids may result
in undefined behavior.

362 Systems/C C Library

The getgrent() function sequentially reads the group database and is intended for
programs that wish to step through the complete list of groups.

The setgroupent() function opens the database, or rewinds it if it is already open.
It is provided for compatibility with popular UNIX systems.

The setgrent() function resets the data base to the beginning so that subsequent
calls to getgrent() start from the beginning.

The endgrent() function resets the data base to the beginning.

RETURN VALUES

The functions getgrent(), getgrnam(), and getgrgid(), return a pointer to the
group entry if successful; if end-of-file is reached or an error occurs a NULL pointer
is returned. The functions setgroupent() and setgrent() return the value 1 if
successful, otherwise the value 0 is returned. The function endgrent() has no
return value.

SEE ALSO

getpwent(3)

NOTES

The functions getgrent(), getgrnam() and getgrgid() leave their results in an
internal static object and return a pointer to that object. Subsequent calls to the
same function will modify the same object.

Systems/C C Library 363

GETPROGNAME(3)

NAME

getprogname, setprogname - get or set the program name

SYNOPSIS

#include <stdlib.h>

const char *
getprogname(void);

void
setprogname(const char *progname);

DESCRIPTION

The getprogname() and setprogname() functions manipulate the name of the
current program. They are used by error-reporting routines to produce consistent
output.

The getprogname() function returns the name of the program. If the name has
not been set yet, it will return NULL.

The setprogname() function sets the name of the program to be the last compo-
nent of the progname argument. Since a pointer to the given string is kept as the
program name, it should not be modified for the rest of the program’s lifetime.

At program start-up, the Systems/C runtime attempts to determine, from the oper-
ating system, the name of the program. If the name can be determined, the name of
the program is set by the start-up code that is run before main(); thus, running set-
progname() is not always necessary. Programs that desire maximum portability
should still call it. On some operating systems, these functions may be implemented
in a portability library. Calling setprogname() allows the aforementioned systems
to learn the program name without modifications to the start-up code.

364 Systems/C C Library

GETPWENT(3)

NAME

getpwent, getpwnam, getpwuid, setpassent, setpwent, endpwent - password database
operations

SYNOPSIS

#include <sys/types.h>
#include <pwd.h>

struct passwd *
getpwent(void);

struct passwd *
getpwnam(const char *login);

struct passwd *
getpwuid(uid_t uid);

int
setpassent(int stayopen);

void
setpwent(void);

void
endpwent(void);

DESCRIPTION

These functions operate on the OpenEdition password database. Each entry in
the password database is mapped to the structure passwd found in the include file
<pwd.h>:

struct passwd {
char *pw_name; /* user name */
char *pw_passwd; /* encrypted password */
uid_t pw_uid; /* user uid */
gid_t pw_gid; /* user gid */
time_t pw_change; /* password change time */
char *pw_class; /* user access class */

Systems/C C Library 365

char *pw_gecos; /* Honeywell login info */
char *pw_dir; /* home directory */
char *pw_shell; /* default shell */
time_t pw_expire; /* account expiration */
int pw_fields; /* internal: fields filled in */

};

The functions getpwnam() and getpwuid() search the password database for the
given login name or user uid, respectively, always returning the first one encountered.

The getpwent() function sequentially reads the password database and is intended
for programs that wish to process the complete list of users.

The setpassent() function is provided for compatibility with popular UNIX plat-
forms. It causes getpwent() to “rewind” to the beginning of the database.

The setpwent() function resets the database so that the next call to getpwent()
starts over at the beginning.

The endpwent() function is used to indicate the end of database access. It also
resets the database so that the next call to getpwent() starts over at the beginning.

Because of how passwords are managed on OS/390 and z/OS, the password field of
the returned structure will always point to the string "*".

RETURN VALUES

The functions getpwent(), getpwnam(), and getpwuid(), return a valid pointer
to a passwd structure on success and a NULL pointer if the end of the database is
reached or an error occurs. The setpassent() function returns 0 on failure and 1
on success. The endpwent() and setpwent() functions have no return value.

SEE ALSO

getlogin(2), getgrent(3)

ISSUES

The functions getpwent(), getpwnam(), and getpwuid(), leave their results in
an internal static object and return a pointer to that object. Subsequent calls to
the same function will modify the same object.

366 Systems/C C Library

GLOB(3)

NAME

glob, globfree - generate //HFS: pathnames matching a pattern

SYNOPSIS

#include <glob.h>

int
glob(const char *pattern, int flags, int (*errfunc)(const char *, int),

glob_t *pglob);

void
globfree(glob_t *pglob);

DESCRIPTION

The glob() function is a pathname generator that implements the rules for file name
pattern matching used by the shell.

The include file <glob.h> defines the structure type glob t, which contains at least
the following fields:

typedef struct {
int gl_pathc; /* count of total paths so far */
int gl_matchc; /* count of paths matching pattern */
int gl_offs; /* reserved at beginning of gl_pathv */
int gl_flags; /* returned flags */
char **gl_pathv; /* list of paths matching pattern */

} glob_t;

The argument pattern is a pointer to an //HFS:-style pathname pattern to be ex-
panded. The glob() argument matches all accessible pathnames against the pattern
and creates a list of the pathnames that match. In order to have access to a path-
name, glob() requires search permission on every component of a path except the
last and read permission on each directory of any filename component of pattern
that contains any of the special characters ‘*’, ‘?’ or ‘[’.

The glob() argument stores the number of matched pathnames into the gl pathc
field, and a pointer to a list of pointers to pathnames into the gl pathv field. The
first pointer after the last pathname is NULL. If the pattern does not match any
pathnames, the returned number of matched paths is set to zero.

Systems/C C Library 367

It is the caller’s responsibility to create the structure pointed to by pglob. The
glob() function allocates other space as needed, including the memory pointed to
by gl pathv.

The argument flags s used to modify the behavior of glob(). The value of flags is
the bitwise inclusive OR of any of the following values defined in <glob.h>:

GLOB APPEND Append pathnames generated to the ones from a previous call (or
calls) to glob(). The value of gl pathc will be the total matches
found by this call and the previous call(s). The pathnames are ap-
pended to, not merged with the pathnames returned by the previous
call(s). Between calls, the caller must not change the setting of the
GLOB DOOFFS flag, nor change the value of gl offs when GLOB DOOFFS
is set, nor (obviously) call globfree() for pglob.

GLOB DOOFFS Make use of the gl offs field. If this flag is set, gl offs is used
to specify how many NULL pointers to prepend to the beginning of
the gl pathv field. In other words, gl pathv will point to gl offs
NULL pointers, followed by gl pathc pathname pointers, followed by
a NULL pointer.

GLOB ERR Causes glob() to return when it encounters a directory that it can-
not open or read. Ordinarily, glob() continues to find matches.

GLOB MARK Each pathname that is a directory that matches pattern has a slash
appended.

GLOB NOCHECK If pattern does not match any pathname, then glob() returns a list
consisting of only pattern, with the number of total pathnames set
to 1, and the number of matched pathnames set to 0. The effect of
backslash escaping is present in the pattern returned.

GLOB NOESCAPE By default, a backslash (‘́) character is used to escape the following
character in the pattern, avoiding any special interpretation of the
character. If GLOB NOESCAPE is set, backslash escaping is disabled.

GLOB NOSORT By default, the pathnames are sorted in ascending order; this flag
prevents that sorting (speeding up glob()).

The following values may also be included in flags, however, they are non-standard
extensions to IEEE Std 103.2 (“POSIX.2”).

GLOB ALTDIRFUNC The following additional fields in the pglob structure have been
initialized with alternate functions for glob() to use to open, read,
and close directories and to get stat information on names found in
those directories.

368 Systems/C C Library

void *(*gl_opendir)(const char * name);
struct dirent *(*gl_readdir)(void *);
void (*gl_closedir)(void *);
int (*gl_lstat)(const char *name, struct stat *st);
int (*gl_stat)(const char *name, struct stat *st);

GLOB BRACE Pre-process the pattern string to expand ‘pat,pat,...’ strings like
csh(1). The pattern ‘’ is left unexpanded for historical reasons (and
csh(1) does the same thing to ease typing of find(1) patterns).

GLOB MAGCHAR Set by the glob() function if the pattern included globbing char-
acters. See the description of the usage of the gl matchc structure
member for more details.

GLOB NOMAGIC Is the same as GLOB NOCHECK but it only appends the pattern if it
does not contain any of the special characters “*”, “?” or “[”.
GLOB NOMAGIC is provided to simplify implementing the historic
csh(1) globbing behavior and should probably not be used anywhere
else.

GLOB TILDE Expand patterns that start with ‘ ’ to user name home directories.

GLOB LIMIT Limit the total number of returned pathnames to the value pro-
vided in gl matchc (default ARG MAX). This option should be set for
programs that can be coerced into a denial of service attack via
patterns that expand to a very large number of matches, such as a
long string of ‘*/../*/..’.

If, during the search, a directory is encountered that cannot be opened or read
and errfunc is non-NULL, glob() calls (*errfunc)(path, errno). This may be
unintuitive: a pattern like ‘*/Makefile’ will try to stat(2) ‘foo/Makefile’ even if ‘foo’
is not a directory, resulting in a call to errfunc. The error routine can suppress
this action by testing for ENOENT and ENOTDIR; however, the GLOB ERR flag will still
cause an immediate return when this happens.

If errfunc returns non-zero, glob() stops the scan and returns GLOB ABORTED after
setting gl pathc and gl pathv to reflect any paths already matched. This also happens
if an error is encountered and GLOB ERR is set in flags, regardless of the return value
of errfunc, if called. If GLOB ERR is not set and either errfunc is NULL or errfunc
returns zero, the error is ignored.

The globfree() function frees any space associated with pglob from a previous call(s)
to glob().

RETURN VALUES

On successful completion, glob() returns zero. In addition the fields of pglob contain
the values described below:

Systems/C C Library 369

gl patch contains the total number of matched pathnames so far. This
includes other matches from previous invocations of glob() if
GLOB APPEND was specified.

gl matchc contains the number of matched pathnames in the current invoca-
tion of glob().

gl flags contains a copy of the flags argument with the bit GLOB MAGCHAR set
if pattern contained any of the special characters “*”, “?” or “[”,
cleared if not.

gl pathv contains a pointer to a NULL-terminated list of matched pathnames.
However, if gl pathc is zero, the contents of gl pathv are unde-
fined.

If glob() terminates due to an error, it sets the global variable errno and returns one
of the following non-zero constants, which are defined in the include file <glob.h>:

GLOB NOSPACE An attempt to allocate memory failed, or if errno was 0 GLOB LIMIT
was specified in the flags and pglob->gl matchc or more patterns
were matched.

GLOB ABORTED The scan was stopped because an error was encountered and either
GLOB ERR was set or (*errfunc)() returned non-zero.

GLOB NOMATCH The pattern did not match a pathname and GLOB NOCHECK was not
set.

The arguments pglob->gl pathc and pglob->gl pathv are still set as specified
above.

EXAMPLES

A rough equivalent of ‘ls -l *.c *.h’ can be obtained with the following code:

glob_t g;

g.gl_offs = 2;
glob("*.c", GLOB_DOOFFS, NULL, &g);
glob("*.h", GLOB_DOOFFS | GLOB_APPEND, NULL, &g);
g.gl_pathv[0] = "ls";
g.gl_pathv[1] = "-l";
execvp("ls", g.gl_pathv);

SEE ALSO

fnname(3), regexp(3)

370 Systems/C C Library

STANDARDS

The glob() function is expected to be IEEE Std 1003.2 (“POSIX.2”) compati-
ble with the exception that the flags GLOB ALTDIRFUNC, GLOB BRACE, GLOB LIMIT,
GLOB MAGCHAR, GLOB NOMAGIC, and GLOB TILDE, and the fields gl matchc and
gl flags should not be used by applications striving for strict POSIX conformance.

ISSUES

Patterns longer than MAXPATHLEN may cause unchecked errors.

The glob() argument may fail and set errno for any of the errors specified for the
library routines stat(2), closedir(3), opendir(3), readdir(3), malloc(3), and free(3).

Systems/C C Library 371

HCREATE(3)

NAME

hcreate, hdestroy, hsearch – manage hash search table

SYNOPSIS

#include <search.h>

int
hcreate(size_t nel);

void
hdestroy(void);

ENTRY *
hsearch(ENTRY item, ACTION action);

DESCRIPTION

The hcreate(), hdestroy(), and hsearch() functions manage hash search tables.

The hcreate() function allocates sufficient space for the table, and the application
should ensure it is called before hsearch() is used. The nel argument is an estimate
of the maximum number of entries that the table should contain. This number may
be adjusted upward by the algorithm in order to obtain certain mathematically
favorable circumstances.

The hdestroy() function disposes of the search table, and may be followed by
another call to hcreate(). After the call to hdestroy(), the data can no longer be
considered accessible. The hdestroy() function calls free(3) for each comparison
key in the search table but not the data item associated with the key.

The hsearch() function is a hash-table search routine. It returns a pointer into
a hash table indicating the location at which an entry can be found. The item
argument is a structure of type ENTRY (defined in the <search.h> header) containing
two pointers: item.key points to the comparison key (a char *), and item.data
(a void *) points to any other data to be associated with that key. The comparison
function used by hsearch() is strcmp(3). The action argument is a member of
an enumeration type ACTION indicating the disposition of the entry if it cannot be
found in the table. ENTER indicates that the item should be inserted in the table at
an appropriate point. FIND indicates that no entry should be made. Unsuccessful
resolution is indicated by the return of a NULL pointer.

372 Systems/C C Library

The comparison key (passed to hsearch() as item.key) must be allocated using
malloc(3) if action is ENTER and hdestroy() is called.

RETURN VALUES

The hcreate() function returns 0 if it cannot allocate sufficient space for the table;
otherwise, it returns non-zero.

The hdestroy() function does not return a value.

The hsearch() function returns a NULL pointer if either the action is FIND and the
item could not be found or the action is ENTER and the table is full.

ERRORS

The hcreate() and hsearch() functions may fail if:

[ENOMEM] Insufficient storage space is available.

EXAMPLES

The following example reads in strings followed by two numbers and stores them in
a hash table, discarding duplicates. It then reads in strings and finds the matching
entry in the hash table and prints it out.

#include <stdio.h>
#include <search.h>
#include <string.h>
#include <stdlib.h>

struct info { /* This is the info stored in the table */
int age, room; /* other than the key. */

};

#define NUM_EMPL 5000 /* # of elements in search table. */

int
main(void)
{
char str[BUFSIZ]; /* Space to read string */
struct info info_space[NUM_EMPL]; /* Space to store employee info. */
struct info *info_ptr = info_space; /* Next space in info_space. */
ENTRY item;

Systems/C C Library 373

ENTRY *found_item; /* Name to look for in table. */
char name_to_find[30];
int i = 0;

/* Create table; no error checking is performed. */
(void) hcreate(NUM_EMPL);

while (scanf("%s%d%d", str, &info_ptr->age,
&info_ptr->room) != EOF && i++ < NUM_EMPL) {

/* Put information in structure, and structure in item. */
item.key = strdup(str);
item.data = info_ptr;
info_ptr++;
/* Put item into table. */
(void) hsearch(item, ENTER);

}

/* Access table. */
item.key = name_to_find;
while (scanf("%s", item.key) != EOF) {
if ((found_item = hsearch(item, FIND)) != NULL) {
/* If item is in the table. */
(void)printf("found %s, age = %d, room = %d\n",

found_item->key,
((struct info *)found_item->data)->age,
((struct info *)found_item->data)->room);

} else
(void)printf("no such employee %s\n", name_to_find);

}
hdestroy();
return 0;

}

SEE ALSO

bsearch(3), lsearch(3), malloc(3), strcmp(3), tsearch(3)

STANDARDS

The hcreate(), hdestroy(), and hsearch() functions conform to X/Open Porta-
bility Guide Issue 4.2 (“XPG4.2”).

374 Systems/C C Library

ISSUES

The interface permits the use of only one hash table at a time.

Systems/C C Library 375

ISATTY(3)

NAME

isatty - determine if a file descriptor is associated with a terminal

SYNOPSIS

#include <unistd.h>

int
isatty(int fd);

DESCRIPTION

The isatty() function determines if the file descriptor fd refers to a valid terminal
type device.

If the file descriptor is associated with a DD that is allocated to a terminal, or if the
file descriptor is associated with an OpenEdition I/O descriptor that represents a
tty, isatty() returns a non-zero value (“true”).

RETURN VALUES

isatty() returns 0 if the descriptor fd is not associated with a terminal, non-zero
otherwise.

376 Systems/C C Library

LSEARCH(3)

NAME

lsearch, lfind - linear searching routines

SYNOPSIS

#include <sys/types.h>

char *
lsearch(const void *key, const void *base, size_t *nelp, size_t width,

int (*compar)(void *, void *));

char *
lfind(const void *key, const void *base, size_t *nelp, size_t width,

int (*compar)(void *, void *));

DESCRIPTION

This interface was obsolete before it was written.

The functions lsearch(), and lfind() provide basic linear searching functionality.

Base is the pointer to the beginning of an array. The argument nelp is the current
number of elements in the array, where each element is width bytes long. The compar
function is a comparison routine which is used to compare two elements. It takes
two arguments which point to the key object and to an array member, in that order,
and must return an integer less than, equivalent to, or greater than zero if the key
object is considered, respectively, to be less than, equal to, or greater than the array
member.

The lsearch() and lfind() functions return a pointer into the array referenced by
base where key is located. If key does not exist, lfind() will return a NULL pointer
and lsearch() will add it to the array. When an element is added to the array by
lsearch() the location referenced by the argument nelp is incremented by one.

SEE ALSO

bsearch(3)

Systems/C C Library 377

MAKECONTEXT(3)

NAME

makecontext, swapcontext – modify and exchange user thread contexts

SYNOPSIS

#include <ucontext.h>

void
makecontext(ucontext_t *ucp, void (*func)(void), int argc, ...);

int
swapcontext(ucontext_t *oucp, const ucontext_t *ucp);

DESCRIPTION

The makecontext() function modifies the user thread context pointed to by ucp,
which must have previously been initialized by a call to getcontext(3) and had a
stack allocated for it. The context is modified so that it will continue execution by
invoking func() with the arguments provided. The argc argument must be equal to
the number of additional arguments provided to makecontext() and also equal to
the number of arguments to func(), or else the behavior is undefined.

The ucp->uc link argument must be initialized before calling makecontext() and
determines the action to take when func() returns: if equal to NULL, the process
exits; otherwise, setcontext(ucp->uc link) is implicitly invoked.

The swapcontext() function saves the current thread context in *oucp and makes
*ucp the currently active context.

RETURN VALUES

If successful, swapcontext() returns zero; otherwise -1 is returned and the global
variable errno is set appropriately.

ERRORS

The swapcontext() function will fail if:

[ENOMEM] There is not enough stack space in ucp to complete the operation.

378 Systems/C C Library

SEE ALSO

setcontext(3), ucontext(3)

Systems/C C Library 379

NICE(3)

NAME

nice - set program scheduling priority

SYNOPSIS

#include <unistd.h>

int
nice(int incr);

DESCRIPTION

This interface is obsoleted by setpriority(2).

The nice() function obtains the scheduling priority of the process from the system
and sets it to the priority value specified in incr. The priority is a value in the range
-20 to 19. The default priority is 0; lower priorities cause more favorable scheduling.
Only the super-user may lower priorities.

Children inherit the priority of their parent processes via fork(2).

SEE ALSO

fork(2), setpriority(2)

380 Systems/C C Library

POPEN(3)

NAME

popen, pclose - process I/O

SYNOPSIS

#include <stdio.h>

FILE *
popen(const char *command, const char *type);

int
pclose(FILE *stream);

DESCRIPTION

The popen() function “opens” a process by creating a pipe, forking, and invoking
the shell. Since a pipe is by definition unidirectional, the type argument may specify
only reading or writing, not both; the resulting stream is correspondingly read-only
or write-only.

The command argument is a pointer to a null-terminated string containing a shell
command line. This command is passed to /bin/sh using the -c flag; interpretation,
if any, is performed by the shell. The mode argument is a pointer to a null-terminated
string which must be either "r" for reading or "w" for writing.

The return value from popen() is a normal standard I/O stream in all respects
save that it must be closed with pclose() rather than fclose(3). Writing to such
a stream writes to the standard input of the command; the command’s standard
output is the same as that of the process that called popen(), unless this is altered
by the command itself. Conversely, reading from a “popened” stream reads the
command’s standard output, and the command’s standard input is the same as
that of the process that called popen().

Note that output popen() streams are fully buffered by default.

The pclose() function waits for the associated process to terminate and returns the
exit status of the command as returned by waitpid(2).

RETURN VALUE

The popen() function returns NULL if the fork(2) or pipe(2) calls fail, or if it cannot
allocate memory.

Systems/C C Library 381

The pclose() function returns -1 if stream is not associated with a “popened”
command, if stream is already “pclosed”, or if waitpid(2) returns an error.

ERRORS

The popen() function does not reliably set errno.

SEE ALSO

fork(2), pipe(2), fflush(3), fclose(3), fopen(3), stdio(3), system(3)

ISSUES

Since the standard input of a command opened for reading shares its seek offset with
the process that called popen(), if the original process has done a buffered read,
the command’s input position may not be as expected. Similarly, the output from
a command opened for writing may become intermingled with that of the original
process. The latter can be avoided by calling fflush(3) before popen().

Failure to execute the shell is indistinguishable from the shell’s failure to execute
command, or an immediate exit of the command. The only hint is an exit status of
127.

The popen() argument always calls sh.

382 Systems/C C Library

POSIX SPAWN(3)

NAME

posix spawn, posix spawnp - spawn a process

SYNOPSIS

#include <spawn.h>

int
posix_spawn(pid_t *restrict pid, const char *restrict path,

const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp, char *const argv[restrict],
char *const envp[restrict]);

int
posix_spawnp(pid_t *restrict pid, const char *restrict file,

const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp, char *const argv[restrict],
char *const envp[restrict]);

DESCRIPTION

The posix spawn() and posix spawnp() functions create a new process (child
process) from the specified process image. The new process image is constructed
from a regular executable file called the new process image file.

When a C program is executed as the result of this call, it is entered as a C-language
function call as follows:

int main(int argc, char *argv[]);

where argc is the argument count and argv is an array of character pointers to the
arguments themselves. In addition, the variable:

extern char **environ;

points to an array of character pointers to the environment strings.

The argument argv is an array of character pointers to null-terminated strings.
The last member of this array is a null pointer and is not counted in argc. These

Systems/C C Library 383

strings constitute the argument list available to the new process image. The value in
argv[0] should point to a filename that is associated with the process image being
started by the posix spawn() or posix spawnp() function.

The argument envp is an array of character pointers to null-terminated strings.
These strings constitute the environment for the new process image. The environ-
ment array is terminated by a null pointer.

The path argument to posix spawn() is a pathname that identifies the new process
image file to execute.

The file parameter to posix spawnp() is used to construct a pathname that iden-
tifies the new process image file. If the file parameter contains a slash character, the
file parameter is used as the pathname for the new process image file. Otherwise,
the path prefix for this file is obtained by a search of the directories passed as the
environment variable “PATH”. If this variable is not specified, the default path is set
according to the PATH DEFPATH definition in ¡paths.h¿, which is set to

“/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin”.

If file actions is a null pointer, then file descriptors open in the calling process remain
open in the child process, except for those whose close-on-exec flag FD CLOEXEC
is set (see fcntl()). For those file descriptors that remain open, all attributes of
the corresponding open file descriptions, including file locks (see fcntl()), remain
unchanged.

If file actions is not NULL, then the file descriptors open in the child process are those
open in the calling process as modified by the spawn file actions object pointed to
by file actions and the FD CLOEXEC flag of each remaining open file descriptor after
the spawn file actions have been processed. The effective order of processing the
spawn file actions are:

1. The set of open file descriptors for the child process initially are
the same set as is open for the calling process. All attributes of
the corresponding open file descriptions, including file locks (see
fcntl()), remain unchanged.

2. The signal mask, signal default actions, and the effective user and
group IDs for the child process are changed as specified in the at-
tributes object referenced by attrp.

3. The file actions specified by the spawn file actions object are per-
formed in the order in which they were added to the spawn file
actions object.

4. Any file descriptor that has its FD CLOEXEC flag set (see fcntl()) is
closed.

384 Systems/C C Library

All non-posix file descriptors are closed and unavailable to the child process.

The posix spawnattr t spawn attributes object type is defined in <spawn.h>. It
contains the attributes defined below.

If the POSIX SPAWN SETPGROUP flag is set in the spawn-flags attribute of the object
referenced by attrp, and the spawn-pgroup attribute of the same object is non-zero,
then the child’s process group is as specified in the spawn-pgroup attribute of the
object referenced by attrp.

As a special case, if the POSIX SPAWN SETPGROUP flag is set in the spawn-flags at-
tribute of the object referenced by attrp, and the spawn-pgroup attribute of the
same object is set to zero, then the child is in a new process group with a process
group ID equal to its process ID.

If the POSIX SPAWN SETPGROUP flag is not set in the spawn-flags attribute of the
object referenced by attrp, the new child process inherits the parent’s process group.

The POSIX SPAWN RESETIDS flag in the spawn-flags attribute of the object referenced
by attrp governs the effective user ID of the child process. If this flag is not set,
the child process inherits the parent process’ effective user ID. If this flag is set, the
child process’ effective user ID is reset to the parent’s real user ID. In either case, if
the set-user-ID mode bit of the new process image file is set, the effective user ID of
the child process becomes that file’s owner ID before the new process image begins
execution.

The POSIX SPAWN RESETIDS flag in the spawn-flags attribute of the object referenced
by attrp also governs the effective group ID of the child process. If this flag is not
set, the child process inherits the parent process’ effective group ID. If this flag is
set, the child process’ effective group ID is reset to the parent’s real group ID. In
either case, if the set-group-ID mode bit of the new process image file is set, the
effective group ID of the child process becomes that file’s group ID before the new
process image begins execution.

If the POSIX SPAWN SETSIGMASK flag is set in the spawn-flags attribute of the object
referenced by attrp, the child process initially has the signal mask specified in the
spawn-sigmask attribute of the object referenced by attrp.

If the POSIX SPAWN SETSIGDEF flag is set in the spawn-flags attribute of the object
referenced by attrp, the signals specified in the spawn-sigdefault attribute of the
same object is set to their default actions in the child process. Signals set to the
default action in the parent process is set to the default action in the child process.

Signals set to be caught by the calling process is set to the default action in the
child process.

Signals set to be ignored by the calling process image is set to be ignored by the
child process, unless otherwise specified by the POSIX SPAWN SETSIGDEF flag being
set in the spawn-flags attribute of the object referenced by attrp and the signals
being indicated in the spawn-sigdefault attribute of the object referenced by attrp.

Systems/C C Library 385

If the value of the attrp pointer is NULL, then the default values are used.

All process attributes, other than those influenced by the attributes set in the object
referenced by attrp as specified above or by the file descriptor manipulations specified
in file actions, appear in the new process image as though vfork() had been called
to create a child process and then execve() had been called by the child process to
execute the new process image.

The implementation uses vfork(), thus the fork handlers are not run when
posix spawn() or posix spawnp() is called.

RETURN VALUES

Upon successful completion, posix spawn() and posix spawnp() return the pro-
cess ID of the child process to the parent process, in the variable pointed to by a
non-NULL pid argument, and return zero as the function return value. Otherwise,
no child process is created, no value is stored into the variable pointed to by pid,
and an error number is returned as the function return value to indicate the error.
If the pid argument is a null pointer, the process ID of the child is not returned to
the caller.

ERRORS

1. If posix spawn() and posix spawnp() fail for any of the reasons
that would cause vfork() or one of the exec to fail, an error value
is returned as described by vfork() and exec, respectively (or, if
the error occurs after the calling process successfully returns, the
child process exits with exit status 127).

2. If POSIX SPAWN SETPGROUP is set in the spawn-flags attribute
of the object referenced by attrp, and posix spawn() or
posix spawnp() fails while changing the child’s process group, an
error value is returned as described by setpgid() (or, if the error oc-
curs after the calling process successfully returns, the child process
exits with exit status 127).

3. If the file actions argument is not NULL, and specifies any dup2 or
open actions to be performed, and if posix spawn() or posix spawnp()
fails for any of the reasons that would cause dup2() or open() to
fail, an error value is returned as described by dup2() and open(),
respectively (or, if the error occurs after the calling process success-
fully returns, the child process exits with exit status 127).

An open file action may, by itself, result in any of the errors described by dup2(),
in addition to those described by open(). This implementation ignores any errors
from close(), including trying to close a descriptor that is not open.

386 Systems/C C Library

SEE ALSO

close(2), dup2(2), execve(2), fcntl(2), open(2), setpgid(2), vfork(2),
posix spawn file actions addclose(3), posix spawn file actions adddup2(3),
posix spawn file actions addopen(3), posix spawn file actions destroy(3),
posix spawn file actions init(3), posix spawnattr destroy(3),
posix spawnattr getflags(3), posix spawnattr getpgroup(3),
posix spawnattr getsigdefault(3), posix spawnattr getsigmask(3),
posix spawnattr init(3), posix spawnattr setflags(3), posix spawnattr setpgroup(3),
posix spawnattr setsigdefault(3), posix spawnattr setsigmask(3)

STANDARDS

The posix spawn() and posix spawnp() functions conform to IEEE Std 1003.1-
2001 (“POSIX.1”), except that they ignore all errors from close(). A future update
of the Standard is expected to require that these functions not fail because a file
descriptor to be closed (via posix spawn file actions addclose()) is not open.

The optional scheduling related functions described in the standard are not available
on z/OS and not implemented.

Systems/C C Library 387

POSIX SPAWNATTR GETFLAGS(3)

NAME

posix spawnattr getflags, posix spawnattr setflags - get and set the spawn-flags at-
tribute of a spawn attributes object

SYNOPSIS

#include <spawn.h>

int
posix_spawnattr_getflags(const posix_spawnattr_t *restrict attr,

short *restrict flags);

int
posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags);

DESCRIPTION

The posix spawnattr getflags() function obtains the value of the spawn-flags
attribute from the attributes object referenced by attr.

The posix spawnattr setflags() function sets the spawn-flags attribute in an ini-
tialized attributes object referenced by attr.

The spawn-flags attribute is used to indicate which process attributes are
to be changed in the new process image when invoking posix spawn() or
posix spawnp(). It is the bitwise-inclusive OR of zero or more of the following
flags (see posix spawn()):

POSIX_SPAWN_RESETIDS

POSIX_SPAWN_SETPGROUP

POSIX_SPAWN_SETSIGDEF

POSIX_SPAWN_SETSIGMASK

These flags are defined in <spawn.h>. The default value of this attribute is as if no
flags were set.

388 Systems/C C Library

RETURN VALUES

The posix spawnattr getflags() and posix spawnattr setflags() functions re-
turn zero.

SEE ALSO

posix spawn(3), posix spawnattr destroy(3), posix spawnattr init(3),
posix spawnp(3)

STANDARDS

The posix spawnattr getflags() and posix spawnattr setflags() functions
conform to IEEE Std 1003.1-2001 (“POSIX.1”).

Systems/C C Library 389

POSIX SPAWNATTR GETPGROUP(3)

NAME

posix spawnattr getpgroup, posix spawnattr setpgroup - get and set the spawn-
pgroup attribute of a spawn attributes object

SYNOPSIS

#include <spawn.h>

int
posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict attr,

pid_t *restrict pgroup);

int
posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup);

DESCRIPTION

The posix spawnattr getpgroup() function obtains the value of the spawn-
pgroup attribute from the attributes object referenced by attr.

The posix spawnattr setpgroup() function sets the spawn-pgroup attribute in
an initialized attributes object referenced by attr.

The spawn-pgroup attribute represents the process group to be joined by the new
process image in a spawn operation (if POSIX SPAWN SETPGROUP is set in the spawn-
flags attribute). The default value of this attribute is zero.

RETURN VALUES

The posix spawnattr getpgroup() and posix spawnattr setpgroup() func-
tions return zero.

SEE ALSO

posix spawn(3), posix spawnattr destroy(3), posix spawnattr init(3),
posix spawnp(3)

390 Systems/C C Library

STANDARDS

The posix spawnattr getpgroup() and posix spawnattr setpgroup() func-
tions conform to IEEE Std 1003.1-2001 (“POSIX.1”).

Systems/C C Library 391

POSIX SPAWNATTR GETSIGDEFAULT(3)

NAME

posix spawnattr getsigdefault, posix spawnattr setsigdefault - get and set the
spawn-sigdefault attribute of a spawn attributes object

SYNOPSIS

#include <spawn.h>

int
posix_spawnattr_getsigdefault(const posix_spawnattr_t *restrict attr,

sigset_t *restrict sigdefault);

int
posix_spawnattr_setsigdefault(posix_spawnattr_t *attr,

const sigset_t *restrict sigdefault);

DESCRIPTION

The posix spawnattr getsigdefault() function obtains the value of the spawn-
sigdefault attribute from the attributes object referenced by attr.

The posix spawnattr setsigdefault() function sets the spawn-sigdefault at-
tribute in an initialized attributes object referenced by attr.

The spawn-sigdefault attribute represents the set of signals to be forced to default
signal handling in the new process image (if POSIX SPAWN SETSIGDEF is set in the
spawn-flags attribute) by a spawn operation. The default value of this attribute is
an empty signal set.

RETURN VALUES

The posix spawnattr getsigdefault() and posix spawnattr setsigdefault()
functions return zero.

SEE ALSO

posix spawn(3), posix spawnattr destroy(3), posix spawnattr getsigmask(3),
posix spawnattr init(3), posix spawnattr setsigmask(3), posix spawnp(3)

392 Systems/C C Library

STANDARDS

The posix spawnattr getsigdefault() and posix spawnattr setsigdefault()
functions conform to IEEE Std 1003.1-2001 (“POSIX.1”).

Systems/C C Library 393

POSIX SPAWNATTR GETSIGMASK(3)

NAME

posix spawnattr getsigmask, posix spawnattr setsigmask - get and set the spawn-
sigmask attribute of a spawn attributes object

SYNOPSIS

#include <spawn.h>

int
posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict attr,

sigset_t *restrict sigmask);

int
posix_spawnattr_setsigmask(posix_spawnattr_t *attr,

const sigset_t *restrict sigmask);

DESCRIPTION

The posix spawnattr getsigmask() function obtains the value of the spawn-
sigmask attribute from the attributes object referenced by attr.

The posix spawnattr setsigmask() function sets the spawn-sigmask attribute in
an initialized attributes object referenced by attr.

The spawn-sigmask attribute represents the signal mask in effect in the new process
image of a spawn operation (if POSIX SPAWN SETSIGMASK is set in the spawn-flags
attribute). The default value of this attribute is unspecified.

RETURN VALUES

The posix spawnattr getsigmask() and posix spawnattr setsigmask() func-
tions return zero.

SEE ALSO

posix spawn(3), posix spawnattr destroy(3), posix spawnattr getsigmask(3),
posix spawnattr init(3), posix spawnattr setsigmask(3), posix spawnp(3)

394 Systems/C C Library

STANDARDS

The posix spawnattr getsigmask() and posix spawnattr setsigmask() func-
tions conform to IEEE Std 1003.1-2001 (“POSIX.1”).

Systems/C C Library 395

POSIX SPAWNATTR INIT(3)

NAME

posix spawnattr init, posix spawnattr destroy - initialize and destroy spawn at-
tributes object

SYNOPSIS

#include <spawn.h>

int
posix_spawnattr_init(posix_spawnattr_t * attr);

int
posix_spawnattr_destroy(posix_spawnattr_t * attr);

DESCRIPTION

The posix spawnattr init() function initializes a spawn attributes object attr with
the default value for all of the individual attributes used by the implementation.
Initializing an already initialized spawn attributes object may cause memory to be
leaked.

The posix spawnattr destroy() function destroys a spawn attributes object. A
destroyed attr attributes object can be reinitialized using posix spawnattr init().
The object should not be used after it has been destroyed.

A spawn attributes object is of type posix spawnattr t (defined in <spawn.h>) and
is used to specify the inheritance of process attributes across a spawn operation.

The resulting spawn attributes object (possibly modified by setting individ-
ual attribute values), is used to modify the behavior of posix spawn() or
posix spawnp(). After a spawn attributes object has been used to spawn a pro-
cess by a call to a posix spawn() or posix spawnp(), any function affecting the
attributes object (including destruction) will not affect any process that has been
spawned in this way.

RETURN VALUES

Upon successful completion, posix spawnattr init() and
posix spawnattr destroy() return zero; otherwise, an error number is
returned to indicate the error.

396 Systems/C C Library

ERRORS

The posix spawnattr init() function will fail if:

[ENOMEM] Insufficient memory exists to initialize the spawn attributes object.

SEE ALSO

posix spawn(3), posix spawnp(3)

STANDARDS

The posix spawnattr init() and posix spawnattr destroy() functions conform
to IEEE Std 1003.1-2001 (“POSIX.1”).

Systems/C C Library 397

POSIX SPAWN FILE ACTIONS ADDOPEN(3)

NAME

posix spawn file actions addopen, posix spawn file actions adddup2,
posix spawn file actions addclose - add open, dup2 or close action to spawn file
actions object

LIBRARY Standard C Library (libc, -lc)

SYNOPSIS

#include <spawn.h>

int
posix_spawn_file_actions_addopen(posix_spawn_file_actions_t * file_actions,

int fildes, const char *restrict path, int oflag, mode_t mode);

int
posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t * file_actions,

int fildes, int newfildes);

int
posix_spawn_file_actions_addclose(posix_spawn_file_actions_t * file_actions,

int fildes);

DESCRIPTION

These functions add an open, dup2 or close action to a spawn file actions object.

A spawn file actions object is of type posix spawn file actions t (defined in
<spawn.h>) and is used to specify a series of actions to be performed by a
posix spawn() or posix spawnp() operation in order to arrive at the set of open
file descriptors for the child process given the set of open file descriptors of the
parent.

A spawn file actions object, when passed to posix spawn() or posix spawnp(),
specify how the set of open file descriptors in the calling process is transformed into a
set of potentially open file descriptors for the spawned process. This transformation
is as if the specified sequence of actions was performed exactly once, in the context
of the spawned process (prior to execution of the new process image), in the order
in which the actions were added to the object; additionally, when the new process
image is executed, any file descriptor (from this new set) which has its FD CLOEXEC
flag set is closed (see posix spawn()).

398 Systems/C C Library

The posix spawn file actions addopen() function adds an open action to the
object referenced by file actions that causes the file named by path to be opened (as
if

open(path, oflag, mode)

had been called, and the returned file descriptor, if not fildes, had been changed to
fildes) when a new process is spawned using this file actions object. If fildes was
already an open file descriptor, it is closed before the new file is opened.

The string described by path is copied by the
posix spawn file actions addopen() function.

The posix spawn file actions adddup2() function adds a dup2 action to the
object referenced by file actions that causes the file descriptor fildes to be duplicated
as newfildes (as if

dup2(fildes, newfildes)

had been called) when a new process is spawned using this file actions object, except
that the FD CLOEXEC flag for newfildes is cleared even if fildes is equal to newfildes.
The difference from dup2() is useful for passing a particular file descriptor to a
particular child process.

The posix spawn file actions addclose() function adds a close action to the ob-
ject referenced by file actions that causes the file descriptor fildes to be closed (as
if

close(fildes)

had been called) when a new process is spawned using this file actions object.

RETURN VALUES

Upon successful completion, these functions return zero; otherwise, an error number
is returned to indicate the error.

ERRORS

These functions fail if:

[EBADF] The value specified by fildes or newfildes is negative.

[ENOMEM] Insufficient memory exists to add to the spawn file actions object.

Systems/C C Library 399

SEE ALSO

close(2), manrefdup22, manrefopen2, manrefposix spawn3,
posix spawn file actions destroy(3), manrefposix spawn file actions init3,
posix spawnp(3)

STANDARDS

The posix spawn file actions addopen(),
posix spawn file actions adddup2() and
posix spawn file actions addclose() functions conform to IEEE
Std 1003.1-2001 (“POSIX.1”), with the exception of the behavior of
posix spawn file actions adddup2() if fildes is equal to newfildes (clearing
FD CLOEXEC). A future update of the Standard is expected to require this behavior.

400 Systems/C C Library

POSIX SPAWN FILE ACTIONS INIT(3)

NAME

posix spawn file actions init, posix spawn file actions destroy - initialize and de-
stroy spawn file actions object

SYNOPSIS

#include <spawn.h>

int
posix_spawn_file_actions_init(posix_spawn_file_actions_t * file_actions);

int
posix_spawn_file_actions_destroy(posix_spawn_file_actions_t * file_actions);

DESCRIPTION

The posix spawn file actions init() function initialize the object referenced by
file actions to contain no file actions for posix spawn() or posix spawnp(). Ini-
tializing an already initialized spawn file actions object may cause memory to be
leaked.

The posix spawn file actions destroy() function destroy the object referenced
by file actions; the object becomes, in effect, uninitialized. A destroyed spawn file
actions object can be reinitialized using posix spawn file actions init(). The
object should not be used after it has been destroyed.

RETURN VALUES

Upon successful completion, these functions return zero; otherwise, an error number
is returned to indicate the error.

ERRORS

The posix spawn file actions init() function will fail if:

[ENOMEM] Insufficient memory exists to initialize the spawn file actions object.

Systems/C C Library 401

SEE ALSO

posix spawn(3), posix spawn file actions addclose(3),
posix spawn file actions adddup2(3), posix spawn file actions addopen(3),
posix spawnp(3)

STANDARDS The posix spawn file actions init() and
posix spawn file actions destroy() functions conform to IEEE Std
1003.1-2001 (“POSIX.1”).

402 Systems/C C Library

PSELECT(3)

NAME

pselect – synchronous I/O multiplexing a la POSIX.1g

SYNOPSIS

#include <sys/select.h>

int pselect(int nfds,
fd_set * restrict readfds, fd_set * restrict writefds,
fd_set * restrict exceptfds,
const struct timespec * restrict timeout,
const sigset_t * restrict newsigmask);

DESCRIPTION

The pselect() function was introduced by IEEE Std 1003.1g-2000 (“POSIX.1”) as
a slightly stronger version of select(2). The nfds, readfds, writefds, and exceptfds
arguments are all identical to the analogous arguments of select(). The time-
out argument in pselect() points to a const struct timespec rather than the
(modifiable) struct timeval used by select(); as in select(), a null pointer may
be passed to indicate that pselect() should wait indefinitely.i Finally, newsigmask
specifies a signal mask which is set while waiting for input. When pselect() returns,
the original signal mask is restored.

See select(3) for a more detailed discussion of the semantics of this interface, and
for macros used to manipulate the fd set data type.

IMPLEMENTATION NOTES

The pselect() function is implemented in the C library as a wrapper around se-
lect().

RETURN VALUES

The pselect() function returns the same values and under the same conditions as
select().

Systems/C C Library 403

ERRORS

The pselect() function may fail for any of the reasons documented for select(3) and
(if a signal mask is provided) sigprocmask(2).

SEE ALSO

poll(2), select(3), sigprocmask(2)

STANDARDS

The pselect() function conforms to IEEE Std 1003.1-2001 (“POSIX.1”).

404 Systems/C C Library

PSIGNAL(3)

NAME

psignal, strsignal, sys siglist, sys signame - system signal messages

SYNOPSIS

#include <signal.h>

void
psignal(unsigned sig, const char *s);

extern const char * const sys_siglist[];
extern const char * const sys_signame[];

#include <string.h>

char *
strsignal(int sig);

DESCRIPTION

The psignal() and strsignal() functions locate the descriptive message string for
a signal number.

The strsignal() function accepts a signal number argument sig and returns a pointer
to the corresponding message string.

The psignal() function accepts a signal number argument sig and writes it to the
standard error file descriptor. If the argument s is non-NULL and does not point
to the null character, s is written to the standard error file descriptor prior to the
message string, immediately followed by a colon and a space. If the signal number
is not recognized, the string "Unknown signal" is produced.

The message strings can be accessed directly through the external array
sys siglist, indexed by recognized signal numbers. The external array
sys signame is used similarly and contains short, lower-case abbreviations for sig-
nals which are useful for recognizing signal names in user input. The defined variable
NSIG contains a count of the strings in sys siglist and sys signame.

SEE ALSO

perror(3), strerror(3)

Systems/C C Library 405

PTSNAME(3)

NAME

ptsname - get the pathname of a slave pty (pseudo-terminal)

SYNOPSIS

#include <stdlib.h>

char *ptsname(int filedes);

DESCRIPTION

ptsname() returns the name of the slave pseudo-terminal associated with a master
terminal device referenced by the open filedes.

The minor numbers of the slave and master device will be the same.

RETURN VALUE

If successful, ptsname() returns the NUL-terminated name of the complete path
name of the slave device, otherwise a NULL pointer is returned and the global variable
errno is set to indicate the error.

ERRORS

As well as the errors described in stat(2), ptsname() will fail if:

[ENOTTY] filedes is not associated with a tty or does not represent a master
pty.

[ENOTTY] The associated slave device was not present in the system, indicating
a configuration error.

SEE ALSO

grantpt(2), unlockpt(2)

406 Systems/C C Library

ISSUES

The ptsname() function leaves its result in an internal static object and returns a
pointer to that object. Subsequent calls to ptsname() will modify the same object.

Systems/C C Library 407

PAUSE(3)

NAME

pause – stop until signal

SYNOPSIS

#include <unistd.h>

int
pause(void);

DESCRIPTION

Pause() is made obsolete by sigsuspend(2).

The pause() function forces a process to pause until a signal is received from either
the kill(2) function or an interval timer. Upon termination of a signal handler started
during a pause(), the pause() call will return.

RETURN VALUES

Always returns -1.

IMPLEMENTATION NODES

The pause() function requires POSIX signals. If POSIX signals are not availble,
pause() immediately returns a -1 with errno set to ENOSYS.

ERRORS

The pause() function always returns -1 and sets the errno value to:

[EINTR] The call was interrupt.

[ENOSYS] POSIX signals were not available.

SEE ALSO

kill(2), select(2), sigsuspend(2)

408 Systems/C C Library

QUEUE(3)

NAME

SLIST EMPTY, SLIST ENTRY, SLIST FIRST, SLIST FOREACH,
SLIST HEAD,
SLIST INIT, SLIST INSERT AFTER, SLIST INSERT HEAD, SLIST NEXT,
SLIST REMOVE HEAD, SLIST REMOVE, STAILQ EMPTY, STAILQ ENTRY,
STAILQ FIRST, STAILQ FOREACH, STAILQ HEAD, STAILQ INIT,
STAILQ INSERT AFTER, STAILQ INSERT HEAD, STAILQ INSERT TAIL,
STAILQ LAST, STAILQ NEXT, STAILQ REMOVE HEAD,
STAILQ REMOVE, LIST EMPTY, LIST ENTRY, LIST FIRST,
LIST FOREACH, LIST HEAD, LIST INIT, LIST INSERT AFTER,
LIST INSERT BEFORE, LIST INSERT HEAD, LIST NEXT,
LIST REMOVE, TAILQ EMPTY, TAILQ ENTRY, TAILQ FIRST,
TAILQ FOREACH, TAILQ FOREACH REVERSE, TAILQ HEAD, TAILQ INIT,
TAILQ INSERT AFTER, TAILQ INSERT BEFORE, TAILQ INSERT HEAD,
TAILQ INSERT TAIL, TAILQ LAST, TAILQ NEXT, TAILQ PREV,
TAILQ REMOVE, CIRCLEQ EMPTY, CIRCLEQ ENTRY, CIRCLEQ FIRST,
CIRCLEQ FOREACH, CIRCLEQ FOREACH REVERSE, CIRCLEQ HEAD,
CIRCLEQ INIT, CIRCLEQ INSERT AFTER, CIRCLEQ INSERT BEFORE,
CIRCLEQ INSERT HEAD, CIRCLEQ INSERT TAIL, CIRCLE LAST, CIR-
CLE NEXT, CIRCLE PREV, CIRCLEQ REMOVE - implementations of
singly-linked lists, singly-linked tail queues, lists, tail queues, and circular queues

SYNOPSIS

#include <sys/queue.h>

SLIST_EMPTY(SLIST_HEAD *head);

SLIST_ENTRY(TYPE);

SLIST_FIRST(SLIST_HEAD *head);

SLIST_FOREACH(TYPE *var, SLIST_HEAD *head, SLIST_ENTRY NAME);

SLIST_HEAD(HEADNAME, TYPE);

SLIST_INIT(SLIST_HEAD *head);

SLIST_INSERT_AFTER(TYPE *listelm, TYPE *elm, SLIST_ENTRY NAME);

SLIST_INSERT_HEAD(SLIST_HEAD *head, TYPE *elm, SLIST_ENTRY NAME);

SLIST_NEXT(TYPE *elm, SLIST_ENTRY NAME);

Systems/C C Library 409

SLIST_REMOVE_HEAD(SLIST_HEAD *head, SLIST_ENTRY NAME);

SLIST_REMOVE(SLIST_HEAD *head, TYPE *elm, TYPE, SLIST_ENTRY NAME);

STAILQ_EMPTY(STAILQ_HEAD *head);

STAILQ_ENTRY(TYPE);

STAILQ_FIRST(STAILQ_HEAD *head);

STAILQ_FOREACH(TYPE *var, STAILQ_HEAD *head, STAILQ_ENTRY NAME);

STAILQ_HEAD(HEADNAME, TYPE);

STAILQ_INIT(STAILQ_HEAD *head);

STAILQ_INSERT_AFTER(STAILQ_HEAD *head, TYPE *listelm, TYPE *elm,
STAILQ_ENTRY NAME);

STAILQ_INSERT_HEAD(STAILQ_HEAD *head, TYPE *elm, STAILQ_ENTRY NAME);

STAILQ_INSERT_TAIL(STAILQ_HEAD *head, TYPE *elm, STAILQ_ENTRY NAME);

STAILQ_LAST(STAILQ_HEAD *head);

STAILQ_NEXT(TYPE *elm, STAILQ_ENTRY NAME);

STAILQ_REMOVE_HEAD(STAILQ_HEAD *head, STAILQ_ENTRY NAME);

STAILQ_REMOVE(STAILQ_HEAD *head, TYPE *elm, TYPE, STAILQ_ENTRY NAME);

LIST_EMPTY(LIST_HEAD *head);

LIST_ENTRY(TYPE);

LIST_FIRST(LIST_HEAD *head);

LIST_FOREACH(TYPE *var, LIST_HEAD *head, LIST_ENTRY NAME);

LIST_HEAD(HEADNAME, TYPE);

LIST_INIT(LIST_HEAD *head);

LIST_INSERT_AFTER(TYPE *listelm, TYPE *elm, LIST_ENTRY NAME);

LIST_INSERT_BEFORE(TYPE *listelm, TYPE *elm, LIST_ENTRY NAME);

410 Systems/C C Library

LIST_INSERT_HEAD(LIST_HEAD *head, TYPE *elm, LIST_ENTRY NAME);

LIST_NEXT(TYPE *elm, LIST_ENTRY NAME);

LIST_REMOVE(TYPE *elm, LIST_ENTRY NAME);

TAILQ_EMPTY(TAILQ_HEAD *head);

TAILQ_ENTRY(TYPE);

TAILQ_FIRST(TAILQ_HEAD *head);

TAILQ_FOREACH(TYPE *var, TAILQ_HEAD *head, TAILQ_ENTRY NAME);

TAILQ_FOREACH_REVERSE(TYPE *var, TAILQ_HEAD *head, HEADNAME,
TAILQ_ENTRY NAME);

TAILQ_HEAD(HEADNAME, TYPE);

TAILQ_INIT(TAILQ_HEAD *head);

TAILQ_INSERT_AFTER(TAILQ_HEAD *head, TYPE *listelm, TYPE *elm,
TAILQ_ENTRY NAME);

TAILQ_INSERT_BEFORE(TYPE *listelm, TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_INSERT_HEAD(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_INSERT_TAIL(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_LAST(TAILQ_HEAD *head, HEADNAME);

TAILQ_NEXT(TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_PREV(TYPE *elm, HEADNAME, TAILQ_ENTRY NAME);

TAILQ_REMOVE(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME);

CIRCLEQ_EMPTY(CIRCLEQ_HEAD *head);

CIRCLEQ_ENTRY(TYPE);

CIRCLEQ_FIRST(CIRCLEQ_HEAD *head);

CIRCLEQ_FOREACH(TYPE *var, CIRCLEQ_HEAD *head, CIRCLEQ_ENTRY NAME);

Systems/C C Library 411

CIRCLEQ_FOREACH_REVERSE(TYPE *var, CIRCLEQ_HEAD *head,
CIRCLEQ_ENTRY NAME);

CIRCLEQ_HEAD(HEADNAME, TYPE);

CIRCLEQ_INIT(CIRCLEQ_HEAD *head);

CIRCLEQ_INSERT_AFTER(CIRCLEQ_HEAD *head, TYPE *listelm, TYPE *elm,
CIRCLEQ_ENTRY NAME);

CIRCLEQ_INSERT_BEFORE(CIRCLEQ_HEAD *head, TYPE *listelm, TYPE *elm,
CIRCLEQ_ENTRY NAME);

CIRCLEQ_INSERT_HEAD(CIRCLEQ_HEAD *head, TYPE *elm, CIRCLEQ_ENTRY NAME);

CIRCLEQ_INSERT_TAIL(CIRCLEQ_HEAD *head, TYPE *elm, CIRCLEQ_ENTRY NAME);

CIRCLEQ_LAST(CIRCLEQ_HEAD *head);

CIRCLEQ_NEXT(TYPE *elm, CIRCLEQ_ENTRY NAME);

CIRCLE_PREV(TYPE *elm, CIRCLEQ_ENTRY NAME);

CIRCLEQ_REMOVE(CIRCLEQ_HEAD *head, TYPE *elm, CIRCLEQ_ENTRY NAME);

DESCRIPTION

These macros define and operate on five types of data structures: singly-linked lists,
singly-linked tail queues, lists, tail queues, and circular queues. All five structures
support the following functionality:

1. Insertion of a new entry at the head of the list.

2. Insertion of a new entry after any element in the list.

3. O(1) removal of an entry from the head of the list.

4. O(n) removal of any entry in the list.

5. Forward traversal through the list.

Singly-linked lists are the simplest of the five data structures and support only the
above functionality. Singly-linked lists are ideal for applications with large datasets
and few or no removals, or for implementing a LIFO queue.

Singly-linked tail queues add the following functionality:

1. Entries can be added at the end of a list.

412 Systems/C C Library

However:

1. All list insertions must specify the head of the list.

2. Each head entry requires two pointers rather than one.

3. Code size is about 15

Singly-linked tailqs are ideal for applications with large datasets and few or no
removals, or for implementing a FIFO queue.

All doubly linked types of data structures (lists, tail queues, and circle queues)
additionally allow:

1. Insertion of a new entry before any element in the list.

2. O(1) removal of any entry in the list.

However:

1. Each elements requires two pointers rather than one.

2. Code size and execution time of operations (except for removal) is about twice
that of the singly-linked data-structures.

Linked lists are the simplest of the doubly linked data structures and support only
the above functionality over singly-linked lists.

Tail queues add the following functionality:

1. Entries can be added at the end of a list.

2. They may be traversed backwards, from tail to head.

However:

1. All list insertions and removals must specify the head of the list.

2. Each head entry requires two pointers rather than one.

3. Code size is about 15

Circular queues add the following functionality:

1. Entries can be added at the end of a list.

2. They may be traversed backwards, from tail to head.

Systems/C C Library 413

However:

1. All list insertions and removals must specify the head of the list.

2. Each head entry requires two pointers rather than one.

3. The termination condition for traversal is more complex.

4. Code size is about 40

In the macro definitions, TYPE is the name of a user defined structure, that must
contain a field of type SLIST ENTRY, STAILQ ENTRY, LIST ENTRY, TAILQ ENTRY, or
CIRCLEQ ENTRY, named NAME. The argument HEADNAME is the name of a user
defined structure that must be declared using the macros SLIST HEAD, STAILQ HEAD,
LIST HEAD, TAILQ HEAD, or CIRCLEQ HEAD. See the examples below for further ex-
planation of how these macros are used.

SINGLY-LINKED LISTS

A singly-linked list is headed by a structure defined by the SLIST HEAD macro. This
structure contains a single pointer to the first element on the list. The elements are
singly linked for minimum space and pointer manipulation overhead at the expense
of O(n) removal for arbitrary elements. New elements can be added to the list after
an existing element or at the head of the list. An SLIST HEAD structure is declared
as follows:

SLIST_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the
type of the elements to be linked into the list. A pointer to the head of the list can
later be declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

The macro SLIST EMPTY evaluates to true if there are no elements in the list.

The macro SLIST ENTRY declares a structure that connects the elements in the list.

The macro SLIST FIRST returns the first element in the list of NULL if the list is
empty.

The macro SLIST FOREACH traverses the list referenced by head in the forward di-
rection, assigning each element in turn to var

The macro SLIST INIT initializes the list referenced by head.

414 Systems/C C Library

The macro SLIST INSERT HEAD inserts the new element elm at the head of the list.

The macro SLIST INSERT AFTER inserts the new element elm after the element lis-
telm.

The macro SLIST NEXT returns the next element in the list.

The macro SLIST REMOVE HEAD removes the element elm from the head of the list.
For optimum efficiency, elements being removed from the head of the list should
explicitly use this macro instead of the generic SLIST REMOVE macro.

The macro SLIST REMOVE removes the element elm from the list.

SINGLY-LINKED LIST EXAMPLE

SLIST_HEAD(slisthead, entry) head;
struct slisthead *headp; /* Singly-linked List head. */
struct entry {

...
SLIST_ENTRY(entry) entries; /* Singly-linked List. */
...

} *n1, *n2, *n3, *np;

SLIST_INIT(&head); /* Initialize the list. */

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
SLIST_INSERT_HEAD(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */
SLIST_INSERT_AFTER(n1, n2, entries);

SLIST_REMOVE(&head, n2, entry, entries);/* Deletion. */
free(n2);

n3 = SLIST_FIRST(&head);
SLIST_REMOVE_HEAD(&head, entries); /* Deletion. */
free(n3);

/* Forward traversal. */
SLIST_FOREACH(np, &head, entries)

np-> ...

while (!SLIST_EMPTY(&head)) { /* List Deletion. */
n1 = SLIST_FIRST(&head);
SLIST_REMOVE_HEAD(&head, entries);
free(n1);

}

Systems/C C Library 415

SINGLY-LINKED TAIL QUEUES

A singly-linked tail queue is headed by a structure defined by the STAILQ HEAD
macro. This structure contains a pair of pointers, one to the first element in the tail
queue and the other to the last element in the tail queue. The elements are singly
linked for minimum space and pointer manipulation overhead at the expense of O(n)
removal for arbitrary elements. New elements can be added to the tail queue after
an existing element, at the head of the tail queue, or at the end of the tail queue.
A STAILQ HEAD structure is declared as follows:

STAILQ_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the
type of the elements to be linked into the tail queue. A pointer to the head of the
tail queue can later be declared as:

struct HEADNAME *headp;

(the names head and headp are user selectable.)

The macro STAILQ EMPTY evaluates to true if there are no items on the tail queue.

The macro STAILQ ENTRY declares a structure that connects the elements in the tail
queue.

The macro STAILQ FIRST returns the first item on the tail queue or NULL if the tail
queue is empty.

The macro STAILQ FOREACH traverses the tail queue referenced by head in the for-
ward direction, assigning each element in turn to var.

The macro STAILQ INIT initializes the tail queue referenced by head.

The macro STAILQ INSERT HEAD inserts the new element elm at the head of the tail
queue.

The macro STAILQ INSERT TAIL inserts the new element elm at the end of the tail
queue.

The macro STAILQ INSERT AFTER inserts the new element elm after the element
listelm.

The macro STAILQ LAST returns the last item on the tail queue. If the tail queue is
empty the return value is undefined.

The macro STAILQ NEXT returns the next item on the tail queue, or NULL this item
is the last.

416 Systems/C C Library

The macro STAILQ REMOVE HEAD removes the element elm from the head of the
tail queue. For optimum efficiency, elements being removed from the head of the
tail queue should use this macro explicitly rather than the generic STAILQ REMOVE
macro.

The macro STAILQ REMOVE removes the element elm from the tail queue.

SINGLY-LINKED TAIL QUEUE EXAMPLE

STAILQ_HEAD(stailhead, entry) head;
struct stailhead *headp; /* Singly-linked tail queue head. */
struct entry {

...
STAILQ_ENTRY(entry) entries; /* Tail queue. */
...

} *n1, *n2, *n3, *np;

STAILQ_INIT(&head); /* Initialize the queue. */

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
STAILQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */
STAILQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */
STAILQ_INSERT_AFTER(&head, n1, n2, entries);

/* Deletion. */
STAILQ_REMOVE(&head, n2, entry, entries);
free(n2);

/* Deletion from the head */
n3 = STAILQ_FIRST(&head);
STAILQ_REMOVE_HEAD(&head, entries);
free(n3);

/* Forward traversal. */
STAILQ_FOREACH(np, &head, entries)

np-> ...
/* TailQ Deletion. */

while (!STAILQ_EMPTY(&head)) {
n1 = STAILQ_HEAD(&head);
STAILQ_REMOVE_HEAD(&head, entries);
free(n1);

}

Systems/C C Library 417

/* Faster TailQ Deletion. */
n1 = STAILQ_FIRST(&head);
while (n1 != NULL) {

n2 = STAILQ_NEXT(n1, entries);
free(n1);
n1 = n2;

}
STAILQ_INIT(&head);

LISTS

A list is headed by a structure defined by the LIST HEAD macro. This structure
contains a single pointer to the first element on the list. The elements are doubly
linked so that an arbitrary element can be removed without traversing the list.
New elements can be added to the list after an existing element, before an existing
element, or at the head of the list. A LIST HEAD structure is declared as follows:

LIST_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the
type of the elements to be linked into the list. A pointer to the head of the list can
later be declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

The macro LIST EMPTY valuates to true if their are no elements in the list.

The macro LIST ENTRY declares a structure that connects the elements in the list.

The macro LIST FIRST returns the first element in the list or NULL if the list is
empty.

The macro LIST FOREACH traverses the list referenced by head in the forward direc-
tion, assigning each element in turn to var.

The macro LIST INIT initializes the list referenced by head.

The macro LIST INSERT HEAD inserts the new element elm at the head of the list.

The macro LIST INSERT AFTER inserts the new element elm after the element listelm.

The macro LIST INSERT BEFORE inserts the new element elm before the element
listelm.

The macro LIST NEXT returns the next element in the list, or NULL if this is the last.

The macro LIST REMOVE removes the element elm from the list.

418 Systems/C C Library

LIST EXAMPLE

LIST_HEAD(listhead, entry) head;
struct listhead *headp; /* List head. */
struct entry {

...
LIST_ENTRY(entry) entries; /* List. */
...

} *n1, *n2, *n3, *np;

LIST_INIT(&head); /* Initialize the list. */

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
LIST_INSERT_HEAD(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */
LIST_INSERT_AFTER(n1, n2, entries);

n3 = malloc(sizeof(struct entry)); /* Insert before. */
LIST_INSERT_BEFORE(n2, n3, entries);

LIST_REMOVE(n2, entries); /* Deletion. */
free(n2);

/* Forward traversal. */
LIST_FOREACH(np, &head, entries)

np-> ...

while (!LIST_EMPTY(&head)) { /* List Deletion. */
n1 = LIST_FIRST(&head);
LIST_REMOVE(n1, entries);
free(n1);

}

n1 = LIST_FIRST(&head); /* Faster List Delete. */
while (n1 != NULL) {

n2 = LIST_NEXT(n1, entries);
free(n1);
n1 = n2;

}
LIST_INIT(&head);

TAIL QUEUES

A tail queue is headed by a structure defined by the TAILQ HEAD macro. This
structure contains a pair of pointers, one to the first element in the tail queue and

Systems/C C Library 419

the other to the last element in the tail queue. The elements are doubly linked so
that an arbitrary element can be removed without traversing the tail queue. New
elements can be added to the tail queue after an existing element, before an existing
element, at the head of the tail queue, or at the end of the tail queue. A TAILQ HEAD
structure is declared as follows:

TAILQ_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the
type of the elements to be linked into the tail queue. A pointer to the head of the
tail queue can later be declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

The macro TAILQ EMPTY evaluates to true if there are no items on the tail queue.

The macro TAILQ ENTRY declares a structure that connects the elements in the tail
queue.

The macro TAILQ FIRST returns the first item on the tail queue or NULL if the tail
queue is empty.

The macro TAILQ FOREACH traverses the tail queue referenced by head in the forward
direction, assigning each element in turn to var.

The macro TAILQ FOREACH REVERSE traverses the tail queue referenced by head in
the reverse direction, assigning each element in turn to var.

The macro TAILQ INIT initializes the tail queue referenced by head.

The macro TAILQ INSERT HEAD inserts the new element elm at the head of the tail
queue.

The macro TAILQ INSERT TAIL inserts the new element elm at the end of the tail
queue.

The macro TAILQ INSERT AFTER inserts the new element elm after the element lis-
telm.

The macro TAILQ INSERT BEFORE inserts the new element elm before the element
listelm.

The macro TAILQ LAST returns the last item on the tail queue. If the tail queue is
empty the return value is undefined.

420 Systems/C C Library

The macro TAILQ NEXT returns the next item on the tail queue, or NULL if this item
is the last.

The macro TAILQ PREV returns the previous item on the tail queue, or NULL if this
item is the first.

The macro TAILQ REMOVE removes the element elm from the tail queue.

TAIL QUEUE EXAMPLE

TAILQ_HEAD(tailhead, entry) head;
struct tailhead *headp; /* Tail queue head. */
struct entry {

...
TAILQ_ENTRY(entry) entries; /* Tail queue. */
...

} *n1, *n2, *n3, *np;

TAILQ_INIT(&head); /* Initialize the queue. */

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
TAILQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */
TAILQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */
TAILQ_INSERT_AFTER(&head, n1, n2, entries);

n3 = malloc(sizeof(struct entry)); /* Insert before. */
TAILQ_INSERT_BEFORE(n2, n3, entries);

TAILQ_REMOVE(&head, n2, entries); /* Deletion. */
free(n2);

/* Forward traversal. */
TAILQ_FOREACH(np, &head, entries)

np-> ...
/* Reverse traversal. */

TAILQ_FOREACH_REVERSE(np, &head, tailhead, entries)
np-> ...

/* TailQ Deletion. */
while (!TAILQ_EMPTY(head)) {

n1 = TAILQ_FIRST(&head);
TAILQ_REMOVE(&head, n1, entries);
free(n1);

}
/* Faster TailQ Deletion. */

Systems/C C Library 421

n1 = TAILQ_FIRST(&head);
while (n1 != NULL) {

n2 = TAILQ_NEXT(n1, entries);
free(n1);
n1 = n2;

}
TAILQ_INIT(&head);

CIRCULAR QUEUES

A circular queue is headed by a structure defined by the CIRCLEQ HEAD macro. This
structure contains a pair of pointers, one to the first element in the circular queue and
the other to the last element in the circular queue. The elements are doubly linked
so that an arbitrary element can be removed without traversing the queue. New
elements can be added to the queue after an existing element, before an existing
element, at the head of the queue, or at the end of the queue. A CIRCLEQ HEAD
structure is declared as follows:

CIRCLEQ_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the
type of the elements to be linked into the circular queue. A pointer to the head of
the circular queue can later be declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

The macro CIRCLEQ EMPTY evaluates to true if there are no items on the circle queue.

The macro CIRCLEQ ENTRY declares a structure that connects the elements in the
circular queue.

The macro CIRCLEQ FIRST returns the first item on the circle queue.

The macro CICRLEQ FOREACH traverses the circle queue referenced by head in the
forward direction, assigning each element in turn to var.

The macro CICRLEQ FOREACH REVERSE traverses the circle queue referenced by head
in the reverse direction, assigning each element in turn to var.

The macro CIRCLEQ INIT initializes the circular queue referenced by head.

The macro CIRCLEQ INSERT HEAD inserts the new element elm at the head of the
circular queue.

422 Systems/C C Library

The macro CIRCLEQ INSERT TAIL inserts the new element elm at the end of the
circular queue.

The macro CIRCLEQ INSERT AFTER inserts the new element elm after the element
listelm.

The macro CIRCLEQ INSERT BEFORE inserts the new element elm before the element
listelm.

The macro CIRCLEQ LAST returns the last item on the circle queue.

The macro CIRCLEQ NEXT returns the next item on the circle queue.

The macro CIRCLEQ PREV returns the previous item on the circle queue.

The macro CIRCLEQ REMOVE removes the element elm from the circular queue.

CIRCULAR QUEUE EXAMPLE

CIRCLEQ_HEAD(circleq, entry) head;
struct circleq *headp; /* Circular queue head. */
struct entry {

...
CIRCLEQ_ENTRY(entry) entries; /* Circular queue. */
...

} *n1, *n2, *np;

CIRCLEQ_INIT(&head); /* Initialize the circular queue. */

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
CIRCLEQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */
CIRCLEQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */
CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries);

n2 = malloc(sizeof(struct entry)); /* Insert before. */
CIRCLEQ_INSERT_BEFORE(&head, n1, n2, entries);

CIRCLEQ_REMOVE(&head, n1, entries); /* Deletion. */
free(n1);

/* Forward traversal. */
CIRCLEQ_FOREACH(np, &head, entries)

np-> ...
/* Reverse traversal. */

Systems/C C Library 423

CIRCLEQ_FOREACH_REVERSE(np, &head, entries)
np-> ...

/* CircleQ Deletion. */
while (CIRCLEQ_FIRST(&head) != (void *)&head) {

n1 = CIRCLEQ_HEAD(&head);
CIRCLEQ_REMOVE(&head, n1, entries);
free(n1);

}
/* Faster CircleQ Deletion. */

n1 = CIRCLEQ_FIRST(&head);
while (n1 != (void *)&head) {

n2 = CIRCLEQ_NEXT(n1, entries);
free(n1);
n1 = n2;

}
CIRCLEQ_INIT(&head);

424 Systems/C C Library

RAISE(3)

NAME

raise - send a signal to the current program or process

SYNOPSIS

#include <signal.h>

int
raise(int sig);

DESCRIPTION

The raise() function sends the signal sig to the current process.

When running under OpenEdition, raise() is the same as kill(getpid(), sig).

RETURN VALUES

The raise() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The raise() function may fail and set errno for any of the errors specified for the
library functions getpid(2) and kill(2).

STANDARDS

The raise() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 425

SEM DESTROY(3)

NAME

sem destroy – destroy an unnamed semaphore

SYNOPSIS

#include <semaphore.h>

int
sem_destroy(sem_t *sem);

DESCRIPTION

The sem destroy() function destroys the unnamed semaphore pointed to by sem.
After a successful call to sem destroy(), sem is unusable until reinitialized by
another call to sem init(3).

RETURN VALUES

The sem destroy() function returns the value 0 if successful; otherwise the value
-1 is returned and the global variable errno is set to indicate the error.

ERRORS

The sem destroy() function will fail if:

[EINVAL] The sem argument points to an invalid semaphore.

[EBUSY] There are currently threads blocked on the semaphore that sem
points to.

SEE ALSO

sem init(3)

STANDARDS

The sem destroy() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”).

426 Systems/C C Library

SEM GETVALUE(3)

NAME

sem getvalue – get the value of a semaphore

SYNOPSIS

#include <semaphore.h>

int
sem_getvalue(sem_t * restrict sem, int * restrict sval);

DESCRIPTION

The sem getvalue() function sets the variable pointed to by sval to the cur-
rent value of the semaphore pointed to by sem, as of the time that the call to
sem getvalue() is actually run.

RETURN VALUES

The sem getvalue() function returns the value 0 if successful; otherwise the value
-1 is returned and the global variable errno is set to indicate the error.

ERRORS

The sem getvalue() function will fail if:

[EINVAL] The sem argument points to an invalid semaphore.

SEE ALSO

sem post(3), sem trywait(3), sem wait(3)

Systems/C C Library 427

STANDARDS

The sem getvalue() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”).

The value of the semaphore is never negative, even if there are threads blocked on
the semaphore. POSIX is somewhat ambiguous in its wording with regard to what
the value of the semaphore should be if there are blocked waiting threads, but this
behavior is conformant, given the wording of the specification.

428 Systems/C C Library

SEM INIT(3)

NAME

sem init – initialize an unnamed semaphore

SYNOPSIS

#include <semaphore.h>

int
sem_init(sem_t *sem, int pshared, unsigned int value);

DESCRIPTION

The sem init() function initializes the unnamed semaphore pointed to by sem to
have the value value. A non-zero value for pshared specifies a shared semaphore that
can be used by multiple processes, which this implementation is not capable of.

Following a successful call to sem init(), sem can be used as an argument in sub-
sequent calls to sem wait(3), sem trywait(3), sem post(3), and sem destroy(3). The
sem argument is no longer valid after a successful call to sem destroy(3).

RETURN VALUES

The sem init() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The sem init() function will fail if:

[EINVAL] The value argument exceeds SEM VALUE MAX.

[ENOSPC] Memory allocation error.

[EPERM] Unable to initialize a shared semaphore.

SEE ALSO

sem destroy(3), sem getvalue(3), sem post(3), sem trywait(3), sem wait(3)

Systems/C C Library 429

STANDARDS

The sem init() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”).

This implementation does not support shared semaphores, and reports this fact by
setting errno to EPERM. This is perhaps a stretch of the intention of POSIX, but
is compliant, with the caveat that sem init() always reports a permissions error
when an attempt to create a shared semaphore is made.

430 Systems/C C Library

SEM OPEN(3)

NAME

sem open, sem close, sem unlink – named semaphore operations

SYNOPSIS

#include <semaphore.h>

sem_t *
sem_open(const char *name, int oflag, ...);

int
sem_close(sem_t *sem);

int
sem_unlink(const char *name);

DESCRIPTION

The sem open() function creates or opens the named semaphore specified by
name. The returned semaphore may be used in subsequent calls to sem getvalue(3),
sem wait(3), sem trywait(3), sem post(3), and sem close()(.)

The following bits may be set in the oflag argument:

O CREAT Create the semaphore if it does not already exist.

The third argument to the call to sem open() must be of
type mode t and specifies the mode for the semaphore. Only
the S IWUSR, S IWGRP, and S IWOTH bits are examined; it is
not possible to grant only “read” permission on a semaphore.
The mode is modified according to the process’s file creation
mask; see umask(2).

The fourth argument must be an unsigned int and specifies
the initial value for the semaphore, and must be no greater
than SEM VALUE MAX.

O EXCL Create the semaphore if it does not exist. If the semaphore
already exists, sem open() will fail. This flag is ignored
unless O CREAT is also specified.

Systems/C C Library 431

The sem close() function closes a named semaphore that was opened by a call to
sem open().

The sem unlink() function removes the semaphore named name. Resources al-
located to the semaphore are only deallocated when all processes that have the
semaphore open close it.

RETURN VALUES

If successful, the sem open() function returns the address of the opened semaphore.
If the same name argument is given to multiple calls to sem open() by the same
process without an intervening call to sem close(), the same address is returned
each time. If the semaphore cannot be opened, sem open() returns SEM FAILED
and the global variable eaerrno is set to indicate the error.

The sem close() and sem unlink() functions return the value 0 if successful; oth-
erwise the value -1 is returned and the global variable errno is set to indicate the
error.

ERRORS

The sem open() function will fail if:

[EACCESS] The semaphore exists and the permissions specified by oflag at the
time it was created deny access to this process.

[EACCESS] The semaphore does not exist, but permission to create it is denied.

[EEXIST] O CREAT and O EXCL are set but the semaphore already exists.

[EINTR] The call was interrupted by a signal.

[EINVAL] The sem open() operation is not supported for the given name.

[EINVAL] The value argument is greater than SEM VALUE MAX.

[ENAMETOOLONG] The name argument is too long.

[ENFILE] The system limit on semaphores has been reached.

[ENOENT] O CREAT is set but the named semaphore does not exist.

[ENOSPC] There is not enough space to create the semaphore.

The sem close() function will fail if:

[EINVAL] The sem argument is not a valid semaphore.

432 Systems/C C Library

The sem unlink() function will fail if:

[EACCESS] Permission is denied to unlink the semaphore.

[ENAMETOOLONG] The specified name is too long.

[ENOENT] The named semaphore does not exist.

SEE ALSO

close(2), open(2), umask(2), unlink(2), sem getvalue(3), sem post(3),
sem trywait(3), sem wait(3)

STANDARDS

The sem open(), sem close(), and sem unlink() functions conform to ISO/IEC
9945-1:1996 (“POSIX.1”).

ISSUES

This implementation places strict requirements on the value of name: it must begin
with a slash (‘/’), contain no other slash characters, and be less than 14 characters
in length not including the terminating null character.

This implementation creates a file in the /tmp directory, which may clash with other
processes using the same name.

Systems/C C Library 433

SEM POST(3)

NAME

sem post – increment (unlock) a semaphore

SYNOPSIS

#include <semaphore.h>

int
sem_post(sem_t *sem);

DESCRIPTION

The sem post() function increments (unlocks) the semaphore pointed to by sem.
If there are threads blocked on the semaphore when sem post() is called, then
a thread that has been blocked on the semaphore will be allowed to return from
sem wait().

The sem post() function is signal-reentrant and may be called within signal han-
dlers.

RETURN VALUES

The sem post() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The sem post() function will fail if:

[EINVAL] The sem argument points to an invalid semaphore.

SEE ALSO

sem getvalue(3), sem trywait(3), sem wait(3)

434 Systems/C C Library

STANDARDS

The sem post() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”).

SEM TIMEDWAIT(3)

NAME

sem timedwait - lock a semaphore

SYNOPSIS

#include <semaphore.h>
#include <time.h>

int
sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);

DESCRIPTION

The sem timedwait() function locks the semaphore referenced by sem, as in the
sem wait(3) function. However, if the semaphore cannot be locked without waiting
for another process or thread to unlock the semaphore by performing a sem post(3)
function, this wait will be terminated when the specified timeout expires.

The timeout will expire when the absolute time specified by abs timeout passes, as
measured by the clock on which timeouts are based (that is, when the value of that
clock equals or exceeds abs timeout), or if the absolute time specified by abs timeout
has already been passed at the time of the call.

Note that the timeout is based on the CLOCK REALTIME clock.

The validity of the abs timeout is not checked if the semaphore can be locked im-
mediately.

RETURN VALUES

The sem timedwait() function returns zero if the calling process successfully per-
formed the semaphore lock operation on the semaphore designated by sem. If the
call was unsuccessful, the state of the semaphore is unchanged, and the function
returns a value of -1 and sets the global variable errno to indicate the error.

Systems/C C Library 435

ERRORS

The sem timedwait() function will fail if:

[EINVAL] The sem argument does not refer to a valid semaphore, or the pro-
cess or thread would have blocked, and the abs timeout parameter
specified a nanoseconds field value less than zero or greater than or
equal to 1000 million.

[ETIMEDOUT] The semaphore could not be locked before the specified timeout
expired.

[EINTR] A signal interrupted this function.

SEE ALSO

sem post(3), sem trywait(3), sem wait(3)

STANDARDS

The sem timedwait() function conforms to IEEE Std 1003.1-2004 (“POSIX.1”).

436 Systems/C C Library

SEM WAIT(3)

NAME

sem wait, sem trywait – decrement (lock) a semaphore

SYNOPSIS

#include <semaphore.h>

int
sem_wait(sem_t *sem);

int
sem_trywait(sem_t *sem);

DESCRIPTION

The sem wait() function decrements (locks) the semaphore pointed to by sem, but
blocks if the value of sem is zero, until the value is non-zero and the value can be
decremented.

The sem trywait() function decrements (locks) the semaphore pointed to by sem
only if the value is non-zero. Otherwise, the semaphore is not decremented and an
error is returned.

RETURN VALUES

Upon successful completion, the value 0 is returned; otherwise the value -1 is re-
turned and the global variable errno is set to indicate the error.

ERRORS

The sem wait() and sem trywait() functions will fail if:

[EINVAL] The sem argument points to an invalid semaphore.

Additionally, sem trywait() will fail if:

[EAGAIN] The semaphore value was zero, and thus could not be decremented.

Systems/C C Library 437

SEE ALSO

sem getvalue(3), sem post(3)

STANDARDS

The sem wait() and sem trywait() functions conform to ISO/IEC 9945-1:1996
(“POSIX.1”).

438 Systems/C C Library

SIGNAL(3)

NAME

signal – simplified software signal facilities

SYNOPSIS

#include <signal.h>

void (*signal(int sig, void (*func)(int)))(int);

or in Dignus’s equivalent but easier to read typedef’d version:

typedef void (*sig_t) (int); sig_t
signal(int sig, sig_t func);

DESCRIPTION

This signal() facility is a simplified interface to the more general sigaction(2) facility.

Signals allow the manipulation of a process from outside its domain as well as
allowing the process to manipulate itself or copies of itself (children). There are
two general types of signals: those that cause termination of a process and those
that do not. Signals which cause termination of a program might result from an
irrecoverable error or might be the result of a user at a terminal typing the ‘interrupt’
character. Signals are used when a process is stopped because it wishes to access its
control terminal while in the background. Signals are optionally generated when a
process resumes after being stopped, when the status of child processes changes, or
when input is ready at the control terminal. Most signals result in the termination
of the process receiving them if no action is taken; some signals instead cause the
process receiving them to be stopped, or are simply discarded if the process has not
requested otherwise. Except for the SIGKILL and SIGSTOP signals, the signal()
function allows for a signal to be caught, to be ignored, or to generate an interrupt.
These signals are defined in the file <signal.h>:

No Name Default Action Description
1 SIGHUP terminate process terminal line hangup
2 SIGINT terminate process interrupt program
3 SIGQUIT create core image quit program
4 SIGILL create core image illegal instruction
5 SIGTRAP create core image trace trap

Systems/C C Library 439

6 SIGABRT create core image abort program (formerly SIGIOT)
7 SIGEMT create core image emulate instruction executed
8 SIGFPE create core image floating-point exception
9 SIGKILL terminate process kill program
10 SIGBUS create core image bus error
11 SIGSEGV create core image segmentation violation
12 SIGSYS create core image non-existent system call invoked
13 SIGPIPE terminate process write on a pipe with no reader
14 SIGALRM terminate process real-time timer expired
15 SIGTERM terminate process software termination signal
16 SIGURG discard signal urgent condition present on

socket
17 SIGSTOP stop process stop (cannot be caught or

ignored)
18 SIGTSTP stop process stop signal generated from

keyboard
19 SIGCONT discard signal continue after stop
20 SIGCHLD discard signal child status has changed
21 SIGTTIN stop process background read attempted from

control terminal
22 SIGTTOU stop process background write attempted to

control terminal
23 SIGIO discard signal I/O is possible on a descriptor

(see \manref{fcntl}{2})
24 SIGXCPU terminate process cpu time limit exceeded (see

\manref{setrlimit}{2})
25 SIGXFSZ terminate process file size limit exceeded (see

\manref{setrlimit}{2}))
26 SIGVTALRM terminate process virtual time alarm (see

setitimer(2) - unavailable)
27 SIGPROF terminate process profiling timer alarm (see

setitimer(2) - unavailable)
28 SIGWINCH discard signal Window size change
29 SIGINFO discard signal status request from keyboard
30 SIGUSR1 terminate process User defined signal 1
31 SIGUSR2 terminate process User defined signal 2
32 SIGTHR terminate process thread interrupt
33 SIGDANGER terminate process
34 SIGTHSTOP terminate process thread interrupt
35 SIGTHCONT terminate process thread interrupt
37 SIGTRACE terminate process
38 SIGDCE terminate process
39 SIGDUMP terminate process
40 SIGABND terminate process ABEND encountered
51 SIGPOLL terminate process
52 SIGIOERR terminate process

440 Systems/C C Library

The sig argument specifies which signal was received. The func procedure allows a
user to choose the action upon receipt of a signal. To set the default action of the
signal to occur as listed above, func should be SIG DFL. A SIG DFL resets the default
action. To ignore the signal func should be SIG IGN. This will cause subsequent
instances of the signal to be ignored and pending instances to be discarded. If
SIG IGN is not used, further occurrences of the signal are automatically blocked and
func is called.

The handled signal is unblocked when the function returns and the process continues
from where it left off when the signal occurred. Unlike previous signal facilities, the
handler func() remains installed after a signal has been delivered.

For some system calls, if a signal is caught while the call is executing and the
call is prematurely terminated, the call is automatically restarted. (The handler is
installed using the SA RESTART flag with sigaction(2).)

When a process which has installed signal handlers forks, the child process inherits
the signals. All caught signals may be reset to their default action by a call to the
execve(2) function; ignored signals remain ignored.

If a process explicitly specifies SIG IGN as the action for the signal SIGCHLD, the
system will not create zombie processes when children of the calling process exit.
As a consequence, the system will discard the exit status from the child processes.
If the calling process subsequently issues a call to wait(2) or equivalent, it will block
until all of the calling process’s children terminate, and then return a value of -1
with errno set to ECHILD.

See sigaction(2) for a list of functions that are considered safe for use in signal
handlers.

RETURN VALUES

The previous action is returned on a successful call. Otherwise, SIG ERR is returned
and the global variable errno is set to indicate the error.

ERRORS

The signal() function will fail and no action will take place if one of the following
occur:

errlist

[EINVAL] The sig argument is not a valid signal number.

[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL,
SIGSTOP or SIGABND.

Systems/C C Library 441

IMPLEMENTATION

signal() is implemented using the sigaction(2) facility.

For more information about POSIX signals and how that interacts with the Dignus
runtime environment, see sigaction(2).

SEE ALSO

kill(1), kill(2), ptrace(2), sigaction(2), sigaltstack(2), sigprocmask(2), sigsuspend(2),
wait(2), fpsetmask(3), setjmp(3), siginterrupt(3), tty(4)

442 Systems/C C Library

SIGSETOPS(3)

NAME

sigemptyset, sigfillset, sigaddset, sigdelset, sigismember – manipulate signal sets

SYNOPSIS

#include <signal.h>

int
sigemptyset(sigset_t *set);

int
sigfillset(sigset_t *set);

int
sigaddset(sigset_t *set, int signo);

int
sigdelset(sigset_t *set, int signo);

int
sigismember(const sigset_t *set, int signo);

DESCRIPTION

These functions manipulate signal sets stored in a sigset t. Either sigemptyset()
or sigfillset() must be called for every object of type sigset t before any other
use of the object.

The sigemptyset() function initializes a signal set to be empty.

The sigfillset() function initializes a signal set to contain all signals.

The sigdelset() function deletes the specified signal signo from the signal set.

The sigismember() function returns whether a specified signal signo is contained
in the signal set.

RETURN VALUES

The sigismember() function returns 1 if the signal is a member of the set, 0
otherwise. The other functions return 0 upon success. A -1 return value indicates
an error occurred and the global variable errno is set to indicate the reason.

Systems/C C Library 443

ERRORS

These functions could fail if one of the following occurs:

[EINVAL] signo has an invalid value.

SEE ALSO

kill(2), sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2)

STANDARDS

These functions are defined by IEEE Std 1003.1-1988 (“POSIX.1”).

444 Systems/C C Library

SETJMP(3)

NAME

sigsetjmp, siglongjmp, setjmp, longjmp, setjmp, longjmp - non-local jumps

SYNOPSIS

#include <setjmp.h>

int
sigsetjmp(sigjmp_buf env, int savemask);

void
siglongjmp(sigjmp_buf env, int val);

int
setjmp(jmp_buf env);

void
longjmp(jmp_buf env, int val);

int
_setjmp(jmp_buf env);

void
_longjmp(jmp_buf env, int val);

DESCRIPTION

The sigsetjmp(), setjmp(), and setjmp() functions save their calling environ-
ment in env. Each of these functions returns 0.

The corresponding longjmp() functions restore the environment saved by their
most recent respective invocations of the setjmp() function. They then return so
that program execution continues as if the corresponding invocation of the setjmp()
call had just returned the value specified by val, instead of 0.

Pairs of calls may be intermixed, i.e., both sigsetjmp() and siglongjmp() and
setjmp() and longjmp() combinations may be used in the same program, however,
individual calls may not, e.g. the env argument to setjmp() may not be passed to
siglongjmp().

The longjmp() routines may not be called after the routine which called the
setjmp() routines returns.

Systems/C C Library 445

All accessible objects have values as of the time longjmp() routine was called,
except that the values of objects of automatic storage invocation duration that
do not have the volatile type and have been changed between the setjmp()
invocation and longjmp() call are indeterminate.

The setjmp()/longjmp() pairs save and restore the signal mask while
setjmp()/ longjmp() pairs save and restore only the register set and the stack.

(See sigprocmask(2).)

The sigsetjmp()/siglongjmp() function pairs save and restore the signal mask if
the argument savemask is non-zero, otherwise only the register set and the stack are
saved.

SEE ALSO

sigaction(2), sigaltstack(2), signal(3)

STANDARDS

The setjmp() and longjmp() functions conform to ISO/IEC 9899:1990 (“ISO
C90”). The sigsetjmp() and siglongjmp() functions conform to IEEE Std 1003.1-
1988 (“POSIX.1”).

446 Systems/C C Library

SLEEP(3)

NAME

sleep – suspend process execution for an interval measured in seconds

SYNOPSIS

#include <unistd.h>

unsigned int
sleep(unsigned int seconds);

DESCRIPTION

The sleep() function suspends execution of the calling process until either seconds
seconds have elapsed or a signal is delivered to the process and its action is to invoke
a signal-catching function or to terminate the process. System activity may lengthen
the sleep by an indeterminate amount.

In the USS/POSIX environment, this function is implemented directly via the
BPX1SLP/BPX4SLP functions, in a batch or TSO environment this function is
implemented with a select() call with a specified timeout value. This allows for use
of the SIGALRM signal in USS/POSIX environments.

RETURN VALUES

In USS/POSIX environments, if the sleep() function returns because the requested
time has elapsed, the value returned will be zero. If the sleep() function returns
due to the delivery of a signal, the value returned will be the unslept amount (the
requested time minus the time actually slept) in seconds.

In batch or TSO environments, sleep() always returns 0.

STANDARDS

The sleep() function conforms to ISO/IEC 9945-1:1990 (“POSIX.1”).

Systems/C C Library 447

SYSCONF(3)

NAME

sysconf - get configurable system variables

SYNOPSIS

#include <unistd.h>

long
sysconf(int name);

DESCRIPTION

This interface is defined by IEEE Std 1003.1-1988 (“POSIX.1”). This implementa-
tion does not support all of the POSIX-defined function, but a limited subset.

The sysconf() function provides a method for applications to determine the current
value of a configurable system limit or option variable. The name argument specifies
the system variable to be queried. Symbolic constants for each name value are found
in the include file <unistd.h>.

The available values in this implementation are:

SC CHILD MAX Returns zero for the Systems/C runtime.

SC CLK TCK The frequency of the statistics clock in ticks per second.

SC OPEN MAX The maximum number of open files.

RETURN VALUES

If the call to sysconf() is not successful, -1 is returned and errno is set appropri-
ately. Otherwise, if the variable is associated with functionality that is not sup-
ported, -1 is returned and errno is not modified. Otherwise, the current variable
value is returned.

ERRORS

The sysconf() function may fail and set errno if the library cannot determine a
value. In addition, the following error may be reported:

[EINVAL] The value of the name argument is invalid.

448 Systems/C C Library

SEE ALSO

getdtablesize(2)

ISSUES

The Systems/C sysconf() implementation is not POSIX conforming.

Systems/C C Library 449

TCGETPGRP(3)

NAME

tcgetpgrp - get foreground process group ID

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

pid_t
tcgetpgrp(int fd);

DESCRIPTION

The tcgetpgrp() function returns the value of the process group ID of the fore-
ground process group associated with the terminal device. If there is no foreground
process group, tcgetpgrp() returns an invalid process ID.

ERRORS

If an error occurs, tcgetpgrp() returns -1 and the global variable errno is set to
indicate the error, as follows:

[EBADF] The fd argument is not a valid file descriptor.

[ENOTTY] The calling process does not have a controlling termi nal or the
underlying terminal device represented by fd is not the controlling
terminal.

SEE ALSO

setpgid(2), setsid(2), tcsetpgrp(3)

STANDARDS

The tcgetpgrp() function is expected to be compliant with the IEEE Std 1003.1-
1988 (“POSIX.1”) specification.

450 Systems/C C Library

TCSENDBREAK(3)

NAME

tcsendbreak, tcdrain, tcflush, tcflow - line control functions

SYNOPSIS

#include <termios.h>

int
tcdrain(int fd);

int
tcflow(int fd, int action);

int
tcflush(int fd, int action);

int
tcsendbreak(int fd, int len);

DESCRIPTION

The tcdrain() function waits until all output written to the terminal referenced by
fd has been transmitted to the terminal.

The tcflow() function suspends transmission of data to or the reception of data
from the terminal referenced by fd depending on the value of action. The value of
action must be one of the following:

TCOFF Suspend output.

TCOON Restart suspended output.

TCIOFF Transmit a STOP character, which is intended to cause the terminal
to stop transmitting data to the system.

TCION Transmit a START character, which is intended to cause the termi-
nal to start transmitting data to the system.

The tcflush() function discards any data written to the terminal referenced by
fd which has not been transmitted to the terminal, or any data received from the
terminal but not yet read, depending on the value of action. The value of action
must be one of the following:

Systems/C C Library 451

TCIFLUSH Flush data received but not read.

TCOFLUSH Flush data written but not transmitted.

TCIOFLUSH Flush both data received but not read and data written but not
transmitted.

The tcsendbreak() function transmits a continuous stream of zero-valued bits for
the specified len to the terminal referenced by fd.

RETURN VALUES

Upon successful completion, all of these functions return a value of zero.

ERRORS

If any error occurs, a value of -1 is returned and the global variable errno is set to
indicate the error, as follows:

[EBADF] The fd argument is not a valid file descriptor.

[EINVAL] The action argument is not a proper value.

[ENOTTY] The file associated with fd is not a terminal.

[EINTR] A signal interrupted the tcdrain() function.

SEE ALSO

tcsetattr(3)

STANDARDS

The tcsendbreak(), tcdrain(), tcflush() and tcflow() functions are expected to
be compliant with the IEEE Std 1003.1-1988 (“POSIX.1”) specification.

452 Systems/C C Library

TCSETATTR(3)

NAME

cfgetispeed, cfsetispeed, cfgetospeed, cfsetospeed, cfsetspeed, cfmakeraw, tcgetattr,
tcsetattr - manipulating the termios structure

SYNOPSIS

#include <termios.h>

speed_t
cfgetispeed(const struct termios *t);

int
cfsetispeed(struct termios *t, speed_t speed);

speed_t
cfgetospeed(const struct termios *t);

int
cfsetospeed(struct termios *t, speed_t speed);

int
cfsetspeed(struct termios *t, speed_t speed);

void
cfmakeraw(struct termios *t);

int
tcgetattr(int fd, struct termios *t);

int
tcsetattr(int fd, int action, const struct termios *t);

DESCRIPTION

The cfmakeraw(), tcgetattr() and tcsetattr() functions are provided for getting
and setting the termios structure.

The cfgetispeed(), cfsetispeed(), cfgetospeed(), cfsetospeed() and cfset-
speed() functions are provided for getting and setting the baud rate values in
the termios structure. The effects of the functions on the terminal as described
below do not become effective, nor are all errors detected, until the tcsetattr()

Systems/C C Library 453

function is called. Certain values for baud rates set in the termios structure and
passed to tcsetattr() have special meanings. These are discussed in the portion of
the manual page that describes the tcsetattr() function.

GETTING AND SETTING THE BAUD RATE

The input and output baud rates are found in the termios structure. The unsigned
integer speed t is typedef’d in the include file <termios.h>. The value of the integer
corresponds directly to the baud rate being represented, however, the following
symbolic values are defined.

#define B0 0
#define B50 50
#define B75 75
#define B110 110
#define B134 134
#define B150 150
#define B200 200
#define B300 300
#define B600 600
#define B1200 1200
#define B1800 1800
#define B2400 2400
#define B4800 4800
#define B9600 9600
#define B19200 19200
#define B38400 38400
#ifndef _POSIX_SOURCE
#define EXTA 19200
#define EXTB 38400
#endif /*_POSIX_SOURCE */

The cfgetispeed() function returns the input baud rate in the termios structure
referenced by tp.

The cfsetispeed() function sets the input baud rate in the termios structure refer-
enced by tp to speed.

The cfgetospeed() function returns the output baud rate in the termios structure
referenced by tp.

The cfsetospeed() function sets the output baud rate in the termios structure
referenced by tp to speed.

The cfsetspeed() function sets both the input and output baud rate in the termios
structure referenced by tp to speed.

454 Systems/C C Library

Upon successful completion, the functions cfsetispeed(), cfsetospeed(), and cf-
setspeed() return a value of 0. Otherwise, a value of -1 is returned and the global
variable errno is set to indicate the error.

GETTING AND SETTING THE TERMIOS STATE

This section describes the functions that are used to control the general terminal
interface. Unless otherwise noted for a specific command, these functions are re-
stricted from use by background processes. Attempts to perform these operations
shall cause the process group to be sent a SIGTTOU signal. If the calling process
is blocking or ignoring SIGTTOU signals, the process is allowed to perform the
operation and the SIGTTOU signal is not sent.

In all the functions, although fd is an open file descriptor, the functions affect the
underlying terminal file, not just the open file description associated with the par-
ticular file descriptor.

The cfmakeraw() function sets the flags stored in the termios structure to a state
disabling all input and output processing, giving a “raw I/O path”. It should be
noted that there is no function to reverse this effect. This is because there are a
variety of processing options that could be re-enabled and the correct method is for
an application to snapshot the current terminal state using the function tcgetattr(),
setting raw mode with cfmakeraw() and the subsequent tcsetattr(), and then
using another tcsetattr() with the saved state to revert to the previous terminal
state.

The tcgetattr() function copies the parameters associated with the terminal ref-
erenced by fd in the termios structure referenced by tp. This function is allowed
from a background process, however, the terminal attributes may be subsequently
changed by a foreground process.

The tcsetattr() function sets the parameters associated with the terminal from the
termios structure referenced by tp. The action field is created by or’ing the following
values, as specified in the include file <termios.h>.

TCSANOW The change occurs immediately

TCSADRAIN The change occurs after all output written to fd has been trans-
mitted to the terminal. This value of action should be used when
changing parameters that affect output.

TCSAFLUSH The change occurs after all output written to fd has been transmit-
ted to the terminal. Additionally, any input that has been received
but not read is discarded.

TCSASOFT If this value is or’ed into the action value, the values of c cflag,
c ispeed, and c ospeedfields are ignored.

Systems/C C Library 455

The 0 baud rate is used to terminate the connection. If 0 is specified as the output
speed to the function tcsetattr(), modem control will no longer be asserted on the
terminal, disconnecting the terminal.

If zero is specified as the input speed to the function tcsetattr(), the input baud
rate will be set to the same value as that specified by the output baud rate.

If tcsetattr() is unable to make any of the requested changes, it returns -1 and sets
errno. Otherwise, it makes all of the requested changes it can. If the specified input
and output baud rates differ and are a combination that is not supported, neither
baud rate is changed.

Upon successful completion, the functions tcgetattr() and tcsetattr() return a
value of 0. Otherwise, they return -1 and the global variable errno is set to indicate
the error, as follows:

[EBADF] The fd argument to tcgetattr() or tcsetattr() was not a valid file
descriptor.

[EINTR] The tcsetattr() function was interuppted by a signal.

[EINVAL] The action argument to the tcsetattr() function was not valid,
or an attempt was made to change an attribute represented in the
termios structure to an unsupported value.

[ENOTTY] The file associated with the fd argument to tcgetattr() or tcse-
tattr() is not a terminal.

SEE ALSO

tcsendbreak(3)

STANDARDS

The cfgetispeed(), cfsetispeed(), cfgetospeed(), cfsetospeed(), tcgetattr()
and tcsetattr() functions are expected to be compliant with the IEEE Std 1003.1-
1988 (“POSIX.1”) specification. The cfmakeraw() and cfsetspeed() functions,
as well as the TCSASOFT option to the tcsetattr() function are extensions to the
IEEE Std 1003.1-1988 (“POSIX.1”) specification.

456 Systems/C C Library

TCSETPGRP(3)

NAME

tcsetpgrp - set foreground process group ID

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

int
tcsetpgrp(int fd, pid_t pgrp_id);

DESCRIPTION

If the process has a controlling terminal, the tcsetpgrp() function sets the fore-
ground process group ID associated with the terminal device to pgrp id. The termi-
nal device associated with fd must be the controlling terminal of the calling process
and the controlling terminal must be currently associated with the session of the
calling process. The value of pgrp id must be the same as the process group ID of a
process in the same session as the calling process.

RETURN VALUES

The tcsetpgrp() function returns the value 0 if successful; otherwise the value -1
is returned and the global variable errno is set to indicate the error.

ERRORS

The tcsetpgrp() function will fail if:

[EBADF] The fd argument is not a valid file descriptor.

[EINVAL] An invalid value of pgrp id was specified.

[ENOTTY] The calling process does not have a controlling terminal, or the file
represented by fd is not the controlling terminal, or the control-
ling terminal is no longer associated with the session of the calling
process.

[EPERM] The pgrp id argument does not match the process group ID of a
process in the same session as the calling process.

Systems/C C Library 457

SEE ALSO

setpgid(2), setsid(2), tcgetpgrp(3)

STANDARDS

The tcsetpgrp() function is expected to be compliant with the IEEE Std 1003.1-
1988 (“POSIX.1”) specification.

458 Systems/C C Library

THRD CREATE(3)

NAME

call once, cnd broadcast, cnd destroy, cnd init, cnd signal, cnd timedwait,
cnd wait, mtx destroy, mtx init, mtx lock, mtx timedlock, mtx trylock, mtx unlock,
thrd create, thrd current, thrd detach, thrd equal, thrd exit, thrd join, thrd sleep,
thrd yield, tss create, tss delete, tss get, tss set - C11 threads interface

SYNOPSIS

#include <threads.h>

void
call_once(once_flag *flag, void (*func)(void));

int
cnd_broadcast(cnd_t *cond);

void
cnd_destroy(cnd_t *cond);

int
cnd_init(cnd_t *cond);

int
cnd_signal(cnd_t *cond);

int
cnd_timedwait(cnd_t * restrict cond, mtx_t * restrict mtx,

const struct timespec * restrict ts);

int
cnd_wait(cnd_t *cond, mtx_t *mtx);

void
mtx_destroy(mtx_t *mtx);

int
mtx_init(mtx_t *mtx, int type);

int
mtx_lock(mtx_t *mtx);

int
mtx_timedlock(mtx_t * restrict mtx, const struct timespec * restrict ts);

Systems/C C Library 459

int
mtx_trylock(mtx_t *mtx);

int
mtx_unlock(mtx_t *mtx);

int
thrd_create(thrd_t *thr, int (*func)(void *), void *arg);

thrd_t
thrd_current(void);

int
thrd_detach(thrd_t thr);

int
thrd_equal(thrd_t thr0, thrd_t thr1);

_Noreturn void
thrd_exit(int res);

int
thrd_join(thrd_t thr, int *res);

int
thrd_sleep(const struct timespec *duration, struct timespec *remaining);

void
thrd_yield(void);

int
tss_create(tss_t *key, void (*dtor)(void *));

void
tss_delete(tss_t key);

void *
tss_get(tss_t key);

int
tss_set(tss_t key, void *val);

460 Systems/C C Library

DESCRIPTION

As of ISO/IEC 9899:2011 (“ISO C11”), the C standard includes an API for writing
multithreaded applications. Since POSIX.1 already includes a threading API that
is used by virtually any multithreaded application, the interface provided by the C
standard can be considered superfluous.

In this implementation, the threading interface is therefore implemented as a light-
weight layer on top of existing interfaces. The functions to which these routines are
mapped, are listed in the following table. Please refer to the documentation of the
POSIX equivalent functions for more information.

Function POSIX equivalent

call once() pthread once(3)

cnd broadcast() pthread cond broadcast(3)

cnd destroy() pthread cond destroy(3)

cnd init() pthread cond init(3)

cnd signal() pthread cond signal(3)

cnd timedwait() pthread cond timedwait(3)

cnd wait() pthread cond wait(3)

mtx destroy() pthread mutex destroy(3)

mtx init() pthread mutex init(3)

mtx lock() pthread mutex lock(3)

mtx timedlock() pthread mutex timedlock(3)

mtx trylock() pthread mutex trylock(3)

mtx unlock() pthread mutex unlock(3)

thrd create() pthread create(3)

thrd current() pthread self(3)

thrd detach() pthread detach(3)

thrd equal() pthread equal(3)

thrd exit() pthread exit(3)

thrd join() pthread join(3)

thrd sleep() nanosleep(2)

Systems/C C Library 461

thrd yield() pthread yield(3)

tss create() pthread key create(3)

tss delete() pthread key delete(3)

tss get() pthread getspecific(3)

tss set() pthread setspecific(3)

DIFFERENCES WITH POSIX EQUIVALENTS

The thrd exit() function returns an integer value to the thread calling thrd join(),
whereas the pthread exit() function uses a pointer.

The mutex created by mtx init() can be of type mtx plain or mtx timed to dis-
tinguish between a mutex that supports mtx timedlock(). This type can be or’d
with mtx recursive to create a mutex that allows recursive acquisition. These
properties are normally set using pthread mutex init()’s attr parameter.

RETURN VALUES

If successful, the cnd broadcast(), cnd init(), cnd signal(), cnd timedwait(),
cnd wait(), mtx init(), mtx lock(), mtx timedlock(), mtx trylock(),
mtx unlock(), thrd create(), thrd detach(), thrd equal(), thrd join(),
thrd sleep(), tss create() and tss set() functions return thrd success. Oth-
erwise an error code will be returned to indicate the error.

The thrd current() function returns the thread ID of the calling thread.

The tss get() function returns the thread-specific data value associated with the
given key. If no thread-specific data value is associated with key, then the value
NULL is returned.

ERRORS

The cnd init() and thrd create() functions will fail if:

thrd nonmem The system has insufficient memory.

The cnd timedwait() and mtx timedlock() functions will fail if:

thrd timedout The system time has reached or exceeded the time specified in ts
before the operation could be completed.

462 Systems/C C Library

The mtx trylock() function will fail if:

thrd busy The mutex is already locked.

In all other cases, these functions may fail by returning general error code
thrd error.

SEE ALSO

nanosleep(2), pthread(3)

STANDARDS

These functions are expected to conform to ISO/IEC 9899:2011 (“ISO C11”).

Systems/C C Library 463

TIME(3)

NAME

time - get time of day

SYNOPSIS

#include <time.h>

time_t
time(time_t *tloc)

DESCRIPTION

The time() function returns the value of time in seconds since 0 hours, 0 minutes,
0 seconds, January 1, 1970, Coordinated Universal Time.

A copy of the time value may be saved to the area indicated by the pointer tloc. If
tloc is a NULL pointer, no value is stored.

Upon successful completion, time() returns the value of time. There is no error
value as a value of -1 seconds would be the last second of the year 1969.

SEE ALSO

gettimeofday(2), ctime(3)

464 Systems/C C Library

TIMES(3)

NAME

times - process times

SYNOPSIS

#include <sys/times.h>

clock_t
times(struct tms *tp);

DESCRIPTION

This interface is obsoleted by getrusage(2) and gettimeofday(2).

The times() function returns the value of time in CLK TCK’s of a second since 0
hours, 0 minutes, 0 seconds, January 1, 1970, Coordinated Universal Time.

It also fills in the structure pointed to by tp with time-accounting information.

The tms structure is defined as follows:

struct tms {
clock_t tms_utime;
clock_t tms_stime;
clock_t tms_cutime;
clock_t tms_cstime;

};

The elements of this structure are defined as follows:

tms utime The CPU time charged for the execution of user instructions.

tms stime The CPU time charged for execution by the system on behalf of the
process.

tms cutime The sum of the tms utimes and tms cutimes of the child processes.

tms cstime The sum of the tms stimes and tms cstimes of the child processes.

All times are in CLK TCK’s of a second.

If an error occurs, times() returns the value ((clock t)-1), and sets errno to
indicate the error.

Systems/C C Library 465

ERRORS

The times() function may fail and set the global variable errno for any of the errors
specified for the library routines getrusage(2) and gettimeofday(2).

SEE ALSO

getrusage(2), gettimeofday(2), wait(2)

STANDARDS

The times() function conforms to IEEE Std 1003.1-1988 (“POSIX.1”) as closely as
the host system allows.

466 Systems/C C Library

TIMEZONE(3)

NAME

timezone - return the timezone abbreviation

SYNOPSIS

char *
timezone(int zone, int dst);

DESCRIPTION

This interface is for compatibility only; it is impossible to reliably map timezone’s
arguments to a time zone abbreviation. See ctime(3).

The timezone() function returns a pointer to a time zone abbreviation for the
specified zone and dst values. Zone is the number of minutes west of GMT and dst
is non-zero if daylight savings time is in effect.

SEE ALSO

ctime(3)

Systems/C C Library 467

TPUT(3)

NAME

tput - issue the TPUT macro

SYNOPSIS

#include <machine/tput.h>
void
__tput(int len, char *buffer)

DESCRIPTION

The tput() function invokes the z/OS TPUT macro, passing the given length len
and buffer address buffer.

Consult the IBM documentation for the TPUT macro for more information.

468 Systems/C C Library

TRACEBACK(3)

NAME

traceback - provide a function traceback

SYNOPSIS

#include <stdio.h>
#include <machine/trcback.h>

void
__traceback(FILE *f);

void
__tbfrom(void *stack_ptr, void message(char *, void *), void *user_data);

DESCRIPTION

The traceback() function provides a function-level traceback of the call stack
from the calling function.

traceback() writes the traceback on the file descriptor specified by f. The trace-
back information is kept in the Systems/C pre-prologue area. The traceback()
function walks the stack frame backwards, printing the name found in the per-
prologue area.

The tbfrom() function provides a user-controlled mechanism to access the trace-
back. The tbfrom() function will invoke the message function for each line of
traceback information generated. The first parameter to the message function will be
a NUL-terminated character string. The 2nd parameter will be the value of user data
passed into tbfrom(). The stack ptr parameter to tbfrom() is the stack pointer
where the traceback should begin. Typically this is the current register 13.

Note that invoking traceback() or tbfrom() with a SIGSEGV or SIGABND sig-
nal handler can be dangerous as the stack may be corrupted. traceback() and
tbfrom() require a reasonable stack to ”walk-back” and retrieve the function

names. A corrupt stack will cause these functions to possibly dereference invalid
memory, or have other issues. Therefor, use of these functions within a corrupted
stack environment may cause further SIGSEGV or other events.

For example, the traceback() function can be implemented as:

#include <machine/trcback.h>

Systems/C C Library 469

#include <stdio.h>
#include <stdlib.h>

/*
* one_line()
* Print one line to the the FILE pointer
* passed in a user-data
**/
static void
one_line(char *mess, void *user)
{

FILE *fp;

fp = (FILE *)user;
fprintf(fp, "%s\n", mess);
fflush(fp);

}

void
traceback(FILE *f)
{

__register(13) void *r13; /* current stack pointer */

__tbfrom(r13, one_line, f);
}

SEE ALSO

funopen(3), fopen(3)

470 Systems/C C Library

TSEARCH(3)

NAME

tsearch, tfind, tdelete, twalk – manipulate binary search trees

SYNOPSIS

#include <search.h>

void *
tdelete(const void *key, void **rootp,

int (*compar) (const void *, const void *));

void *
tfind(const void *key, void **rootp,

int (*compar) (const void *, const void *));

void *
tsearch(const void *key, void **rootp,

int (*compar) (const void *, const void *));

void
twalk(const void *root, void (*compar) (const void *, VISIT, int));

DESCRIPTION

The tdelete(), tfind(), tsearch(), and twalk() functions manage binary search
trees based on algorithms T and D from Knuth (6.2.2). The comparison function
passed in by the user has the same style of return values as strcmp(3).

tfind() searches for the datum matched by the argument key in the binary tree
rooted at rootp, returning a pointer to the datum if it is found and NULL if it is not.

tsearch() is identical to tfind() except that if no match is found, key is inserted
into the tree and a pointer to it is returned. If rootp points to a NULL value a new
binary search tree is created.

tdelete() deletes a node from the specified binary search tree and returns a pointer
to the parent of the node to be deleted. It takes the same arguments as tfind() and
tsearch(). If the node to be deleted is the root of the binary search tree, rootp will
be adjusted.

twalk() walks the binary search tree rooted in root and calls the function action on
each node. Action is called with three arguments: a pointer to the current node,

Systems/C C Library 471

a value from the enum typedef enum { preorder, postorder, endorder, leaf
} VISIT; specifying the traversal type, and a node level (where level zero is the
root of the tree).

SEE ALSO

bsearch(3), hsearch(3), lsearch(3)

RETURN VALUES

The tsearch() function returns NULL if allocation of a new node fails (usually due
to a lack of free memory).

tfind(), tsearch(), and tdelete() functions return NULL if rootp is NULL or the
datum cannot be found.

The twalk() function returns no value.

472 Systems/C C Library

TTYNAME(3)

NAME

ttyname - get name of associated terminal (tty) from file descriptor

SYNOPSIS

#include <unistd.h>

char *
ttyname(int fd);

DESCRIPTION

The ttyname() function operates on the system file descriptors for terminal type
devices. These descriptors are not related to the standard I/O FILE typedef, but
refer to the special device files found in /dev and named /dev/ttyxx

The ttyname() function gets the related device name of a file descriptor for which
isatty() is true, and the file descriptor is associated with an //HFS:-style file.
isatty() can return true for non-//HFS: files when the DCB indicates that the file is
associated with a TSO terminal.

RETURN VALUES

The ttyname() function returns the null terminated name if the device is found
and isatty() is true, and the file descriptor is an //HFS:-style file; otherwise a NULL
pointer is returned.

ISSUES

The ttyname() function leaves its result in an internal static object and returns a
pointer to that object. Subsequent calls to ttyname() will modify the same object.

Systems/C C Library 473

UCONTEXT(3)

NAME

ucontext – user thread context

SYNOPSIS

#include <ucontext.h>

DESCRIPTION

The ucontext t type is a structure type suitable for holding the context for a user
thread of execution. A thread’s context includes its stack, saved registers, and list
of blocked signals.

The ucontext t structure contains at least these fields:

ucontext t *uc link context to assume when this one returns

sigset t uc sigmask signals being blocked

stack t uc stack stack area

mcontext t uc mcontext saved registers

The uc link field points to the context to resume when this context’s entry point
function returns. If uc link is equal to NULL, then the program exits when this
context returns.

The uc mcontext field is machine-dependent and should be treated as opaque by
portable applications.

The following functions are defined to manipulate ucontext t structures:

int getcontext(ucontext_t *);
int setcontext(const ucontext_t *);
void makecontext(ucontext_t *, void (*)(void), int, ...);
int swapcontext(ucontext_t *, const ucontext_t *);

SEE ALSO

sigaltstack(2), getcontext(3), makecontext(3)

474 Systems/C C Library

UNAME(3)

NAME

uname - get system identification

SYNOPSIS

#include <sys/utsname.h>

int
uname(struct utsname *name);

DESCRIPTION

The uname() function stores nul-terminated strings of information identifying the
current system into the structure referenced by name.

The utsname struction is defined in the <sys/utsname.h> header file, and contains
the following members:

sysname Name of the operating system implementation.

nodename Network name of this machine.

release Release level of the operating system.

version Version level of the operating system.

machine Machine hardware platform.

RETURN VALUES

The unname() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

The only error value possible from uname() is ENOSYS, which can occur if OpenEdi-
tion services are not available.

STANDARDS

The uname() function conforms to IEEE Std 1003.1-1988 (“POSIX.1”) as closely
as the host system allows.

Systems/C C Library 475

USLEEP(3)

NAME

usleep – suspend process execution for an interval measured in microseconds

SYNOPSIS

#include <unistd.h>

int
usleep(useconds_t microseconds);

DESCRIPTION

The usleep() function suspends execution of the calling process until either mi-
croseconds microseconds have elapsed or a signal is delivered to the process and its
action is to invoke a signal-catching function or to terminate the process. System
activity may lengthen the sleep by an indeterminate amount.

This function is implemented using nanosleep(2) by pausing for microseconds mi-
croseconds or until a signal occurs. Consequently, in this implementation, sleeping
has no effect on the state of process timers, and there is no special handling for
SIGALRM.

RETURN VALUES

The usleep() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

The usleep() function will fail if:

[EINTR] A signal was delivered to the process and its action was to invoke a
signal-catching function.

SEE ALSO

nanosleep(2), sleep(3)

476 Systems/C C Library

UTIME(3)

NAME

utime - set //HFS:-style file times

SYNOPSIS

#include <sys/types.h>
#include <utime.h>

int
utime(const char *file, const struct utimbuf *timep);

DESCRIPTION

This interface is obsoleted by utimes(2).

The utime() function sets the access and modification times of the named file from
the structures in the argument array timep.

If the times are specified (the timep argument is non-NULL) the caller must be the
owner of the file or be the super-user.

If the times are not specified (the timep argument is NULL) the caller must be the
owner of the file, have permission to write the file, or be the super-user.

ERRORS

The utime() function may fail and set errno for any of the errors specified for the
library function utimes(2).

SEE ALSO

stat(2), utimes(2)

STANDARDS

The utime() function conforms to IEEE Std 1003.1-1988 (“POSIX.1”).

Systems/C C Library 477

WORDEXP(3)

NAME

wordexp - perform shell-style word expansions

SYNOPSIS

#include <wordexp.h>

int
wordexp(const char * restrict words, wordexp_t * restrict we, int flags);

void
wordfree(wordexp_t *we);

DESCRIPTION

The wordexp() function performs shell-style word expansion on words and places
the list of words into the we wordv member of we, and the number of words into
we wordc.

The flags argument is the bitwise inclusive OR of any of the following constants:

WRDE APPEND Append the words to those generated by a previous call to word-
exp().

WRDE DOOFFS As many NULL pointers as are specified by the we offs member
of we are added to the front of we wordv.

WRDE NOCMD Disallow command substitution in words. See the note in ISSUES
before using this.

WRDE REUSE The we argument was passed to a previous successful call to
wordexp() but has not been passed to wordfree(). The im-
plementation may reuse the space allocated to it.

WRDE SHOWERR Do not redirect shell error messages to /dev/null.

WRDE UNDEF Report error on an attempt to expand an undefined shell variable.

The wordexp t structure is defined in <wordexp.h> as:

478 Systems/C C Library

typedef struct {
size_t we_wordc; /* count of words matched */
char **we_wordv; /* pointer to list of words */
size_t we_offs; /* slots to reserve in we_wordv */

} wordexp_t;

The wordfree() function frees the memory allocated by wordexp().

IMPLEMENTATION NOTES

The wordexp() function is implemented as a wrapper around an invocation of the
POSIX shell.

RETURN VALUES

The wordexp() function returns zero if successful, otherwise it returns one of the
following error codes:

WRDE BADCHAR The words argument contains one of the following unquoted char-
acters: <newline>, ‘|’, ‘&’, ‘;’, ‘<’, ‘>’, ‘(’, ‘)’, ‘{’, ‘}’.

WRDE BADVAL An attempt was made to expand an undefined shell variable and
WRDE UNDEF is set in flags.

WRDE CMDSUB An attempt was made to use command substitution and
WRDE NOCMD is set in flags.

WRDE NOSPACE Not enough memory to store the result.

WRDE NOSYS Functionality not supported on this system, errno will also be
set to ENOSYS enough memory to store the result.

WRDE SYNTAX Shell syntax error in words.

The wordfree() function returns no value.

ENVIRONMENT

IFS Field separator.

Systems/C C Library 479

EXAMPLES

Invoke the editor on all .c files in the current directory and /etc/motd (error checking
omitted):

wordexp_t we;

wordexp("${EDITOR:-vi} *.c /etc/motd", &we, 0);
execvp(we.we_wordv[0], we.we_wordv);

DIAGNOSTICS

Diagnostic messages from the shell are written to the standard error output if
WRDE SHOWERR is set in flags.

SEE ALSO

fnmatch(3), glob(3), popen(3), system(3)

STANDARDS

The wordexp() and wordfree() functions conform to IEEE Std 1003.1-2001
(“POSIX.1”).

ISSUES

Do not pass untrusted user data to wordexp(), regardless of whether the
WRDE NOCMD flag is set. The wordexp() function attempts to detect input that
would cause commands to be executed before passing it to the shell but it does not
use the same parser so it may be fooled.

The current wordexp() implementation does not recognize multibyte characters,
since the shell (which it invokes to perform expansions) does not.

480 Systems/C C Library

WTO(3)

NAME

wto - issue the WTO macro

SYNOPSIS

#include <machine/wto.h>
void
__wto(int len, char *buffer)

DESCRIPTION

The wto() function invokes the z/OS WTO macro, passing the given length len
and buffer address buffer.

Consult the IBM documentation for the WTO macro for more information.

Systems/C C Library 481

Locale Library

The locale library provides functions for manipulating character values in a locale
specific fashion. It provides functions that define the locale, test various character
values for belong to specific classes of characters and formatting various items based
on the locale setting.

482 Systems/C C Library

BTOWC(3)

NAME

btowc, wctob - convert between wide and single-byte characters

SYNOPSIS

#include <wchar.h>

wint_t
btowc(int c);

int
wctob(wint_t c);

DESCRIPTION

The btowc() function converts a single-byte character into a correspond- ing wide
character. If the character is EOF or not valid in the initial shift state, btowc()
returns WEOF.

The wctob() function converts a wide character into a corresponding sin- gle-byte
character. If the wide character is WEOF or not able to be rep- resented as a single
byte in the initial shift state, wctob() returns WEOF.

SEE ALSO

mbrtowc(3), multibyte(3), wcrtomb(3)

STANDARDS

The btowc() and wctob() functions conform to IEEE Std 1003.1-2001
(“POSIX.1”).

Systems/C C Library 483

CTYPE(3)

NAME

isalnum, isalpha, isascii, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, isxdigit, toascii tolower, toupper, - character classification macros

SYNOPSIS

#include <ctype.h>

int
isalnum(int c)

int
isalpha(int c)

int
isascii(int c)

int
iscntrl(int c)

int
isdigit(int c)

int
isgraph(int c)

int
islower(int c)

int
isprint(int c)

int
ispunct(int c)

int
isspace(int c)

int
isupper(int c)

int
isxdigit(int c)

484 Systems/C C Library

int
toascii(int c)

int
tolower(int c)

int
toupper(int c)

DESCRIPTION

The above functions perform character tests and conversions on the integer c. They
are available as macros, defined in the include file ¡ctype.h¿, or as true functions in
the C library. See the specific manual pages for more information.

SEE ALSO

isalnum(3), isalpha(3), isascii(3), isblank(3), iscntrl(3), isdigit(3), isgraph(3),
islower(3), isprint(3), ispunct(3), isspace(3), isupper(3), isxdigit(3), toascii(3),
tolower(3), toupper(3)

STANDARDS

These functions, except for isblank(), toupper(), tolower() and toascii(), con-
form to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 485

ISALNUM(3)

NAME

isalnum - alphanumeric character test

SYNOPSIS

#include <ctype.h>

int
isalnum(int c)

DESCRIPTION

The isalnum() function tests for any character for which isalpha(3) or isdigit(3) is
true.

RETURN VALUES

The isalnum() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3), isalpha(3), isdigit(3)

STANDARDS

The isalnum() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

486 Systems/C C Library

ISALPHA(3)

NAME

isalpha - alphabetic character test

SYNOPSIS

#include <ctype.h>

int
isalpha(int c)

DESCRIPTION

The isalpha() function tests for any character for which isupper(3) or slower(3) is
true.

RETURN VALUES

The isalpha() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3), islower(3), isupper(3)

STANDARDS

The isalpha() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 487

ISASCII(3)

NAME

isascii - test for ASCII character

SYNOPSIS

#include <ctype.h>

int
isascii(int c)

DESCRIPTION

The isascii() function tests for an ASCII character, based on the EBCDIC character
set. That is, isascii returns a non-zero value for any EBCDIC character which, when
converted to ASCII, would have a value less than or equal to 0177.

The conversion from EBCDIC to ASCII follows the C compiler’s conversion table.

SEE ALSO

ctype(3),

STANDARDS

The isascii() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

488 Systems/C C Library

ISBLANK(3)

NAME

isblank - space or tab character test

SYNOPSIS

#include <ctype.h>

int
isblank(int c)

DESCRIPTION

The isblank() function tests for a space or tab character.

RETURN VALUES

The isblank() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3)

Systems/C C Library 489

ISCNTRL(3)

NAME

iscntrl - control character test

SYNOPSIS

#include <ctype.h>

int
iscntrl(int c)

DESCRIPTION

The iscntrl() function tests for any control character.

RETURN VALUES

The iscntrl() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3),

STANDARDS

The iscntrl() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

490 Systems/C C Library

ISDIGIT(3)

NAME

isdigit - decimal-digit character test

SYNOPSIS

#include <ctype.h>

int
isdigit(int c)

DESCRIPTION

The isdigit() function tests for any decimal-digit character.

RETURN VALUES

The isdigit() function returns zero if the character tests false and returns non-zero
If the character tests true.

SEE ALSO

ctype(3),

STANDARDS

The isdigit() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 491

ISGRAPH(3)

NAME

isgraph - printing character test (space character exclusive)

SYNOPSIS

#include <ctype.h>

int
isgraph(int c)

DESCRIPTION

The isgraph() function tests for any printing character except space.

RETURN VALUES

The isgraph() function returns zero if the character tests false and returns non-zero
If the character tests true.

SEE ALSO

ctype(3),

STANDARDS

The isgraph() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

492 Systems/C C Library

ISLOWER(3)

NAME

islower - lower-case character test

SYNOPSIS

#include <ctype.h>

int
islower(int c)

DESCRIPTION

The islower() function tests for any lower-case letters.

RETURN VALUES

The islower() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3),

STANDARDS

The islower() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 493

ISPRINT(3)

NAME

isprint - printing character test (space character inclusive)

SYNOPSIS

#include <ctype.h>

int
isprint(int c)

DESCRIPTION

The isprint() function tests for any printing character including space (’ ’).

RETURN VALUES

The isprint() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3),

STANDARDS

The isprint() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

494 Systems/C C Library

ISPUNCT(3)

NAME

ispunct - punctuation character test

SYNOPSIS

#include <ctype.h>

int
ispunct(int c)

DESCRIPTION

The ispunct() function tests for any printing character except for space (’ ’) or a
character for which isalnum(3) is true.

RETURN VALUES

The ispunct() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3),

STANDARDS

The ispunct() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 495

ISSPACE(3)

NAME

isspace - white-space character test

SYNOPSIS

#include <ctype.h>

int
isspace(int c)

DESCRIPTION

The isspace() function tests for the standard white-space characters.

RETURN VALUES

The isspace() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3),

STANDARDS

The isspace() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

496 Systems/C C Library

ISUPPER(3)

NAME

isupper - upper-case character test

SYNOPSIS

#include <ctype.h>

int
isupper(int c)

DESCRIPTION

The isupper() function tests for any upper-case letter.

RETURN VALUES

The isupper() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3)

STANDARDS

The isupper() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 497

ISWALNUM(3)

NAME

iswalnum, iswalpha, iswascii, iswblank, iswcntrl, iswdigit, iswgraph, iswhexnum-
ber, iswideogram, iswlower, iswnumber, iswphonogram, iswprint, iswpunct, iswrune,
iswspace, iswspecial, iswupper, iswxdigit - wide character classification utilities

SYNOPSIS

#include <wctype.h>
int
iswalnum(wint_t wc);

int
iswalpha(wint_t wc);

int
iswascii(wint_t wc);

int
iswblank(wint_t wc);

int
iswcntrl(wint_t wc);

int
iswdigit(wint_t wc);

int
iswgraph(wint_t wc);

int
iswhexnumber(wint_t wc);

int
iswideogram(wint_t wc);

int
iswlower(wint_t wc);

int
iswnumber(wint_t wc);

int
iswphonogram(wint_t wc);

498 Systems/C C Library

int
iswprint(wint_t wc);

int
iswpunct(wint_t wc);

int
iswrune(wint_t wc);

int
iswspace(wint_t wc);

int
iswspecial(wint_t wc);

int
iswupper(wint_t wc);

int
iswxdigit(wint_t wc);

DESCRIPTION

The above functions are character classification utility functions, for use with wide
character (wchar t or wint t). See the description for the similarly-named single
byte classfunctions (e.g. isalnum(3)) for details.

RETURN VALUES

The functions return zero if the character tests false and return non-zero if the
character tests true.

SEE ALSO

isalnum(3), isalpha(3), isascii(3), isblank(3), iscntrl(3), isdigit(3), isgraph(3),
ishexnumber(3), isideogram(3), islower(3), isnumber(3), isphonogram(3), isprint(3),
ispunct(3), isrune(3), isspace(3), isspecial(3), isupper(3), isxdigit(3), wctype(3)

STANDARDS

These functions functions conform to ISO/IEC 9899:1999 (“ISO C99”), ex-
cept iswascii(), iswhexnumber(), iswideogram(), iswnumber(), iswphono-

Systems/C C Library 499

gram(), iswrune() and iswspecial(), which are Systems/C extensions.

CAVEATS

The result of these functions is undefined unless the argument is WEOF or a valid
wchar t value for the current locale.

500 Systems/C C Library

ISXDIGIT(3)

NAME

isxdigit - hexadecimal-digit character test

SYNOPSIS

#include <ctype.h>

int
isxdigit(int c)

DESCRIPTION

The isxdigit() function tests for any hexadecimal-digit character.

RETURN VALUES

The isxdigit() function returns zero if the character tests false and returns non-zero
if the character tests true.

SEE ALSO

ctype(3)

STANDARDS

The isxdigit() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 501

MBLEN(3)

NAME

mblen - get number of bytes in a character

SYNOPSIS

#include <stdlib.h>

int
mblen(const char *mbchar, size_t nbytes);

DESCRIPTION

The mblen() function computes the length in bytes of a multibyte character mbchar
according to the current conversion state. Up to nbytes bytes are examined.

A call with a null mbchar pointer returns nonzero if the current locale requires shift
states, zero otherwise; if shift states are required, the shift state is reset to the initial
state.

RETURN VALUES

If mbchar is NULL, the mblen() function returns nonzero if shift states are supported,
zero otherwise.

Otherwise, if mbchar is not a null pointer, mblen() either returns 0 if mbchar
represents the null wide character, or returns the number of bytes processed in
mbchar, or returns -1 if no multibyte character could be recognized or converted. In
this case, mblen()’s internal conversion state is undefined.

ERRORS

The mblen() function will fail if:

EILSEQ An invalid multibyte sequence was detected.

EINVAL The internal conversion state is not valid.

502 Systems/C C Library

SEE ALSO

mbrlen(3), mbtowc(3), multibyte(3)

STANDARDS

The mblen() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 503

MBRLEN(3)

NAME

mbrlen - get number of bytes in a character (restartable)

SYNOPSIS

#include <wchar.h>

size_t
mbrlen(const char * restrict s, size_t n, mbstate_t * restrict ps);

DESCRIPTION

The mbrlen() function inspects at most n bytes pointed to by s to determine the
number of bytes needed to complete the next multibyte character.

The mbstate t argument, ps, is used to keep track of the shift state. If it is NULL,
mbrlen() uses an internal, static mbstate t object, which is initialized to the initial
conversion state at program startup.

It is equivalent to:

mbrtowc(NULL, s, n, ps);

Except that when ps is a NULL pointer, mbrlen() uses its own static, internal
mbstate t object to keep track of the shift state.

RETURN VALUES

The mbrlen() functions returns:

0 The next n or fewer bytes represent the null wide character (L’
0’). item[>0] The next n or fewer bytes represent a valid charac-
ter, mbrlen() returns the number of bytes used to complete the
multibyte character.

EFAULT locale was NULL.

(size t)-2 The next n contribute to, but do not complete, a valid multibyte
character sequence, and all n bytes have been processed.

(size t)-1 An encoding error has occurred. The next n or fewer bytes do
not contribute to a valid multibyte character.

504 Systems/C C Library

EXAMPLES

A function that calculates the number of characters in a multibyte character string:

size_t
nchars(const char *s)
{

size_t charlen, chars;
mbstate_t mbs;

chars = 0;
memset(&mbs, 0, sizeof(mbs));
while ((charlen = mbrlen(s, MB_CUR_MAX, &mbs)) != 0 &&

charlen != (size_t)-1 && charlen != (size_t)-2) {
s += charlen;
chars++;

}

return (chars);
}

ERRORS

The mbrlen() function will fail if:

EILSEQ An invalid multibyte sequence was detected.

EINVAL The conversion state is invalid.

SEE ALSO

mblen(3), mbrtowc(3), multibyte(3)

STANDARDS

The mbrlen() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 505

MBRTOWC(3)

NAME

mbrtowc - convert a character to a wide-character code (restartable)

SYNOPSIS

#include <wchar.h>

size_t
mbrtowc(wchar_t * restrict pwc, const char * restrict s, size_t n,

mbstate_t * restrict ps);

DESCRIPTION

The mbrtowc() function inspects at most n bytes pointed to by s to determine the
number of bytes needed to complete the next multibyte character. If a character
can be completed, and pwc is not NULL, the wide character which is represented by
s is stored in the wchar t it points to.

If s is NULL, mbrtowc() behaves as if pwc was NULL, s was an empty string ("")
and n was 1.

The mbstate t argument, ps, is used to keep track of the shift state. If it is NULL,
mbrtowc() uses an internal, static mbstate t object, which is initialized to the
initial conversion state at program startup.

RETURN VALUES

The mbrtowc() function returns:

0 The next n or fewer bytes represent the null wide character (L’
0’).

>0 The next n or fewer bytes represent a valid character, mbrtowc()
returns the number of bytes used to complete the multibyte char-
acter.

(size t)-2 The next n contribute to, but do not complete, a valid multibyte
character sequence, and all n bytes have been processed.

(size t)-1 An encoding error has occurred. The next n or fewer bytes do
not contribute to a valid multibyte character.

506 Systems/C C Library

ERRORS

The mbrtowc() function will fail if:

EILSEQ An invalid multibyte sequence was detected.

EINVAL The conversion state is invalid.

SEE ALSO

mbtowc(3), multibyte(3), setlocale(3), wcrtomb(3)

STANDARDS

The mbrtowc() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 507

MBSINIT(3)

NAME

mbsinit - determine conversion object status

SYNOPSIS

#include <wchar.h>

int
mbsinit(const mbstate_t *ps);

DESCRIPTION

The mbsinit() function determines whether the mbstate t object pointed to by ps
describes an initial conversion state.

RETURN VALUES

The mbsinit() function returns non-zero if ps is NULL or describes an initial con-
version state, otherwise it returns zero.

STANDARDS

The mbsinit() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

508 Systems/C C Library

MBSRTOWCS(3)

NAME

mbsrtowcs, mbsnrtowcs - convert a character string to a wide-character string
(restartable)

SYNOPSIS

#include <wchar.h>

size_t
mbsrtowcs(wchar_t * restrict dst, const char ** restrict src, size_t len,

mbstate_t * restrict ps);

size_t
mbsnrtowcs(wchar_t * restrict dst, const char ** restrict src,

size_t nms, size_t len, mbstate_t * restrict ps);

DESCRIPTION

The mbsrtowcs() function converts a sequence of multibyte characters pointed to
indirectly by src into a sequence of corresponding wide characters and stores at most
len of them in the wchar t array pointed to by dst, until it encounters a terminating
null character (’
0’).

If dst is NULL , no characters are stored.

If dst is not NULL, the pointer pointed to by src is updated to point to the character
after the one that conversion stopped at. If conversion stops because a null character
is encountered, *src is set to NULL.

The mbstate t argument, ps, is used to keep track of the shift state. If it is NULL,
mbsrtowcs() uses an internal, static mbstate t object, which is initialized to the
initial conversion state at program startup.

The mbsnrtowcs() function behaves identically to mbsrtowcs(), except that con-
version stops after reading at most nms bytes from the buffer pointed to by src.

RETURN VALUES

The mbsrtowcs() and mbsnrtowcs() functions return the number of wide char-
acters stored in the array pointed to by dst if successful, otherwise it returns
(size t)-1.

Systems/C C Library 509

ERRORS

The mbsrtowcs() and mbsnrtowcs() functions will fail if:

EILSEQ An invalid multibyte sequence was encountered.

EINVAL The conversion state is invalid.

SEE ALSO

mbrtowc(3), mbstowcs(3), multibyte(3), wcsrtombs(3)

STANDARDS

The mbsrtowcs() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

The mbsnrtowcs() function is an extension to the standard.

510 Systems/C C Library

MULTIBYTE(3)

NAME

multibyte – multibyte and wide character manipulation functions

SYNOPSIS

#include <limits.h>
#include <stdlib.h>
#include <wchar.h>

DESCRIPTION

The basic elements of some written natural languages, such as Chinese, cannot be
represented uniquely with single C chars. The C standard supports two different
ways of dealing with extended natural language encodings: wide characters and
multibyte characters. Wide characters are an internal representation which allows
each basic element to map to a single object of type wchar t. Multibyte characters
are used for input and output and code each basic element as a sequence of C chars.
Individual basic elements may map into one or more (up to MB LEN MAX) bytes in a
multibyte character.

The current locale (setlocale(3)) governs the interpretation of wide and multibyte
characters. The locale category LC CTYPE specifically controls this interpretation.
The wchar t type is wide enough to hold the largest value in the wide character
representations for all locales.

Multibyte strings may contain ‘shift’ indicators to switch to and from particular
modes within the given representation. If explicit bytes are used to signal shifting,
these are not recognized as separate characters but are lumped with a neighboring
character. There is always a distinguished ‘initial’ shift state. Some functions (e.g.,
mblen(3), mbtowc(3) and wctomb(3)) maintain static shift state internally, whereas
others store it in an mbstate t object passed by the caller. Shift states are undefined
after a call to setlocale(3) with the LC CTYPE or LC ALL categories.

For convenience in processing, the wide character with value 0 (the null wide char-
acter) is recognized as the wide character string terminator, and the character with
value 0 (the null byte) is recognized as the multibyte character string terminator.
Null bytes are not permitted within multibyte characters.

The C library provides the following functions for dealing with multibyte characters:

mblen(3) get number of bytes in a character

Systems/C C Library 511

mbrlen(3) get number of bytes in a character (restartable)

mbrtowc(3) convert a character to a wide-character code (restartable)

mbsrtowcs(3) convert a character string to a wide-character string (restartable)

mbstowcs(3) convert a character string to a wide-character string

mbtowc(3) convert a character to a wide-character code

wcrtomb(3) convert a wide-character code to a character (restartable)

wcstombs(3) convert a wide-character string to a character string

wcsrtombs(3) convert a wide-character string to a character string (restartable)

wctomb(3) convert a wide-character code to a character

SEE ALSO

setlocale(3), stdio(3), big5(5), euc(5), gb18030(5), gb2312(5), gbk(5), mskanji(5),
utf8(5)

STANDARDS

These functions conform to ISO/IEC 9899:1999 (“ISO C99”).

512 Systems/C C Library

RUNE(3)

NAME

setrunelocale, setinvalidrune, sgetrune, sputrune - rune support for C

SYNOPSIS

#include <rune.h>
#include <errno.h>

int
setrunelocale(char *locale)

void
setinvalidrune(rune_t rune)

rune_t
sgetrune(const char *string, size_t n,
char const **result)

int
sputrune(rune_t rune, char *string, size_t n,
char **result)

#include <stdio.h>

long
fgetrune(FILE *stream)

int
fungetrune(rune_t rune, FILE *stream)

int
fputrune(rune_t rune, FILE *stream)

DESCRIPTION

The setrunelocale() controls the type of encoding used to represent runes as multi-
byte strings as well as the properties of the runes as defined in ¡ctype.h¿. The locale
argument indicates which locale to load. If the locale is successfully loaded, 0 is
returned, otherwise an errno value is returned to indicate the type of error.

The setinvalidrune() function sets the value of the global value INVALID RUNE to
be rune.

Systems/C C Library 513

The sgetrune() function tries to read a single multibyte character from string,
which is at most n bytes long. If sgetrune() is successful, the rune is returned.
If result is not NULL, *result will point to the first byte which was not converted
in string. If the first n bytes of string do not describe a full multibyte character,
INVALID RUNE is returned and *result will point to string. If there is an encoding
error at the start of string, INVALID RUNE is returned and *result will point to
the second character of string.

The sputrune() function tries to encode rune as a multibyte string and store it at
string, but no more than n bytes will be stored. If result is not NULL, *result will
be set to point to the first byte in string following the new multibyte character. If
string is NULL, *result will point to (char *)0 + x, where x is the number of bytes
that would be needed to store the multibyte value. If the multibyte character would
consist of more than n bytes and result is not NULL, *result will be set to NULL.
In all cases, sputrune() will return the number of bytes which would be needed to
store rune as a multibyte character.

The fgetrune() function operates the same as sgetrune() with the exception that
it attempts to read enough bytes from stream to decode a single rune. It returns
either EOF on end of file, INVALID RUNE on an encoding error, or the rune decoded
if all went well.

The fungetrune() function pushes the multibyte encoding, as provided by spu-
trune(), of rune onto stream such that the next fgetrune() call will return rune.
It returns EOF if it fails and 0 on success.

The fputrune() function writes the multibyte encoding of rune, as provided by
sputrune(), onto stream. It returns EOF on failure and 0 on success.

RETURN VALUES

The setrunelocale() function returns one of the following values:

0 setrunelocale() was successful.

EFAULT locale was NULL.

ENOENT The locale could not be found.

EFTYPE The file found was not a valid file.

EINVAL The encoding indicated by the locale was unknown.

The sgetrune() function either returns the rune read or INVALID RUNE. The spu-
trune() function returns the number of bytes needed to store rune as a multibyte
string.

514 Systems/C C Library

SEE ALSO

mbrune(3), setlocale(3)

NOTE

The ANSI C type wchar t is the same as rune t. Rune t was chosen to accent the
purposeful choice of not basing the system with the ANSI C primitives, which were,
shall we say, less aesthetic.

The setrunelocale() function and the other non-ANSI rune functions were inspired
by Plan 9 from Bell Labs as a much more sane alternative to the ANSI multibyte
and wide character support.

All of the ANSI multibyte and wide character support functions are built using the
rune functions.

Systems/C C Library 515

SETLOCALE(3)

NAME

setlocale, localeconv - natural language formatting for C

SYNOPSIS

#include <locale.h>

char *
setlocale(int category, const char *locale)

struct lconv *
localeconv(void)

DESCRIPTION

The setlocale() function sets the C library’s notion of natural language formatting
style for particular sets of routines. Each such style is called a ‘locale’ and is invoked
using an appropriate name passed as a C string. The localeconv() routine returns
the current locale’s parameters for formatting numbers.

The setlocale() function recognizes several categories of routines. These are the
categories and the sets of routines they select:

LC ALL Set the entire locale generically.

LC COLLATE Set a locale for string collation routines. This controls
alphabetic ordering in strcoll() and strxfrm().

LC CTYPE Set a locale for the ctype(3), mbrune(3), multibyte(3)
and rune(3) functions. This controls recognition of
upper and lower case, alphabetic or non-alphabetic
characters, and so on. The real work is done by the
setrunelocale() function.

LC MONETARY Set a locale for formatting monetary values; this af-
fects the localeconv() function.

LC NUMERIC Set a locale for formatting numbers. This controls the
formatting of decimal points in input and output of
floating point numbers in functions such as printf()
and scanf(), as well as values returned by locale-
conv().

516 Systems/C C Library

LC TIME Set a locale for formatting dates and times using the
strftime() function.

Only three locales are defined by default, the empty string "" which denotes the
native environment, and the "C" and "POSIX" locales, which denote the C language
environment. A locale argument of NULL causes setlocale() to return the current
locale. By default, C programs start in the "C" locale. The only function in the
library that sets the locale is setlocale(); the locale is never changed as a side effect
of some other routine.

The localeconv() function returns a pointer to a structure which provides param-
eters for formatting numbers, especially currency values:

struct lconv {
char *decimal_point;
char *thousands_sep;
char *grouping;
char *int_curr_symbol;
char *currency_symbol;
char *mon_decimal_point;
char *mon_thousands_sep;
char *mon_grouping;
char *positive_sign;
char *negative_sign;
char int_frac_digits;
char frac_digits;
char p_cs_precedes;
char p_sep_by_space;
char n_cs_precedes;
char n_sep_by_space;
char p_sign_posn;
char n_sign_posn;

};

The individual fields have the following meanings:

decimal point The decimal point character, except for currency
values.

thousands sep The separator between groups of digits before the
decimal point, except for currency values.

grouping The sizes of the groups of digits, except for cur-
rency values. This is a pointer to a vector of in-
tegers, each of size char, representing group size
from low order digit groups to high order (right

Systems/C C Library 517

to left). The list may be terminated with 0 or
CHAR MAX. If the list is terminated with 0, the
last group size before the 0 is repeated to account
for all the digits. If the list is terminated with
CHAR MAX, no more grouping is performed.

int curr symbol The standardized international currency symbol.

currency symbol The local currency symbol.

mon decimal point The decimal point character for currency values.

mon thousands sep The separator for digit groups in currency values.

mon grouping Like grouping but for currency values.

positive sign The character used to denote nonnegative cur-
rency values, usually the empty string.

negative sign The character used to denote negative currency
values, usually a minus sign.

int frac digits The number of digits after the decimal point in
an international-style currency value.

frac digits The number of digits after the decimal point in
the local style for currency values.

p cs precedes 1 if the currency symbol precedes the currency
value for nonnegative values, 0 if it follows.

p sep by space 1 if a space is inserted between the currency sym-
bol and the currency value for nonnegative values,
0 otherwise.

n cs precedes Like p cs precedes but for negative values.

n sep by space Like p sep by space but for negative values.

p sign posn The location of the positive sign with respect to a
nonnegative quantity and the currency symbol,
coded as follows:

0 Parentheses around the entire string.

1 Before the string.

2 After the string.

3 Just before currency symbol.

4 Just after currency symbol.

n sign posn Like p sign posn but for negative currency val-
ues.

518 Systems/C C Library

Unless mentioned above, an empty string as a value for a field indicates a zero
length result or a value that is not in the current locale. A CHAR MAX result similarly
denotes an unavailable value.

RETURN VALUES

The setlocale() function returns NULL and fails to change the locale if the given
combination of category and locale makes no sense. The localeconv() function
returns a pointer to a static object which may be altered by later calls to setlocale()
or localeconv().

SEE ALSO

colldef(1), mklocale(1), ctype(3), mbrune(3), multibyte(3), rune(3), stroll(3),
strxfrm(3)

STANDARDS

The setlocale() and localeconv() functions conform to ISO/IEC 9899:1990 (“ISO
C90”).

ISSUES

The current implementation supports only the "C" and "POSIX" locales for all but
the LC COLLATE, LC CTYPE, and LC TIME categories.

In spite of the gnarly currency support in localeconv(), the standards don’t include
any functions for generalized currency formatting.

Use of LC MONETARY could lead to misleading results until we have a real time cur-
rency conversion function. LC NUMERIC and LC TIME are personal choices and should
not be wrapped up with the other categories.

Systems/C C Library 519

TOASCII(3)

NAME

toascii - convert a byte to 7-bit ASCII

SYNOPSIS

#include <ctype.h>

int
toascii(int c)

DESCRIPTION

The toascii() function strips all but the low 7 bits from a letter, including parity
or other marker bits.

RETURN VALUES

The toascii() function always returns a valid ASCII character.

SEE ALSO

isalnum(3), isalpha(3), isascii(3), iscntrl(3), isdigit(3), isgraph(3), slower(3), is-
print(3), ispunct(3), isspace(3), isupper(3), isxdigit(3), stdio(3), tolower(3), toup-
per(3)

NOTE

This function makes little sense for an EBCDIC character, but is provided for com-
patibility.

520 Systems/C C Library

TOLOWER(3)

NAME

tolower - upper case to lower case letter conversion

SYNOPSIS

#include <ctype.h>

int
tolower(int c)

DESCRIPTION

The tolower() function converts an upper-case letter to the corresponding lower-
case letter.

RETURN VALUES

If the argument is an upper-case letter, the tolower() function returns the cor-
responding lower-case letter if there is one; otherwise the argument is returned
unchanged.

SEE ALSO

isalnum(3), isalpha(3), isascii(3), iscntrl(3), isdigit(3), isgraph(3), slower(3), is-
print(3), ispunct(3), isspace(3), isupper(3), isxdigit(3), stdio(3), toascii(3), toup-
per(3)

STANDARDS

The tolower() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 521

TOUPPER(3)

NAME

toupper - lower case to upper case letter conversion

SYNOPSIS

#include <ctype.h>

int
toupper(int c)

DESCRIPTION

The toupper() function converts a lower-case letter to the corresponding upper-case
letter. If the argument is a lower-case letter, the toupper() function returns the
corresponding upper-case letter if there is one; otherwise the argument is returned
unchanged.

SEE ALSO

isalnum(3), isalpha(3), isascii(3), iscntrl(3), isdigit(3), isgraph(3), slower(3),
isprint(3), ispunct(3), isspace(3), isupper(3), isxdigit(3), stdio(3), toascii(3),
tolower(3)

STANDARDS

The toupper() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

522 Systems/C C Library

TOWLOWER(3)

NAME

towlower - upper case to lower case letter conversion (wide character version)

SYNOPSIS

#include <wctype.h>

wint_t
towlower(wint_t wc);

DESCRIPTION

The towlower() function converts an upper-case letter to the corresponding lower-
case leteter.

RETURN VALUES

If the argument is an upper-case letter, the towlower() function returns the cor-
responding lower-case letter if there is one; otherwise the arugmnet is returned
unchanged.

SEE ALSO

iswlower(3), tolower(3), towupper(3), wctrans(3)

STANDARDS

The towlower() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 523

TOWUPPER(3)

NAME

towupper - lower case to upper case letter conversion (wide character version)

SYNOPSIS

#include <wctype.h>

wint_t
towupper(wint_t wc);

DESCRIPTION

The towupper() function converts a lower-case letter to the corresponding upper-
case letter.

RETURN VALUES

If the argument is a lower-case letter, the towupper() function returns the cor-
responding upper-case letter if there is one; otherwise the argument is returned
unchanged.

SEE ALSO

iswupper(3), toupper(3), towlower(3), wctrans(3)

STANDARDS

The towupper() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

524 Systems/C C Library

WCSTOL(3)

NAME

wcstol, wcstoul, wcstoll, wcstoull, wcstoimax, wcstoumax - convert a wide character
string value to a long, unsigned long, long long, unsigned long long, intmax t
or uintmax t integer

SYNOPSIS

#include <wchar.h>

long
wcstol(const wchar_t * restrict nptr, wchar_t ** restrict endptr,

int base);

unsigned long
wcstoul(const wchar_t * restrict nptr, wchar_t ** restrict endptr,

int base);

long long
wcstoll(const wchar_t * restrict nptr, wchar_t ** restrict endptr,

int base);

unsigned long long
wcstoull(const wchar_t * restrict nptr, wchar_t ** restrict endptr,

int base);

#include <inttypes.h>

intmax_t
wcstoimax(const wchar_t * restrict nptr, wchar_t ** restrict endptr,

int base);

uintmax_t
wcstoumax(const wchar_t * restrict nptr, wchar_t ** restrict endptr,

int base);

DESCRIPTION

The wcstol(), wcstoul(), wcstoll(), wcstoull(), wcstoimax() and wc-
stoumax() functions are wide-character versions of the strtol(), strtoul(), str-
toll(), strtoull(), strtoimax() and strtoumax() functions, respectively. Refer to
their manual pages (for example strtol(3)) for details.

Systems/C C Library 525

SEE ALSO

strtol(3), strtoul(3)

STANDARDS

The wcstol(), wcstoul(), wcstoll(), wcstoull(), wcstoimax() and wc-
stoumax() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

526 Systems/C C Library

WCTRANS(3)

NAME

towctrans, wctrans - wide character mapping functions

SYNOPSIS

wint_t
towctrans(wint_t wc, wctrans_t desc);

wctrans_t
wctrans(const char *charclass);

DESCRIPTION

The wctrans() function returns a value of type wctrans t which represents the re-
quested wide character mapping operation and may be used as the second argument
for calls to towctrans().

The following character mapping names are recognized:

tolower toupper

The towctrans() function transliterates the wide character wc according to the
mapping described by desc.

RETURN VALUES

The towctrans() function returns the transliterated character if successful, other-
wise it returns the character unchanged and sets errno.

The wctrans() function returns non-zero if successful, otherwise it returns zero and
sets errno.

EXAMPLES

Reimplement towupper() in terms of towctrans() and wctrans():

Systems/C C Library 527

wint_t
mytowupper(wint_t wc)
{
return (towctrans(wc, wctrans("toupper")));
}

ERRORS

The towctrans() function will fail if:

EINVAL The supplied desc argument is invalid.

The wctrans() function will fail if:

EINVAL The requested mapping name is invalid.

SEE ALSO

tolower(3), toupper(3), wctype(3)

STANDARDS

The towctrans() and wctrans() functions conform to ISO/IEC 9899:1999 (“ISO
C99”).

528 Systems/C C Library

WCTYPE(3)

NAME

iswctype, wctype - wide character class functions

SYNOPSIS

#include <wctype.h>

int
iswctype(wint_t wc, wctype_t charclass);

wctype_t
wctype(const char *property);

DESCRIPTION

The wctype() function returns a value of type wctype t which represents the re-
quested wide character class and may be used as the second argument for calls to
iswctype().

The following character class names are recognized:

alnum cntrl ideogram print special
alpha digit lower punct upper
blank graph phonogram space xdigit

The iswctyp() function checks whether the wide character wc is in the character
class charclass.

RETURN VALUES

The iswctype() function returns non-zero if and only if wc has the property de-
scribed by charclass, or charclass is zero.

The wctype() function returns 0 if property is invalid, otherwise it returns a value
of type wctype t that can be used in subsequent calls to iswctype().

Systems/C C Library 529

EXAMPLE

Reimplement iswalpha(3) in terms of iswctype() and wctype():

int
myiswalpha(wint_t wc)
{
return (iswctype(wc, wctype("alpha")));
}

SEE ALSO

ctype(3)

STANDARDS

The iswctype() and wctype() functions conform to ISO/IEC 9899:1999 (“ISO
C99”). The “ideogram”, “phonogram” and “special” character classes are exten-
sions.

530 Systems/C C Library

WCWIDTH(3)

NAME

wcwidth - number of column positions of a wide-character code

SYNOPSIS

int
wcwidth(wchar_t wc);

DESCRIPTION

The wcwidth() function determines the number of column positions required to
display the wide character wc.

RETURN VALUES

The wcwidth() function returns 0 if the wc argument is a null wide character
(L’\0’), -1 if wc is not printable, otherwise it returns the number of column positions
the character occupies.

SEE ALSO

iswprint(3), wcswidth(3)

STANDARDS

The wcwidth() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 531

Math library

The math library contains implementations of the transcendental functions and
other support routines for manipulating floating point values.

532 Systems/C C Library

MATH(3)

NAME

math - introduction to mathematical library functions

DESCRIPTION

These functions constitute the C math library.

Declarations for these functions may be obtained from the include file <math.h>.

Systems/C C Library 533

LIST OF FUNCTIONS

Name Appears on Page Description
isBFP isBFP(3) determine floating-point for-

mat
acos acos(3) arc cosine function
acosf acos(3) arc cosine function
acosl acos(3) arc cosine function
acosh acosh(3) inverse hyperbolic function
acoshf acosh(3) inverse hyperbolic function
acoshl acosh(3) inverse hyperbolic function
asin asin(3) arc sine function
asinf asin(3) arc sine function
asinl asin(3) arc sine function
asinh asinh(3) inverse hyperbolic function
asinhf asinh(3) inverse hyperbolic function
asinhl asinh(3) inverse hyperbolic function
atan atan(3) arc tangent function of one

variable
atanf atan(3) arc tangent function of one

variable
atanl atan(3) arc tangent function of one

variable
atanh atanh(3) inverse hyperbolic function
atanhf atanh(3) inverse hyperbolic function
atanhl atanh(3) inverse hyperbolic function
atan2 atan2(3) arc tangent function of two

variables
atan2f atan2(3) arc tangent function of two

variables
atan2l atan2(3) arc tangent function of two

variables
cbrt sqrt(3) cube root
cbrtf sqrt(3) cube root
cbrtl sqrt(3) cube root
ceil ceil(3) integer no less than
ceilf ceil(3) integer no less than
ceill ceil(3) integer no less than
copysign copysign(3) copy sign
copysignf copysign(3) copy sign
copysignl copysign(3) copy sign
cos cos(3) trigonometric function
cosf cos(3) trigonometric function
cosl cos(3) trigonometric function
cosh cosh(3) hyperbolic cosine function
coshf cosh(3) hyperbolic cosine function
coshl cosh(3) hyperbolic cosine function

534 Systems/C C Library

Name Appears on Page Description
erf erf(3) error function
erff erf(3) error function
erfl erf(3) error function
erfc erf(3) complementary error function
erfcf erf(3) complementary error function
erfcl erf(3) complementary error function
exp exp(3) exponential ex

exp2 exp(3) exponential 2x

exp2f exp(3) exponential 2x

exp2l exp(3) exponential 2x

expf exp(3) exponential ex

expl exp(3) exponential ex

expm1 exp(3) ex − 1
expm1f exp(3) ex − 1
expm1f exp(3) ex − 1
fabs fabs(3) absolute value
fabsf fabs(3) absolute value
fabsl fabs(3) absolute value
fdim fdim(3) positive difference functions
fdimf fdim(3) positive difference functions
fdiml fdim(3) positive difference functions
feenableexcept feenableexcept(3) floating point exception

masking
fegetround fegetround(3) retrieve/set current IEEE

floating point rounding
direction

fe dec getround fe dec getround(3) retrieve/set current Decimal
floating point rounding direc-
tion

floor floor(3) integer no greater than
floorf floor(3) integer no greater than
floorl floor(3) integer no greater than
fma fma(3) fused multiply-add
fmaf fma(3) fused multiply-add
fmal fma(3) fused multiply-add
fmax fmax(3) floating-point maximum and

minimum functions
fmaxf fmax(3) floating-point maximum and

minimum functions
fmaxl fmax(3) floating-point maximum and

minimum functions
fmin fmax(3) floating-point maximum and

minimum functions
fminf fmax(3) floating-point maximum and

minimum functions
fminl fmax(3) floating-point maximum and

minimum functions
fmod fmod(3) floating-point remainder

functions
fmodf fmod(3) floating-point remainder

functions
fmodl fmod(3) floating-point remainder

functions
fpclassify fpclassify(3) classify a floating-point num-

ber

Systems/C C Library 535

Name Appears on Page Description
frexp frexp(3) convert to fraction and inte-

gral components
frexpf frexp(3) convert to fraction and inte-

gral components
frexpl frexp(3) convert to fraction and inte-

gral components
hypot hypot(3) Euclidean distance
ilogb ilogb(3) extract exponent
ilogbf ilogb(3) extract exponent
ilogbl ilogb(3) extract exponent
isfinite fpclassify(3) classify a floating-point num-

ber
isgreater isgreater(3) compare two floating-point

numbers
isgreaterequal isgreater(3) compare two floating-point

numbers
isinf fpclassify(3) classify a floating-point num-

ber
isless isgreater(3) compare two floating-point

numbers
islessequal isgreater(3) compare two floating-point

numbers
islessgreater isgreater(3) compare two floating-point

numbers
isnan fpclassify(3) classify a floating-point num-

ber
isnormal fpclassify(3) classify a floating-point num-

ber
isunordered isgreater(3) compare two floating-point

numbers
ldexp ldexp(3) multiply by integral power of

2
ldexpf ldexp(3) multiply by integral power of

2
ldexpl ldexp(3) multiply by integral power of

2
lgamma lgamma(3) log gamma function
lgammaf lgamma(3) log gamma function
lgammal lgamma(3) log gamma function
llrint lrint(3) convert to integer
llrintf lrint(3) convert to integer
llrintl lrint(3) convert to integer
llround lround(3) convert to nearest integral

value
llroundf lround(3) convert to nearest integral

value
llroundl lround(3) convert to nearest integral

value

536 Systems/C C Library

Name Appears on Page Description
log log(3) natural logarithm ln(x)
logf log(3) natural logarithm ln(x)
logl log(3) natural logarithm ln(x)
log10 log(3) logarithm to base 10 log10(x)
log10f log(3) logarithm to base 10 log10(x)
log10l log(3) logarithm to base 10 log10(x)
log2 log(3) logarithm to base 2 log2(x)
log2f log(3) logarithm to base 2 log2(x)
log2l log(3) logarithm to base 2 log2(x)
logb ilogb(3) extract exponent
logbf ilogb(3) extract exponent
logbl ilogb(3) extract exponent
log1p log(3) ln(1 + x)
log1pf log(3) ln(1 + x)
log1pl log(3) ln(1 + x)
lrint lrint(3) convert to integer
lrintf lrint(3) convert to integer
lrintl lrint(3) convert to integer
lround lround(3) convert to nearest integral

value
lroundf lround(3) convert to nearest integral

value
lroundl lround(3) convert to nearest integral

value
modf modf(3) extract signed integral

and fractional values from
floating-point number

modff modf(3) extract signed integral
and fractional values from
floating-point number

modfl modf(3) extract signed integral
and fractional values from
floating-point number

nan nan(3) quiet NaNs
nanf nan(3) quiet NaNs
nanl nan(3) quiet NaNs
nearbyint rint(3) round to integral value in

floating-point format
nearbyintf rint(3) round to integral value in

floating-point format
nearbyintl rint(3) round to integral value in

floating-point format
nextafter nextafter(3) next representable value
nextafterf nextafter(3) next representable value
nextafterl nextafter(3) next representable value
nexttoward nextafter(3) next representable value
nexttowardf nextafter(3) next representable value
nexttowardl nextafter(3) next representable value

Systems/C C Library 537

Name Appears on Page Description
pow exp(3) exponential xy

powf exp(3) exponential xy

powl exp(3) exponential xy

remainder remainder(3) minimal residue functions
remainderf remainder(3) minimal residue functions
remainderl remainder(3) minimal residue functions
remquo remainder(3) minimal residue functions
remquof remainder(3) minimal residue functions
remquol remainder(3) minimal residue functions
rint rint(3) round to integral value in

floating-point format
rintf rint(3) round to integral value in

floating-point format
rintl rint(3) round to integral value in

floating-point format
round round(3) round to nearest integral

value
roundf round(3) round to nearest integral

value
roundl round(3) round to nearest integral

value
scalbln scalbn(3) adjust exponent
scalblnf scalbn(3) adjust exponent
scalblnl scalbn(3) adjust exponent
scalbn scalbn(3) adjust exponent
scalbnf scalbn(3) adjust exponent
scalbnl scalbn(3) adjust exponent
signbit signbit(3) determine whether a floating-

point number’s sign is nega-
tive

sin sin(3) trigonometric function
sinf sin(3) trigonometric function
sinl sin(3) trigonometric function
sinh sinh(3) hyperbolic function
sinhf sinh(3) hyperbolic function
sinhl sinh(3) hyperbolic function
sqrt sqrt(3) square root
sqrtf sqrt(3) square root
sqrtl sqrt(3) square root
tan tan(3) trigonometric function
tanf tan(3) trigonometric function
tanl tan(3) trigonometric function
tanh tanh(3) hyperbolic function
tanhf tanh(3) hyperbolic function
tanhl tanh(3) hyperbolic function

538 Systems/C C Library

Name Appears on Page Description
tgamma lgamma(3) gamma function
tgammaf lgamma(3) gamma function
tgammal lgamma(3) gamma function
trunc trunc(3) nearest integral value with

magnitude less than or equal
to |x|

truncf trunc(3) nearest integral value with
magnitude less than or equal
to |x|

truncl trunc(3) nearest integral value with
magnitude less than or equal
to |x|

NOTES

These library functions support both the HFP (Hexadecimal Floating Point) format
and BFP (IEEE Binary Floating Point) formats. The selection of the format is either
made at compile time via compiler options, or at runtime based on the return value
of the isBFP() function.

SEE ALSO

An explanation of the HFP and BFP floating point formats is provided in the
z/Architecture Principles of Operations, IBM publication SA22-7200.

isBFP(3)

Systems/C C Library 539

FP CAST(3)

NAME

fp cast - floating point cast function

SYNOPSIS

#include <machine/IEEE754.h>

int
__fp_cast(int mode, void *src_ptr, int src_kind,

void *targ_ptr, int targ_kind);

DESCRIPTION

The fp cast() function adjusts the size of a floating point number from the
src kind to the targ kind sizes. fp cast() will convert the floating point value at
the address specified in src ptr to the target size and save the result at the address
specified in targ ptr.

The mode parameter indicates one of FP BFP MODE or FP HFP MODE for either BFP
or HFP values.

The src kind and targ kind parameters indicate the size of the source and tar-
get floating point number. Each should be one of FP FLOAT, FP DOUBLE or
FP LONG DOUBLE.

RETURN VALUES

The fp cast() function returns 0 on success.

If any of mode, src kind or targ kind is invalid fp cast() returns -1.

SEE ALSO

isbfp(3)

540 Systems/C C Library

ISBFP(3)

NAME

isBFP, fp swapmode, fp setmode - floating point format functions

SYNOPSIS

#include <machine/IEE754.h>

int
__isBFP(void);

int
__fp_swapmode(int newmode);

void
__fp_setmode(int newmode);

DESCRIPTION

The isBFP() function determines the current selection of the floating-point for-
mat. The runtime library maintains a selection state of either BFP or HFP or ”un-
determined.” When isBPF() is invoked, if the state is ”undetermined”, then the
compile-time setting of the caller is investigated to determine the mode. isBFP()
returns 1 if the mode is specifically set to BFP, or the caller is determined to be
BFP, 0 for HFP.

The fp swapmode() function is used to return the current library floating point
state, and set a new one. It can be used to retain the current mode, set a new one,
perform some operations and then restore the previous mode.

The fp setmode() function sets a particular state.

The state values are

FP MODE RESET The mode is determined by the caller.

FP HFP MODE The mode is HFP.

FP BFP MODE The mode is BFP.

Many of the library functions use isBFP() to determine if the operation is to
proceed in BFP or HFP format.

Systems/C C Library 541

RETURN VALUES

The isBFP() function returns 1 if the current mode is FP BFP MODE or if the
current mode is FP MODE RESET and the caller has been determined to be compiled
for BFP values; otherwise it returns zero.

The fp swapmode() function returns the current mode state setting.

The current mode is thread-specific and is inherited from the parent thread when a
new thread is created.

SEE ALSO

fp cast(3)

542 Systems/C C Library

ACOS(3)

NAME

acos, acosf, acosl - arc cosine functions

SYNOPSIS

#include <math.h>

double
acos(double x);

float
acosf(float x);

long double
acosl(long double x);

DESCRIPTION

The acos(), acosf() and acosl() functions computes the principal value of the arc
cosine of x. A domain error occurs for arguments not in the range [−1,+1].

RETURN VALUES

The acos(), acosf() and acosl() functions return the arc cosine in the range [0, π]
radians. If |x| > 1,

The acos(), acosf() and acosl() functions may set the global variable errno to
EDOM and a reserved operand fault may be generated.

SEE ALSO

asin(3), atan(3), atan2(3), cos(3), cosh(3), math(3), sin(3), sinh(3), tan(3), tanh(3)

STANDARDS

The acos() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The acosf() and acosl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 543

ACOSH(3)

NAME

acosh, acoshf, acoshl - inverse hyperbolic cosine function

SYNOPSIS

#include <math.h>

double
acosh(double x);

float
acoshf(float x);

long double
acoshl(long double x);

DESCRIPTION

The acosh(), acoshf() and acoshl() functions computes the inverse hyperbolic
cosine of the real argument x. If the argument is less than 1, these functions raise
an invalid exception and for BFP values return a NaN, for HFP alues these functions
return 0.0.

RETURN VALUES

The acosh(), acoshf() and acoshl() functions return the inverse hyperbolic cosine
of x.

SEE ALSO

asinh(3), atanh(3), exp(3), math(3)

STANDARDS

The acosh(), acoshf() and acoshl() functions conform to ISO/IEC 9899:1999
(“ISO C99”).

544 Systems/C C Library

SCALBN(3)

NAME

scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnl – adjust exponent

SYNOPSIS

#include <math.h>

double
scalbln(double x, long n);

float
scalblnf(float x, long n);

long double
scalblnl(long double x, long n);

double
scalbn(double x, int n);

float
scalbnf(float x, int n);

long double
scalbnl(long double x, int n);

DESCRIPTION

These routines return x ∗ (2 ∗ ∗n) computed by exponent manipulation.

SEE ALSO

math(3)

STANDARDS

These routines conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 545

ASIN(3)

NAME

asin, asinf, asinl - arc sine functions

SYNOPSIS

#include <math.h>

double
asin(double x);

float
asinf(float x);

long double
asinl(long double x);

DESCRIPTION

The asin(), asinf() and asinl() functions computes the principal value of the arc
sine of x. A domain error occurs for arguments not in the range [−1,+1].

RETURN VALUES

The asin(), asinf() and asinl() functions return the arc sine in the range
[
−π

2 ,+π
2

]
radians.

SEE ALSO

acos(3), atan(3), atan2(3), cos(3), cosh(3), math(3), sin(3), sinh(3), tan(3), tanh(3)

STANDARDS

The asin() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The asinf() and asinl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

546 Systems/C C Library

ASINH(3)

NAME

asinh, asinhf, asinhl - inverse hyperbolic sine function

SYNOPSIS

#include <math.h>

double
asinh(double x);

float
asinhf(float x);

long double
asinhl(long double x);

DESCRIPTION

The asinh(), asinhf() and asinhl() functions compute the inverse hyperbolic sine
of the real argument x.

RETURN VALUES

The asinh(), asinhf() and asinhl() functions return the inverse hyperbolic sine of
x.

SEE ALSO

acosh(3), atanh(3), exp(3), math(3)

STANDARDS

The asinh(), asinhf() and asinhl() functions conform to ISO/IEC 9899:1999 (“ISO
C99”).

Systems/C C Library 547

ATAN(3)

NAME

atan, atanf, atanl - arc tangent functions of one variable

SYNOPSIS

#include <math.h>

double
atan(double x);

float
atanf(float x);

long double
atanl(long double x);

DESCRIPTION

The atan(), atanf() and atanl() functions compute the principal value of the arc
tangent of x.

RETURN VALUES

The atan(), atanf() and atanl() functions return the arc tangent in the range[
−π

2 ,+π
2

]
radians.

SEE ALSO

acos(3), asin(3), atan2(3), cos(3), cosh(3), math(3), sin(3), sinh(3), tan(3), tanh(3)

STANDARDS

The atan() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The atanf() and atanl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

548 Systems/C C Library

ATAN2(3)

NAME

atan2, atan2f, atan2l - arc tangent functions of two variables

SYNOPSIS

#include <math.h>

double
atan2(double y, double x);

float
atan2f(float y, float x);

long double
atan2l(long double y, long double x);

DESCRIPTION

The atan2(), atan2f() and atan2l() functions compute the principal value of
arctan

(y
x

)
, using the signs of both arguments to determine the quadrant of the

return value.

RETURN VALUES

The atan2(), atan2f() and atan2l() functions if successful, return arctan
(y

x

)
in

the range [−π, π] radians. If both x and y are zero, the global variable errno is set
to EDOM.

atan2(y, x) = arctan(y
x) if x > 0

sign(y)
(
π − arctan

(∣∣ y
x

∣∣)) if x < 0
0 if x = y = 0
sign(y)π

2 if x = 0 6= y

NOTES

The functions atan2(), atan2f() and atan2l() defines “if x > 0, atan2(0, 0) = 0.”
On some systems, atan2(0, 0) may generate an error message. The reasons for
assigning a value to atan2(0, 0) are these:

Systems/C C Library 549

• Programs that test arguments to avoid computing atan2(0, 0) must be in-
different to its value. Programs that require it to be invalid are vulnerable to
diverse reactions to that invalidity on diverse computer systems.

• The atan2() function is used mostly to convert from rectangular (x, y) to
polar (r, θ) coordinates that must satisfy x = r cos θ and y = r sin θ. These
equations are satisfied when (x = 0, y = 0) is mapped to (r = 0, θ = 0). In
general, conversions to polar coordinates should be computed thus:

r = hypot(x,y); /* ... = sqrt(x*x+y*y) */
theta = atan2(y,x);

• The foregoing formulas need not be altered to cope in a reasonable way with
signed zeros and infinities on a machine that conforms to IEEE 754. The
versions of hypot(3) and atan2() provided for such a machine are designed
to handle all cases. That is why atan2(±0,−0) = ±π for instance. In general
the formulas above are equivalent to these:

r = sqrt(x*x+y*y); if (r == 0) x = copysign(1,x);

SEE ALSO

acos(3), asin(3), atan(3), cos(3), cosh(3), math(3), sin(3), sinh(3), tan(3), tanh(3)

STANDARDS

The atan2() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The atan2f() and atan2l() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

550 Systems/C C Library

ATANH(3)

NAME

atanh, atanhf, atanhl - inverse hyperbolic tangent function

SYNOPSIS

#include <math.h>

double
atanh(double x);

float
atanhf(float x);

long double
atanhl(long double x);

DESCRIPTION

The atanh(), atanhf() and atanhl() functions compute the inverse hyperbolic
tangent of the real argument x.

RETURN VALUES

The atanh(), atanhf() and atanhl() functions return the inverse hyperbolic tan-
gent of x if successful. If the argument has the value 1.0, HUGE VAL is returned, if
the argument is -1.0, -HUGE VAL is returned. If the absolute value of the argument is
greater than 1.0, a DOMAIN error is indicated and for BFP values a NaN is returned,
for HFP values 0.0 is returned.

SEE ALSO

acosh(3), asinh(3), exp(3), fenv(3), math(3)

STANDARDS

The atanh(), atanhf() and atanhl() functions conform to ISO/IEC 9899:1999
(“ISO C99”).

Systems/C C Library 551

CEIL(3)

NAME

ceil, ceilf, ceill – smallest integral value greater than or equal to x

SYNOPSIS

#include <math.h>

double
ceil(double x);

float
ceilf(float x);

long double
ceill(long double x);

DESCRIPTION

The ceil(), ceilf() and ceill() functions compute the smallest integral value greater
than or equal to x, expressed as a floating-point number.

SEE ALSO

abs(3), fabs(3), floor(3), math(3), rint(3), round(3), trunc(3)

STANDARDS

The ceil() function conforms to ISO/IEC 9899:1990 (“ISO C90”). The ceilf() and
ceill() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

552 Systems/C C Library

COPYSIGN(3)

NAME

copysign, copysignf, copysignl - copy sign

SYNOPSIS

#include <math.h>

double
copysign(double x, double y);

float
copysignf(float x, float y);

long double
copysignl(long double x, long double y);

DESCRIPTION

The copysign(), copysignf() and copysignl() functions return x with its sign
changed to y’s.

SEE ALSO

fabs(3), fdim(3), math(3)

STANDARDS

The copysign(), copysignf(), and copysignl() routines conform to ISO/IEC
9899:1999 (“ISO C99”).

Systems/C C Library 553

COS(3)

NAME

cos, cosf, cosl - cosine functions

SYNOPSIS

#include <math.h>

double
cos(double x);

float
cosf(double x);

long double
cosl(long double x);

DESCRIPTION

The cos(), cosf() and cosl() functions compute the cosine of x (measured in radi-
ans). A large magnitude argument may yield a result with little or no significance.

RETURN VALUES

The cos(), cosf() and cosl() functions return the cosine value.

SEE ALSO

acos(3), asin(3), atan(3), atan2(3), cosh(3), math(3), sin(3), sinh(3), tan(3), tanh(3)

STANDARDS

The cos() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The cosf() and cosl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

554 Systems/C C Library

COSH(3)

NAME

cosh, coshf, coshl - hyperbolic cosine function

SYNOPSIS

#include <math.h>

double
cosh(double x);

float
coshf(float x);

long double
coshl(long double x);

DESCRIPTION

The cosh(), coshf() and coshl() functions compute the hyperbolic cosine of x.

RETURN VALUES

The cosh(), coshf() and coshl() functions returns the hyperbolic cosine.

SEE ALSO

acos(3), asin(3), atan(3), atan2(3), cos(3), math(3), sin(3), sinh(3), tan(3), tanh(3)

STANDARDS

The cosh() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The coshf() and coshl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 555

ERF(3)

NAME

erf, erff, erfl, erfc, erfcf, erfcl – error function operators

SYNOPSIS

#include <math.h>

double
erf(double x);

float
erff(float x);

long double
erfl(long double x);

double
erfc(double x);

float
erfcf(float x);

long double
erfcf(long double x);

DESCRIPTION

These functions calculate the error function of x.

The erf(), erff() and erfl() functions calculate the error function of x; where

erf(x) =
2√
π

∫ x

0
e−t2 dt

The erfc(), erfcf() and erfcfl() functions calculate the complementary error func-
tion of x; that is erfc() subtracts the result of the error function erf(x) from 1.0.
This is useful, since for large x places disappear.

SEE ALSO

math(3)

556 Systems/C C Library

STANDARDS

The functions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 557

EXP(3)

NAME

exp, expf, expl, exp2, exp2f, exp2l, expm1, expm1f, expm1l, pow, powf, powl -
exponential and power functions

SYNOPSIS

#include <math.h>

double
exp(double x);

float
expf(float x);

long double
expl(long double x);

double
exp2(double x);

float
exp2f(float x);

long double
exp2l(long double x);

double
expm1(double x);

float
expm1f(float x);

float
expm1f(float x);

double
pow(double x, double y);

float
powf(float x, float y);

long double
powl(long double x, long double y);

558 Systems/C C Library

DESCRIPTION

The exp(), expf() and expfl() functions compute the exponential value of the
given argument x.

The exp2(), exp2f() and exp2l() functions compute the base 2 exponential value
of the given argument x.

The expm1(), expm1f() and expm1l() functions compute the value exp(x)-1.0
accurately even for tiny argument x.

The pow(), powf() and powl() functions compute the value of x to the exponent
y.

ERROR (due to Roundoff etc.)

exp(), expm1(0), exp2(integer) and pow(integer,integer) are exact provided
they are representable. Otherwise the error in these functions is generally below one
ulp.

RETURN VALUES

These functions will return the appropriate computation unless an error occurs or
an argument is out of range. The functions exp(), expm1() and pow() detect
if the computed value will overflow, set the global variable errno to ERANGE. The
function pow(x, y) checks to see if x < 0 and y is not an integer, in the event this
is true, the global variable errno is set to EDOM for HFP values or return a NaN for
BFP values.

NOTES

The function pow(x, 0) returns x0 = 1 for all x including x = 0, ∞ (not found for
IBM HFP format) and NaN (not found in IBM HFP format).

Previous implementations of pow() may have defined x0 to be undefined in some
or all of these cases. Here are reasons for returning x0 = 1:

• Any program that already tests whether x is zero (or infinite or NaN) before
computing x0 cannot care whether 00 = 1 or not. Any program that depends
upon 00 to be invalid is dubious anyway since that expression’s meaning and,
if invalid, its consequences vary from one computer system to another.

Systems/C C Library 559

• Some Algebra texts (e.g. Sigler’s) define x0 = 1 for all x, including x = 0. This
is compatible with the convention that accepts a0 as the value of polynomial

p(x) = a0x
0 + a1x

1 + a2x
2 + · · ·+ anxn

at x = 0 rather than reject a000 as invalid.

• Analysts will accept 00 = 1 despite that xy can approach anything or nothing
as x and y approach 0 independently. The reason for setting 00 = 1 anyway
is this:

If x(z) and y(z) are any functions analytic (expandable in power
series) in z around z = 0, and if there x(0) = y(0) = 0, then
x(z)y(z) → 1 as z → 0.

• If 00 = 1, then ∞0 = 1
00 = 1 too; and then NaN0 = 1 too because x0 = 1 for

all finite and infinite x, i.e., independently of x.

SEE ALSO

fenv(3), ldexp(3), log(3), math(3)

STANDARDS

These functions conform to ISO/IEC 9899:1999 (“ISO C99”).

560 Systems/C C Library

FABS(3)

NAME

fabs, fabsf, fabsl – floating-point absolute value functions

SYNOPSIS

#include <math.h>

double
fabs(double x);

float
fabsf(float x);

long double
fabsl(long double x);

DESCRIPTION

The fabs(), fabsf() and fabsl() functions compute the absolute value of a floating-
point number x.

RETURN VALUES

The fabs(), fabsf() and fabsl() functions return the absolute value of x.

SEE ALSO

abs(3), ceil(3), floor(3), math(3), rint(3)

STANDARDS

The fabs() function conforms to ISO/IEC 9899:1990 (“ISO C90”). The fabsf()
and fabsl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 561

FDIM(3)

NAME

fdim, fdimf, fdiml – positive difference functions

SYNOPSIS

#include <math.h>

double
fdim(double x, double y);

float
fdimf(float x, float y);

long double
fdiml(long double x, long double y);

DESCRIPTION

The fdim(), fdimf(), and fdiml() functions return the positive difference between
x and y. That is, if x-y is positive, then x-y is returned. If either x or y is a NaN,
then a NaN is returned. Otherwise, the result is +0.0.

Overflow or underflow may occur if and only if the exact result is not representable
in the return type. No other exceptions are raised.

SEE ALSO

fabs(3), fmax(3), fmin(3), math(3)

STANDARDS

The fdim(), fdimf(), and fdiml() functions conform to ISO/IEC 9899:1999 (“ISO
C99”).

562 Systems/C C Library

FEENABLEEXCEPT(3)

NAME

feenableexcept, fedisableexcept, fegetexcept – floating-point exception masking

SYNOPSIS

#include <fenv.h>
#pragma STDC FENV_ACCESS ON

int
feenableexcept(int excepts);

int
fedisableexcept(int excepts);

int
fegetexcept(void);

DESCRIPTION

The feenableexcept() and fedisableexcept() functions unmask and mask (re-
spectively) exceptions specified in excepts. The fegetexcept() function returns the
current exception mask. All exceptions are masked by default.

Floating-point operations that produce unmasked exceptions will trap, and a
SIGFPE will be delivered to the process. By installing a signal han- dler for SIGFPE,
applications can take appropriate action immediately without testing the exception
flags after every operation. Note that the trap may not be immediate, but it should
occur before the next floating- point instruction is executed.

For all of these functions, the possible types of exceptions include those described
in fenv(3). Some architectures may define other types of floating-point exceptions.

RETURN VALUES

The feenableexcept(), fedisableexcept(), and fegetexcept() functions return
a bitmap of the exceptions that were unmasked prior to the call.

SEE ALSO

sigaction(2), feclearexcept(3), feholdexcept(3), fenv(3), feupdateenv(3)

Systems/C C Library 563

ISSUES

Functions in the standard library may trigger exceptions multiple times as a re-
sult of intermediate computations; however, they generally do not trigger spurious
exceptions.

No interface is provided to permit exceptions to be handled in nontrivial ways.
There is no uniform way for an exception handler to access information about the
exception-causing instruction, or to determine whether that instruction should be
reexecuted after returning from the handler.

564 Systems/C C Library

FEGETROUND(3)

NAME

fegetround, fesetround – floating-point rounding control

SYNOPSIS

#include <fenv.h>
#pragma STDC FENV_ACCESS ON

int
fegetround(void);

int
fesetround(int round);

DESCRIPTION

The fegetround() function determines the current BFP floating-point rounding
mode, and the fesetround() function sets the current BFP rounding mode to
round. The rounding mode is one of FE TONEAREST, FE DOWNWARD, FE UPWARD, or
FE TOWARDZERO, as described in fenv(3).

This is the rounding mode for BFP (IEEE) arithmetic.

RETURN VALUES

The fegetround() routine returns the current rounding mode. The fesetround()
function returns 0 on success and non-zero otherwise; however, the present imple-
mentation always succeeds.

SEE ALSO

fenv(3)

STANDARDS

The fegetround() and fesetround() functions conform to ISO/IEC 9899:1999
(“ISO C99”).

Systems/C C Library 565

FE DEC GETROUND(3)

NAME

fe dec getround, fe dec setround – Decimal floating-point rounding control

SYNOPSIS

#include <fenv.h>

int
fe_dec_getround(void);

int
fe_dec_setround(int round);

DESCRIPTION

The fe dec getround() function determines the current decimal floating-point
rounding mode, and the fe dec setround() function sets the current deci-
mal floating point rounding mode to round. The rounding mode is one
of FE DEC TONEAREST, FE DEC TOWARDZERO, FE DEC UPWARD, FE DEC DOWNWARD or
FE DEC TONEARESTFROMZERO.

This is the rounding mode for DFP (Decimal) arithmetic.

RETURN VALUES

The fe dec getround() routine returns the current rounding mode. The
fe dec setround() function returns 0 on success and non-zero otherwise; however,
the present implementation always succeeds.

SEE ALSO

fenv(3)

566 Systems/C C Library

FLOOR(3)

NAME

floor, floorf, floorl – largest integral value less than or equal to x

SYNOPSIS

#include <math.h>

double
floor(double x);

float
floorf(float x);

long double
floorl(long double x);

DESCRIPTION

The floor(), floorf() and floorl() functions compute the largest integral value less
than or equal to x, expressed as a floating-point number.

SEE ALSO

abs(3), ceil(3), fabs(3), math(3), rint(3), round(3), trunc(3)

STANDARDS

The floor() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The floorf() and floorl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 567

FMA(3)

NAME

fma, fmaf, fmal – fused multiply-add

SYNOPSIS

#include <math.h>

double
fma(double x, double y, double z);

float
fmaf(float x, float y, float z);

long double
fmal(long double x, long double y, long double z);

DESCRIPTION

The fma(), fmaf(), and fmal() functions return (x * y) + z, computed with only
one rounding error. Using the ordinary multiplication and addition operators, by
contrast, results in two roundings: one for the intermediate product and one for the
final result.

For instance, the expression 1.2e100 * 2.0e208 - 1.4e308 produces infinity due to
overflow in the intermediate product, whereas fma(1.2e100, 2.0e208, -1.4e308) re-
turns approximately 1.0e308 (for IEEE values.)

The fused multiply-add operation is often used to improve the accuracy of cal-
culations such as dot products. It may also be used to improve performance on
machines that implement it natively. The macros FP FAST FMA, FP FAST FMAF and
FP FAST FMAL may be defined in ¡math.h¿ to indicate that fma(), fmaf(), and
fmal() (respectively) have comparable or faster speed than a multiply operation
followed by an add operation.

SEE ALSO

fenv(3), math(3)

568 Systems/C C Library

STANDARDS

The fma(), fmaf(), and fmal() functions conform to ISO/IEC 9899:1999 (“ISO
C99”). A fused multiply-add operation with virtually identical characteristics ap-
pears in IEEE draft standard 754R.

Systems/C C Library 569

FMAX(3)

NAME

fmax, fmaxf, fmaxl, fmin, fminf, fminl – floating-point maximum and minimum
functions

SYNOPSIS

#include <math.h>

double
fmax(double x, double y);

float
fmaxf(float x, float y);

long double
fmaxl(long double x, long double y);

double
fmin(double x, double y);

float
fminf(float x, float y);

long double
fminl(long double x, long double y);

DESCRIPTION

The fmax(), fmaxf(), and fmaxl() functions return the larger of x and y, and
likewise, the fmin(), fminf(), and fminl() functions return the smaller of x and y.
They treat +0.0 as being larger than -0.0. If one argument is a NaN, then the other
argument is returned. If both arguments are NaNs, then the result is a NaN. These
routines do not raise any floating-point exceptions.

SEE ALSO

fabs(3), fdim(3), math(3)

570 Systems/C C Library

STANDARDS

The fmax(), fmaxf(), fmaxl(), fmin(), fminf(), and fminl() functions conform
to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 571

FMOD(3)

NAME

fmod, fmodf, fmodl – floating-point remainder functions

SYNOPSIS

#include <math.h>

double
fmod(double x, double y);

float
fmodf(float x, float y);

long double
fmodl(long double x, long double y);

DESCRIPTION

The fmod(), fmodf() and fmodl() functions compute the floating-point remainder
of x

y .

RETURN VALUES

The fmod(), fmodf() and fmodl() functions return the value x − i ∗ y for some
integer i such that, if y is non-zero, the result has the same sign as x and magnitude
less than the magnitude of y. If y is zero, whether a domain error occurs or the
fmod() function returns zero is implementation-defined and depends on the use of
IEEE or HFP values.

SEE ALSO

math(3)

STANDARDS

The fmod() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The fmodf(), and fmodl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

572 Systems/C C Library

FPCLASSIFY(3)

name

fpclassify, isfinite, isinf, isnan, isnormal - classify a floating-point number

SYNOPSIS

#include <math.h>

int
fpclassify(real-floating x);

int
isfinite(real-floating x);

int
isinf(real-floating x);

int
isnan(real-floating x);

int
isnormal(real-floating x);

DESCRIPTION

The fpclassify() macro takes an argument of x and returns one of the following
manifest constants.

FP INFINITE Indicates that x is an infinite number.

FP NAN Indicates that x is not a number (NaN).

FP NORMAL Indicates that x is a normalized number.

FP SUBNORMAL Indicates that x is a denormalized number.

FP ZERO Indicates that x is zero (0 or -0).

The isfinite() macro returns a non-zero value if and only if its argument has a finite
(zero, subnormal, or normal) value. The isinf(), isnan(), and isnormal() macros
return non-zero if and only if x is an infinity, NaN, or a non-zero normalized number,
respectively. Note that HFP values do not support infinity or NaN.

Systems/C C Library 573

SEE ALSO

isgreater(3), math(3), signbit(3)

STANDARDS

The fpclassify(), isfinite(), isinf(), isnan(), and isnormal() macros conform to
ISO/IEC 9899:1999 (“ISO C99”).

574 Systems/C C Library

FREXP(3)

NAME

frexp, frexpf, frexpl – convert floating-point number to fractional and integral com-
ponents

SYNOPSIS

#include <math.h>

double
frexp(double value, int *exp);

float
frexpf(float value, int *exp);

long double
frexpl(long double value, int *exp);

DESCRIPTION

The frexp(), frexpf() and frexpl() functions break a floating-point number into
a normalized fraction and an integral power of 2. They store the integer in the int
object pointed to by exp.

RETURN VALUES

These functions return the value x, such that x is a double with magnitude in the
interval [1/2, 1) or zero, and value equals x times 2 raised to the power *exp. If
value is zero, both parts of the result are zero.

SEE ALSO

ldexp(3) math(3), modf(3)

STANDARDS

The frexp(), frexpf() and frexpl() functions conform to ISO/IEC 9899:1999 (“ISO
C99”).

Systems/C C Library 575

HYPOT(3)

NAME

hypot, hypotf, hypotl - euclidean distance functions

SYNOPSIS

#include <math.h>

double
hypot(double x, double y);

float
hypotf(float x, float y);

long double
hypotl(long double x, long double y);

DESCRIPTION

The hypot(), hypotf() and hypotl() functions compute
√

x2 + y2 in such a way
that underflow will not happen, and overflow occurs only if the final result deserves
it.

hypot(∞, v) = hypot(v,∞) = +∞ for all v, including NaN. (∞ and NAN are not
found in the IBM HFP format).

SEE ALSO

math(3), sqrt(3)

STANDARDS

The hypot(), hypotf() hypotl() functions conform to ISO/IEC 9899:1999 (“ISO
C99”).

576 Systems/C C Library

ILOGB(3)

NAME

ilogb, ilogbf, ilogbl, logb, logbf, logbl – extract exponent

SYNOPSIS

#include <math.h>

int
ilogb(double x);

int
ilogbf(float x);

int
ilogbl(long double x);

double
logb(double x);

float
logbf(float x);

long double
logbl(long double x);

DESCRIPTION

ilogb(), ilogbf() and ilogbl() return x’s exponent in integer format. For
BFP (IEEE) values ilogb(+-infinity) returns INT MAX, ilogb(+-NaN) returns
FP ILOGBNAN . ilogb(0) returns FP ILOGB0.

logb(), logbf(), and logbl() return x’s exponent in floating-point format with the
same precision as x. For BFP (IEEE) values logb(+-infinity) returns +infinity. If x is
+/-0, logb(), logbf(), and logbl() return -HUGE VAL, -HUGE VALF and -HUGE VALL
respectively.

BFP values have a radix of 2 and HFP values have a radix of 16; the return exponent
values are in the radix of the format (FLT RADIX defined in <float.h>).

SEE ALSO

frexp(3), math(3), scalbn(3)

Systems/C C Library 577

STANDARDS

The ilogb(), ilogbf(), ilogbl(), logb(), logbf(), and logbl() routines conform to
ISO/IEC 9899:1999 (“ISO C99”).

578 Systems/C C Library

ISGREATER(3)

NAME

isgreater, isgreaterequal, isless, islessequal, islessgreater, isunordered – compare two
floating-point numbers

SYNOPSIS

#include <math.h>

int
isgreater(real-floating x, real-floating y);

int
isgreaterequal(real-floating x, real-floating y);

int
isless(real-floating x, real-floating y);

int
islessequal(real-floating x, real-floating y);

int
islessgreater(real-floating x, real-floating y);

int
isunordered(real-floating x, real-floating y);

DESCRIPTION

Each of the macros isgreater(), isgreaterequal(), isless(), islessequal(), and
islessgreater() take arguments x and y and return a non-zero value if and only if
its nominal relation on x and y is true. These macros always return zero if either
argument is not a number (NaN), but unlike the corresponding C operators, they
never raise a floating point exception.

The isunordered() macro takes arguments x and y and returns non-zero if and
only if neither x nor y are NaNs. For any pair of floating-point values, one of the
relationships (less, greater, equal, unordered) holds.

Note that HFP floating-point values do not support NaN, therefor isunordered()
is always false for HFP values.

Systems/C C Library 579

SEE ALSO

fpclassify(3), math(3), signbit(3)

STANDARDS

The isgreater(), isgreaterequal(), isless(), islessequal(), islessgreater(), and
isunordered() macros conform to ISO/IEC 9899:1999 (“ISO C99”).

580 Systems/C C Library

LDEXP(3)

NAME

ldexp, ldexpf, ldexpl - multiply floating-point number by integral power of 2

SYNOPSIS

#include <math.h>

double
ldexp(double x, int exp);

float
ldexpf(float x, int exp);

long double
ldexpl(long double x, int exp);

DESCRIPTION

The ldexp(), ldexpf(), and ldexpl() functions multiply a floating-point number
by an integral power of 2.

RETURN VALUES

These functions return the value of x times 2 raied to the power exp.

SEE ALSO

frexp(3), math(3), modf(3)

STANDARDS

The ldexp(), ldexpf() and ldexpl() functions conform to ISO/IEC 9899:1999
(“ISO C99”).

Systems/C C Library 581

LGAMMA(3)

NAME

lgamma, lgamma r, lgammaf, lgammaf r, lgammal, lgammal r, tgamma, tgammaf,
tgammal - log gamma functions, gamma functions

SYNOPSIS

#include <math.h>

extern int signgam;

double
lgamma(double x);

double
lgamma_r(double x, int *signgamp);

float
lgammaf(float x);

float
lgammaf_r(float x, int *signgamp);

double
tgamma(double x);

float
tgammaf(float x);

long double
tgammal(long double x);

DESCRIPTION

lgamma(x), lgammaf(x), and lgammal(x) functions return ln |Γ(x)|.

The external integer signgam returns the sign of Γ(x).

lgamma r(x,signgamp), lgammaf r(x,signgamp), and lgammal r(x,signgamp)
provide the same functionality as lgamma(x), lgammaf)x) and lgammal(x)but the
caller must provide an integer to store the sign of Γ(x).

The tgamma(x), tgammaf(x), and tgammal(x) functions return Γ(x) with no effect
on signgam.

582 Systems/C C Library

IDIOSYNCRASIES

Do not use the expression “g = signgam*exp(lgamma(x))” to compute g = Γ(x).
Instead use a program like this (in C):

lg = lgamma(x); g = signgam*exp(lg);

Only after lgamma() has returned can signgam be correct.

For arguments in its range tgamma() is preferred, as for positive arguments it is
accurate to within one unit in the last place. Exponentiation of lgamma() will lose
up to 10 significant bits.

RETURN VALUES

tgamma(), tgammaf(), tgammal(), lgamma(), lgammaf(), lgammal(),
lgamma r(), lgammaf r(), lgammal r(), return appropriate values unless an
argument is out of range. Overflow will occur for sufficiently large positive val-
ues, and non-positive integers. For large non-integer negative values, tgamma(),
tgammaf() and tgammal() will underflow.

SEE ALSO

math(3)

STANDARDS

The lgamma(), lgammaf(), lgammal(), tgamma(), tgammaf() and tgam-
mal() functions are expected to conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 583

LOG(3)

NAME

log, logf, logl, log10, log10f, log10l, log1p, log1pf, log1pl, log2, log2f, log2l - logarithm
functions

SYNOPSIS

#include <math.h>

double
log(double x);

float
logf(float x);

long double
logl(long double x);

double
log10(double x);

float
log10f(float x);

long double
log10l(long double x);

double
log1p(double x);

float
log1pf(float x);

long double
log1pl(long double x);

double
log2(double x);

float
log2f(float x);

long double
log2l(long double x);

584 Systems/C C Library

DESCRIPTION

The log(), logf() and logl() functions compute the natural logarithm of x.

The log10(), log10f() and log10l() functions compute the logarithm base 10 of x.

The log1p(), log1pf() and log1pl() functions compute the natural logarithm of
1+x. Computing the natural logarithm as log1p(x) is more accurate than computing
it as log(1 + x) when x is close to zero.

The log2(), log2f() and log2l() functions compute the logarithm base 2 of x.

RETURN VALUES

These functions return the requested logarithm; the logarithm of 1 is +0. An
attempt to take the logarithm of +-0 results in a divide-by-zero exception, and
-HUGE VAL is returned. Otherwise, attempting to take the logarithm of a negative
number results in an invalid exception and a return value of NaN for BFP values
and 0 for HFP values.

SEE ALSO

exp(3), ilogb(3), math(3), pow(3)

STANDARDS

The log(), logf(), logl(), log10(), log10f(), log10l(), log1p(), log1pf(),
log1pl(), log2(), log2f() and log2l() functions conform to ISO/IEC 9899:1999
(“ISO C99”).

Systems/C C Library 585

LRINT(3)

NAME

llrint, llrintf, llrintl, lrint, lrintf, lrintl - convert to integer

SYNOPSIS

#include <math.h>

long long
llrint(double x);

long long
llrintf(float x);

long long
llrintl(long double x);

long
lrint(double x);

long
lrintf(float x);

long
lrintl(long double x);

DESCRIPTION

The lrint() function returns the integer nearest to its argument x according to the
current rounding mode. If the rounded result is too large to be represented as a long
value, an invalid exception is raised and the return value is undefined. Otherwise,
if x is not an integer, lrint() raises an inexact exception. When the rounded result
is representable as a long, the expression

lrint(x)

is equivalent to

(long)rint(x)

586 Systems/C C Library

(although the former may be more efficient).

The llrint(), llrintf(), llrintl(), lrintf(), and lrintl() functions differ from lrint()
only in their input and output types.

SEE ALSO

lround(3), math(3), rint(3), round(3)

STANDARDS

These functions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 587

LROUND(3)

NAME

llround, llroundf, llroundl, lround, lroundf, lroundl - convert to nearest integral value

SYNOPSIS

#include <math.h>

long long
llround(double x);

long long
llroundf(float x);

long long
llroundl(long double x);

long
lround(double x);

long
lroundf(float x);

long
lroundl(long double x);

DESCRIPTION

The lround() function returns the integer nearest to its argument x, rounding
away from zero in halfway cases. If the rounded result is too large to be represented
as a long value, an invalid exception is raised and the return value is undefined.
Otherwise, if x is not an integer, lround() may raise an inexact exception. When
the rounded result is representable as a long, the expression

lround(x)

is equivalent to

(long)round(x)

588 Systems/C C Library

(although the former may be more efficient).

The llround(), llroundf(), llroundl(), lroundf() and lroundl() functions differ
from lround() only in their input and output types.

SEE ALSO

lrint(3), math(3), rint(3), round(3)

STANDARDS

The llround(), llroundf(), llroundl(), lround(), lroundf(), and lroundl() func-
tions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 589

MODF(3)

NAME

modf, modff, modfl - extract signed integral and fractional values from floating-point
number

SYNOPSIS

#include <math.h>

double
modf(double value, double *iptr);

float
modff(float value, float *iptr);

long double
modfl(long double value, long double *iptr);

DESCRIPTION

The modf(), modff(), and modfl() functions break the argument value into inte-
gral and fractional parts, each of which has the same sign as the argument. It stores
the integral part as a floating point number in the object pointed to by iptr.

RETURN VALUES

These functions return the signed fractional part of value.

SEE ALSO

frexp(3), ldexp(3), math(3)

STANDARDS

The modf(), modff(), and modfl() functions conform to ISO/IEC 9899:1999
(“ISO C99”).

590 Systems/C C Library

NAN(3)

NAME

nan, nanf, nanl - quiet NaNs

SYNOPSIS

#include <math.h>

double
nan(const char *s);

float
nanf(const char *s);

long double
nanl(const char *s);

DESCRIPTION

The NAN macro expands to a quiet NaN (Not A Number). Similarly, each of the
nan(), nanf() and nanl() functions generate a quiet NaN value without raising
an invalid exception. The argument s should point to either an empty string or a
hexadecimal representation of a non-negative 32-bit integer (e.g., ”0x1234”.) In the
latter case, the integer is encoded in some free bits in the representation of the NaN,
which sometimes store machine-specific information about why a particular NaN was
generated. There are 22 such bits available for float variables, 51 bits for double
variables, and at least 51 bits for a long double. If s is improperly formatted or
represents an integer that is too large, then the particular encoding of the quiet NaN
that is returned is indeterminate.

Only BFP floating-point supports NaN values. When HFP is enabled, these functions
return 0.0.

COMPATIBILITY

Calling these functions with a non-empty string isn’t portable. Another implemen-
tation may translate the string into a different NaN encoding, and furthermore, the
meaning of a given NaN encoding varies across machine architectures and implemen-
tations.

Systems/C C Library 591

SEE ALSO

fenv(3), isnan(3), math(3), strtod(3)

STANDARDS

The nan(), nanf(), and nanl() functions and the NAN macro conform to ISO/IEC
9899:1999 (“ISO C99”).

592 Systems/C C Library

NEXTAFTER(3)

NAME

nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, nexttowardl - next rep-
resentable value

SYNOPSIS

#include <math.h>

double
nextafter(double x, double y);

float
nextafterf(float x, float y);

long double
nextafterl(long double x, long double y);

double
nexttoward(double x, long double y);

float
nexttowardf(float x, long double y);

long double
nexttowardl(long double x, long double y);

DESCRIPTION

These functions return the next machine representable number from x in direction
y. The returned value may not be normalized, for either HFP or BFP.

SEE ALSO

math(3)

STANDARDS

The nextafter(), nextafterf(), nextafterl(), nexttoward(), nexttowardf(),
and nexttowardl() routines conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 593

REMAINDER(3)

NAME

remainder, remainderf, remainderl, remquo, remquof, remquol - minimal residue
functions

SYNOPSIS

#include <math.h>

double
remainder(double x, double y);

float
remainderf(float x, float y);

long double
remainderl(long double x, long double y);

double
remquo(double x, double y, int *quo);

float
remquof(float x, float y, int *quo);

long double
remquol(long double x, long double y, int *quo);

DESCRIPTION

remainder(), remainderf(), remainderl(), remquo(), remquof(), and
remquol() return the remainder r := x - n*y where n is the integer nearest the
exact value of x/y; moreover if —n - x/y— = 1/2 then n is even. Consequently the
remainder is computed exactly and —r— ¡= —y—/2. But attempting to take the
remainder when y is 0 or x is +-infinity is an invalid operation that produces a NaN.

The remquo(), remquof(), and remquol() functions also store the last k bits of
n in the location pointed to by quo, provided that n exists. The number of bits k is
platform-specific, but is guaranteed to be at least 3.

SEE ALSO

fmod(3), math(3)

594 Systems/C C Library

STANDARDS

The remainder(), remainderf(), remainderl(), remquo(), remquof(), and
remquol() routines conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 595

RINT(3)

NAME

nearbyint, nearbyintf, nearbyintl, rint, rintf, rintl - round to integral value in
floating-point format

SYNOPSIS

#include <math.h>

double
nearbyint(double x);

float
nearbyintf(float x);

long double
nearbyintl(long double x);

double
rint(double x);

float
rintf(float x);

long double
rintl(long double x);

DESCRIPTION

The rint(), rintf(), and rintl() functions return the integral value nearest to x. For
BFP values, the rounding is performed according to the prevailing rounding mode.
For HFP values, the rounding mode is always round-toward-zero. These functions
raise an inexact exception when the original argument is not an exact integer.

The nearbyint(), nearbyintf(), and nearbyintl() functions perform the same
operation, except that they do not raise an inexact exception.

SEE ALSO

abs(3), ceil(3), fabs(3), fenv(3), floor(3), lrint(3), lround(3), math(3), round(3)

596 Systems/C C Library

STANDARDS

These functions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 597

ROUND(3)

NAME

round, roundf, roundl - round to nearest integral value

SYNOPSIS

#include <math.h>

double
round(double x);

float
roundf(float x);

long double
roundl(long double x);

DESCRIPTION

The round(), roundf(), and roundl() functions return the nearest integral value
to x; if x lies halfway between two integral values, then these functions return the
integral value with the larger absolute value (i.e., they round away from zero).

SEE ALSO

ceil(3), floor(3), lrint(3), lround(3), math(3), rint(3), trunc(3)

STANDARDS

These functions conform to ISO/IEC 9899:1999 (“ISO C99”).

598 Systems/C C Library

SIGNBIT(3)

NAME

signbit - determine whether a floating-point number’s sign is negative

SYNOPSIS

#include <math.h>

int
signbit(real-floating x);

DESCRIPTION

The signbit() macro takes an argument of x and returns non-zero if the value of its
sign is negative, otherwise 0.

SEE ALSO

fpclassify(3), math(3)

STANDARDS

The signbit() macro conforms to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 599

SIN(3)

NAME

sin, sinf, sinl - sine functions

SYNOPSIS

#include <math.h>

double
sin(double x);

float
sinf(float x);

long double
sinl(long double x);

DESCRIPTION

The sin(), sinf() and sinl() functions compute the sine of x (measured in radians).
A large magnitude argument may yield a result with little or no significance.

RETURN VALUES

The sin(), sinf() and sinl() functions return the sine value.

SEE ALSO

acos(3), asin(3), atan(3), atan2(3), cos(3), cosh(3), math(3), sinh(3), tan(3), tanh(3)

STANDARDS

The sin() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The sinf() and sinl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

600 Systems/C C Library

SINH(3)

NAME

sinh, sinhf, sinhl - hyperbolic sine function

SYNOPSIS

#include <math.h>

double
sinh(double x);

float
sinhf(float x);

long double
sinhl(long double x);

DESCRIPTION

The sinh(), sinhf() and sinhl() functions computes the hyperbolic sine of x.

RETURN VALUES

The sinh(), sinhf() and sinhl() functions return the hyperbolic sine value.

SEE ALSO

acos(3), asin(3), atan(3), atan2(3), cos(3), cosh(3), math(3), sin(3), tan(3), tanh(3)

STANDARDS

The sinh() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The sinhf() and sinhl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 601

SQRT(3)

NAME

cbrt, cbrtf, sqrt, sqrtf, sqrtl – cube root and square root functions

SYNOPSIS

#include <math.h>

double
cbrt(double x);

float
cbrtf(float x);

double
sqrt(double x);

float
sqrtf(float x);

long double
sqrtl(long double x);

DESCRIPTION

The cbrt(), cbrtf() and cbrtl() functions compute the cube root of x.

The sqrt(), sqrtf() and sqrtl() functions compute the non-negative square root of
x.

RETURN VALUES

The cbrt(), cbrtf() and cbrtl() functions return the requested cube root. The
sqrt(), sqrtf() and sqrtl() functions return the requested square root unless an
error occurs. An attempt to take the square root of a negative x causes an error; in
this event, the global variable errno is set to EDOM and 0.0 is returned, or for BFP
values a NaN is returned.

SEE ALSO

fenv(3), math(3)

602 Systems/C C Library

STANDARDS

The sqrt() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The cbrt(), cbrtf(), cbrtl(), sqrtf() and sqrtl() functions conforms to ISO/IEC
9899:1999 (“ISO C99”).

Systems/C C Library 603

TAN(3)

NAME

tan, tanf, tanl - tangent functions

SYNOPSIS

#include <math.h>

double
tan(double x);

float
tanf(float x);

long double
tanl(long double x);

DESCRIPTION

The tan(), tanf() and tanl() functions compute the tangent of x (measured in ra-
dians). A large magnitude argument may yield a result with little or no significance.

RETURN VALUES

The tan(), tanf() and tanl() functions return the tangent value.

SEE ALSO

acos(3), asin(3), atan(3), atan2(3), cos(3), cosh(3), math(3), sin(3), sinh(3), tanh(3)

STANDARDS

The tan() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The tanf() and tanl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

STANDARDS

604 Systems/C C Library

TANH(3)

NAME

tanh, tanhf, tanhl - hyperbolic tangent function

SYNOPSIS

#include <math.h>

double
tanh(double x)

float
tanhf(float x)

long double
tanhl(long double x)

DESCRIPTION

The tanh(), tanhf() and tanhl() functions compute the hyperbolic tangent of x.

RETURN VALUES

The tanh(), tanhf() and tanhl() functions return the hyperbolic tangent value.

SEE ALSO

acos(3), asin(3), atan(3), atan2(3), cos(3), cosh(3), math(3), sin(3), sinh(3), tan(3)

STANDARDS

The tanh() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The tanhf() and tanhl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 605

TRUNC(3)

NAME

trunc, truncf, truncl - nearest integral value with magnitude less than or equal to
|x|

SYNOPSIS

#include <math.h>

double
trunc(double x);

float
truncf(float x);

long double
truncl(long double x);

DESCRIPTION

The trunc(), truncf() and truncl() functions return the nearest integral value
with magnitude less than or equal to |x|. They are equivalent to rint(), rintf(),
and rintl(), respectively, in the FE TOWARDZERO rounding mode.

SEE ALSO

ceil(3), fesetround(3), floor(3), math(3), nextafter(3), rint(3), round(3)

STANDARDS

The trunc(), truncf(), and truncl() functions conform to ISO/IEC 9899:1999
(“ISO C99”).

606 Systems/C C Library

Standard I/O Library

The ANSI C standard provides for a set of input and output functions known as
the Standard I/O Library.

Systems/C C Library 607

STDIO(3)

NAME

stdio - standard input/output library functions

SYNOPSIS

#include <stdio.h>
FILE *stdin;
FILE *stdout;
FILE *stderr;

DESCRIPTION

The standard I/O library provides a simple and efficient buffered stream I/O in-
terface. Input and output is mapped into logical data streams and the physical
I/O characteristics are concealed. The functions and macros are listed below; more
information is available from the individual man pages.

A stream is associated with an external file (which may be a physical device) by
opening a file, which may involve creating a new file. Creating an existing file causes
its former contents to be discarded. If a file can support positioning requests (such
as a disk file, as opposed to a terminal) then a file position indicator associated with
the stream is positioned at the start of the file (byte zero), unless the file is opened
with append mode. If append mode is used, the position indicator will be placed
the end-of-file. The position indicator is maintained by subsequent reads, writes and
positioning requests. All input occurs as if the characters were read by successive
calls to the fgetc(3) function; all output takes place as if all characters were read by
successive calls to the fputc(3) function.

A file is disassociated from a stream by closing the file. Output streams are flushed
(any unwritten buffer contents are transferred to the host environment) before the
stream is disassociated from the file. The value of a pointer to a FILE object is
indeterminate after a file is closed (garbage).

A file may be subsequently reopened, by the same or another program execution,
and its contents reclaimed or modified (if it can be repositioned at the start). If the
main function returns to its original caller, or the exit(3) function is called, all open
files are closed (hence all output streams are flushed) before program termination.
Other methods of program termination such as abort(3) do not bother to close files
properly.

This implementation makes a distinction between “text” and “binary” streams.
Records written in non-binary mode are padded after a new-line is written to fill

608 Systems/C C Library

the record. If no new-line is written before the record length is exhausted, the record
will be “split”. That is, when the record length is reached, the record will be written
and a new one started.

At program startup, three streams are predefined and need not be opened explicitly:

• standard input (for reading conventional input)

• standard output (for writing conventional output) and

• standard error (for writing diagnostic output).

These streams are abbreviated stdin, stdout and stderr. Initially, the standard
error stream is unbuffered, the standard input and output streams are fully buffered
if and only if the streams do not refer to an interactive or “terminal” device, as
determined by the isatty(3) function. In fact, all freshly-opened streams that refer
to terminal device default to line buffering, and pending output to such streams
is written automatically whenever an such an input stream is read. Note that
this applies only to “true reads”; if the read request can be satisfied by existing
buffered data, no automatic flush will occur. In these cases, or when a large amount
of computation is done after printing part of a line on an output terminal, it is
necessary to fflush(3) the standard output before going off and computing so that
the output will appear.

Alternatively, these defaults may be modified via the setvbuf(3) function.

The SYNOPSIS sections of the following information indicate which include files
are to be used, what the compiler declaration for the function looks like and which
external variables are of interest.

The following are defined as macros; these names may not be re-used without
first removing their current definitions with #undef: BUFSIZ, EOF, FILENAME MAX,
FOPEN MAX, L cuserid, L ctermid, L tmpnam, NULL, SEEK END, SEEK SET, SEEK CUR,
TMP MAX, clearerr, feof, ferror, fileno, reopen, fwopen, getc, getchar, putc,
putchar, stderr, stdin, stdout. Function versions of the macro functions feof(),
ferror(), clearerr(), fileno(), getc(), getchar(), putc(), and putchar() exist
and will be used if the macros definitions are explicitly removed.

SEE ALSO

close(2), open(2), read(2), write(2)

ISSUES

The standard buffered functions do not interact well with certain other library and
system functions, especially abort(3).

Systems/C C Library 609

STANDARDS

The stdio library conforms to ISO/IEC 9899:1990 (“ISO C90”).

LIST OF FUNCTIONS

Function Description

clearerr check and reset stream status

fclose close a stream

fdopen stream open functions

feof check and reset stream status

ferror check and reset stream status

fflush flush a stream

fgetc get next character or word from input stream

fgetln get a line from a stream

fgetpos reposition a stream

fgets get a line from a stream

fileno check and reset stream status

fopen stream open functions

fprintf formatted output conversion

fpurge flush a stream

fputc output a character or word to a stream

fputs output a line to a stream

fread binary stream input/output

freopen stream open functions

fropen open a stream

fscanf input format conversion

fseek reposition a stream

fsetpos reposition a stream

ftell reposition a stream

funopen open a stream

610 Systems/C C Library

fwopen open a stream

fwrite binary stream input/output

getc get next character or word from input stream

getchar get next character or word from input stream

getdelim get a line from a stream

getline get a line from a stream

gets get a line from a stream

getw get next character or word from input stream

mkstemp create unique temporary file

mktemp create unique temporary file

perror system error messages

printf formatted output conversion

putc output a character or word to a stream

putchar output a character or word to a stream

puts output a line to a stream

putw output a character or word to a stream

remove remove directory entry

rewind reposition a stream

scanf input format conversion

setbuf stream buffering operations

setbuffer stream buffering operations

setlinebuf stream buffering operations

setvbuf stream buffering operations

snprintf formatted output conversion

sprintf formatted output conversion

sscanf input format conversion

strerror system error messages

sys errlist system error messages

sys nerr system error messages

Systems/C C Library 611

tempnam temporary file routines

tmpfile temporary file routines

tmpnam temporary file routines

ungetc un-get character from input stream

vfprintf formatted output conversion

vfscanf input format conversion

vprintf formatted output conversion

vscanf input format conversion

vsnprintf formatted output conversion

vsprintf formatted output conversion

vsscanf input format conversion

612 Systems/C C Library

FCLOSE(3)

NAME

fclose - close a stream

SYNOPSIS

#include <stdio.h>

int
fclose(FILE *stream)

DESCRIPTION

The fclose() function dissociates the named stream from its underlying file or set
of functions. If the stream was being used for output, any buffered data is written
first, using fflush(3).

RETURN VALUES

Upon successful completion 0 is returned. Otherwise, EOF is returned and the global
variable errno is set to indicate the error. In either case no further access to the
stream is possible.

ERRORS

[EBADF] The argument stream is not an open stream.

The fclose() function may also fail and set errno for any of the errors specified for
the routines close(2) or fflush(3).

SEE ALSO

close(2), fflush(3), fopen(3), setbuf(3)

STANDARDS

The fclose() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 613

FERROR(3)

NAME

clearerr, feof, ferror, fileno - check and reset stream status

SYNOPSIS

#include <stdio.h>

void
clearerr(FILE *stream)

int
feof(FILE *stream)

int
ferror(FILE *stream)

int
fileno(FILE *stream)

DESCRIPTION

The function clearerr() clears the end-of-file and error indicators for the stream
pointed to by stream.

The function feof() tests the end-of-file indicator for the stream pointed to by
stream, returning non-zero if it is set. The end-of-file indicator can only be cleared
by the function clearerr().

The function ferror() tests the error indicator for the stream pointed to by stream,
returning non-zero if it is set. The error indicator can only be reset by the clearerr()
function.

The function fileno() examines the argument stream and returns its integer de-
scriptor.

ERRORS

These functions should not fail and do not set the external variable errno.

614 Systems/C C Library

SEE ALSO

open(2), stdio(3)

STANDARDS

The functions clearerr(), feof(), and ferror() conform to ISO/IEC 9899:1990
(“ISO C”).

Systems/C C Library 615

FFLUSH(3)

NAME

fflush, fpurge - flush a stream

SYNOPSIS

#include <stdio.h>

int
fflush(FILE *stream)

int
fpurge(FILE *stream)

DESCRIPTION

The function fflush() forces a write of all buffered data for the given output or
update stream via the stream’s underlying write function. The open status of the
stream is unaffected.

If the stream argument is NULL, fflush() flushes all open output streams.

The function fpurge() erases any input or output buffered in the given stream. For
output streams this discards any unwritten output. For input streams this discards
any input read from the underlying object but not yet obtained via getc(3). This
includes any text pushed back via ungetc.

RETURN VALUES

Upon successful completion 0 is returned. Otherwise, EOF is returned and the global
variable errno is set to indicate the error.

ERRORS

[EBADF] Stream is not an open stream, or, in the case of fflush(), not a
stream open for writing.

The function fflush() may also fail and set errno for any of the errors specified for
the routine write(2).

616 Systems/C C Library

SEE ALSO

write(2), fclose(3), fopen(3), setbuf(3)

STANDARDS

The fflush() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 617

FGETLN(3)

NAME

fgetln - get a line from a stream

SYNOPSIS

#include <stdio.h>

char *
fgetln(FILE *stream, size_t *len)

DESCRIPTION

The fgetln() function returns a pointer to the next line from the stream referenced
by stream. This line is not a C string as it does not end with a terminating NUL
character. The length of the line, including the final newline, is stored in the memory
location to which len points. (Note, however, that if the line is the last in a file that
does not end in a newline, the returned text will not contain a newline.)

RETURN VALUES

Upon successful completion a pointer is returned; this pointer becomes invalid after
the next I/O operation on stream (whether successful or not) or as soon as the
stream is closed. Otherwise, NULL is returned. The fgetln() function does not
distinguish between end-of-file and error; the routines feof(3) and ferror(3) must be
used to determine which occurred. If an error occurs, the global variable errno is set
to indicate the error. The end-of-file condition is remembered, even on a terminal,
and all subsequent attempts to read will return NULL until the condition is cleared
with clearerr(3).

The text to which the returned pointer points may be modified provided that no
changes are made beyond the returned size. These changes are lost as soon as the
pointer becomes invalid.

ERRORS

[EBADF] The argument stream is not a stream open for reading.

The fgetln() function may also fail and set errno for any of the errors specified for
the routines fflush(3), mallow(3), read(2), stat(2), or realloc(3).

618 Systems/C C Library

SEE ALSO

ferror(3), fgets(3), fopen(3), putc(3)

Systems/C C Library 619

FGETWLN(3)

NAME

fgetwln - get a line of wide characters from a stream

SYNOPSIS

#include <stdio.h>
#include <wchar.h>

wchar_t *
fgetwln(FILE * restrict stream, size_t * restrict len)

DESCRIPTION

The fgetwln() function returns a pointer to the next line from the stream referenced
by stream. This line is not a standard wide character string as it does not end with a
terminating null wide character. The length of the line, including the final newline,
is stored in the memory location to which len points. (Note, however, that if the
line is the last in a file that does not end in a newline, the returned text will not
contain a newline.)

RETURN VALUES

Upon successful completion a pointer is returned; this pointer becomes invalid after
the next I/O operation on stream (whether successful or not) or as soon as the
stream is closed. Otherwise, NULL is returned. The fgetwln() function does not
distinguish between end-of-file and error; the routines feof(3) and ferror(3) must be
used to determine which occurred. If an error occurs, the global variable errno is set
to indicate the error. The end-of-file condition is remembered, even on a terminal,
and all subsequent attempts to read will return NULL until the condition is cleared
with clearerr(3).

The text to which the returned pointer points may be modified, provided that no
changes are made beyond the returned size. These changes are lost as soon as the
pointer becomes invalid.

ERRORS

[EBADF] The argument stream is not a stream open for reading.

The fgetwln() function may also fail and set errno for any of the errors specified
for the routines mbrtowc(3), realloc(3), or read(2).

620 Systems/C C Library

SEE ALSO

ferror(3), fgetln(3), fgetws(3), fopen(3)

Systems/C C Library 621

GETLINE(3)

NAME

getdelim, getline - get a line from a stream

SYNOPSIS

#define _WITH_GETLINE

#include <stdio.h>

ssize_t
getdelim(char ** restrict linep, size_t * restrict linecapp,
int delimiter, FILE * restrict stream);

ssize_t
getline(char ** restrict linep, size_t * restrict linecapp,
FILE * restrict stream);

DESCRIPTION

The getdelim() function reads a line from stream, delimited by the character delim-
iter. The getline() function is equivalent to getdelim() with the newline character
as the delimiter. The delimiter character is included as part of the line, unless the
end of the file is reached.

The caller may provide a pointer to a malloc’d buffer for the line in *linep, and the
capacity of that buffer in *linecapp. These functions expand the buffer as needed,
as if via realloc(). If linep points to a NULL pointer, a new buffer will be allocated.
In either case, *linep and *linecapp will be updated accordingly.

RETURN VALUES

The getdelim() and getline() functions return the number of characters stored in
the buffer, excluding the terminating NUL character. The value -1 is returned if an
error occurs, or if end-of-file is reached.

EXAMPLES

The following code fragment reads lines from a file and writes them to standard
output. The fwrite() function is used in case the line contains embedded NUL
characters.

622 Systems/C C Library

char *line = NULL;
size_t linecap = 0;
ssize_t linelen;
while ((linelen = getline(&line, &linecap, fp)) > 0)
fwrite(line, linelen, 1, stdout);
free(line);

COMPATIBILITY

Many application writers used the name getline before the getline() function
was introduced in IEEE Std 1003.1 (“POSIX.1”), so a prototype is not provided
by default in order to avoid compatibility problems. Applications that wish to use
the getline() function described herein should either request a strict IEEE Std
1003.1-2008 (“POSIX.1”) environment by defining the macro POSIX C SOURCE to
the value 200809 or greater, or by defining the macro WITH GETLINE, prior to the
inclusion of ¡stdio.h¿. For compatibility with GNU libc, defining either BSD SOURCE
or GNU SOURCE prior to the inclusion of ¡stdio.h¿ will also make getline() available.

ERRORS

These functions may fail if:

[EINVAL] Either linep or linecapp is NULL.

[EOVERFLOW] No delimiter was found in the first SSIZE MAX characters.

These functions may also fail due to any of the errors specified for fgets() and
malloc().

SEE ALSO

fgetln(3), fgets(3), malloc(3)

STANDARDS

The getdelim() and getline() functions conform to IEEE Std 1003.1-2008
(“POSIX.1”).

ISSUES

There are no wide character versions of getdelim() or getline().

Systems/C C Library 623

FGETS(3)

NAME

fgets, gets - get a line from a stream

SYNOPSIS

#include <stdio.h>

char *
fgets(char *str, int size, FILE *stream)

char *
gets(char *str)

DESCRIPTION

The fgets() function reads at most one less than the number of characters specified
by size from the given stream and stores them in the string str. Reading stops when
a newline character is found, at end-of-file or error. The newline, if any, is retained.
If any characters are read and there is no error, a ’\0’ character is appended to
end the string.

The gets() function is equivalent to fgets() with an infinite size and a stream of
stdin, except that the newline character (if any) is not stored in the string. It is
the caller’s responsibility to ensure that the input line, if any, is sufficiently short to
fit in the string.

RETURN VALUES

Upon successful completion, fgets() and gets() return a pointer to the string. If
end-of-file occurs before any characters are read, they return NULL and the buffer
content is unchanged. If an error occurs, they return NULL and the buffer content
is indeterminate. The fgets() and gets() functions do not distinguish between
end-of-file and error, and callers must use feof(3) and ferror(3) to determine which
occurred.

ERRORS

[EBADF] The given stream is not a readable stream.

624 Systems/C C Library

The function fgets() may also fail and set errno for any of the errors specified for
the routines fflush(3), fstat(2), read(2), or malloc(3).

The function gets() may also fail and set errno for any of the errors specified for
the routine getchar(3).

SEE ALSO

feof(3), ferror(3), fgetln(3)

STANDARDS

The functions fgets() and gets() conform to ISO/IEC 9899:1990 (“ISO C90”).

ISSUES

Since it is usually impossible to ensure that the next input line is less than some
arbitrary length, and because overflowing the input buffer is almost invariably a
security violation, programs should NEVER use gets().

The gets() function exists purely to conform to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 625

FGETWS(3)

NAME

fgetws - get a line of wide characters from a stream

SYNOPSIS

#include <stdio.h>
#include <wchar.h>

wchar_t *
fgetws(wchar_t * restrict ws, int n, FILE * restrict fp)

DESCRIPTION

The fgetws() function reads at most one less than the number of characters specified
by n from the given fp and stores them in the wide character string ws. Reading
stops when a newline character is found, at end-of-file or error. The newline, if any,
is retained. If any characters are read and there is no error, a ’\0’ character is
appended to end the string.

RETURN VALUES

Upon successful completion, fgetws() returns ws. If end-of-file occurs before any
characters are read, fgetws() returns NULL and the buffer contents remain un-
changed. If an error occurs, fgetws() returns NULL and the buffer contents are
indeterminate. The fgetws() function does not distinguish between end-of-file and
error, and callers must use feof(3) and ferror(3) to determine which occurred.

ERRORS

The fgetws() function will fail if:

[EBADF] The given fp argument is not a readable stream.

[EILSEQ] The data obtained from the input stream does not form a valid
multibyte character.

The function fgetws() may also fail and set errno for any of the errors specified
for the routines fflush(3), fstat(2), read(2), or malloc(3).

626 Systems/C C Library

SEE ALSO

feof(3), ferror(3), fgets(3)

STANDARDS

The fgetws() function conforms to IEEE Std 1003.1-2001 (“POSIX.1”).

Systems/C C Library 627

FOPEN(3)

NAME

fopen, fdopen, freopen - stream open functions

SYNOPSIS

#include <stdio.h>

FILE *
fopen(char *path, char *mode)

FILE *
fdopen(int fildes, char *mode)

FILE *
freopen(char *path, char *mode, FILE *stream)

DESCRIPTION

The fopen() function opens the file whose name is the string pointed to by path
and associates a stream with it.

The argument mode points to a string beginning with one of the following sequences
(Additional characters may follow these sequences.):

“r” Open text file for reading. The stream is positioned at the beginning of the
file.

“r+” Open for reading and writing. The stream is positioned at the beginning of
the file.

“w” Truncate file to zero length or create text file for writing. The stream is
positioned at the beginning of the file.

“w+” Open for reading and writing. The file is created if it does not exist, otherwise
it is truncated. The stream is positioned at the beginning of the file.

“a” Open for writing. The file is created if it does not exist. The stream is
positioned at the end of the file.

“a+” Open for reading and writing. The file is created if it does not exist. The
stream is positioned at the end of the file.

628 Systems/C C Library

The mode string can also include the letter “b” either as a third character or as
a character between the characters in any of the two-character strings described
above. The “b” indicates that I/O should be performed in binary mode, instead of
the default text mode.

If a comma is found after the mode specification, the remaining text is taken to be
DCB attributes which will be passed to the open(2) function. See open(2) for a
description of these attributes.

Reads and writes may be intermixed on read/write streams in any order, and do not
require an intermediate seek as in other versions of studio. This is not portable to
other systems. However; ANSI C requires that a file positioning function intervene
between output and input, unless an input operation encounters end-of-file.

The fdopen() function associates a stream with the existing file descriptor, fildes.
The mode of the stream must be compatible with the mode of the file descriptor.

The freopen() function opens the file whose name is the string pointed to by path
and associates the stream pointed to by stream with it. The original stream (if
it exists) is closed. The mode argument is used just as in the fopen() function.
The primary use of the freopen() function is to change the file associated with a
standard text stream (stderr, stdin, or stdout).

RECORD I/O

If the type=record attribute is specified after the mode specification; the lower-level
file descriptor will be processed in “record I/O” mode. In this mode, the file is set
to non-buffering to directly pass write requests to the lower level write functions.
Any read processing should reset the file buffer to a buffer size sufficient to handle
the expected record length of the file. See the fread(3) and fwrite(3) sections for
more information regarding record I/O.

RETURN VALUES

Upon successful completion fopen(), fdopen() and freopen() return a FILE
pointer. Otherwise, NULL is returned and the global variable errno is set to in-
dicate the error.

EXAMPLE

The following opens the file specified by the character pointer output file name,
for text output. Note that it uses the DCB attributes string to specify that the file
format should be FIXED BLOCKED, with a block size of 8000 and a logical record
length of 80:

Systems/C C Library 629

char *output_file_name;
FILE *output_file;

...
output_file = fopen(output_file_name,

"w,recfm=fb,blksize=8000,lrecl=80");

ERRORS

[EINVAL] The mode provided to fopen(), fdopen(), or freopen() was in-
valid.

The fopen(), fdopen() and freopen() functions may also fail and set errno for
any of the errors specified for the routine malloc(3).

The fopen() function may also fail and set errno for any of the errors specified for
the routine open(2).

The fdopen() function may also fail and set errno for any of the errors specified
for the routine fcntl(2).

The freopen() function may also fail and set errno for any of the errors specified
for the routines open(2), fclose(3) and fflush(3).

SEE ALSO

open(2), fclose(3), fseek(3), funopen(3)

ISSUES

fopen() is based on open(). Any restrictions mentioned on the open(3) description
apply to fopen().

STANDARDS

The fopen() and freopen() functions conform to ISO/IEC 9899:1990 (“ISO C90”).
The fdopen() function conforms to IEEE Std1003.1-1988 (“POSIX”).

630 Systems/C C Library

FPUTS(3)

NAME

fputs, puts - output a line to a stream

SYNOPSIS

#include <stdio.h>

int
fputs(const char *str, FILE *stream)

int
puts(const char *str)

DESCRIPTION

The function fputs() writes the string pointed to by str to the stream pointed to
by stream.

The function puts() writes the string str, and a terminating newline character, to
the stream stdout.

RETURN VALUES

The fputs() function returns 0 on success and EOF on error; puts() returns a
nonnegative integer on success and EOF on error.

ERRORS

[EBADF] The stream supplied is not a writable stream.

The functions fputs() and puts() may also fail and set errno for any of the errors
specified for the routines write(2).

SEE ALSO

ferror(3), putc(3), stdio(3)

Systems/C C Library 631

STANDARDS

The functions fputs() and puts() conform to ISO/IEC 9899:1990 (“ISO C90”).

632 Systems/C C Library

FPUTWS(3)

NAME

fputws - output a line of wide characters to a stream

SYNOPSIS

#include <stdio.h>
#include <wchar.h>

int
fputws(const wchar_t * restrict ws, FILE * restrict fp)

DESCRIPTION

The fputws() function writes the wide character string pointed to by ws to the
stream pointed to by fp.

RETURN VALUES

The fputws() function returns 0 on success and -1 on error.

ERRORS

The fputws() function will fail if:

[EBADF] The fp argument supplied is not a writable stream.

The fputws() function may also fail and set errno for any of the errors specified
for the routine write(2).

SEE ALSO

ferror(3), fputs(3), putwc(3), stdio(3)

STANDARDS

The fputws() function conforms to IEEE Std 1003.1-2001 (“POSIX.1”).

Systems/C C Library 633

FREAD(3)

NAME

fread, fwrite - binary stream input/output

SYNOPSIS

#include <stdio.h>

size_t
fread(void *ptr, size_t size, size_t nmemb,
FILE *stream)

size_t
fwrite(const void *ptr, size_t size, size_t nmemb,
FILE *stream)

DESCRIPTION

The function fread() reads nmemb objects, each size bytes long, from the stream
pointed to by stream, storing them at the location given by ptr.

The function fwrite() writes nmemb objects, each size bytes long, to the stream
pointed to by stream, obtaining them from the location given by ptr.

RECORD I/O

If the stream was opened with the attribute of type=record, then the lower-level
read/write operation is performed in “record I/O” mode. Furthermore, the stream
is set to be unbuffered.

For fwrite(), the unbuffered stream causes the specified number of bytes (size *
nmemb) to be directly passed to the write() operation and written as one record. A
subsequent fwrite() will advance to the next output record.

For fread(), the unbuffered stream will cause a read of 1 byte from each record in
the input file. Thus, for fread(), the buffer should be reset using setvbuf(3), to a
size that is appropriate for the expected maximum input record length. Then, the
lower-level read operation will fill this buffer with a single record, and that buffer
will used to satisfy the fread() request. When record-I/O is employed, every call
to fread() forces a refresh of the input buffer by invoking read(2) to read the next
record.

634 Systems/C C Library

For example, to read a variable-length file MYFILE a record a time; where the maxi-
mum record length in MYFILE is 8000 bytes:

char record[8000];
FILE *f;
int num_read, rec_len;

/* open the binary file in record-I/O mode */
f = fopen("MYFILE", "rb,type=record");

/* set the input buffering to be record-sized */
setvbuf(f, NULL, _IOFBF, 8000);

/* read a record */
num_read = fread(record, 1, 8000, f);

Note that the size value in this example is set to 1, and the number of elements
(nmemb) is set to 8000, allowing fread() to return the number of bytes read on the
record.

RETURN VALUES

The functions fread() and fwrite() advance the file position indicator for the
stream by at least the number of bytes read or written. They return the num-
ber of objects read or written. If an error occurs, or the end-of-file is reached, the
return value is a short object count (or zero).

The function fread() does not distinguish between end-of-file and error. Callers
must use feof(3) and ferror(3) to determine which occurred. The function fwrite()
returns a value less than nmemb only if a write error has occurred, or the the amount
of data is larger than the maximum record length when using “record I/O”.

When reading from a variable-length record using “record I/O” (type=record), it
is possible to read a zero-length record. In this case, there is no data read; which is
typically the situation end-of-file. In this event, the lower-level read() will set the
error condition, with errno set to EAGAIN. Thus, programs using fread() reading
from variable-length input with type=record need to be aware that ferror()(3) will
be true for zero-length input records. The error should be cleared with clearerr()(3)
to proceed to the next record. This approach allows the program to distinguish
between reading a zero-length record and reaching end-of-file.

Writing to variable-length record files cannot produce a zero-length record. If it is
desired to produce zero-length records in the resulting output file, then the write()(2)
function with type=record should be used.

Systems/C C Library 635

SEE ALSO

read(2), write(2)

STANDARDS

The functions fread() and fwrite() conform to ISO/IEC 9899:1990 (“ISO C90”).

636 Systems/C C Library

FSEEK(3)

NAME

fgetpos, fseek, fseeko, fsetpos, ftell, ftello, rewind - reposition a stream

SYNOPSIS

#include <stdio.h>

int
fseek(FILE *stream, long offset, int whence)

long
ftell(FILE *stream)

void
rewind(FILE *stream)

int
fgetpos(FILE *stream, fpos_t *pos)

int
fsetpos(FILE *stream, fpos_t *pos)

int
fseeko(FILE *stream, off_t offset, int whence);

off_t
ftello(FILE *stream);

DESCRIPTION

The fseek() function sets the file position indicator for the stream pointed to by
stream. The new position, measured in bytes, is obtained by adding offset bytes
to the position specified by whence. If whence is set to SEEK SET, SEEK CUR, or
SEEK END, the offset is relative to the start of the file, the current position indicator,
or end-of-file, respectively. A successful call to the fseek() function clears the end-
of-file indicator for the stream and undoes any effects of the ungetc(3) function on
the same stream.

The ftell() function obtains the current value of the file position indicator for the
stream pointed to by stream.

Systems/C C Library 637

The rewind() function sets the file position indicator for the stream pointed to by
stream to the beginning of the file. It is equivalent to:

(void)fseek(stream, 0L, SEEK_SET)

except that the error indicator for the stream is also cleared (see clearerr(3)).

The fseeko() function is identical to fseek(), except it takes an off t argument
instead of a long. Likewise, the ftello() function is identical to ftell(), except it
returns an off t.

The fgetpos() and fsetpos() functions are alternate interfaces equivalent to ftell()
and fseek() (with whence set to SEEK SET), setting and storing the current value
of the file offset into or from the object referenced by pos. The fpos t object may
be a complex object and these routines may be the only way to reposition a text
stream in a portable fashion.

RETURN VALUES

The rewind() function returns no value.

The fgetpos(), fseek(), fseeko() and fsetpos() functions return the value 0 if
successfu; otherwise the value -1 is returned and the global variable errno is set to
indicate the error.

Upon successful completion, ftell() and ftello() return the current offset. Other-
wise, -1 is returned and the global variable errno is set to indicate the error.

ISSUES

These functions depend on lseek(2). Any restrictions provided in the lseek(2) de-
scription apply to these functions as well.

ERRORS

[EBADF] The stream specified is not a seekable stream.

[EINVAL] The whence argument to fseek() was not SEEK SET, SEEK END, or
SEEK CUR.

The function fgetpos(), fseek(), fseeko(), fsetpos(), ftell() and ftello() may also
fail and set errno for any of the errors specified for the routines flush(3), fstat(2),
lseek(2), and malloc(3).

638 Systems/C C Library

SEE ALSO

lseek(2)

STANDARDS

The fgetpos(), fsetpos(), fseek(), ftell(), and rewind() functions conform to
ISO 9899: 1990 (“ISO C90”).

The fseeko() and ftello() functions conform to Version 2 of the Single UNIX Spec-
ification (“SUSv2”).

Systems/C C Library 639

FUNOPEN(3)

NAME

funopen, fropen, fwopen - open a stream

SYNOPSIS

#include <stdio.h>

FILE *
funopen(const void *cookie,
int (*readfn)(void *, char *, int),
int (*writefn)(void *, const char *, int),
fpos_t (*seekfn)(void *, fpos_t, int),
int (*closefn)(void *))

FILE *
fropen(void *cookie,
int (*readfn)(void *, char *, int))

FILE *
fwopen(void *cookie,
int (*writefn)(void *, const char *, int))

DESCRIPTION

The funopen() function associates a stream with up to four “I/O functions”. Either
readfn or writefn must be specified; the others can be given as an appropriately-typed
NULL pointer. These I/O functions will be used to read, write, seek and close the
new stream.

In general, omitting a function means that any attempt to perform the associated
operation on the resulting stream will fail. If the close function is omitted, closing
the stream will flush any buffered output and then succeed.

The calling conventions of readfn, writefn, seekfn and closefn must match those,
respectively, of read(2), write(2), seek(2), and close(2) with the single exception
that they are passed the cookie argument specified to funopen() in place of the
traditional file descriptor argument.

Read and write I/O functions are allowed to change the underlying buffer on fully
buffered or line buffered streams by calling setvbuf(3). They are also not required
to completely fill or empty the buffer. They are not, however, allowed to change
streams from unbuffered to buffered or to change the state of the line buffering flag.

640 Systems/C C Library

They must also be prepared o have read or write calls occur on buffers other than
the one most recently specified.

All user I/O functions can report an error by returning -1. Additionally, all of the
functions should set the external variable errno appropriately if an error occurs.

An error on closefn() does not keep the stream open.

As a convenience, the include file <stdio.h> defines the macros frozen() and
fwopen() as calls to funopen() with only a read or write function specified.

RETURN VALUES

Upon successful completion, funopen() returns a FILE pointer. Otherwise, NULL
is returned and the global variable errno is set to indicate the error.

ERRORS

[EINVAL] The funopen() function was called without either a read or write
function. The funopen() function may also fail and set errno for
any of the errors specified for the routine malloc(3).

SEE ALSO

fcntl(2), open(2), fclose(3), fopen(3), fseek(3), setbuf(3)

Systems/C C Library 641

FWIDE(3)

NAME

fwide - get/set orientation of a stream

SYNOPSIS

#include <stdio.h>
#include <wchar.h>

int
fwide(FILE *stream, int mode)

DESCRIPTION

The fwide() function determines the orientation of the stream pointed at by stream.

If the orientation of stream has already been determined, fwide() leaves it un-
changed. Otherwise, fwide() sets the orientation of stream according to mode.

If mode is less than zero, stream is set to byte-oriented. If it is greater than zero,
stream is set to wide-oriented. Otherwise, mode is zero, and stream is unchanged.

RETURN VALUES

The fwide() function returns a value according to orientation after the call of
fwide(); a value less than zero if byte-oriented, a value greater than zero if wide-
oriented, and zero if the stream has no orientation.

SEE ALSO

ferror(3), fgetc(3), fgetwc(3), fopen(3), fputc(3), fputwc(3), freopen(3), stdio(3)

STANDARDS

The fwide() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

642 Systems/C C Library

GETC(3)

NAME

fgetc, getc, getchar, getw - get next character or word from input stream

SYNOPSIS

#include <stdio.h>

int
fgetc(FILE *stream)

int
getc(FILE *stream)

int
getchar()

int
getw(FILE *stream)

DESCRIPTION

The fgetc() function obtains the next input character (if present) from the stream
pointed at by stream, or the next character pushed back on the stream via ungetc(3).

The getc() function acts essentially identically to fgetc(), but is a macro that
expands in-line.

The getchar() function is equivalent to: getc with the argument stdin.

The getw() function obtains the next int (if present) from the stream pointed at
by stream.

RETURN VALUES

If successful, these routines return the next requested object from the stream. If the
stream is at end-of-file or a read error occurs, the routines return EOF. The routines
feof(3) and ferror(3) must be used to distinguish between end-of-file and error. If an
error occurs, the global variable errno is set to indicate the error. The end-of-file
condition is remembered, even on a terminal, and all subsequent attempts to read
will return EOF until the condition is cleared with clearerr(3).

Systems/C C Library 643

SEE ALSO

ferror(3), fopen(3), fread(3), putc(3), ungetc(3)

STANDARDS

The fgetc(), getc() and getchar() functions conform to ISO/IEC 9899:1990 (“ISO
C90”).

ISSUES

Since EOF is a valid integer value, feof(3) and ferror(3) must be used to check for
failure after calling getw(). The size and byte order of an int varies from one
machine to another, and getw() is not recommended for portable applications.

644 Systems/C C Library

GETWC(3)

NAME

fgetwc, getwc, getwchar - get next wide character from input stream

SYNOPSIS

#include <stdio.h>
#include <wchar.h>

wint_t
fgetwc(FILE *stream)

wint_t
getwc(FILE *stream)

wint_t
getwchar()

DESCRIPTION

The fgetwc() function obtains the next input wide character (if present) from the
stream pointed at by stream, or the next character pushed back on the stream via
ungetwc(3).

The getwc() function acts essentially identically to fgetwc().

The getwchar() function is equivalent to getwc() with the argument stdin.

RETURN VALUES

If successful, these routines return the next wide character from the stream. If the
stream is at end-of-file or a read error occurs, the routines return WEOF. The routines
feof(3) and ferror(3) must be used to distinguish between end-of-file and error. If an
error occurs, the global variable errno is set to indicate the error. The end-of-file
condition is remembered, even on a terminal, and all subsequent attempts to read
will return WEOF until the condition is cleared with clearerr(3).

SEE ALSO

ferror(3), fopen(3), fread(3), getc(3), putwc(3), stdio(3), ungetwc(3)

Systems/C C Library 645

STANDARDS

The fgetwc(), getwc() and getwchar() functions conform to ISO/IEC 9899:1999
(“ISO C99”).

646 Systems/C C Library

MKTEMP(3)

NAME

mktemp - make temporary file name (unique)

SYNOPSIS

#include <unistd.h>

char *
mktemp(char *template);

int
mkstemp(char *template);

int
mkstemps(char *template, int suffixlen);

char *
mkdtemp(char *template);

DESCRIPTION

The mktemp() function takes the given file name template and overwrites a por-
tion of it to create a file name. This file name is guaranteed not to exist at the time
of function invocation and is suitable for use by the application. The template may
be any //HFS:-style file name with some number of ‘Xs’ appended to it, for exam-
ple /tmp/temp.XXXXXX. The trailing ‘Xs’ are replaced with a unique alphanumeric
combination. The number of unique file names mktemp() can return depends
on the number of ‘Xs’ provided; six ‘Xs’ will result in mktemp() selecting one of
56800235584 (62 ** 6) possible temporary file names.

The mkstemp() function makes the same replacement to the template and creates
the template file, mode 0600, returning a file descriptor opened for reading and
writing. This avoids the race between testing for a file’s existence and opening it
for use.

The mkstemps() function acts the same as mkstemp(), except it permits
a suffix to exist in the template. The template should be of the form
/tmp/tmpXXXXXXsuffix. mkstemps() is told the length of the suffix string.

The mkdtemp() function makes the same replacement to the template as in mk-
temp(3) and creates the template directory, mode 0700.

Systems/C C Library 647

RETURN VALUES

The mktemp() and mkdtemp() functions return a pointer to the template on
success and NULL on failure. The mkstemp() and mkstemps() functions return
-1 if no suitable file could be created. If either call fails an error code is placed in
the global variable errno.

ERRORS

The mkstemp(), mkstemps() and mkdtemp() functions may set errno to one
of the following values:

[ENOTDIR] The pathname portion of the template is not an existing directory.

The mkstemp(), mkstemps() and mkdtemp() functions may also set errno to
any value specified by the stat(2) function.

The mkstemp() and mkstemps() functions may also set errno to any value spec-
ified by the open(2) function.

The mkdtemp() function may also set errno to any value specified by the mkdir(2)
function.

NOTES

The mktemp(), mkstemp(), mkstemps() and mkdtemp() functions only re-
turn //HFS:-style names, and thus require OpenEdition services.

A common problem that results in abnormal termination is that the program-
mer passes in a read-only string to mktemp(), mkstemp(), mkstemps() or
mkdtemp(). This is common with programs that were developed before ISO/IEC
9899:1990 (“ISO C90”) compilers were common. For example, calling mkstemp()
with an argument of "/tmp/tempfile.XXXXXX" may result in abnormal termination
due to mkstemp() attempting to modify the string constant that was given.

ISSUES

This family of functions produces filenames which can be guessed, though the risk
is minimized when large numbers of ‘Xs’ are used to increase the number of possible
temporary filenames. This makes the race in mktemp(), between testing for a
file’s existence (in the mktemp() function call) and opening it for use (later in
the user application) particularly dangerous from a security perspective. Whenever

648 Systems/C C Library

it is possible, mkstemp() should be used instead, since it does not have the race
condition. If mkstemp() cannot be used, the filename created by mktemp()
should be created using the O EXCL flag to open(2) and the return status of the call
should be tested for failure. This will ensure that the program does not continue
blindly in the event that an attacker has already created the file with the intention
of manipulating or reading its contents.

SEE ALSO

chmod(2), getpid(2), mkdir(2), open(2), stat(2)

Systems/C C Library 649

PRINTF(3)

NAME

printf, fprintf, sprintf, snprintf, asprintf, vprintf, vfprintf, vsprintf, vsnprintf,
vasprintf - formatted output conversion

SYNOPSIS

#include <stdio.h>

int
printf(const char *format, ...)

int
fprintf(FILE *stream, const char *format, ...)

int
sprintf(char *str, const char *format, ...)

int
snprintf(char *str, size_t size, const char *format,
...)

int
asprintf(char **ret, const char *format, ...)

#include <stdarg.h>

int
vprintf(const char *format, va_list ap)

int
vfprintf(FILE *stream, const char *format, va_list ap)

int
vsprintf(char *str, char *format, va_list ap)

int
vsnprintf(char *str, size_t size, const char *format,
va_list ap)

int
vasprintf(char **ret, const char *format, va_list ap)

650 Systems/C C Library

DESCRIPTION

The printf() family of functions produces output according to a format as described
below. The printf() and vprintf() functions write output to stdout, the standard
output stream; fprintf() and vfprintf() write output to the given output stream;
sprintf(), snprintf(), vsprintf(), and vsnprintf() write to the character string
str; and asprintf() and vasprintf() dynamically allocate a new string with mal-
loc(3) / realloc(3).

These functions write the output under the control of a format string that specifies
how subsequent arguments (or arguments accessed via the variable-length argument
facilities of stdarg(3)) are converted for output.

These functions return the number of characters printed (not including the trailing
’\0’ used to end output to strings).

asprintf() and vasprintf() return a pointer to a buffer sufficiently large to hold the
string in the ret argument; This pointer should be passed to free(3) to release the
allocated storage when it is no longer needed. If sufficient space cannot be allocated,
asprintf() and vasprintf() will return -1 and set ret to be a NULL pointer.

snprintf() and vsnprintf() will write at most size-1 of the characters printed into
the output string (the size’th character then gets the terminating ’\0’); if the return
value is greater than or equal to the size argument, the string was too short and
some of the printed characters were discarded.

The sprintf() and vsprintf() functions effectively assume an infinite size.

The format string is composed of zero or more directives: ordinary characters (not
%), which are copied unchanged to the output stream and conversion specifications,
each of which results in fetching zero or more subsequent arguments. Each conver-
sion specification is introduced by the character %. The arguments must correspond
properly (after type promotion) with the conversion specifier. After the %, the fol-
lowing appear in sequence:

• Zero or more of the following flags:

– A # character specifying that the value should be converted to an “alter-
nate form.” For c, d, i, n, p, s, and u, conversions, this option has no
effect. For o conversions, the precision of the number is increased to force
the first character of the output string to a zero (except if a zero value
is printed with an explicit precision of zero). For x and X conversions, a
non-zero result has the string ’0x’ (or ’0X’ for X conversions) pretended
to it. For e, E, f, g, and G, conversions, the result will always contain
a decimal point, even if no digits follow it (normally, a decimal point
appears in the results of those conversions only if a digit follows). For g
and G conversions, trailing zeros are not removed from the result as they
would otherwise be.

Systems/C C Library 651

– A zero ‘0’ character specifying zero padding. For all conversions except n,
the converted value is padded on the left with zeros rather than blanks.
If a precision is given with a numeric conversion (d, i, o, u, i, x, and X),
the ‘0’ flag is ignored.

– A negative field width flag ‘-’ indicates the converted value is to be left
adjusted on the field boundary. Except for n conversions, the converted
value is padded on the right with blanks, rather than on the left with
blanks or zeros. A ‘-’ overrides a ‘0’ if both are given.

– A space, specifying that a blank should be left before a positive number
produced by a signed conversion (d, e, E, f, g, G, or i).

– A ‘+’ character specifying that a sign always be placed before a number
produced by a signed conversion. A ‘+’ overrides a space if both are used.

• An optional decimal digit string specifying a minimum field width. If the
converted value has fewer characters than the field width, it will be padded
with spaces on the left (or right, if the left-adjustment flag has been given) to
fill out the field width.

• An optional precision, in the form of a period ‘.’ followed by an optional digit
string. If the digit string is omitted, the precision is taken as zero. This gives
the minimum number of digits to appear for d, i, o, u, x, and X conversions, the
number of digits to appear after the decimal-point for e, E, and f conversions,
the maximum number of significant digits for g and G conversions, or the
maximum number of characters to be printed from a string for s conversions.

• The optional character h, specifying that a following d, i, o, u, x, or X conver-
sion corresponds to a short int or unsigned short int argument, or that
a following n conversion corresponds to a pointer to a short int argument.

• The optional character l (ell) specifying that a following d, i, o, u, x, or X
conversion applies to a pointer to a long int or unsigned long int argu-
ment, or that a following n conversion corresponds to a pointer to a long int
argument.

• The optional characters ll (ell ell), specifying that a following d, i, o, u, x, or
X conversion corresponds to a long long or unsigned long long argument,
or that a following n conversion corresponds to a pointer to a long long
argument. The deprecated character q specifies the same behavior. Programs
should use ll instead.

• The character L specifying that a following e, E, f, g, or G conversion corre-
sponds to a long double argument.

• A character that specifies the type of conversion to be applied.

A field width or precision, or both, may be indicated by an asterisk ‘*’ instead of a
digit string. In this case, an int argument supplies the field width or precision. A
negative field width is treated as a left adjustment flag followed by a positive field
width; a negative precision is treated as though it were missing.

652 Systems/C C Library

The conversion specifiers and their meanings are:

diouxX The int (or appropriate variant) argument is converted to signed dec-
imal (d and i), unsigned octal (o), unsigned decimal (u), or unsigned
hexadecimal (x and X) notation. The letters abcdef are used for x con-
versions; the letters ABCDEF are used for X conversions. The precision,
if any, gives the minimum number of digits that must appear; if the
converted value requires fewer digits, it is padded on the left with zeros.

eE The double argument is rounded and converted in the style [-]d.ddde+-
dd where there is one digit before the decimal-point character and the
number of digits after it is equal to the precision; if the precision is miss-
ing, it is taken as 6; if the precision is zero, no decimal-point character
appears. An E conversion uses the letter E (rather than e) to introduce
the exponent. The exponent always contains at least two digits; if the
value is zero, the exponent is 00.

fF The double argument is rounded and converted to decimal notation
in the style [-]ddd.ddd, where the number of digits after the decimal-
point character is equal to the precision specification. If the precision is
missing, it is taken as 6; if the precision is explicitly zero, no decimal-
point character appears. If a decimal point appears, at least one digit
appears before it.

gG The double argument is converted in style f or e (or E for G conversions).
The precision specifies the number of significant digits. If the precision
is missing, 6 digits are given; if the precision is zero, it is treated as
1. Style e is used if the exponent from its conversion is less than -4 or
greater than or equal to the precision. Trailing zeros are removed from
the fractional part of the result; a decimal point appears only if it is
followed by at least one digit.

aA The double argument is printed in style [-]h.hhhp+-d, where there is one
hexadecimal digit before the hexadecimal point and the number after is
equal to the precision specification for the argument; when the precision
is missing, enough digits are produced to convey the argument’s exact
double-precision floating-point representation.

D The Decimal argument is printed. After the conversion specifier, an
argument of (size,prec) must appear specifying the size and precision.

c The int argument is converted to an unsigned char, and the resulting
character is written.

s The char * argument is expected to be a pointer to an array of char-
acter type (pointer to a string). Characters from the array are written
up to (but not including) a terminating NUL character; if a precision is
specified, no more than the number specified are written. If a precision

Systems/C C Library 653

is given, no null character need be present. If the precision is not spec-
ified or is greater than the size of the array, the array must contain a
terminating NUL character.

p The void * pointer argument is printed in hexadecimal (as if by ‘%#x’
or ‘%#lx’).

n The number of characters written so far is stored into the integer in-
dicated by the int * (or variant) pointer argument. No argument is
converted.

% A ‘%’ is written. No argument is converted. The complete conversion
specification is ‘%%’.

In no case does a non-existent or small field width cause truncation of a field. If the
result of a conversion is wider than the field width, the field is expanded to contain
the conversion result.

EXAMPLES

To print a date and time in the form ‘Sunday, July 3, 10:02’, where weekday and
month are pointers to strings:

#include <stdio.h>
fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",

weekday, month, day, hour, min);

To print PI to five decimal places:

#include <math.h>
#include <stdio.h>
fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0));

To allocate a 128 byte string and print into it:

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
char *newfmt(const char *fmt, ...)
{

char *p;
va_list ap;
if ((p = malloc(128)) == NULL)

654 Systems/C C Library

return (NULL);
va_start(ap, fmt);
(void) vsnprintf(p, 128, fmt, ap);
va_end(ap);
return (p);

}

SEE ALSO

scanf(3)

STANDARDS

The fprintf(), printf(), sprintf(), vprintf(), vfprintf(), and vsprintf() func-
tions conform to ISO/IEC 9899:1990 (“ISO C90”).

ISSUES

The effect of padding the %p format with zeros (either by the ‘0’ flag or by spec-
ifying a precision), and the benign effect (i.e., none) of the ‘#’ flag on %n and %p
conversions, as well as other nonsensical combinations such as %Ld, are not standard
such combinations should be avoided.

Because sprintf() and vsprintf() assume an infinitely long string, callers must be
careful not to overflow the actual space; this is often hard to assure. For safety, pro-
grammers should use the snprintf() interface instead. Unfortunately, this interface
is not portable.

Systems/C C Library 655

PUTC(3)

NAME

fputc, putc, putchar, putw - output a character or word to a stream

SYNOPSIS

#include <stdio.h>

int
fputc(int c, FILE *stream)

int
putc(int c, FILE *stream)

int
putchar(int c)

int
putw(int w, FILE *stream)

DESCRIPTION

The fputc() function writes the character c (converted to an unsigned char) to
the output stream pointed to by stream.

putc() acts essentially identically to fputc(), but is a macro that expands in-line.
It may evaluate stream more than once, so arguments given to putc() should not
be expressions with potential side effects.

putchar() is identical to putc() with an output stream of stdout.

The putw() function writes the specified int to the named output stream.

RETURN VALUES

The functions, fputc(), putc() and putchar() return the character written. If an
error occurs, the value EOF is returned. The putw() function returns 0 on success;
EOF is returned if a write error occurs, or if an attempt is made to write a read-only
stream.

656 Systems/C C Library

SEE ALSO

ferror(3), fopen(3), getc(3), stdio(3)

STANDARDS

The functions fputc(), putc(), and putchar(), conform to ISO/IEC 9899:1990
(“ISO C”).

CAUTIONS

The size and byte order of an int varies from one machine to another, and putw()
is not recommended for portable applications.

Systems/C C Library 657

PUTWC(3)

NAME

fputwc, putwc, putwchar - output a wide character to a stream

SYNOPSIS

#include <stdio.h>
#include <wchar.h>

wint_t
fputwc(wchar_t wc, FILE *stream)

wint_t
putwc(wchar_t wc, FILE *stream)

wint_t
putwchar(wchar_t wc)

DESCRIPTION

The fputwc() function writes the wide character wc to the output stream pointed
to by stream.

The putwc() function acts essentially identically to fputwc().

The putwchar() function is identical to putwc() with an output stream of stdout.

RETURN VALUES

The fputwc(), putwc(), and putwchar() functions return the wide character writ-
ten. If an error occurs, the value WEOF is returned.

SEE ALSO

ferror(3), fopen(3), getwc(3), putc(3), stdio(3)

STANDARDS

The fputwc(), putwc(), and putwchar() functions conform to ISO/IEC 9899:1999
(“ISO C99”).

658 Systems/C C Library

REMOVE(3)

NAME

remove - remove file system entry

SYNOPSIS

#include <stdio.h>

int
remove(const char *path)

DESCRIPTION

The remove() function is an alias for the unlink(2) system call. It deletes the file
referenced by path.

RETURN VALUES

Upon successful completion, remove() returns 0. Otherwise, -1 is returned and the
global variable errno is set to indicate the error.

ERRORS

The remove() function may fail and set errno for any of the errors specified for
the routine unlink(2).

SEE ALSO

unlink(2)

STANDARDS

The remove() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 659

SCANF(3)

NAME

scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf - input format conversion

SYNOPSIS

#include <stdio.h>

int
scanf(const char *format, ...)

int
fscanf(FILE *stream, const char *format, ...)

int
sscanf(const char *str, const char *format, ...)

#include <stdarg.h>

int
vscanf(const char *format, va_list ap)

int
vsscanf(const char *str, const char *format,
va_list ap)

int
vfscanf(FILE *stream, const char *format, va_list ap)

DESCRIPTION

The scanf() family of functions scans input according to a format as described
below. This format may contain conversion specifiers the results from such conver-
sions, if any, are stored through the pointer arguments. The scanf() function reads
input from the standard input stream stdin, fscanf() reads input from the stream
pointer stream, and sscanf() reads its input from the character string pointed to
by str. The vfscanf() function is analogous to vfprintf(3) and reads input from
the stream pointer stream using a variable argument list of pointers (see stdarg(3)).
The vscanf() function scans a variable argument list from the standard input and
the vsscanf() function scans it from a string; these are analogous to the vprintf()
and vsprintf() functions respectively. Each successive pointer argument must cor-
respond properly with each successive conversion specifier (but see ‘suppression’

660 Systems/C C Library

below). All conversions are introduced by the % (percent sign) character. The for-
mat string may also contain other characters. White space (such as blanks, tabs,
or newlines) in the format string match any amount of white space, including none,
in the input. Everything else matches only itself. Scanning stops when an input
character does not match such a format character. Scanning also stops when an
input conversion cannot be made (see below).

CONVERSIONS

Following the % character introducing a conversion there may be a number of flag
characters, as follows:

* Suppresses assignment. The conversion that follows occurs as usual, but
no pointer is used; the result of the conversion is simply discarded.

hh Indicates that the conversion will be one of dioux or n and the next pointer
is a pointer to a char (rather than int).

h Indicates that the conversion will be one of dioux or n and the next pointer
is a pointer to a short int (rather than int).

l Indicates either that the conversion will be one of dioux or n and the next
pointer is a pointer to a long int (rather than int), or that the conversion
will be one of efg and the next pointer is a pointer to double (rather than
float).

ll Indicates that the conversion will be one of dioux or n and the next pointer
is a pointer to a long long int (rather than int).

L Indicates that the conversion will be efg and the next pointer is a pointer
to long double. (This type is not implemented; the L flag is currently
ignored.)

j Indicates that the conversion will be one of dioux or n and the next pointer
is a pointer to a intmax t (rather than int).

t Indicates that the conversion will be one of dioux or n and the next pointer
is a pointer to a ptrdiff t (rather than int).

z Indicates that the conversion will be one of dioux or n and the next pointer
is a pointer to a size t (rather than int).

q Indicates that the conversion will be one of dioux or n and the next pointer
is a pointer to a long long int (rather than int). This use is deprecated,
and will be removed in a future release. The standard defines ll for this
purpose.

Systems/C C Library 661

In addition to these flags, there may be an optional maximum field width, expressed
as a decimal integer, between the % and the conversion. If no width is given, a
default of “infinity” is used (with one exception, below); otherwise at most this
many characters are scanned in processing the conversion. Before conversion begins,
most conversions skip white space; this white space is not counted against the field
width.

The following conversions are available:

% Matches a literal ‘%’. That is, ‘%%’ in the format string matches a single
input ‘%’ character. No conversion is done, and assignment does not occur.

d Matches an optionally signed decimal integer; the next pointer must be a
pointer to int.

i Matches an optionally signed integer; the next pointer must be a pointer
to int. The integer is read in base 16 if it begins with ‘0x’ or ‘0X’, in
base 8 if it begins with ‘0’, and in base 10 otherwise. Only characters that
correspond to the base are used.

o Matches an octal integer; the next pointer must be a pointer to unsigned
int.

u Matches an optionally signed decimal integer; the next pointer must be a
pointer to unsigned int.

x Matches an optionally signed hexadecimal integer; the next pointer must
be a pointer to unsigned int.

e, E, f, F, g, G Matches a floating-point number in the style of strtod(3). The
next pointer must be a pointer to float (unless l or L is specified.)

s Matches a sequence of non-white-space characters; the next pointer must
be a pointer to char, and the array must be large enough to accept all the
sequence and the terminating NUL character. The input string stops at
white space or at the maximum field width, whichever occurs first.

c Matches a sequence of width count characters (default 1); the next pointer
must be a pointer to char, and there must be enough room for all the
characters (no terminating NUL is added). The usual skip of leading white
space is suppressed. To skip white space first, use an explicit space in the
format.

[Matches a non-empty sequence of characters from the specified set of ac-
cepted characters; the next pointer must be a pointer to char, and there
must be enough room for all the characters in the string, plus a terminat-
ing NUL character. The usual skip of leading white space is suppressed.
The string is to be made up of characters in (or not in) a particular set;
the set is defined by the characters between the open bracket [character
and a close bracket] character. The set excludes those characters if the

662 Systems/C C Library

first character after the open bracket is a circumflex ˆ. To include a close
bracket in the set, make it the first character after the open bracket or
the circumflex; any other position will end the set. The hyphen character
- is also special; when placed between two other characters, it adds all
intervening characters to the set. To include a hyphen, make it the last
character before the final close bracket. For instance, ‘[^]0-9-]’ means
the set ‘everything except close bracket, zero through nine, and hyphen’.
The string ends with the appearance of a character not in the (or, with a
circumflex, in) set or when the field width runs out.

p Matches a pointer value (as printed by ‘%p’ in printf(3)); the next pointer
must be a pointer to void.

n Nothing is expected; instead, the number of characters consumed thus far
from the input is stored through the next pointer, which must be a pointer
to int. This is not a conversion, although it can be suppressed with the *
flag.

For backwards compatibility, a “conversion” of ‘%\0’ causes an immediate return of
EOF.

RETURN VALUES

These functions return the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of a matching failure. Zero indicates that,
while there was input available, no conversions were assigned; typically this is due
to an invalid input character, such as an alphabetic character for a ‘%d’ conversion.
The value EOF is returned if an input failure occurs before any conversion such as
an end-of-file occurs. If an error or end-of-file occurs after conversion has begun,
the number of conversions which were successfully completed is returned.

SEE ALSO

getc(3), printf(3), strtod(3), strtol(3), strtoul(3)

STANDARDS

The functions fscanf(), scanf(), and sscanf() conform to ISO/IEC 9899:1990
(“ISO C”).

ISSUES

Numerical strings are truncated to 512 characters; for example, %f and %d are im-
plicitly %512f and %512d.

Systems/C C Library 663

SETBUF(3)

NAME

setbuf, setbuffer, setlinebuf, setvbuf - stream buffering operations

SYNOPSIS

#include <stdio.h>

void
setbuf(FILE *stream, char *buf)

void
setbuffer(FILE *stream, char *buf, size_t size)

int
setlinebuf(FILE *stream)

int
setvbuf(FILE *stream, char *buf, int mode, size_t size)

DESCRIPTION

The three types of buffering available are unbuffered, block buffered, and line
buffered. When an output stream is unbuffered, information appears on the desti-
nation file or terminal as soon as written. When it is block buffered many characters
are saved up and written as a block. When it is line buffered characters are saved
up until a newline is output or input is read from any stream attached to a terminal
device (typically stdin). The function fflush(3) may be used to force the block out
early. (See fclose(3).)

Normally all files are block buffered. When the first I/O operation occurs on a file,
malloc(3) is called, and an optimally-sized buffer is obtained. If a stream refers to
a terminal (as stdout normally does) it is line buffered. The standard error stream
stderr is always unbuffered.

The setvbuf() function may be used to alter the buffering behavior of a stream.
The mode parameter must be one of the following three macros:

IONBF unbuffered

IOLBF line buffered

IOFBF fully buffered

664 Systems/C C Library

The size parameter may be given as zero to obtain deferred optimal-size buffer
allocation as usual. If it is not zero, then except for unbuffered files, the buf argument
should point to a buffer at least size bytes long; this buffer will be used instead of
the current buffer. If the size argument is not zero but buf is NULL, a buffer of the
given size will be allocated immediately, and released on close. This is an extension
to ANSI C; portable code should use a size of 0 with any NULL buffer.

The setvbuf() function may be used at any time, but may have peculiar side effects
(such as discarding input or flushing output) if the stream is “active.” Portable
applications should call it only once on any given stream, and before any I/O is
performed.

The other three calls are, in effect, simply aliases for calls to setvbuf(). Except for
the lack of a return value, the setbuf() function is exactly equivalent to the call

setvbuf(stream, buf,
buf ? _IOFBF : _IONBF, BUFSIZ);

The setbuffer() function is the same, except that the size of the buffer is up to
the caller, rather than being determined by the default BUFSIZ. The setlinebuf()
function is exactly equivalent to the call:

setvbuf(stream, (char *)NULL, _IOLBF, 0);

RETURN VALUES

The setvbuf() function returns 0 on success, or EOF if the request cannot be honored
(note that the stream is still functional in this case).

The setlinebuf() function returns what the equivalent setvbuf() would have re-
turned.

SEE ALSO

fclose(3), fopen(3), fread(3), malloc(3), printf(3), puts(3)

STANDARDS

The setbuf() and setvbuf() functions conform to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 665

TMPFILE(3)

NAME

tempnam, tmpfile, tmpnam – //HFS:-style temporary file routines

SYNOPSIS

#include <stdio.h>

FILE *
tmpfile(void);

char *
tmpnam(char *str);

char *
tempnam(const char *tmpdir, const char *prefix);

DESCRIPTION

The tmpfile() function returns a pointer to a stream associated with a file descriptor
returned by the routine mkstemp(3). The created file is unlinked before tmpfile()
returns, causing the file to be automatically deleted when the last reference to it
is closed. The file is opened with the access value ‘w+’. The file is created in
the directory determined by the environment variable TMPDIR if set. The default
location if TMPDIR is not set is /tmp.

The tmpnam() function returns a pointer to a file name, in the P tmpdir directory,
which did not reference an existing file at some indeterminate point in the past.
P tmpdir is defined in the include file <stdio.h>. If the argument str is non-NULL,
the file name is copied to the buffer it references. Otherwise, the file name is copied
to a static buffer. In either case, tmpnam() returns a pointer to the file name.

The buffer referenced by str is expected to be at least L tmpnam bytes in length.
L tmpnam is defined in the include file <stdio.h>.

The tempnam() function is similar to tmpnam(), but provides the ability to
specify the directory which will contain the temporary file and the file name prefix.

The environment variable TMPDIR (if set), the argument tmpdir (if non-NULL), the
directory P tmpdir and the directory /tmp are tried, in the listed order, as directories
in which to store the temporary file.

The argument prefix, if non-NULL, is used to specify a file name prefix, which will
be the first part of the created file name. tempnam() allocates memory in which

666 Systems/C C Library

to store the file name; the returned pointer may be used as a subsequent argument
to free(3).

RETURN VALUES

The tmpfile() function returns a pointer to an open file system on success, and a
NULL pointer on error.

The tmpnam() and tempfile() functions return a pointer to a file name on success,
and a NULL pointer on error.

ERRORS

The tmpfile() function may fail and set the global variable errno for any of the
errors specified for the library functions fdopen(3) or mkstemp(3).

The tmpnam() function may fail and set errno for any of the errors specified for
the library function mktemp(3).

The tempnam() function may fail and set errno for any of the errors specified for
the library functions malloc(3) or mktemp(3).

SEE ALSO

mkstemp(3), mktemp(3)

STANDARDS

ISSUES

These interfaces are provided for System V and ANSI compatibility only. They
only produce //HFS:-style file names, and thus require OpenEdition services. The
mkstemp(3) interface is strongly preferred.

There are four important problems with these interfaces (as well as with the historic
mktemp(3) interface). First, there is an obvious race between file name selection
and file creation and deletion. Second, most historic implementations provide only
a limited number of possible temporary file names (usually 26) before file names will
start being recycled. Third, the System V implementations of these functions (and of
mktemp(3)) uses the access(2) function to determine whether or not the temporary
file may be created. This has obvious ramifications for setuid or setgid programs,
complicating the portable use of these interfaces in such programs. Finally, there is
no specification of the permissions with which the temporary files are created.

Systems/C C Library 667

This implementation does not have these flaws, but portable software cannot depend
on that. In particular, the tmpfile() interface should not be used in software
expected to be used on other systems if there is any possibility that the user does
not wish the temporary file to be publicly readable and writable.

668 Systems/C C Library

UNGETC(3)

NAME

ungetc - un-get character from input stream

SYNOPSIS

#include <stdio.h>

int
ungetc(int c, FILE *stream)

DESCRIPTION

The ungetc() function pushes the character c (converted to an unsigned char)
back onto the input stream pointed to by stream. The pushed-backed characters
will be returned by subsequent reads on the stream (in reverse order). A successful
intervening call, using the same stream, to one of the file positioning functions
(fseek(3), fsetpos(3), or rewind(3)) will discard the pushed back characters.

One character of push-back is guaranteed, but as long as there is sufficient memory,
an effectively infinite amount of pushback is allowed.

If a character is successfully pushed-back, the end-of-file indicator for the stream is
cleared.

RETURN VALUES

The ungetc() function returns the character pushed-back after the conversion, or
EOF if the operation fails. If the value of the argument c character equals EOF, the
operation will fail and the stream will remain unchanged.

SEE ALSO

fseek(3), getc(3), setvbuf(3)

STANDARDS

The ungetc() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 669

UNGETWC(3)

NAME

ungetwc - un-get wide character from input stream

SYNOPSIS

#include <stdio.h>
#include <wchar.h>

wint_t
ungetwc(wint_t wc, FILE *stream)

DESCRIPTION

The ungetwc() function pushes the wide character wc (converted to an wchar t)
back onto the input stream pointed to by stream. The pushed-backed wide char-
acters will be returned by subsequent reads on the stream (in reverse order). A
successful intervening call, using the same stream, to one of the file positioning
functions fseek(3), fsetpos(3), or rewind(3) will discard the pushed back wide char-
acters.

One wide character of push-back is guaranteed, but as long as there is sufficient
memory, an effectively infinite amount of pushback is allowed.

If a character is successfully pushed-back, the end-of-file indicator for the stream is
cleared.

RETURN VALUES

The ungetwc() function returns the wide character pushed-back after the conver-
sion, or WEOF if the operation fails. If the value of the argument wc character equals
WEOF, the operation will fail and the stream will remain unchanged.

SEE ALSO

fseek(3), getwc(3)

STANDARDS

The ungetwc() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

670 Systems/C C Library

WPRINTF(3)

NAME

wprintf, fwprintf, swprintf, vwprintf, vfwprintf, vswprintf - formatted wide character
output conversion

SYNOPSIS

#include <stdio.h>
#include <wchar.h>

int
fwprintf(FILE * restrict stream, const wchar_t * restrict format, ...)

int
swprintf(wchar_t * restrict ws, size_t n,

const wchar_t * restrict format, ...)

int
wprintf(const wchar_t * restrict format, ...)

#include <stdarg.h>

int
vfwprintf(FILE * restrict stream,

const wchar_t * restrict, va_list ap)

int
vswprintf(wchar_t * restrict ws, size_t n,

const wchar_t *restrict format, va_list ap)

int
vwprintf(const wchar_t * restrict format, va_list ap)

DESCRIPTION

The wprintf() family of functions produces output according to a format as de-
scribed below. The wprintf() and vwprintf() functions write output to stdout,
the standard output stream; fwprintf() and vfwprintf() write output to the given
output stream; swprintf() and vswprintf() write to the wide character string ws.

These functions write the output under the control of a format string that specifies
how subsequent arguments (or arguments accessed via the variable-length argument
facilities of stdarg(3)) are converted for output.

Systems/C C Library 671

These functions return the number of characters printed (not including the trailing
’\0’ used to end output to strings).

The swprintf() and vswprintf() functions will fail if n or more wide characters
were requested to be written,

The format string is composed of zero or more directives: ordinary characters (not
%), which are copied unchanged to the output stream; and conversion specifica-
tions, each of which results in fetching zero or more subsequent arguments. Each
conversion specification is introduced by the % character. The arguments must cor-
respond properly (after type promotion) with the conversion specifier. After the %,
the following appear in sequence:

• An optional field, consisting of a decimal digit string followed by a $, speci-
fying the next argument to access. If this field is not provided, the argument
following the last argument accessed will be used. Arguments are numbered
starting at 1. If unaccessed arguments in the format string are interspersed
with ones that are accessed the results will be indeterminate.

• Zero or more of the following flags:

‘#’ The value should be converted to an “alternate form”. For c,
d, i, n, p, s, and u conversions, this option has no effect. For
o conversions, the precision of the number is increased to force
the first character of the output string to a zero (except if a zero
value is printed with an explicit precision of zero). For x and
X conversions, a non-zero result has the string ‘0x’ (or ‘0X’ for
X conversions) prepended to it. For a, A, e, E, f, F, g, and G
conversions, the result will always contain a decimal point, even
if no digits follow it (normally, a decimal point appears in the
results of those conversions only if a digit follows). For g and G
conversions, trailing zeros are not removed from the result as they
would otherwise be.

‘0’ (zero) Zero padding. For all conversions except n, the converted value is
padded on the left with zeros rather than blanks. If a precision is
given with a numeric conversion (d, i, o, u, i, x, and X), the 0 flag
is ignored.

‘-’ A negative field width flag; the converted value is to be left adjusted
on the field boundary. Except for n conversions, the converted
value is padded on the right with blanks, rather than on the left
with blanks or zeros. A - overrides a 0 if both are given.

‘ ’ (space) A blank should be left before a positive number produced by a
signed conversion (a, A, d, e, E, f, F, g, G, or i).

‘+’ A sign must always be placed before a number produced by a signed
conversion. A + overrides a space if both are used.

672 Systems/C C Library

‘’’ Decimal conversions (d, u, or i) or the integral portion of a float-
ing point conversion (f or F) should be grouped and separated by
thousands using the non-monetary separator returned by locale-
conv(3).

• An optional decimal digit string specifying a minimum field width. If the
converted value has fewer characters than the field width, it will be padded
with spaces on the left (or right, if the left-adjustment flag has been given) to
fill out the field width.

• An optional precision, in the form of a period . followed by an optional
digit string. If the digit string is omitted, the precision is taken as zero.
This gives the minimum number of digits to appear for d, i, o, u, x, and X
conversions, the number of digits to appear after the decimal-point for a, A, e,
E, f, and F conversions, the maximum number of significant digits for g and G
conversions, or the maximum number of characters to be printed from a string
for s conversions.

• An optional length modifier, that specifies the size of the argument. The
following length modifiers are valid for the d, i, n, o, u, x, or X conversion:

Modifier d, i o, u, x, X n
hh signed char unsigned char signed char *
h short unsigned short short *
l (ell) long unsigned long long *
ll (ell ell) long long unsigned long long long long *
j intmax t uintmax t intmax t *
t ptrdiff t (see note) ptrdiff t *
z (see note) size t (see note)
q (deprecated) quad t u quad t quad t *

Note: the t modifier, when applied to a o, u, x, or X conversion, indicates that
the argument is of an unsigned type equivalent in size to a ptrdiff t. The
z modifier, when applied to a d or i conversion, indicates that the argument
is of a signed type equivalent in size to a size t. Similarly, when applied to
an n conversion, it indicates that the argument is a pointer to a signed type
equivalent in size to a size t.

The following length modifier is valid for the a, A, e, E, f, F, g, or G conversion:

Modifier a, A, e, E, f, F, g, G
L long double

The following length modifier is valid for the c or s conversion:

Modifier c s
l (ell) wint t wchar t *

• A character that specifies the type of conversion to be applied.

A field width or precision, or both, may be indicated by an asterisk ‘*’ or an asterisk
followed by one or more decimal digits and a ‘$’ instead of a digit string. In this
case, an int argument supplies the field width or precision. A negative field width

Systems/C C Library 673

is treated as a left adjustment flag followed by a positive field width; a negative
precision is treated as though it were missing. If a single format directive mixes
positional (nn$) and non-positional arguments, the results are undefined.

The conversion specifiers and their meanings are:

diouxX The int (or appropriate variant) argument is converted to signed dec-
imal (d and i), unsigned octal (o), unsigned decimal (u), or unsigned
hexadecimal (x and X) notation. The letters abcdef are used for x con-
versions; the letters ABCDEF are used for X conversions. The precision,
if any, gives the minimum number of digits that must appear; if the
converted value requires fewer digits, it is padded on the left with zeros.

eE The double argument is rounded and converted in the style [-]d.ddde+-dd
where there is one digit before the decimal-point character and the num-
ber of digits after it is equal to the precision; if the precision is missing,
it is taken as 6; if the precision is zero, no decimal-point character ap-
pears. An E conversion uses the letter ‘E’ (rather than ‘e’) to introduce
the exponent. The exponent always contains at least two digits; if the
value is zero, the exponent is 00.

For a, A, e, E, f, F, g, and G conversions, positive and negative infinity
are represented as inf and -inf respectively when using the lowercase
conversion character, and INF and -INF respectively when using the
uppercase conversion character. Similarly, NaN is represented as nan
when using the lowercase conversion, and NAN when using the uppercase
conversion.

fF The double argument is rounded and converted to decimal notation
in the style [-]ddd.ddd where the number of digits after the decimal-
point character is equal to the precision specification. If the precision is
missing, it is taken as 6; if the precision is explicitly zero, no decimal-
point character appears. If a decimal point appears, at least one digit
appears before it.

gG The double argument is converted in style f or e (or F or E for G con-
versions). The precision specifies the number of significant digits. If
the precision is missing, 6 digits are given; if the precision is zero, it
is treated as 1. Style e is used if the exponent from its conversion is
less than -4 or greater than or equal to the precision. Trailing zeros are
removed from the fractional part of the result; a decimal point appears
only if it is followed by at least one digit.

aA The double argument is converted to hexadecimal notation in the style
[-]0xh.hhhp[+-]d where the number of digits after the hexadecimal-point
character is equal to the precision specification. If the precision is miss-
ing, it is taken as enough to exactly represent the floating-point number;
if the precision is explicitly zero, no hexadecimal-point character ap-
pears. This is an exact conversion of the mantissa+exponent internal

674 Systems/C C Library

floating point representation; the [-]0xh.hhh portion represents exactly
the mantissa; only denormalized mantissas have a zero value to the left
of the hexadecimal point. The p is a literal character ‘p’; the exponent is
preceded by a positive or negative sign and is represented in decimal, us-
ing only enough characters to represent the exponent. The A conversion
uses the prefix “0X” (rather than “0x”), the letters “ABCDEF” (rather
than “abcdef”) to represent the hex digits, and the letter ‘P’ (rather
than ‘p’) to separate the mantissa and exponent.

D The Decimal argument is printed. After the conversion specifier, an
argument of (size,prec) must appear specifying the size and precision.

C Treated as c with the l (ell) modifier.

c The int argument is converted to an unsigned char, then to a wchar t
as if by btowc(3), and the resulting character is written.

If the l (ell) modifier is used, the wint t argument is converted to a
wchar t and written.

S Treated as s with the l (ell) modifier.

s The char * argument is expected to be a pointer to an array of character
type (pointer to a string) containing a multibyte sequence. Characters
from the array are converted to wide characters and written up to (but
not including) a terminating NUL character; if a precision is specified,
no more than the number specified are written. If a precision is given,
no null character need be present; if the precision is not specified, or is
greater than the size of the array, the array must contain a terminating
NUL character.

If the l (ell) modifier is used, the wchar t * argument is expected to be
a pointer to an array of wide characters (pointer to a wide string). Each
wide character in the string is written. Wide characters from the array
are written up to (but not including) a terminating wide NUL character;
if a precision is specified, no more than the number specified are written
(including shift sequences). If a precision is given, no null character need
be present; if the precision is not specified, or is greater than the number
of characters in the string, the array must contain a terminating wide
NUL character.

p The void * pointer argument is printed in hexadecimal (as if by ‘%#x’
or ‘%#lx’).

n The number of characters written so far is stored into the integer in-
dicated by the int * (or variant) pointer argument. No argument is
converted.

% A ‘%’ is written. No argument is converted. The complete conversion
specification is ‘%%’.

Systems/C C Library 675

The decimal point character is defined in the program’s locale (category
LC NUMERIC).

In no case does a non-existent or small field width cause truncation of a numeric
field; if the result of a conversion is wider than the field width, the field is expanded
to contain the conversion result.

SECURITY CONSIDERATIONS

Refer to printf(3).

SEE ALSO

btowc(3), fputws(3), printf(3), putwc(3), setlocale(3), wcsrtombs(3), wscanf(3)

STANDARDS

The wprintf(), fwprintf(), swprintf(), vwprintf(), vfwprintf() and vsw-
printf() functions conform to ISO/IEC 9899:1999 (“ISO C99”).

676 Systems/C C Library

WSCANF(3)

NAME

wscanf, fwscanf, swscanf, vwscanf, vswscanf, vfwscanf - wide character input format
conversion

SYNOPSIS

#include <stdio.h>
#include <wchar.h>

int
wscanf(const wchar_t * restrict format, ...)

int
fwscanf(FILE * restrict stream, const wchar_t * restrict format,

...)

int
swscanf(const wchar_t * restrict str,

const wchar_t * restrict format, ...)

#include <stdarg.h>

int
vwscanf(const wchar_t * restrict format, va_list ap)

int
vswscanf(const wchar_t * restrict str,

const wchar_t * restrict format, va_list ap)

int
vfwscanf(FILE * restrict stream, const wchar_t * restrict format,

va_list ap)

DESCRIPTION

The wscanf() family of functions scans input according to a format as described
below. This format may contain conversion specifiers; the results from such con-
versions, if any, are stored through the pointer arguments. The wscanf() function
reads input from the standard input stream stdin, fwscanf() reads input from
the stream pointer stream, and swscanf() reads its input from the wide charac-
ter string pointed to by str. The vfwscanf() function is analogous to vfwprintf(3)

Systems/C C Library 677

and reads input from the stream pointer stream using a variable argument list of
pointers (see stdarg(3)). The vwscanf() function scans a variable argument list
from the standard input and the vswscanf() function scans it from a wide char-
acter string; these are analogous to the vwprintf() and vswprintf() functions
respectively. Each successive pointer argument must correspond properly with each
successive conversion specifier (but see the * conversion below). All conversions are
introduced by the % (percent sign) character. The format string may also contain
other characters. White space (such as blanks, tabs, or newlines) in the format
string match any amount of white space, including none, in the input. Everything
else matches only itself. Scanning stops when an input character does not match
such a format character. Scanning also stops when an input conversion cannot be
made (see below).

CONVERSIONS

Following the % character introducing a conversion there may be a number of flag
characters, as follows:

* Suppresses assignment. The conversion that follows occurs as usual, but
no pointer is used; the result of the conversion is simply discarded.

hh Indicates that the conversion will be one of dioux or n and the next
pointer is a pointer to a char (rather than int).

h Indicates that the conversion will be one of dioux or n and the next
pointer is a pointer to a short int (rather than int).

l (ell) Indicates that the conversion will be one of dioux or n and the next
pointer is a pointer to a long int (rather than int), that the conversion
will be one of a, e, f, or g and the next pointer is a pointer to double
(rather than float), or that the conversion will be one of c or s and the
next pointer is a pointer to an array of wchar t (rather than char).

ll (ell ell) Indicates that the conversion will be one of dioux or n and the next
pointer is a pointer to a long long int (rather than int).

L Indicates that the conversion will be one of a, e, f, or g and the next
pointer is a pointer to long double.

j Indicates that the conversion will be one of dioux or n and the next
pointer is a pointer to a intmax t (rather than int).

t Indicates that the conversion will be one of dioux or n and the next
pointer is a pointer to a ptrdiff t (rather than int).

z Indicates that the conversion will be one of dioux or n and the next
pointer is a pointer to a size t (rather than int).

678 Systems/C C Library

q (deprecated) Indicates that the conversion will be one of dioux or n and
the next pointer is a pointer to a long long int (rather than int).

In addition to these flags, there may be an optional maximum field width, expressed
as a decimal integer, between the % and the conversion. If no width is given, a
default of “infinity” is used (with one exception, below); otherwise at most this
many characters are scanned in processing the conversion. Before conversion begins,
most conversions skip white space; this white space is not counted against the field
width.

The following conversions are available:

% Matches a literal ‘%’. That is, “%%” in the format string matches a single
input ‘%’ character. No conversion is done, and assignment does not occur.

d Matches an optionally signed decimal integer; the next pointer must be a
pointer to int.

i Matches an optionally signed integer; the next pointer must be a pointer
to int. The integer is read in base 16 if it begins with ‘0x’ or ‘0X’, in
base 8 if it begins with ‘0’, and in base 10 otherwise. Only characters that
correspond to the base are used.

o Matches an octal integer; the next pointer must be a pointer to unsigned
int.

u Matches an optionally signed decimal integer; the next pointer must be a
pointer to unsigned int.

x, X Matches an optionally signed hexadecimal integer; the next pointer must
be a pointer to unsigned int.

a, A, e, E, f, F, g, G Matches a floating-point number in the style of wcstod(3). The
next pointer must be a pointer to float (unless l or L is specified.)

s Matches a sequence of non-white-space wide characters; the next pointer
must be a pointer to char, and the array must be large enough to accept
the multibyte representation of all the sequence and the terminating NUL
character. The input string stops at white space or at the maximum field
width, whichever occurs first.

If an l qualifier is present, the next pointer must be a pointer to wchar t,
into which the input will be placed.

S The same as ls.

c Matches a sequence of width count wide characters (default 1); the next
pointer must be a pointer to char, and there must be enough room for
the multibyte representation of all the characters (no terminating NUL is
added). The usual skip of leading white space is suppressed. To skip white
space first, use an explicit space in the format.

Systems/C C Library 679

If an l qualifier is present, the next pointer must be a pointer to wchar t,
into which the input will be placed.

C The same as lc.

[Matches a nonempty sequence of characters from the specified set of ac-
cepted characters; the next pointer must be a pointer to char, and there
must be enough room for the multibyte representation of all the characters
in the string, plus a terminating NUL character. The usual skip of leading
white space is suppressed. The string is to be made up of characters in (or
not in) a particular set; the set is defined by the characters between the
open bracket [character and a close bracket] character. The set excludes
those characters if the first character after the open bracket is a circumflex
^. To include a close bracket in the set, make it the first character after
the open bracket or the circumflex; any other position will end the set.
To include a hyphen in the set, make it the last character before the final
close bracket; some implementations of wscanf() use “A-Z” to represent
the range of characters between ‘A’ and ‘Z’. The string ends with the ap-
pearance of a character not in the (or, with a circumflex, in) set or when
the field width runs out.

If an l qualifier is present, the next pointer must be a pointer to wchar t,
into which the input will be placed.

p Matches a pointer value (as printed by ‘%p’ in wprintf(3)); the next pointer
must be a pointer to void.

n Nothing is expected; instead, the number of characters consumed thus far
from the input is stored through the next pointer, which must be a pointer
to int. This is not a conversion, although it can be suppressed with the *
flag.

The decimal point character is defined in the program’s locale (category
LC NUMERIC).

For backwards compatibility, a “conversion” of ‘%\0’ causes an immediate return of
EOF.

RETURN VALUES

These functions return the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of a matching failure. Zero indicates that,
while there was input available, no conversions were assigned; typically this is due
to an invalid input character, such as an alphabetic character for a ‘%d’ conversion.
The value EOF is returned if an input failure occurs before any conversion such as
an end-of-file occurs. If an error or end-of-file occurs after conversion has begun,
the number of conversions which were successfully completed is returned.

680 Systems/C C Library

SEE ALSO

fgetwc(3), scanf(3), wcrtomb(3), wcstod(3), wcstol(3), wcstoul(3), wprintf(3)

STANDARDS

The fwscanf(), wscanf(), swscanf(), vfwscanf(), vwscanf() and vswscanf()
functions conform to ISO/IEC 9899:1999 (“ISO C99”).

BUGS

In addition to the bugs documented in scanf(3), wscanf() does not support the
“A-Z” notation for specifying character ranges with the character class conversion
(‘%[’).

Systems/C C Library 681

The Standard Library

Also present in the ANSI C definition are miscellaneous functions considered to
be part of the “standard” library. This section also describes some Systems/C
extensions which are similar to some of the ANSI standard functions.

682 Systems/C C Library

FREE24(3)

NAME

free24 - free memory allocated with malloc24

SYNOPSIS

#include <stdlib.h>

void
__free24(void * ptr)

DESCRIPTION

The free24() function causes the space pointed to by ptr to be deallocated, that
is, made available for further allocation. If ptr is a null pointer, no action oc-
curs. Otherwise, if the argument does not match a pointer earlier returned by the
malloc24() function, or if the space has been deallocated by a call to free24(),

then general havoc may occur.

RETURN VALUES

The free24() function returns no value.

SEE ALSO

malloc24(3), malloc(3), free(3), malloc31(3), free31(3)

Systems/C C Library 683

FREE31(3)

NAME

free31 - free memory allocated with malloc31

SYNOPSIS

#include <stdlib.h>

void
__free31(void * ptr)

DESCRIPTION

The free31() function causes the space pointed to by ptr to be deallocated, that
is, made available for further allocation. If ptr is a null pointer, no action oc-
curs. Otherwise, if the argument does not match a pointer earlier returned by the
malloc31() function, or if the space has been deallocated by a call to free31(),

then general havoc may occur.

RETURN VALUES

The free31() function returns no value.

SEE ALSO

malloc31(3), malloc(3), free(3), malloc24(3), free24(3)

684 Systems/C C Library

MALLOC24(3)

NAME

malloc24 - allocate memory which is guaranteed to be 24-bit addressable

SYNOPSIS

#include <stdlib.h>

void *
__malloc24(size_t size)

DESCRIPTION

The malloc24() function allocates uninitialized space for an object whose size is
specified by size. The malloc24() function maintains lists of free blocks, allocat-
ing space from the appropriate list when possible.

Any space returned by the malloc24() function is guaranteed to reside below the
16-megabyte “line”, and thus be addressable as a 24-bit address.

Memory space allocated with malloc24() must be returned to the list of available
space via the free24() function.

RETURN VALUES

The malloc24() function returns a pointer to the allocated space if successful;
otherwise a null pointer is returned.

SEE ALSO

free24(3), malloc(3), free(3), malloc31(3), free31(3), memory(3)

Systems/C C Library 685

MALLOC31(3)

NAME

malloc31 - allocate memory which is guaranteed to be 31-bit addressable

SYNOPSIS

#include <stdlib.h>

void *
__malloc31(size_t size)

DESCRIPTION

The malloc31() function allocates uninitialized space for an object whose size is
specified by size. The malloc31() function maintains lists of free blocks, allocat-
ing space from the appropriate list when possible.

Any space returned by the malloc31() function is guaranteed to reside below the
2-gigabytes “bar”, and thus be addressable with a 31-bit pointer.

Memory space allocated with malloc31() must be returned to the list of available
space via the free31() function.

RETURN VALUES

The malloc31() function returns a pointer to the allocated space if successful;
otherwise a null pointer is returned.

SEE ALSO

free31(3), malloc(3), free(3), malloc24(3), free24(3), memory(3)

686 Systems/C C Library

ABORT(3)

NAME

abort - cause abnormal program termination

SYNOPSIS

#include <stdlib.h>

void
abort(void)

DESCRIPTION

The abort() function causes abnormal program termination to occur, unless the
signal SIGABRT is being caught and the signal handler does not return.

Any open streams are flushed and closed.

RETURN VALUES

The abort() function never returns.

SEE ALSO

signal(2), exit(3)

Systems/C C Library 687

ABS(3)

NAME

abs - integer absolute value function

SYNOPSIS

#include <stdlib.h>

int
abs(int j)

DESCRIPTION

The abs() function computes the absolute value of the integer j.

RETURN VALUES

The abs() function returns the absolute value.

SEE ALSO

cabs(3), floor(3), imaxabs(3), hypot(3), labs(3), math(3)

STANDARDS

The abs() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

ISSUES

The absolute value of the most negative integer remains negative.

688 Systems/C C Library

ARC4RANDOM(3)

NAME

arc4random, arc4random stir, arc4random addrandom - arc4 random number gen-
erator

SYNOPSIS

#include <stdlib.h>

u_int32_t
arc4random(void);

void
arc4random_stir(void);

void
arc4random_addrandom(unsigned char *dat, int datlen);

DESCRIPTION

The arc4random() function uses the key stream generator employed by the arc4
cipher, which uses 8*8 8 bit S-Boxes. The S-Boxes can be in about (2**1700) states.
The arc4random() function returns pseudo-random numbers in the range of 0 to
(2**31)-1, and therefore has twice the range of RAND MAX.

The arc4random stir() function attemps to reads data from a random device
generator or other random values and use that data to permute the S-Boxes via
arc4random addrandom().

There is no need to call arc4random stir() before using arc4random(), since
arc4random() automatically initializes itself.

EXAMPLES

The following produces a drop-in replacement for the traditional rand() and ran-
dom() functions using arc4random():

#define foo4random() (arc4random() % ((unsigned)RAND_MAX + 1))

Systems/C C Library 689

SEE ALSO

rand(3), random(3)

HISTORY

RC4 was designed by RSA Data Security, Inc. It was posted anonymously to
USENET and was confirmed to be equivalent by several sources who had access
to the original cipher. Since RC4 used to be a trade secret, the cipher is now referred
to as ARC4.

690 Systems/C C Library

ATEXIT(3)

NAME

atexit - register a function to be called on exit

SYNOPSIS

#include <stdlib.h>

int
atexit(void (*function)(void))

DESCRIPTION

The atexit() function registers the given function to be called at program exit,
whether via exit(3) or via return from the program’s main(). Functions so registered
are called in reverse order; no arguments are passed. At least 32 functions can always
be registered, and more are allowed as long as sufficient memory can be allocated.

RETURN VALUES

The atexit() function returns the value 0 if successful; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

[ENOMEM] No memory was available to add the function to the list. The ex-
isting list of functions is unmodified.

SEE ALSO

exit(3)

STANDARDS

The atexit() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 691

ATOF(3)

NAME

atof - convert string to double

SYNOPSIS

#include <stdlib.h>

double
atof(const char *nptr)

DESCRIPTION

The atof() function converts the initial portion of the string pointed to by nptr to
double representation.

It is equivalent to:

strtod(nptr, (char **)NULL);

SEE ALSO

atoi(3), atol(3), strtod(3), strtol(3), strtoul(3)

STANDARDS

The atof() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

ISSUES

This manual page represents intent instead of actual practice. While it is intended
that atof() be implemented using strtod(3), this has not yet happened.

In the current system, atof() translates a string in the following form to a double:
a string of leading white space, possibly followed by a sign (“+” or “-”), followed by
a digit string which may contain one decimal point (“.”), that may be followed by
either of the exponent flags (“E” or “e”), and lastly, followed by a signed or unsigned
integer.

692 Systems/C C Library

ATOI(3)

NAME

atoi - convert string to integer

SYNOPSIS

#include <stdlib.h>

int
atoi(const char *nptr)

DESCRIPTION

The atoi() function converts the initial portion of the string pointed to by nptr to
integer representation.

It is equivalent to:

(int)strtol(nptr, (char **)NULL, 10);

SEE ALSO

atof(3), atol(3), strtod(3), strtol(3), strtoul(3)

STANDARDS

The atoi() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 693

ATOL(3)

NAME

atol - convert string to long integer

SYNOPSIS

#include <stdlib.h>

long
atol(const char *nptr)

long long
atoll(const char *nptr);

DESCRIPTION

The atol() function converts the initial portion of the string pointed to by nptr to
long integer representation.

It is equivalent to:

strtol(nptr, (char **)NULL, 10);

The atoll() function converts the initial portion of the string pointed to by nptr to
long long integer representation.

It is equivalent to:

strtoll(nptr, (char **)NULL, 10);

ERRORS

The functions atol() and atoll() need not affect the value of errno on an error.

SEE ALSO

atof(3), atoi(3), strtod(3), strtol(3), strtoul(3)

694 Systems/C C Library

STANDARDS

The atol() function conforms to ISO/IEC 9899:1990 (“ISO C90”). The atoll()
function conforms to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 695

BSEARCH(3)

NAME

bsearch - binary search of a sorted table

SYNOPSIS

#include <stdlib.h>

void *
bsearch(const void *key, const void *base,
size_t nmemb, size_t size,
int (*compar) (const void *, const void *))

DESCRIPTION

The bsearch() function searches an array of nmemb objects, the initial member of
which is pointed to by base, for a member that matches the object pointed to by
key. The size of each member of the array is specified by size.

The contents of the array should be in ascending sorted order according to the
comparison function referenced by compar. The compar routine is expected to have
two arguments which point to the key object and to an array member, in that
order, and should return an integer less than, equal to, or greater than zero if the
key object is found, respectively, to be less than, to match, or be greater than the
array member.

RETURN VALUES

The bsearch() function returns a pointer to a matching member of the array, or a
null pointer if no match is found. If two members compare as equal, which member
is matched is unspecified.

SEE ALSO

lsearch(3), qsort(3)

STANDARDS

The bsearch() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

696 Systems/C C Library

CALLOC(3)

NAME

calloc - allocate clean memory (zero initialized space)

SYNOPSIS

#include <stdlib.h>

void *
calloc(size_t nmemb, size_t size)

DESCRIPTION

The calloc() function allocates space for an array of nmemb objects, each of whose
size is size. The space is initialized to all bits zero.

RETURN VALUES

The calloc() function returns a pointer to the allocated space if successful; otherwise
a null pointer is returned.

SEE ALSO

malloc(3), realloc(3), free(3),

STANDARDS

The calloc() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 697

DIV(3)

NAME

div - return quotient and remainder from division

SYNOPSIS

#include <stdlib.h>

div_t
div(int num, int denom)

DESCRIPTION

The div() function computes the value num/denum and returns the quotient and
remainder in a structure named div t that contains two int integer members named
quot and rem. Unlike the implementation defined semantics of normal integer divi-
sion, div() provides precise semantics on the quot and rem values.

The sign of quot is the same as the algebraic quotient.

If the division is inexact, the magnitude of the resulting quotient is the largest
integer less than the magnitude of the algebraic quotient.

If the result cannot be represented, the values of quot and rem are undefined.

If the result can be represented, then quot * denom + rem will equal num.

SEE ALSO

imaxdiv(3), ldiv(3), lldiv(3)

STANDARDS

The div() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

698 Systems/C C Library

ENVIRON(7)

NAME

environ - user environment

SYNOPSIS

extern char **environ;

DESCRIPTION

An array of strings called the environment is made available when a program
begins. By convention, these strings have the form "name=value". When a Sys-
tems/C program is initiated via execve(2), these strings are taken from the POSIX
environment.

The environ variable is the anchor for the getenv(3) family of functions, and should
not be otherwised used in programs.

SEE ALSO

execve(2), execle(3), getenv(3), setenv(3), setlocale(3), system(3)

Systems/C C Library 699

EXIT(3)

NAME

exit - perform normal program termination

SYNOPSIS

#include <stdlib.h>

void
exit(int status)

DESCRIPTION

exit() terminates a process.

Before termination it performs the following functions in the order listed:

1. Call the functions registered with the atexit(3) function, in the reverse order of
their registration.

2. Flush all open output streams.

3. Close all open streams.

4. Unlink all files created with the tmpfile(3) function.

Passing arbitrary values back to the environment as status is considered bad style.
Instead, use the values as described in sysexits(3).

RETURN VALUES

The exit() function never returns.

SEE ALSO

exit(2), atexit(3), intro(3), sysexits(3)

STANDARDS

The exit() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

700 Systems/C C Library

FREE(3)

NAME

free - free memory allocated with malloc, calloc or realloc

SYNOPSIS

#include <stdlib.h>

void
free(void *ptr)

DESCRIPTION

The free() function causes the space pointed to by ptr to be deallocated, that is,
made available for further allocation. If ptr is a null pointer, no action occurs.
Otherwise, if the argument does not match a pointer earlier returned by the calloc,
malloc, or realloc function, or if the space has been deallocated by a call to free()
or realloc, then general havoc may occur.

RETURN VALUES

The free() function returns no value.

SEE ALSO

calloc(3), malloc(3), realloc(3)

STANDARDS

The free() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 701

GETENV(3)

NAME

getenv, putenv, setenv, unsetenv - environment variable functions

SYNOPSIS

#include <stdlib.h>

char *
getenv(const char *name)

int
setenv(const char *name, const char *value,
int overwrite)

int
putenv(const char *string)

int
unsetenv(const char *name)

DESCRIPTION

These functions set, unset and fetch environment variables from the host environ-
ment list. For compatibility with differing environment conventions, the given argu-
ments name and value may be appended and prepended, respectively, with an equal
sign “=”.

The getenv() function obtains the current value of the environment variable, name.
If the variable name is not in the current environment, a null pointer is returned.

The setenv() function inserts or resets the environment variable name in the current
environment list. If the variable name does not exist in the list, it is inserted with the
given value. If the variable does exist, the argument overwrite is tested; if overwrite
is zero, the variable is not reset, otherwise it is reset to the given value.

The putenv() function takes an argument of the form “name=value” and is equiv-
alent to:

setenv(name, value, 1);

The unsetenv() function deletes all instances of the variable name pointed to by
name from the list.

702 Systems/C C Library

RETURN VALUES

The functions setenv(), putenv() and unsetenv() return zero if successful. Oth-
erwise the global variable errno is set to indicate the error and a -1 is returned.

ERRORS

[EINVAL] The function setenv() or unsetenv() failed because the name is
a NULL pointer, points to an empty string, or points to a string
containing an “=” character.

[ENOMEM] The function setenv() or putenv() failed because they were unable
to allocate memory for the environment.

SEE ALSO

environ(7)

STANDARDS

The getenv() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 703

GETOPT(3)

NAME

getopt - get option character from command line argument list

SYNOPSIS

#include <stdlib.h>

extern char *optarg;
extern int optind;
extern int optopt;
extern int opterr;
extern int optreset;

int
getopt(int argc, char * const *argv,
const char *optstring)

DESCRIPTION

The getopt() function incrementally parses a command line argument list argv and
returns the next known option character. An option character is known if it has
been specified in the string of accepted option characters, optstring.

The option string optstring may contain the following elements: individual charac-
ters, and characters followed by a colon to indicate an option argument is to follow.
For example, an option string "x" recognizes an option "-x", and an option string
"x:" recognizes an option and argument "-x argument". Leading white space in a
following argument does not affect the operation of getopt().

On return from getopt(), optarg points to an option argument, if it is anticipated,
and the variable optind contains the index to the next argv argument for a subse-
quent call to getopt(). The variable optopt saves the last known option character
returned by getopt().

The variable opterr and optind are both initialized to 1. The optind variable may
be set to another value before a set of calls to getopt() in order to skip over more
or less argv entries.

In order to use getopt() to evaluate multiple sets of arguments or to evaluate a
single set of arguments multiple times, the variable optreset must be set to 1 before
the second and each additional set of calls to getopt(), and the variable optind
must be reinitialized.

704 Systems/C C Library

The getopt() function returns -1 when the argument list is exhausted, or ’?’ if a
non-recognized option is encountered. The interpretation of options in the argument
list may be canceled by the option “--” (double dash) which causes getopt() to
signal the end of argument processing and return -1. When all options have been
processed (i.e., up to the first non-option argument), getopt() returns -1.

DIAGNOSTICS

If the getopt() function encounters a character not found in the string optarg
or detects a missing option argument it writes an error message to the stderr and
returns ’?’. Setting opterr to a zero will disable these error messages. If optstring
has a leading ‘:’ then a missing option argument causes a ‘:’ to be returned in
addition to suppressing any error messages.

Option arguments are allowed to begin with “-”; this is reasonable but reduces the
amount of error checking possible.

EXTENSIONS

The optreset variable was added to make it possible to call the getopt() function
multiple times. This is an extension to the IEEE Std1003.2 (“POSIX.2”) specifica-
tion.

EXAMPLE

extern char *optarg;
extern int optind;
int bflag, ch, fd;

bflag = 0;
while ((ch = getopt(argc, argv, "bf:")) != -1) {

switch(ch) {
case ’b’:

bflag = 1;
break;

case ’f’:
if ((fd = open(optarg, O_RDONLY, 0)) < 0) {

(void)fprintf(stderr,
"myname: %s: %s\n",
optarg,
strerror(errno));

exit(1);
}
break;

Systems/C C Library 705

case ’?’:
default:
usage();

}
}
argc -= optind;
argv += optind;

ISSUES

The getopt() function was once specified to return EOF instead of -1. This
was changed by IEEE Std1003.2-1992 (“POSIX.2”) to decouple getopt() from
<stdio.h>.

A single dash “-” may be specified as a character in optstring, however it should
never have an argument associated with it. This allows getopt() to be used with
programs that expect “-” as an option flag. This practice is wrong, and should
not be used in any current development. It is provided for backward compatibility
only. By default, a single dash causes getopt() to return -1. This is, we believe,
compatible with System V.

It is also possible to handle digits as option letters. This allows getopt() to be used
with programs that expect a number (“-3”) as an option. This practice is wrong,
and should not be used in any current development. It is provided for backward
compatibility only. The following code fragment works in most cases.

int length;
char *p;

while((c = getopt(argc, argv, ‘‘0123456789’’)) != -1) {
switch (c) {
case ’0’: case ’1’: case ’2’: case ’3’:
case ’4’: case ’5’: case ’6’: case ’7’:
case ’8’: case ’9’:

p = argv[optind - 1];
if (p[0] == ’-’ && p[1] == ch && !p[2])

length = atoi(++p);
else

length = atoi(argv[optind] + 1);
break;

}
}

706 Systems/C C Library

GETSUBOPT(3)

NAME

getsubopt - get sub options from an argument

SYNOPSIS

#include <stdlib.h>

extern char *suboptarg

int
getsubopt(char **optionp, char * const *tokens,
char **valuep)

DESCRIPTION

The getsubopt() function parses a string containing tokens delimited by one or
more tab, space or comma (’,’) character. It is intended for use in parsing groups of
option arguments provided as part of a utility command line.

The argument optionp is a pointer to a pointer to the string. The argument tokens
is a pointer to a NULL-terminated array of pointers to strings.

The getsubopt() function returns the zero-based offset of the pointer in the tokens
array referencing a string which matches the first token in the string, or, -1 if the
string contains no tokens or tokens does not contain a matching string.

If the token is of the form “name=value” the location referenced by valuep will be
set to point to the start of the “value” portion of the token.

On return from getsubopt(), optionp will be set to point to the start of the next
token in the string, or the null at the end of the string if no more tokens are present.
The external variable suboptarg will be set to point to the start of the current
token, or NULL if no tokens were present. The argument valuep will be set to point
to the “value” portion of the token, or NULL if no “value” portion was present.

EXAMPLE

char *tokens[] = {
#define ONE 0

"one",
#define TWO 1

Systems/C C Library 707

"two",
NULL

};

...

extern char *optarg, *suboptarg;
char *options, *value;

while ((ch = getopt(argc, argv, "ab:")) != -1) {
switch(ch) {
case ’a’:

/* process ‘‘a’’ option */
break;

case ’b’:
options = optarg;
while (*options) {

switch(getsubopt(&options,
tokens, &value)) {
case ONE:

/* process "one" sub option */
break;

case TWO:
/* process "two" sub option */
if (!value)

error("no value for two");
i = atoi(value);
break;

case -1:
if (suboptarg)

error("illegal sub option %s",
suboptarg);

else
error("missing sub option");

break;
}

}
break;

}
}

SEE ALSO

getopt(3), strsep(3)

708 Systems/C C Library

IMAXABS(3)

NAME

imaxabs - return the absolute value of a intmax t integer

SYNOPSIS

#include <inttypes.h>

intmax_t
imaxabs(intmax_t j)

DESCRIPTION

The imaxabs() function returns the absolute value of the intmax t integer j.

SEE ALSO

abs(3), cabs(3), labs(3), llabs(3), floor(3), math(3)

STANDARDS

The imaxabs() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 709

IMAXDIV(3)

NAME

imaxdiv - return quotient and remainder from division

SYNOPSIS

#include <inttypes.h>

imaxdiv_t
imaxdiv(intmax_t num, intmax_t denom)

DESCRIPTION

The imaxdiv() function computes the value num/denum and returns the quotient
and remainder in a structure named imaxdiv t that contains two intmax t integer
members named quot (the quotient) and rem (the remainder).

If the result cannot be represented, the values of quot and rem are undefined.

SEE ALSO

div(3), ldiv(3), lldiv(3)

STANDARDS

The imaxdiv() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

710 Systems/C C Library

LABS(3)

NAME

labs - return the absolute value of a long integer

SYNOPSIS

#include <stdlib.h>

long
labs(long j)

DESCRIPTION

The labs() function returns the absolute value of the long integer j.

SEE ALSO

abs(3), cabs(3), imaxabs(3), floor(3), math(3)

STANDARDS

The labs() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

ISSUES

The absolute value of the most negative integer remains negative.

Systems/C C Library 711

LDIV(3)

NAME

ldiv - return quotient and remainder from division

SYNOPSIS

#include <stdlib.h>

ldiv_t
ldiv(long num, long denom)

DESCRIPTION

The ldiv() function computes the value num/denom and returns the quotient and
remainder in a structure named ldiv t that contains two long integer members
named quot and rem. Unlike the implementation defined semantics of normal long
division, ldiv() provides precise semantics on the quot and rem values.

The sign of quot is the same as the algebraic quotient.

If the division is inexact, the magnitude of the resulting quotient is the largest
integer less than the magnitude of the algebraic quotient.

If the result cannot be represented, the values of quot and rem are undefined.

If the result can be represented, then quot * denom + rem will equal num.

SEE ALSO

div(3), imaxdiv(3), lldiv(3), math(3)

STANDARDS

The ldiv() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

712 Systems/C C Library

LLABS(3)

NAME

llabs - returns absolute value

SYNOPSIS

#include <stdlib.h>

long long
long labs(long long j)

DESCRIPTION

The llabs() function returns the absolute value of the long long integer j.

SEE ALSO

abs(3), cabs(3), imaxabs(3), labs(3), floor(3), math(3)

STANDARDS

The llabs() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

ISSUES

The absolute value of the most negative integer remains negative.

Systems/C C Library 713

LLDIV(3)

NAME

lldiv - return quotient and remainder from division

SYNOPSIS

#include <stdlib.h>

lldiv_t
ldiv(long long num, long long denom)

DESCRIPTION

The lldiv() function computes the value num/denom and returns the quotient and
remainder in a structure named lldiv t that contains two long long integer mem-
bers named quot and rem. Unlike the implementation defined semantics of normal
long long division, lldiv() provides precise semantics on the quot and rem values.

The sign of quot is the same as the algebraic quotient.

If the division is inexact, the magnitude of the resulting quotient is the largest
integer less than the magnitude of the algebraic quotient.

If the result cannot be represented, the values of quot and rem are undefined.

If the result can be represented, then quot * denom + rem will equal num.

SEE ALSO

div(3), imaxdiv(3), ldiv(3), math(3)

714 Systems/C C Library

MALLOC(3)

NAME

malloc - general memory allocation function

SYNOPSIS

#include <stdlib.h>

void *
malloc(size_t size)

DESCRIPTION

The malloc() function allocates uninitialized space for an object whose size is spec-
ified by size. The malloc() function maintains multiple lists of free blocks according
to various sizes, allocating space from the appropriate list.

The allocated space is suitably aligned (after possible pointer coercion) for storage
of any type of object. If the space is of pagesize or larger, the memory returned will
be page-aligned.

RETURN VALUES

The malloc() function returns a pointer to the allocated space if successful; other-
wise a null pointer is returned.

SEE ALSO

free(3), calloc(3), alloca(3), realloc(3), memory(3)

STANDARDS

The malloc() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 715

MEMORY(3)

NAME

malloc, free, realloc, calloc, alloca - general memory allocation operations

SYNOPSIS

#include <stdlib.h>

void *
malloc(size_t size)

void
free(void *ptr)

void *
realloc(void *ptr, size_t size)

void *
calloc(size_t nelem, size_t elsize)

void *
alloca(size_t size)

void *
__malloc31(size_t size)

void *
__free31(void *ptr);

void *
__malloc24(size_t size)

void *
__free24(void *ptr);

DESCRIPTION

These functions allocate and free memory for the calling process. They are described
in the individual manual pages.

716 Systems/C C Library

SEE ALSO

calloc(3), free(3), malloc(3), realloc(3), alloca(3), malloc31(3), free31(3),
malloc24(3), free24(3),

STANDARDS

These functions, with the exception of alloca(), malloc31(), free31(),
malloc24() and free24() conform to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 717

STRFMON(3)

NAME

strfmon - convert monetary value to string

SYNOPSIS

#include <monetary.h>

ssize_t
strfmon(char * restrict s, size_t maxsize, const char * restrict format,

...);

DESCRIPTION

The strfmon() function places characters into the array pointed to by s as controlled
by the string pointed to by format. No more than maxsize bytes are placed into the
array.

The format string is composed of zero or more directives: ordinary characters (not
%), which are copied unchanged to the output stream; and conversion specifications,
each of which results in fetching zero or more subsequent arguments. Each conver-
sion specification is introduced by the % character. After the %, the following appear
in sequence:

• Zero or more of the following flags:

=f A ‘=’ character followed by another character f which is used as
the numeric fill character.

^ Do not use grouping characters, regardless of the current locale
default.

+ Represent positive values by prefixing them with a positive sign,
and negative values by prefixing them with a negative sign. This
is the default.

(Enclose negative values in parentheses.

! Do not include a currency symbol in the output.

- Left justify the result. Only valid when a field width is specified.

• An optional minimum field width as a decimal number. By default, there is
no minimum width.

718 Systems/C C Library

• A ‘#’ sign followed by a decimal number specifying the maximum expected
number of digits after the radix character.

• A ‘.’ character followed by a decimal number specifying the number the
number of digits after the radix character.

• One of the following conversion specifiers:

i The double argument is formatted as an international monetary
amount. The double value is in the compilations default floating
point format.

n The double argument is formatted as a national monetary amount.
The double value is in the compilation’s default floating point for-
mat.

% A ‘%’ character is written.

The double arguments passed for formating are in the floating point format cur-
rently in operation, either BFP or HFP. See the isBFP(3) function for more infor-
mation regarding the current floating point mode.

RETURN VALUES

If the total number of resulting bytes including the terminating NUL byte is not
more than maxsize, strfmon() returns the number of bytes placed into the array
pointed to by s, not including the terminating NUL byte. Otherwise, -1 is returned,
the contents of the array are indeterminate, and errno is set to indicate the error.

ERRORS

The strfmon() function will fail if:

[E2BIG] Conversion stopped due to lack of space in the buffer.

[EINVAL] The format string is invalid.

[ENOMEM] Not enough memory for temporary buffers.

SEE ALSO

localeconv(3), isBFP(3)

STANDARDS

The strfmon() function conforms to IEEE Std 1003.1-2001 (“POSIX.1”).

Systems/C C Library 719

ISSUES

The strfmon() function does not correctly handle multibyte characters in the for-
mat argument.

720 Systems/C C Library

QSORT(3)

NAME

qsort, heapsort, mergesort - sort functions

SYNOPSIS

#include <stdlib.h>

void
qsort(void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void *))

int
heapsort(void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void *))

int
mergesort(void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void *))

DESCRIPTION

The qsort() function is a modified partition-exchange sort, or quicksort. The heap-
sort() function is a modified selection sort. The mergesort() function is a modified
merge sort with exponential search intended for sorting data with pre-existing order.

The qsort() and heapsort() functions sort an array of nmemb objects, the initial
member of which is pointed to by base. The size of each object is specified by size.
mergesort() behaves similarly, but requires that size be greater than sizeof(void
*) / 2.

The contents of the array base are sorted in ascending order according to a compar-
ison function pointed to by compar, which requires two arguments pointing to the
objects being compared.

The comparison function must return an integer less than, equal to, or greater than
zero if the first argument is considered to be respectively less than, equal to, or
greater than the second.

The functions qsort() and heapsort() are not stable, that is, if two members com-
pare as equal, their order in the sorted array is undefined. The function merge-
sort() is stable.

Systems/C C Library 721

The qsort() function is an implementation of C.A.R. Hoare’s “quicksort” algorithm,
a variant of partition-exchange sorting; in particular, see D.E. Knuth’s Algorithm
Q. qsort() takes O N lg N average time. This implementation uses median selection
to avoid its O N**2 worst-case behavior.

The heapsort() function is an implementation of J.W.J. William’s “heapsort” al-
gorithm, a variant of selection sorting; in particular, see D.E. Knuth’s Algorithm
H. heapsort() takes O N lg N worst-case time. Its only advantage over qsort() is
that it uses almost no additional memory; while qsort() does not allocate memory,
it is implemented using recursion.

The function mergesort() requires additional memory of size nmemb * size bytes;
it should be used only when space is not at a premium. mergesort() is optimized
for data with pre-existing order; its worst case time is O N lg N; its best case is O
N.

Normally, qsort() is faster than mergesort() is faster than heapsort(). Memory
availability and pre-existing order in the data can make this untrue.

RETURN VALUES

The qsort() function returns no value.

Upon successful completion, heapsort() and mergesort() return 0. Otherwise,
they return -1 and the global variable errno is set to indicate the error.

ERRORS

The heapsort() function succeeds unless:

[EINVAL] The size argument is zero, or, the size argument to mergesort() is
less than “sizeof(void *) / 2”.

[ENOMEM] heapsort() or mergesort() were unable to allocate memory.

COMPATIBILITY

Previous versions of qsort() did not permit the comparison routine itself to call
qsort(3). This is no longer true.

722 Systems/C C Library

SEE ALSO

radixsort(3)

Hoare, C.A.R., “Quicksort”, The Computer Journal, 5:1, pp. 10-15, 1962.

Williams, J.W.J, “Heapsort”, Communications of the ACM, 7:1, pp. 347-348, 1964.

Knuth, D.E., “Sorting and Searching”, The Art of Computer Programming, Vol. 3,
pp. 114-123, 145-149, 1968.

Mcilroy, P.M., “Optimistic Sorting and Information Theoretic Complexity”, Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, January 1992.

Bentley, J.L., “Engineering a Sort Function”, bentley@research.att.com, January
1992.

STANDARDS

The qsort() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 723

RADIXSORT(3)

NAME

radixsort - radix sort

SYNOPSIS

#include <limits.h>
#include <stdlib.h>

int
radixsort(const unsigned char **base, int nmemb,
const unsigned char *table, unsigned endbyte)

int
sradixsort(const unsigned char **base, int nmemb,
const unsigned char *table, unsigned endbyte)

DESCRIPTION

The radixsort() and sradixsort() functions are implementations of radix sort.

These functions sort an array of pointers to byte strings, the initial member of which
is referenced by base. The byte strings may contain any values; the end of each string
is denoted by the user-specified value endbyte.

Applications may specify a sort order by providing the table argument. If non-
NULL, table must reference an array of UCHAR MAX + 1 bytes which contains the sort
weight of each possible byte value. The end-of-string byte must have a sort weight
of 0 or 255 (for sorting in reverse order). More than one byte may have the same
sort weight. The table argument is useful for applications to use when to sorting
different characters equally. For example, providing a table with the same weights
for A-Z as for a-z will result in a case-insensitive sort. If table is NULL, the contents
of the array are sorted in ascending order according to the ASCII order of the byte
strings they reference and endbyte has a sorting weight of 0.

The sradixsort() function is stable, that is, if two elements compare as equal, their
order in the sorted array is unchanged. The sradixsort() function uses additional
memory sufficient to hold nmemb pointers.

The radixsort() function is not stable, but uses no additional memory.

These functions are variants of most-significant-byte radix sorting; in particular, see
D.E. Knuth’s Algorithm R and section 5.2.5, exercise 10. They take linear time
relative to the number of bytes in the strings.

724 Systems/C C Library

RETURN VALUES

Upon successful completion 0 is returned. Otherwise, -1 is returned and the global
variable errno is set to indicate the error.

ERRORS

[EINVAL] The value of the endbyte element of table is not 0 or 255.

Additionally, the sradixsort() function may fail and set errno for any of the errors
specified for the library routine malloc(3).

SEE ALSO

qsort(3)

Knuth, D.E., “Sorting and Searching”, The Art of Computer Programming, Vol. 3,
pp. 170-178, 1968.

Paige, R., “Three Partition Refinement Algorithms”, SIAM J. Comput., No. 6, Vol.
16, 1987.

McIlroy, P., “Computing Systems”, Engineering Radix Sort, Vol. 6:1, pp. 5-27,
1993.

Systems/C C Library 725

RAND(3)

NAME

rand, srand - bad random number generator

SYNOPSIS

#include <stdlib.h>

void
srand(unsigned seed)

int
rand(void)

DESCRIPTION

These interfaces are obsoleted by random(3).

The rand() function computes a sequence of pseudo-random integers in the range
of 0 to RAND MAX (as defined by the header file <stdlib.h>).

The srand() function sets its argument as the seed for a new sequence of pseudo-
random numbers to be returned by rand(). These sequences are repeatable by
calling srand() with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of
1.

SEE ALSO

random(3)

STANDARDS

The rand() and srand() functions conform to ISO/IEC 9899:1990 (“ISO C90”).

726 Systems/C C Library

RANDOM(3)

NAME

random, srandom, initstate, setstate - better random number generator; routines
for changing generators

SYNOPSIS

#include <stdlib.h>

long
random(void)

void
srandom(unsigned long seed)

char *
initstate(unsigned long seed, char *state, long n)

char *
setstate(char *state)

DESCRIPTION

The random() function uses a non-linear additive feedback random number gener-
ator employing a default table of size 31 long integers to return successive pseudo-
random numbers in the range from 0 to (2**31)-1. The period of this random
number generator is very large, approximately 16*((2**31)-1).

The random() and srandom() functions have (almost) the same calling sequence
and initialization properties as the rand(3) and srand(3) functions. The difference
is that rand(3) produces a much less random sequence – in fact, the low dozen bits
generated by rand go through a cyclic pattern. All the bits generated by random()
are usable. For example, ‘random()&01’ will produce a random binary value.

Like rand(3), random() will by default produce a sequence of numbers that can be
duplicated by calling srandom() with ‘1’ as the seed.

The initstate() routine allows a state array, passed as an argument, to be initialized
for future use. The size of the state array (in bytes) is used by initstate() to decide
how sophisticated a random number generator it should use – the more state, the
better the random numbers will be. Current “optimal” values for the amount of
state information are 8, 32, 64, 128, and 256 bytes; other amounts will be rounded
down to the nearest known amount. Using less than 8 bytes will cause an error. The

Systems/C C Library 727

seed for the initialization (which specifies a starting point for the random number
sequence, and provides for restarting at the same point) is also an argument. The
initstate() function returns a pointer to the previous state information array.

Once a state has been initialized, the setstate() routine provides for rapid switching
between states. The setstate() function returns a pointer to the previous state
array; its argument state array is used for further random number generation until
the next call to initstate() or setstate().

Once a state array has been initialized, it may be restarted at a different point
either by calling initstate(), with the desired seed, the state array, and its size, or
by calling both setstate() with the state array and srandom() with the desired
seed. The advantage of calling both setstate() and srandom() is that the size of
the state array does not have to be remembered after it is initialized.

With 256 bytes of state information, the period of the random number generator is
greater than 2**69 which should be sufficient for most purposes.

DIAGNOSTICS

If initstate() is called with less than 8 bytes of state information, or if setstate()
detects that the state information has been garbled, error messages are printed on
the standard error output.

SEE ALSO

rand(3), srand(3), urandom(4)

ISSUES

About 2/3 the speed of rand(3).

The historical implementation used to have a very weak seeding; the random se-
quence did not vary much with the seed. The current implementation employs a
better pseudo-random number generator for the initial state calculation.

728 Systems/C C Library

REALLOC(3)

NAME

realloc - reallocation of memory function

SYNOPSIS

#include <stdlib.h>

void *
realloc(void *ptr, size_t size)

DESCRIPTION

The realloc() function changes the size of the object pointed to by ptr to the size
specified by size. The contents of the object are unchanged up to the lesser of the
new and old sizes. If the new size is larger, the value of the newly allocated portion
of the object is indeterminate. If ptr is a null pointer, the realloc() function behaves
like the malloc(3) function for the specified size. Otherwise, if ptr does not match a
pointer earlier returned by the calloc(3), malloc(3), or reallot() function, or if the
space has been deallocated by a call to the free or realloc() function, unpredictable
and usually detrimental behavior will occur. If the space cannot be allocated, the
object pointed to by ptr is unchanged. If size is zero and ptr is not a null pointer,
the object it points to is freed.

The realloc() function returns either a null pointer or a pointer to the possibly
moved allocated space.

SEE ALSO

alloca(3), calloc(3), free(3), malloc(3),

STANDARDS

The realloc() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 729

REALPATH(3)

NAME

realpath - returns the canonicalized absolute //HFS:-style pathname

SYNOPSIS

#include <sys/param.h>
#include <stdlib.h>

char *
realpath(const char *pathname, char resolved_path[MAXPATHLEN]);

DESCRIPTION

The realpath() function resolves all symbolic links, extra “/” characters and ref-
erences to /./ and /../ in the //HFS:-style path specified by pathname, and copies
the resulting absolute pathname into the memory referenced by resolved path. The
resolved path argument must refer to a buffer capable of storing at least MAXPATHLEN
characters.

The realpath() function will resolve both absolute and relative paths and return
the absolute pathname corresponding to pathname. All but the last component of
pathname must exist when realpath() is called.

RETURN VALUES

The realpath() function returns resolved path on success. If an error occurs, re-
alpath() returns NULL, and resolved path contains the pathname which caused the
problem.

ERRORS

The function realpath() may fail and set the external variable errno for any of
the errors specified for the library functions chdir(2), close(2), fchdir(2), lstat(2),
open(2), readlink(2) and getcwd(3).

SEE ALSO

getcwd(3)

730 Systems/C C Library

STRTOD(3)

NAME

strtod - convert string to double

SYNOPSIS

#include <stdlib.h>

double
strtod(const char *nptr, char **endptr);

float
strtof(const char *nptr, char **endptr);

long double
strtold(const char *nptr, char **endptr);

DESCRIPTION

These functions function convert the initial portion of the string pointed to by nptr
to double, float, and long double representation, respectively.

The expected form of the string is an optional plus (“+”) or minus sign (“-”) followed
by a sequence of digits optionally containing a decimal-point character, optionally
followed by an exponent. An exponent consists of an “E” or “e”, followed by an
optional plus or minus sign, followed by a sequence of digits.

Alternatively, if the portion of the string following the optional plus or minus sign
begins with “INFINITY” or “NAN”, ignoring case, it is interpreted as an infinity or
a quiet NaN, respectively. HFP values cannot represent infinity or NaN; in that
case it is interpreted as HUGE VAL and 0.0. For BFP values the syntax ”NAN(s)”,
where s is an alphanumeric string, produces the same value as the call nan(”s”)
(respectively, nanf(”s”) and nanl(”s”).)

Leading white-space characters in the string (as defined by the isspace(3) function)
are skipped.

These functions use the isBFP() function to determine if a BFP (IEEE) or HFP
value is to be returned.

Systems/C C Library 731

RETURN VALUES

The strtod(), strtof(), strtold() functions returns the converted value, if any.

If endptr is not NULL, a pointer to the character after the last character used in the
conversion is stored in the location referenced by endptr.

If no conversion is performed, zero is returned and the value of nptr is stored in the
location referenced by endptr.

If the correct value would cause overflow, plus or minus HUGE VAL, HUGE VALF, or
HUGE VALL is returned (according to the sign of the value), and ERANGE is stored in
errno. If the correct value would cause underflow, zero is returned and ERANGE is
stored in errno.

ERRORS

[ERANGE] Overflow or underflow occurred.

SEE ALSO

atof(3), atoi(3), atol(3), nan(3) strtol(3), strtoul(3)

STANDARDS

The strtod() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

732 Systems/C C Library

STRTOL(3)

NAME

strtol, strtoll, strtoimax, strtoq - convert string value to a long, long long,
intmax t or quad t integer

SYNOPSIS

#include <stdlib.h>
#include <limits.h>

long
strtol(const char *nptr, char **endptr, int base)

long
strtoll(const char *nptr, char **endptr, int base)

#include <inttypes.h>

intmax_t
strtoimax(const char * restrict nptr,

char ** restrict endptr, int base)

#include <sys/types.h>
#include <stdlib.h>
#include <limits.h>

quad_t
strtoq(const char *nptr, char **endptr, int base)

DESCRIPTION

The strtol() function converts the string in nptr to a long value. The strtoll()
functions converts the string in nptr to a long long value. The strtoimax() func-
tion converts the string in nptr to a intmax t value. The strtoq() function converts
the string in nptr to a quad t value. The conversion is done according to the given
base, which must be between 2 and 36 inclusive, or be the special value 0.

The string may begin with an arbitrary amount of white space (as determined by
isspace(3)) followed by a single optional ‘+’ or ‘-’ sign. If base is zero or 16, the string
may then include a ‘0x’ prefix, and the number will be read in base 16. Otherwise,
a zero base is taken as 10 (decimal) unless the next character is ‘0’, in which case it
is taken as 8 (octal).

Systems/C C Library 733

The remainder of the string is converted to a long value in the obvious manner,
stopping at the first character which is not a valid digit in the given base. (In bases
above 10, the letter ‘A’ in either upper or lower case represents 10, ‘B’ represents
11, and so forth, with ‘Z’ representing 35.)

If endptr is non nil, strtol() stores the address of the first invalid character in
*endptr. If there were no digits at all, however, strtol() stores the original value
of nptr in *endptr. Thus, if *nptr is not ’\0’ but **endptr is ’\0’ on return, the
entire string was valid.

RETURN VALUES

The strtol(), strtoll() and strtoimax() functions returns the result of the con-
version, unless the value would underflow or overflow. If an underflow occurs,
strtol() returns LONG MIN, strtoll() returns LLONG MIN and strtoimax() returns
INTMAX MIN. If an overflow occurs, strtol() returns LONG MAX, strtoll() returns
LLONG MAX and strtoimax() returns INTMAX MAX. If an overflow or underflow oc-
curs, errno is set to ERANGE.

ERRORS

[ERANGE] The given string was out of range; the value converted has been
clamped.

SEE ALSO

atof(3), atoi(3), atol(3), strtod(3), strtoul(3)

STANDARDS

The strtol() function conforms to ISO/IEC 9899:1990 (“ISO C90”). The strtoll()
and strtoimax() functions conform to ISO/IEC 9899:1999 (“ISO C99”). The str-
toq() function is deprecated.

ISSUES

Ignores the current locale.

734 Systems/C C Library

STRTOUL(3)

NAME

strtoul, strtoull, strtoumax, strtouq - convert a string to an unsigned long,
unsigned long long, uintmax t or uquad t integer

SYNOPSIS

#include <stdlib.h>
#include <limits.h>

unsigned long
strtoul(const char *nptr, char **endptr, int base);

unsigned long long
strtoull(const char *nptr, char **endptr, int base);

#include <inttypes.h>

uintmax_t
strtoumax(const char * restrict nptr,

char ** restrict endptr, int base);

#include <sys/types.h>
#include <stdlib.h>
#include <limits.h>

u_quad_t
strtouq(const char *nptr, char **endptr, int base);

DESCRIPTION

The strtoul() function converts the string in nptr to an unsigned long value.
The strtoull() function converts the string in nptr to an unsigned long long
value. The strtouq() function converts the string in nptr to a u quad t value. The
conversion is done according to the given base, which must be between 2 and 36
inclusive, or be the special value 0.

The string may begin with an arbitrary amount of white space (as determined by
isspace(3)) followed by a single optional ‘+’ or ‘-’ sign. If base is zero or 16, the string
may then include a ‘0x’ prefix, and the number will be read in base 16; otherwise,
a zero base is taken as 10 (decimal) unless the next character is ‘0’, in which case it
is taken as 8 (octal).

Systems/C C Library 735

The remainder of the string is converted to an unsigned long value in the obvious
manner, stopping at the end of the string or at the first character that does not pro-
duce a valid digit in the given base. (In bases above 10, the letter ‘A’ in either upper
or lower case represents 10, ‘B’ represents 11, and so forth, with ‘Z’ representing
35.)

If endptr is non nil, strtoul() stores the address of the first invalid character in
*endptr. If there were no digits at all, however, strtoul() stores the original value
of nptr in *endptr. (Thus, if *nptr is not ’\0’ but **endptr is ’\0’ on return,
the entire string was valid.)

RETURN VALUES

The strtoul(), strtoull() and strtoumax() functions return either the result of
the conversion or, if there was a leading minus sign, the negation of the result of the
conversion, unless the original (non-negated) value would overflow; in the latter case,
strtoul() returns ULONG MAX, strtoull() returns ULLONG MAX and strtoumax() re-
turns UINTMAX MAX. If the conversion would overflow, the global variable errno is
set to ERANGE.

ERRORS

[ERANGE] The given string was out of range; the value converted has been
clamped.

SEE ALSO

strtol(3)

STANDARDS

The strtoul() function conforms to ISO/IEC 9899:1990 (“ISO C90”). The str-
toull() and strtoumax() functions conform to ISO/IEC 9899:1999 (“ISO C99”).
The strtouq() function is deprecated.

ISSUES

Ignores the current locale.

736 Systems/C C Library

SYSCONF(3)

NAME

sysconf – get configurable system variables

SYNOPSIS

#include <unistd.h>

long
sysconf(int name);

DESCRIPTION

The sysconf() function provides a method for applications to determine the current
value of a configurable system limit or option variable. The name argument specifies
the system variable to be queried. Symbolic constants for each name value are found
in the include file <unistd.h>.

The available values are as follows:

SC ARG MAX The maximum bytes of argument to execve(2).

SC CHILD MAX The maximum number of simultaneous processes per user id.

SC CLK TCK The frequency of the statistics clock in ticks per second.

SC JOB CONTROL Return 1 if job control is available on this system, otherwise
-1.

SC NGROUPS MAX The maximum number of supplemental groups.

SC OPEN MAX The maximum number of open files per user id.

SC SAVED IDS Returns 1 if saved set-group and saved set-user ID is available,
otherwise -1.

SC MMAP MEM MAX NP Maximum area (in pages) of date space that can allo-
cated to mmap().

SC TTY GROUP Return the group number associated with the TTYGROUP set-
ting.

SC THREADS MAX NP The maximum number of threads allowed to be created
by pthread create().

Systems/C C Library 737

SC THREADS TASKS MAX NP The maximum number of MVS TASKs that can
be used to handle threads created by pthread create().

SC TZNAME MAX The minimum maximum number of types supported for the
name of a timezone.

SC VERSION The version of IEEE Std 1003.1 (“POSIX.1”) with which the system
attempts to comply.

SC 2 CHAR TERM Return 1 if the system supports at least one terminal type
capable of all operations described in IEEE Std 1003.2 (“POSIX.2”),
otherwise -1.

SC PAGESIZE The size of the system page in bytes.

SC PAGE SIZE The size of the system page in bytes.

RETURN VALUES

If the call to sysconf() is not successful, -1 is returned and errno is set appropri-
ately. Otherwise, if the variable s associated with functionality that is not supported,
-1 is returned and errno is not modified. Otherwise, the current variable value is
returned.

ERRORS

The following error may be reported:

[EINVAL] The value of the name argument is invalid.

STANDARDS

Except for the fact that values returned by sysconf() may change over the lifetime of
the calling process, this function conforms to IEEE Std 1003.1-1988 (“POSIX.1”).

738 Systems/C C Library

SYSTEM(3)

NAME

system - pass a command to the POSIX shell

SYNOPSIS

#include <stdlib.h>

int
system(const char *string);

DESCRIPTION

The system() function hands the argument string to the POSIX command inter-
preter sh. The calling process waits for the shell to finish executing the command,
ignoring SIGINT and SIGQUIT, and blocking SIGCHLD.

If string is a NULL pointer, system() will return non-zero if the command interpreter
(sh) is available, and zero if it is not.

The system() function returns the exit status of the shell as returned by waitpid(2),
or -1 if an error occurred when invoking fork(2) or waitpid(2). A return value of
127 means the execution of the shell failed.

SEE ALSO

execve(2), fork(2), waitpid(2), popen(3)

STANDARDS

The system() function conforms to ISO/IEC 9899:1990 (“ISO C90”), and is ex-
pected to be IEEE Std 1003.2 (“POSIX.2”) compatible.

Systems/C C Library 739

Standard Time library

The ANSI standard defines several functions for manipulating time values, which
are found in the Standard Time Library.

740 Systems/C C Library

CTIME(3)

NAME

asctime, asctime r, ctime, ctime r, difftime, gmtime, gmtime r, localtime, local-
time r, mktime, timegm - transform binary date and time values

SYNOPSIS

#include <time.h>

extern char *tzname[2];

char *
ctime(const time_t *clock);

double
difftime(time_t time1, time_t time0);

char *
asctime(const struct tm *tm);

struct tm *
localtime(const time_t *clock);

struct tm *
gmtime(const time_t *clock);

time_t
mktime(struct tm *tm);

time_t
timegm(struct tm *tm);

char *
ctime_r(const time_t *clock, char *buf);

struct tm *
localtime_r(const time_t *clock, struct tm *result);

struct tm *
gmtime_r(const time_t *clock, struct tm *result);

char *
asctime_r(const struct tm *tm, char *buf);

Systems/C C Library 741

DESCRIPTION

The functions ctime(), gmtime() and localtime() all take as an argument a time
value representing the time in seconds since the Epoch (00:00:00 UTC, January 1,
1970; see time(3)).

The function localtime() converts the time value pointed at by clock, and returns
a pointer to a struct tm (described below) which contains the broken-out time
information for the value after adjusting for the current time zone (and any other
factors such as Daylight Saving Time). Time zone adjustments are performed as
specified by the TZ environment variable (see tzset(3)). The function localtime()
uses tzset(3) to initialize time conversion information if tzset(3) has not already
been called by the process.

After filling in the tm structure, localtime() sets the tm isdst’th element of tzname
to a pointer to a string that’s the time zone abbreviation to be used with local-
time()’s return value.

The function gmtime() similarly converts the time value, but without any time
zone adjustment, and returns a pointer to a tm structure (described below).

The ctime() function adjusts the time value for the current time zone in the same
manner as localtime(), and returns a pointer to a 26-character string of the form:

Thu Nov 24 18:22:48 1986\n\0

All the fields have constant width.

The ctime r() function provides the same functionality as ctime() except the caller
must provide the output buffer buf to store the result, which must be at least 26
characters long. The localtime r() and gmtime r() functions provide the same
functionality as localtime() and gmtime() respectively, except the caller must
provide the output buffer result.

The asctime() function converts the broken down time in the structure tm pointed
at by *tm to the form shown in the example above.

The asctime r() function provides the same functionality as asctime() except the
caller must provide the output buffer buf to store the reuslt, which must be at least
26 characters long.

The functions mktime() and timegm() convert the broken-down time, in the
structure pointer to by tm into a time value with the same encoding as that of the
values returned by the time(3) function (that is, seconds from the Epoch, UTC). The
mktime() function interprets the input structure according to the current timezone
setting (see tzset(3)). The timegm() function interprets the input structure as
representing Universal Coordinated Time (UTC).

742 Systems/C C Library

The original values of the tm wday and tm yday components of the structure are
Ignored, and the original values of the other components are not restricted to their
normal ranges, and will be normalized if needed. For example, October 40 is changed
into November 9, a tm hour of -1 means 1 hour before midnight, tm mday of 0 means
the day preceding the current month, and tm mon of -2 means 2 months before
January of tm year. (A positive or zero value for tm isdst causes mktime() to
presume initially that summer time (for example, Daylight Saving Time) is or is not
in effect for the specified time, respectively. A negative value for tm isdst causes
the mktime() function to attempt to divine whether summer time is in effect for
the specified time. The tm isdst and tm gmtoff members are forced to zero by
timegm().)

On successful completion, the values of the tm wday and tm yday components of
the structure are set appropriately, and the other components are set to represent
the specified calendar time, but with their values forced to their normal ranges; the
final value of tm mday is not set until tm mon and tm year are determined. The
mktime() function returns the specified calendar time; if the calendar time cannot
be represented, it returns -1;

The difftime() function returns the difference between two calendar times, (time1
- time0), expressed in seconds.

External declarations as well as the tm structure definition are in the <time.h>
include file. The tm structure includes at least the following fields:

int tm_sec; /* seconds (0 - 60) */
int tm_min; /* minutes (0 - 59) */
int tm_hour; /* hours (0 - 23) */
int tm_mday; /* day of month (1 - 31) */
int tm_mon; /* month of year (0 - 11) */
int tm_year; /* year - 1900 */
int tm_wday; /* day of week (Sunday = 0) */
int tm_yday; /* day of year (0 - 365) */
int tm_isdst; /* is summer time in effect? */
char *tm_zone; /* abbreviation of timezone name */
long tm_gmtoff; /* offset from UTC in seconds */

The field tm isdst is non-zero if summer time is in effect.

The field tm gmtoff is the offset (in seconds) of the time represented from UTC,
with positive values indicating east of the Prime Meridian.

SEE ALSO

gettimeofday(2), getenv(3), time(3), tzset(3)

Systems/C C Library 743

STANDARDS

The asctime(), ctime(), difftime(), gmtime(), localtime(), and mktime()
functions conform to ISO/IEC 9899:1990 (“ISO C90”), and conform to ISO/IEC
9945-1:1996 (“POSIX.1”) provided the selected local timezone does not contain a
leap-second table.

The asctime r(), ctime r(), gmtime r(), and localtime r() functions are ex-
pected to conform to ISO/IEC 9945-1:1996 (“POSIX.1”) (again provided the se-
lected local timezone does not contain a leap-second table).

The timegm() function is not specified by any standard; its function cannot be
completely emulated using the standard functions described above.

ISSUES

Except for difftime() and mktime() and the r() variants of the other functions,
these functions leave their result in an internal static object and return a pointer to
that object. Subsequent calls to these function will modify the same object.

The C standard provides no mechanism for a program to modify its current local
timezone setting, and the POSIX-standard method is not reentrant. (However,
thread-safe implementations are provided in the POSIX threaded environment.)

The tm zone field of a returned tm structure points to a static array of characters,
which will also be overwritten by any subsequent calls (as well as by subsequent
calls to tzset(3) and tzsetwall(3)).

Use of the external variable tzname is discouraged; the tm zone entry in the tm
structure is preferred.

744 Systems/C C Library

STRFTIME(3)

NAME

strftime - format date and time

SYNOPSIS

#include <time.h>

size_t
strftime(char *buf, size_t maxsize, const char *format,
const struct tm *timeptr)

DESCRIPTION

The strftime() function formats the information from timeptr into the buffer buf
according to the string pointed to by format.

The format string consists of zero or more conversion specifications and ordinary
characters. All ordinary characters are copied directly into the buffer. A conversion
specification consists of a percent sign ‘%’ and one other character.

No more than maxsize characters will be placed into the array. If the total number
of resulting characters, including the terminating null character, is not more than
maxsize, strftime() returns the number of characters in the array, not counting the
terminating null. Otherwise, zero is returned and the buffer content is indeterminate.

Each conversion specification is replaced by the characters as follows which are then
copied into the buffer.

%A is replaced by national representation of the full weekday name.

%a is replaced by national representation of the abbreviated weekday name, where
the abbreviation is the first three characters.

%B is replaced by national representation of the full month name.

%b is replaced by national representation of the abbreviated month name, where the
abbreviation is the first three characters.

%C is replaced by (year / 100) as decimal number; single digits are preceded by a
zero.

%c is replaced by national representation of time and date (the format is similar
with produced by asctime(3)).

Systems/C C Library 745

%D is equivalent to “%m/%d/%y”.

%d is replaced by the day of the month as a decimal number (01-31).

%E* POSIX locale extensions. The sequences %Ec %EC %Ex %Ey %EY %Od %Oe %OH
%OI %Om %OM %OS %Ou %OU %OV %Ow %OW %Oy are supposed to provide alternate
representations.

%e is replaced by the day of month as a decimal number (1-31); single digits are
preceded by a blank.

%G is replaced by a year as a decimal number with century. This year is the one
that contains the greater part of the week (Monday as the first day of the week).

%g is replaced by the same year as in “%G”, but as a decimal number without century
(00-99).

%H is replaced by the hour (24-hour clock) as a decimal number (00-23).

%h the same as %b.

%I is replaced by the hour (12-hour clock) as a decimal number (01-12).

%j is replaced by the day of the year as a decimal number (001-366).

%k is replaced by the hour (24-hour clock) as a decimal number (0-23); single digits
are preceded by a blank.

%l is replaced by the hour (12-hour clock) as a decimal number (1-12); single digits
are preceded by a blank.

%M is replaced by the minute as a decimal number (00-59).

%m is replaced by the month as a decimal number (01-12).

%n is replaced by a newline.

%O* the same as %E*.

%p is replaced by national representation of either “ante meridiem” or “post meri-
diem” as appropriate.

%R is equivalent to “%H:%M”.

%r is equivalent to “%I:%M:%S %p”.

%S is replaced by the second as a decimal number (00-60).

%s is replaced by the number of seconds since the Epoch, UTC (see mktime(3)).

%T is equivalent to “%H:%M:%S”.

746 Systems/C C Library

%t is replaced by a tab.

%U is replaced by the week number of the year (Sunday as the first day of the week)
as a decimal number (00-53).

%u is replaced by the weekday (Monday as the first day of the week) as a decimal
number (1-7).

%V is replaced by the week number of the year (Monday as the first day of the week)
as a decimal number (01-53). If the week containing January 1 has four or more
days in the new year, then it is week 1; otherwise it is the last week of the previous
year, and the next week is week 1.

%v is equivalent to “%e-%b-%Y”.

%W is replaced by the week number of the year (Monday as the first day of the week)
as a decimal number (00-53).

%w is replaced by the weekday (Sunday as the first day of the week) as a decimal
number (0-6).

%X is replaced by national representation of the time.

%x is replaced by national representation of the date.

%Y is replaced by the year with century as a decimal number.

%y is replaced by the year without century as a decimal number (00-99).

%Z is replaced by the time zone name.

%+ is replaced by national representation of the date and time (the format is similar
with produced by date(1)).

%% is replaced by ‘%’.

SEE ALSO

ctime(3), printf(3), strptime(3)

STANDARDS

The strftime() function conforms to ISO/IEC 9899:1990 (“ISO C90”) with a lot of
extensions including ‘%C’, ‘%D’, ‘%E*’, ‘%e’, ‘%G’, ‘%g’, ‘%h’, ‘%k’, ‘%l’, ‘%n’, ‘%O*’, ‘%R’,
‘%r’, ‘%s’, ‘%T’, ‘%t’, ‘%u’, ‘%V’, ‘%+’.

The peculiar week number and year in the replacements of ‘%G’, ‘%g’ and ‘%V’ are
defined in ISO 8601: 1988.

Systems/C C Library 747

STRPTIME(3)

NAME

strptime - parse date and time string

SYNOPSIS

#include <time.h>

const char *
strptime(const char *buf, const char *format,
struct tm *timeptr)

DESCRIPTION

The strptime() function parses the string in the buffer buf according to the string
pointed to by format, and fills in the elements of the structure pointed to by timeptr.
Thus, it can be considered the reverse operation of strftime(3).

The format string consists of zero or more conversion specifications and ordinary
characters. All ordinary characters are matched exactly with the buffer, where white
space in the format string will match any amount of white space in the buffer. All
conversion specifications are identical to those described in strftime(3).

RETURN VALUES

Upon successful completion, strptime() returns the pointer to the first character
in buf that has not been required to satisfy the specified conversions in format. It
returns NULL if one of the conversions failed.

SEE ALSO

scanf(3), strftime(3)

748 Systems/C C Library

TIME2POSIX(3)

NAME

time2posix, posix2time - convert seconds since the Epoch

SYNOPSIS

#include <time.h>

time_t
time2posix(const time_t *t)

time_t
posix2time(const time_t *t)

DESCRIPTION

IEEE Std1003.1-1988 (“POSIX”) legislates that a time t value of 536457599 shall
correspond to “Wed Dec 31 23:59:59 GMT 1986.” This effectively implies that
POSIX time t’s cannot include leap seconds and, therefore, that the system time
must be adjusted as each leap occurs.

If the time package is configured with leap-second support enabled, however, no such
adjustment is needed and time t values continue to increase over leap events (as a
true ‘seconds since...’ value). This means that these values will differ from those
required by POSIX by the net number of leap seconds inserted since the Epoch.

Typically this is not a problem as the type time t is intended to be (mostly)
opaque - time t values should only be obtained-from and passed-to functions such
as time(2), localtime(3), mktime(3) and difftime(3). However, IEEE Std1003.1-
1988 (“POSIX”) gives an arithmetic expression for directly computing a time t
value from a given date/time, and the same relationship is assumed by some (usu-
ally older) applications. Any programs creating/dissecting time t’s using such a
relationship will typically not handle intervals over leap seconds correctly.

The time2posix() and posix2time() functions are provided to address this time t
mismatch by converting between local time t values and their POSIX equivalents.
This is done by accounting for the number of time-base changes that would have
taken place on a POSIX system as leap seconds were inserted or deleted. These
converted values can then be used in lieu of correcting the older applications, or
when communicating with POSIX-compliant systems.

The time2posix() function is single-valued. That is, every local time t corresponds
to a single POSIX time t. The posix2time() function is less well-behaved: for a

Systems/C C Library 749

positive leap second hit the result is not unique, and for a negative leap second hit
the corresponding POSIX time t doesn’t exist, so an adjacent value is returned.
Both of these are good indicators of the inferiority of the POSIX representation.

The following table summarizes the relationship between time t and its conversion
to, and back from, the POSIX representation over the leap second inserted at the
end of June, 1993.

DATE TIME T X=time2posix(T) posix2time(X)

93/06/30 23:59:59 A+0 B+0 A+0

93/06/30 23:59:60 A+1 B+1 A+1 or A+2

93/07/01 00:00:00 A+2 B+1 A+1 or A+2

93/07/01 00:00:01 A+3 B+2 A+3

A leap second deletion would look like...

DATE TIME T X=time2posix(T) posix2time(X)

??/06/30 23:59:58 A+0 B+0 A+0

??/07/01 00:00:00 A+1 B+2 A+1

??/07/01 00:00:01 A+2 B+3 A+2

[Note: posix2time(B+1) → A+0 or A+1]

If leap-second support is not enabled, local time t’s and POSIX time t’s are equiv-
alent, and both time2posix() and posix2time() degenerate to the identity func-
tion.

SEE ALSO

difftime(3), localtime(3), mktime(3), time(3)

750 Systems/C C Library

TZSET(3)

NAME

tzset - initialize time conversion information

SYNOPSIS

#include <time.h>

void
tzset(void);

DESCRIPTION

The tzset() function initializes time conversion information used by the library
routine localtime(3). The environment variable TZ specifies how this is done.

If TZ does not appear in the environment, or TZ appears in the environment but
its value is a null string, Coordinated Universal Time (UTC) is used (without leap
second correction).

If TZ appears in the environment and its value begins with a colon (‘:’), the rest of
its value is used as a pathname of a tzfile(5)-format file from which to read the time
conversion information. If the first character of the pathname is a slash (‘/’) it is
used as an absolute pathname; otherwise, it is used as a pathname relative to the
system time conversion information directory.

If its value does not begin with a colon, it is first used as the pathname of a file (as
described above) from which to read the time conversion information. If that file
cannot be read, the value is then interpreted as a direct specification (the format is
described below) of the time conversion information.

If the TZ environment variable does not specify a tzfile(5)-format file and cannot be
interpreted as a direct specification, UTC is used.

SPECIFICATION FORMAT

When TZ is used directly as a specification of the time conversion information, it
must have the following syntax (spaces inserted for clarity):

std offset [dst [offset] [, rule]]

Systems/C C Library 751

Where:

std and dst Three or more bytes that are the designation for the standard (std) or
summer (dst) time zone. Only std is required; if dst is missing, then
summer time does not apply in this locale. Upper and lowercase letters
are explicitly allowed. Any characters except a leading colon (‘:’), digits,
comma (‘,’), minus (‘-’), plus (‘+’), and NUL are allowed.

offset Indicates the value one must add to the local time to arrive at Coordi-
nated Universal Time. The offset has the form:

hh[:mm[:ss]]

The minutes (mm) and seconds (ss) are optional. The hour (hh) is re-
quired and may be a single digit. The offset following std is required.
If no offset follows dst, summer time is assumed to be one hour ahead
of standard time. One or more digits may be used; the value is always
interpreted as a decimal number. The hour must be between zero and
24, and the minutes (and seconds) – if present – between zero and 59.
If preceded by a (’-’) the time zone shall be east of the Prime Merid-
ian; otherwise it shall be west (which may be indicated by an optional
preceding (’+’)).

rule Indicates when to change to and back from summer time. The rule has
the form:

date/time,date/time

where the first date describes when the change from standard to summer
time occurs and the second date describes when the change back hap-
pens. Each time field describes when, in current local time, the change
to the other time is made.

The format of date is one of the following:

J n The Julian day n (1 ≤ n ≤ 365). Leap days are not counted;
that is, in all years – including leap years – February 28 is
day 59 and March 1 is day 60. It is impossible to explicitly
refer to the occasional February 29.

n The zero-based Julian day (0 ≤ n ≤ 365). Leap days are
counted, and it is possible to refer to February 29.

M m.n.d The dth day (0 ≤ d ≤ 6) of week n of month m of the year
(1 ≤ n ≤ 5), (1 ≤ m ≤ 12), where week 5 means “the last
d day in month m” which may occur in either the fourth or
the fifth week). Week 1 is the first week in which the d’th
day occurs. Day zero is Sunday.
The time has the same format as offset except that no leading
sign (’-’) or (’+’) is allowed. The default, if time is not given,
is 02:00:00.

752 Systems/C C Library

For compatibility with System V Release 3.1, a semicolon (‘;’) may be used to
separate the rule from the rest of the specification.

SEE ALSO

gettimeofday(2), ctime(3), getenv(3), time(3), tzfile(5)

Systems/C C Library 753

TZFILE(5)

NAME

tzfile - timezone information

DESCRIPTION

The time zone information files used by tzset(3) begin with the magic characters
“TZif” to identify them as time zone information files, followed by sixteen bytes
reserved for future use, followed by four four byte values written in a “standard”
byte order (the high-order byte of the value is written first). These values are, in
order:

tzh ttisgmtcnt The number of UTC/local indicators stored in the file.

tzh ttisstdcnt The number of standard/wall indicators stored in the
file.

tzh leapcnt The number of leap seconds for which data is stored in
the file.

tzh timecnt The number of “transition times” for which data is
stored in the file.

tzh typecnt The number of “local time types” for which data is
stored in the file (must not be zero).

tzh charcnt The number of characters of “time zone abbreviation
strings” stored in the file.

The above header is followed by tzh timecnt four-byte values of type long, sorted
in ascending order. These values are written in “standard” byte order. Each is
used as a transition time (as returned by time(3)) at which the rules for computing
local time change. Next come tzh timecnt one-byte values of type unsigned char;
each one tells which of the different types of “local time” types described in the file
is associated with the same-indexed transition time. These values serve as indices
into an array of ttinfo structures that appears next in the file; these structures are
defined as follows:

struct ttinfo {
long tt_gmtoff;
int tt_isdst;
unsigned int tt_abbrind;

};

754 Systems/C C Library

Each structure is written as a four-byte value for tt gmtoff of type long, in a
standard byte order, followed by a one-byte value for tt isdst and a one-byte value
for tt abbrind. In each structure, tt gmtoff gives the number of seconds to be
added to UTC, tt isdst tells whether tm isdst should be set by localtime(3) and
tt abbrind serves as an index into the array of time zone abbreviation characters
that follow the ttinfo structure(s) in the file.

Then there are tzh leapcnt pairs of four-byte values, written in standard byte
order; the first value of each pair gives the time (as returned by time(3)) at which a
leap second occurs; the second gives the total number of leap seconds to be applied
after the given time. The pairs of values are sorted in ascending order by time.

Then there are tzh ttisstdcnt standard/wall indicators, each stored as a one-byte
value; they tell whether the transition times associated with local time types were
specified as standard time or wall clock time, and are used when a time zone file is
used in handling POSIX-style time zone environment variables.

Finally there are tzh ttisgmtcnt UTC/local indicators, each stored as a one-byte
value; they tell whether the transition times associated with local time types were
specified as UTC or local time, and are used when a time zone file is used in handling
POSIX-style time zone environment variables.

localtime(3) uses the first standard-time ttinfo structure in the file (or simply
the first ttinfo structure in the absence of a standard-time structure) if either
tzh timecnt is zero or the time argument is less than the first transition time
recorded in the file.

SEE ALSO

ctime(3), time2posix(3)

Systems/C C Library 755

String Library

The ANSI C standard defines functions for concatenating, searching, copying and
general manipulation of strings. These are found in the String Library.

The Systems/C library also includes the string manipulation functions typically
found on BSD UNIX variants.

756 Systems/C C Library

BCMP(3)

NAME

bcmp - compare byte string

SYNOPSIS

#include <string.h>

int
bcmp(const void *b1, const void *b2, size_t len)

DESCRIPTION

The bcmp() function compares byte string b1 against byte string b2, returning zero
if they are identical, non-zero otherwise. Both strings are assumed to be len bytes
long. Zero-length strings are always identical.

The strings may overlap.

SEE ALSO

bcmp(3), memcmp(3), strcasecmp(3), strcmp(3), strcoll(3), strxfrm(3)

Systems/C C Library 757

BCOPY(3)

NAME

bcopy - copy byte string

SYNOPSIS

#include <string.h>

void
bcopy(const void *src, void *dst, size_t len)

DESCRIPTION

The bcopy() function copies len bytes from string src to string dst. The two strings
may overlap. If len is zero, no bytes are copied.

SEE ALSO

memccpy(3), memcpy(3), memmove(3), strcpy(3), strncpy(3)

758 Systems/C C Library

BSTRING(3)

NAME

bcmp, bcopy, bzero, memccpy, memchr, memcmp, memcpy, memmove, memset -
byte string operations

SYNOPSIS

#include <string.h>

int
bcmp(const void *b1, const void *b2, size_t len)

void
bcopy(const void *src, void *dst, size_t len)

void
bzero(void *b, size_t len)

void *
memchr(const void *b, int c, size_t len)

int
memcmp(const void *b1, const void *b2, size_t len)

void *
memccpy(void *dst, const void *src, int c, size_t len)

void *
memcpy(void *dst, const void *src, size_t len)

void *
memmove(void *dst, const void *src, size_t len)

void *
memset(void *b, int c, size_t len)

DESCRIPTION

These functions operate on variable length strings of bytes. They do not check for
terminating null bytes as the routines listed in string(3) do.

See the specific manual pages for more information.

Systems/C C Library 759

SEE ALSO

bcmp(3), bcopy(3), bzero(3), memccpy(3), memchr(3), memcmp(3), memcpy(3),
memmove(3), memset(3)

STANDARDS

The functions memchr(), memcmp(), memcpy(), memmove(), and memset()
conform to ISO/IEC 9899:1990 (“ISO C90”).

760 Systems/C C Library

BZERO(3)

NAME

bzero - write zeroes to a byte string

SYNOPSIS

#include <string.h>

void
bzero(void *b, size_t len)

DESCRIPTION

The bzero() function writes len zero bytes to the string b. If len is zero, bzero()
does nothing.

SEE ALSO

memset(3), swab(3)

Systems/C C Library 761

FFS(3)

NAME

ffs,ffsl - find first bit set in a bit string

SYNOPSIS

#include <string.h>

int
ffs(int value)

int
ffsl(long value)

int
ffsll(long long value)

int
fls(int value)

int
flsl(long value)

int
flsll(long long value)

DESCRIPTION

The ffs(), ffsl() and ffsll() functions find the first (least significant bit) bit set in
value and return the index of that bit.

The fls(), flsl() and flsll() functions find the last (most significant bit) bit set in
value and return the index of that bit.

Bits are numbered starting from 1, starting at the rightmost bit. A return value of
0 means that the argument was zero.

SEE ALSO

bitstring(3)

762 Systems/C C Library

INDEX(3)

NAME

index - locate character in string

SYNOPSIS

#include <string.h>

char *
index(const char *s, int c)

DESCRIPTION

The index() function locates the first character matching c (converted to a char)
in the null-terminated string s.

RETURN VALUES

A pointer to the character is returned if it is found; otherwise NULL is returned. If
c is ’\0’, index() locates the terminating ’\0’.

SEE ALSO

memchr(3), rindex(3), strchr(3), strcspn(3), strpbrk(3), strrchr(3), strsep(3), str-
spn(3), strstr(3), strtok(3)

Systems/C C Library 763

MEMCCPY(3)

NAME

memccpy - copy string until character found

SYNOPSIS

#include <string.h>

void *
memccpy(void *dst, const void *src, int c, size_t len)

DESCRIPTION

The memccpy() function copies bytes from string src to string dst. If the character
c (as converted to an unsigned char) occurs in the string src, the copy stops and a
pointer to the byte after the copy of c in the string dst is returned. Otherwise, len
bytes are copied, and a NULL pointer is returned.

SEE ALSO

bcopy(3), memcpy(3), memmove(3), strcpy(3)

764 Systems/C C Library

MEMCHR(3)

NAME

memchr - locate byte in byte string

SYNOPSIS

#include <string.h>

void *
memchr(const void *b, int c, size_t len)

DESCRIPTION

The memchr() function locates the first occurrence of c (converted to an unsigned
char) in string b.

RETURN VALUES

The memchr() function returns a pointer to the byte located, or NULL if no such
byte exists within len bytes.

SEE ALSO

index(3), rindex(3), strchr(3), strcspn(3), strpbrk(3), strrchr(3), strsep(3), str-
spn(3), strstr(3), strtok(3)

STANDARDS

The memchr() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 765

MEMCMP(3)

NAME

memcmp - compare byte string

SYNOPSIS

#include <string.h>

int
memcmp(const void *b1, const void *b2, size_t len)

DESCRIPTION

The memcmp() function compares byte string b1 against byte string b2. Both
strings are assumed to be len bytes long.

RETURN VALUES

The memcmp() function returns zero if the two strings are identical, otherwise
returns the difference between the first two differing bytes treated as unsigned
char values, so that ’\200’ is greater than ’\0’, for example. Zero-length strings
are always identical.

SEE ALSO

bcmp(3), strcasecmp(3), strcmp(3), strcoll(3), strxfrm(3)

STANDARDS

The memcmp() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

766 Systems/C C Library

MEMCPY(3)

NAME

memcpy - copy byte string

SYNOPSIS

#include <string.h>

void *
memcpy(void *dst, const void *src, size_t len)

void *
mempcpy(void *dst, const void *src, size_t len);

DESCRIPTION

The memcpy() and mempcpy() functions copy len bytes from string src to string
dst. If src and dst overlap the result is undefined.

RETURN VALUES

The memcpy() function returns the original value of dst.

The mempcpy() function returns a pointer to the byte after the last written byte.

SEE ALSO

bcopy(3), memccpy(3), memmove(3), strcpy(3)

STANDARDS

The memcpy() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 767

ISSUES

In this implementation the memcpy() function is implemented using bcopy(3),
and therefore the strings may overlap. On other systems, or when using the built-
in memcpy() function, copying overlapping strings may produce unpredictable
resutls.

The built-in memcpy() is expanded, the implementation uses the MVC instruction
which does produce the same results as the library function when the strings overlap.

768 Systems/C C Library

MEMMEM(3)

NAME

memmem - locate a byte substring in a byte string

SYNOPSIS

#include <string.h>

void *
memmem(const char *big, size_t big_len, const char *little,

size_t little_len);

DESCRIPTION

The memmem() function locates the first occurrence of the byte string little in the
byte string big.

RETURN VALUES

If big len is smaller than little len, if little len is 0, if big len is 0 or if little occurs
nowhere in big, NULL is returned; otherwise a pointer to the first character of the
first occurrence of little is returned.

SEE ALSO

memchar(3), strchr(3), strstr(3)

Systems/C C Library 769

MEMMOVE(3)

NAME

memmove - copy byte string

SYNOPSIS

#include <string.h>

void *
memmove(void *dst, const void *src, size_t len)

DESCRIPTION

The memmove() function copies len bytes from string src to string dst. The two
strings may overlap; the copy is always done in a non-destructive manner.

RETURN VALUES

The memmove() function returns the original value of dst.

SEE ALSO

bcopy(3), memccpy(3), memcpy(3), strcpy(3)

STANDARDS

The memmove() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

770 Systems/C C Library

MEMSET(3)

NAME

memset - write a byte to byte string

SYNOPSIS

#include <string.h>

void *
memset(void *b, int c, size_t len)

DESCRIPTION

The memset() function writes len bytes of value c (converted to an unsigned char)
to the string b.

RETURNS

The memset() function returns its first argument.

SEE ALSO

bzero(3), swab(3)

STANDARDS

The memset() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 771

RINDEX(3)

NAME

rindex - locate character in string

SYNOPSIS

#include <string.h>

char *
rindex(const char *s, int c)

DESCRIPTION

The rindex() function locates the last character matching c (converted to a char)
in the null-terminated string s.

RETURN VALUES

A pointer to the character is returned if it is found; otherwise NULL is returned. If
c is ’\0’, rindex() locates the terminating ’\0’.

SEE ALSO

index(3), memchr(3), strchr(3), strcspn(3), strpbrk(3), strrchr(3), strep(3), str-
spn(3), strstr(3), strtok(3)

772 Systems/C C Library

STRCASECMP(3)

NAME

strcasecmp, strncasecmp - compare strings, ignoring case

SYNOPSIS

#include <strings.h>

int
strcasecmp(const char *s1, const char *s2)

int
strncasecmp(const char *s1, const char *s2, size_t len)

DESCRIPTION

The strcasecmp() and strncasecmp() functions compare the null-terminated
strings s1 and s2 and return an integer greater than, equal to, or less than 0, accord-
ing as s1 is lexicographically greater than, equal to, or less than s2 after translation
of each corresponding character to lower-case. The strings themselves are not mod-
ified. The comparison is done using unsigned characters, so that ’\200’ is greater
than ’\0’.

The strncasecmp() compares at most len characters.

SEE ALSO

bcmp(3), memcmp(3), strcmp(3), strcoll(3), strxfrm(3)

NOTES

The strcasecmp() and strncasecmp() function prototypes existed previously in
<string.h> before they were moved to <strings.h> for IEEE Std 1003.1-2001
(“POSIX.1”) compliance.

Systems/C C Library 773

STRCAT(3)

NAME

strcat - concatenate strings

SYNOPSIS

#include <string.h>

char *
strcat(char *s, const char *append)

char *
strncat(char *s, const char *append, size_t count)

DESCRIPTION

The strcat() and strncat() functions append a copy of the null-terminated string
append to the end of the null-terminated string s, then add a terminating ’\0’. The
string s must have sufficient space to hold the result.

The strncat() function appends not more than count characters from append, and
then adds a terminating ’\0’.

RETURN VALUES

The strcat() and strncat() functions return the pointer s.

SEE ALSO

bcopy(3), memccpy(3), memcpy(3), memmove(3), strcpy(3)

STANDARDS

The strcat() and strncat() functions conform to ISO/IEC 9899:1990 (“ISO C90”).

774 Systems/C C Library

STRCHR(3)

NAME

strchr - locate character in string

SYNOPSIS

#include <string.h>

char *
strchr(const char *s, int c)

char *
strchrnul(const char *s, int c)

DESCRIPTION

The strchr() function locates the first occurrence of c in the string pointed to by
s. The terminating NUL character is considered part of the string. If c is ’\0’,
strchr() locates the terminating ’\0’.

The strchrnul() function is identical to strchr() except that if c is not found in s
a pointer to the terminating ’\0’ is returned.

RETURN VALUES

The function strchr() returns a pointer to the located character, or NULL if the
character does not appear in the string.

strchrnul() returns a pointer to the terminating ’\0’ if the character does not
appear in the string.

SEE ALSO

index(3), memchr(3), index(3), strcspn(3), strpbrk(3), strrchr(3), strep(3), str-
spn(3), strstr(3), strtok(3)

STANDARDS

The strchr() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

The strchrnul() function is an extension.

Systems/C C Library 775

STRCMP(3)

NAME

strcmp, strncmp, - compare strings

SYNOPSIS

#include <string.h>

int
strcmp(const char *s1, const char *s2)

int
strncmp(const char *s1, const char *s2, size_t len)

DESCRIPTION

The strcmp() and strncmp() functions lexicographically compare the null- termi-
nated strings s1 and s2.

The strncmp() function compares not more then len characters.

RETURN VALUES

The strcmp() and strncmp() return an integer greater than, equal to, or less than
0, accordingly as the string s1 is greater than, equal to, or less than the string s2.
The comparison is done using unsigned characters, so that ’\200’ is greater than
’\0’.

SEE ALSO

bcmp(3), memcmp(3), strcasecmp(3), strcoll(3), strxfrm(3)

STANDARDS

The strcmp() and strncmp() functions conform to ISO/IEC 9899:1990 (“ISO
C90”).

776 Systems/C C Library

STRCOLL(3)

NAME

strcoll - compare strings according to current collation

SYNOPSIS

#include <string.h>

int
strcoll(const char *s1, const char *s2)

DESCRIPTION

The strcoll() function lexicographically compares the null-terminated strings s1 and
s2 according to the current locale collation if any. If no locale is current, stroll()
calls strcmp().

The stroll() function returns an integer greater than, equal to, or less than 0,
accordingly as s1 is greater than, equal to, or less than s2.

SEE ALSO

setlocale(3), strcmp(3), strxfrm(3)

STANDARDS

The strcoll() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 777

STRCPY(3)

NAME

strcpy - copy strings

SYNOPSIS

#include <string.h>

char *
stpcpy(char * restrict dst, const char * restrict src);

char *
stpncpy(char * restrict dst, const char * restrict src, size_t len);

char *
strcpy(char * restrict dst, const char * restrict src)

char *
strncpy(char * restrict dst, const char * restrict src, size_t len)

DESCRIPTION

The stpcpy() and strcpy() functions copy the string src to dst (including the ter-
minating ’\0’ character.)

The strncpy() and stpncpy() functions copy at most len characters from src into
dst. If src is less than len characters long, the remainder of dst is filled with ’\0’
characters. Otherwise, dst is not terminated.

RETURN VALUES

The strcpy() and strncpy() functions return dst. The stpcpy() and stpncpy()
functions return a pointer to the terminating ’\0’ character of dst. If stpncpy()
does not terminate dst with a NUL character, it instead returns a pointer to dst[n]
(which does not necessarily refer to a valid memory location.)

EXAMPLES

The following sets chararray to "abc\0\0\0":

778 Systems/C C Library

(void)strncpy(chararray, "abc", 6);

The following sets chararray to "abcdef":

char chararray[6]

(void)strncpy(chararray, "abcdefgh", sizeof(chararray));

Note that it does not NUL terminate chararray because the length of the source string
is greater than or equal to the length argument.

The following copies as many characters from input to buf as will fit and NUL
terminates the result. Because strncpy() does not guarantee to NUL terminate the
string itself, this must be done explicitly.

char buf[1024];

(void)strncpy(buf, input, sizeof(buf) - 1);
buf[sizeof(buf) - 1] = ’\0’;

This could be better achieved using strlcpy(3), as shown in the following example:

(void)strlcpy(buf, input, sizeof(buf));

Note that because strlcpy(3) is not defined in any standards, it should only be used
when portability is not a concern.

SEE ALSO

bcopy(3), memccpy(3), memcpy(3), memmove(3), strlcpy(3)

STANDARDS

The strcpy() and strncpy() functions conform to ISO/IEC 9899:1990 (“ISO
C90”). The stpcpy() and stpncpy() functions conform to IEEE Std 1003.1-2008
(”POSIX.1”).

Systems/C C Library 779

STRCSPN(3)

NAME

strcspn - span the complement of a string

SYNOPSIS

#include <string.h>

size_t
strcspn(const char *s, const char *charset)

DESCRIPTION

The strcspn() function spans the initial part of the null-terminated string s as long
as the characters from s do not occur in string charset (it spans the complement of
charset).

RETURN VALUES

The strcspn() function returns the number of characters spanned.

SEE ALSO

index(3), memchr(3), rindex(3), strchr(3), strpbrk(3), strrchr(3), strep(3), strspn(3),
strstr(3), strtok(3)

STANDARDS

The strcspn() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

780 Systems/C C Library

STRDUP(3)

NAME

strdup - save a copy of a string

SYNOPSIS

#include <string.h>

char *
strdup(const char *str)

DESCRIPTION

The strdup() function allocates sufficient memory for a copy of the string str, does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3).

If insufficient memory is available, NULL is returned.

SEE ALSO

free(3), malloc(3)

Systems/C C Library 781

STRERROR(3)

NAME

perror, strerror, sys errlist, sys nerr - system error messages

SYNOPSIS

#include <stdio.h>

void
perror(const char *string)

extern const char * const sys_errlist[];
extern const int sys_nerr;

#include <string.h>

char *
strerror(int errnum)

DESCRIPTION

The strerror() and perror() functions look up the error message string corre-
sponding to an error number.

The strerror() function accepts an error number argument errnum and returns a
pointer to the corresponding message string.

The perror() function finds the error message corresponding to the current value of
the global variable errno (intro(2)) and writes it, followed by a newline character,
to the standard error file descriptor. If the argument string is non-NULL and does
not point to the null character, this string is prepended to the message string and
separated from it by a colon and space (“: ”); otherwise, only the error message
string is printed.

If errnum is not a recognized error number, the error message string will contain
“Unknown error: ” followed by the error number in decimal.

The message strings can be accessed directly using the external array sys errlist.
The external value sys nerr contains a count of the messages in sys errlist. The
use of these variables is deprecated; strerror() should be used instead.

782 Systems/C C Library

ISSUES

For unknown error numbers, the strerror() function will return its result in a static
buffer which may be overwritten by subsequent calls.

Programs that use the deprecated sys errlist variable often fail to compile because
they declare it inconsistently.

Systems/C C Library 783

STRING(3)

NAME

strcat, strncat, strchr, strrchr, strcmp, strncmp, strcasecmp, strncasecmp, strcpy,
strncpy, strerror, strlen, strnlen, strpbrk, strsep, strspn, strcspn, strstr, strtok, index,
rindex - string specific functions

SYNOPSIS

#include <string.h>

char *
strcat(char *s, const char * append)

char *
strncat(char *s, const char *append, size_t count)

char *
strchr(const char *s, int c)

char *
strrchr(const char *s, int c)

int
strcmp(const char *s1, const char *s2)

int
strncmp(const char *s1, const char *s2, size_t count)

int
strcasecmp(const char *s1, const char *s2)

int
strncasecmp(const char *s1, const char *s2,
size_t count)

size_t
strnlen(const char *s, size_t maxlen)

char *
strcpy(char *dst, const char *src)

char *
strncpy(char *dst, const char *src, size_t count)

784 Systems/C C Library

char *
strerror(int errno)

size_t
strlen(const char *s)

char *
strpbrk(const char *s, const char *charset)

char *
strsep(char **stringp, const char *delim)

size_t
strspn(const char *s, const char *charset)

size_t
strcspn(const char *s, const char *charset)

char *
strstr(const char *big, const char *little)

char *
strtok(char *s, const char *delim)

char *
index(const char *s, int c)

char *
rindex(const char *s, int c)

DESCRIPTION

The string functions manipulate strings terminated by a null byte.

See the specific manual pages for more information. For manipulating variable
length generic objects as byte strings (without the null byte check), see bstring(3).

Except as noted in their specific manual pages, the string functions do not test the
destination for size limitations.

SEE ALSO

bstring(3), index(3), rindex(3), strcasecmp(3), strcat(3), strchr(3), strcmp(3), str-
cpy(3), strcspn(3), strerror(3), strlen(3), strpbrk(3), strrchr(3), strsep(3), strspn(3),
strstr(3), strtok(3)

Systems/C C Library 785

STANDARDS

The strcat(), strncat(), strchr(), strrchr(), strcmp(), strncmp(), strcpy(),
strncpy(), strerror(), strlen(), strpbrk(), strsep(), strspn(), strcspn(),
strstr(), and strtok() functions conform to ISO/IEC 9899:1990 (“ISO C90”).

786 Systems/C C Library

STRLCPY(3)

NAME

strlcpy, strlcat - size-bounded string copying and concatenation

SYNOPSIS

#include <string.h>

size_t
strlcpy(char *dst, const char *src, size_t size);

size_t
strlcat(char *dst, const char *src, size_t size);

DESCRIPTION

The strlcpy() and strlcat() functions copy and concatenate strings respectively.
They are designed to be safer, more consistent, and less error prone replacements
for strncpy(3) and strncat(3). Unlike those functions, strlcpy() and strlcat() take
the full size of the buffer (not just the length) and guarantee to NUL-terminate the
result (as long as size is larger than 0 or, in the case of strlcat(), as long as there
is at least one byte free in dst). Note that a byte should be included for the NUL
in size. Also note that strlcpy() and strlcat() only operate on true “C” strings.
This means that for strlcpy() src must be NUL-terminated and for strlcat() both
src and dst must be NUL-terminated.

The strlcpy() function copies up to size - 1 characters from the NUL-terminated
string src to dst, NUL-terminating the result.

The strlcat() function appends the NUL-terminated string src to the end of dst. It
will append at most size - strlen(dst) - 1 bytes, NUL-terminating the result.

RETURN VALUES

The strlcpy() and strlcat() functions return the total length of the string they tried
to create. For strlcpy() that means the length of src. For strlcat() that means the
initial length of dst plus the length of src. While this may seem somewhat confusing
it was done to make truncation detection simple.

Note however, that if strlcat() traverses size characters without finding a NUL, the
length of the string is considered to be size and the destination string will not be

Systems/C C Library 787

NUL-terminated (since there was no space for the NUL). This keeps strlcat() from
running off the end of a string. In practice this should not happen (as it means that
either size is incorrect or that dst is not a proper “C” string). The check exists to
prevent potential security problems in incorrect code.

EXAMPLES

The following code fragmen illustrates the simple case:

char *s, *p, buf[BUFSIZ];

...

(void)strlcpy(buf, s, sizeof(buf));
(void)strlcat(buf, p, sizeof(buf));

To detect truncation, perhaps while building a pathlen, something like the following
might be used:

char *dir, *file, pname[MAXPATHLEN];

...

if (strlcpy(pname, dir, sizeof(pname)) >= sizeof(pname))
goto toolong;

if (strlcat(pname, file, sizeof(pname)) >= sizeof(pname))
goto toolong;

Since we know how many characters we copied the first time, we can speed things
up a bit by using a copy instead of an append:

char *dir, *file, pname[MAXPATHLEN];
size_t n;

...

n = strlcpy(pname, dir, sizeof(pname));
if (n >= sizeof(pname))

goto toolong;
if (strlcpy(pname + n, file, sizeof(pname) - n) >= sizeof(pname) - n)

goto toolong;

However, one may question the validity of such optimizations, as they defeat the
whole purpose of strlcpy() and strlcat().

788 Systems/C C Library

SEE ALSO

snprintf(3), strncat(3), strncpy(3)

Systems/C C Library 789

STRLEN(3)

NAME

strlen, strnlen - find length of string

SYNOPSIS

#include <string.h>

size_t
strlen(const char *s)

size_t
strnlen(const char *s, size_t maxlen);

DESCRIPTION

The strlen() function computes the length of the string s. The strnlen() function
attempts to compute the length of s, but never scans beyond the first maxlen bytes
of s.

RETURN VALUES

The strlen() function returns the number of characters that precede the terminating
NUL character. The strnlen() function returns either the same result as strlen()
or maxlen, whichever is smaller.

SEE ALSO

string(3), wcslen(3), wcswidth(3)

STANDARDS

The strlen() function conforms to ISO/IEC 9899:1990 (“ISO C90”). The strnlen()
function conforms to IEEE Std 1003.1-2008 (”POSIX.1”).

790 Systems/C C Library

STRPBRK(3)

NAME

strpbrk - locate multiple characters in string

SYNOPSIS

#include <string.h>

char *
strpbrk(const char *s, const char *charset)

DESCRIPTION

The strpbrk() function locates in the null-terminated string s the first occurrence
of any character in the string charset and returns a pointer to this character. If no
characters from charset occur anywhere in s then strpbrk() returns NULL.

SEE ALSO

index(3), memchr(3), rindex(3), strchr(3), strcspn(3), strrchr(3), strep(3), strspn(3),
strstr(3), strtok(3)

STANDARDS

The strpbrk() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 791

STRRCHR(3)

NAME

strrchr - locate character in string

SYNOPSIS

#include <string.h>

char *
strrchr(const char *s, int c)

DESCRIPTION

The strrchr() function locates the last occurrence of c (converted to a char) in the
string s. If c is ’\0’, strrchr() locates the terminating ’\0’.

RETURN VALUES

The strrchr() function returns a pointer to the character, or a null pointer if c does
not occur anywhere in s.

SEE ALSO

index(3), memchr(3), rindex(3), strchr(3), strcspn(3), strpbrk(3), strep(3), str-
spn(3), strstr(3), strtok(3)

STANDARDS

The strrchr() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

792 Systems/C C Library

STRSEP(3)

NAME

strsep - separate strings

SYNOPSIS

#include <string.h>

char *
strsep(char **stringp, const char *delim)

DESCRIPTION

The strsep() function locates, in the string referenced by *stringp, the first oc-
currence of any character in the string delim (or the terminating ’\0’ character)
and replaces it with a ’\0’. The location of the next character after the delimiter
character (or NULL, if the end of the string was reached) is stored in *stringp. The
original value of *stringp is returned.

An “empty” field, i.e. one caused by two adjacent delimiter characters, can be
detected by comparing the location referenced by the pointer returned in *stringp
to ’\0’.

If *stringp is initially NULL, strsep() returns NULL.

EXAMPLES

The following uses strsep() to parse a string, containing tokens delimited by white
space, into an argument vector:

char **ap, *argv[10], *inputstring;
for (ap = argv;

(*ap = strsep(&inputstring, " \t")) != NULL;)
if (**ap != ’\0’)

if (++ap >= &argv[10])
break;

Systems/C C Library 793

STRSPN(3)

NAME

strspn - span a string

SYNOPSIS

#include <string.h>

size_t
strspn(const char *s, const char *charset)

DESCRIPTION

The strspn() function spans the initial part of the null-terminated string s as long
as the characters from s occur in string charset.

RETURN VALUES

The strspn() function returns the number of characters spanned.

SEE ALSO

index(3), memchr(3), rindex(3), strchr(3), strcspn(3), strpbrk(3), strrchr(3),
strsep(3), strstr(3), strtok(3)

STANDARDS

The strspn() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

794 Systems/C C Library

STRSTR(3)

NAME

strstr, strcasestr, strnstr - locate a substring in a string

SYNOPSIS

#include <string.h>

char *
strstr(const char *big, const char *little)

char *
strcasestr(const char *big, const char *little);

char *
strnstr(const char *big, const char *little, size_t len);

DESCRIPTION

The strstr() function locates the first occurrence of the null-terminated string little
in the null-terminated string big.

The strcasestr() function is similar to strstr(), but ignores the case of both strings.

The strnstr() function locates the first occurrence of the null-terminated string
little in the string big, where not more than len characters are searched. Characters
that appear after a ‘
0’ character are not searched. Since the strnstr() function is a Systems/C specific
API, it should only be used when portability is not a concern.

RETURN VALUES

If little is the empty string, strstr() returns big. If little occurs nowhere in big, NULL
is returned. Otherwise a pointer to the first character of the first occurrence of little
is returned.

SEE ALSO

index(3), memchr(3), index(3), strchr(3), strcspn(3), strpbrk(3), strrchr(3),
strsep(3), strspn(3), strtok(3)

Systems/C C Library 795

STANDARDS

The strstr() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

796 Systems/C C Library

STRTOK(3)

NAME

strtok, strtok r - string tokens

SYNOPSIS

#include <string.h>

char *
strtok(char *str, const char *sep)

char *
strtok_r(char *str, const char *sep, char **last)

DESCRIPTION

This interface is obsoleted by strsep(3).

The strtok() function is used to isolate sequential tokens in a null-terminated string,
str. These tokens are separated in the string by at least one of the characters in
sep. The first time that strtok() is called str should be specified. Subsequent calls,
intended to obtain further tokens from the same string, should pass a null pointer
instead. The separator string, sep, must be supplied each time, and may change
between calls.

The strtok r() function is a reentrant version of strtok(). The context pointer
last must be provided on each call. strtok r() may also be used to nest two parsing
loops within one another, as long as separate context pointers are used.

The strtok() and strtok r() functions return a pointer to the beginning of each
subsequent token in the string, after replacing the token itself with a NUL character.
When no more tokens remain, a null pointer is returned.

EXAMPLE

The following uses strtok r() to parse two strings using separate contexts:

char test[80], blah[80];
char *sep = "\/:;=-";
char *word, *phrase, *brkt, *brkb;

Systems/C C Library 797

strcpy(test,
"This;is.a:test:of=the/string\tokenizer-function.");

for (word = strtok_r(test, sep, &brkt);
word;
word = strtok_r(NULL, sep, &brkt))

{
strcpy(blah, "blah:blat:blab:blag");

for (phrase = strtok_r(blah, sep, &brkb);
phrase;
phrase = strtok_r(NULL, sep, &brkb))

{
printf("So far we’re at %s:%s\n",

word, phrase);
}

}

SEE ALSO

index(3), memchr(3), rindex(3), strchr(3), strcspn(3), strpbrk(3), strrchr(3),
strsep(3), strspn(3), strstr(3)

STANDARDS

The strtok() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

ISSUES

The System V strtok(), if handed a string containing only delimiter characters,
will not alter the next starting point, so that a call to strtok() with a different (or
empty) delimiter string may return a non-NULL value. Since this implementation
always alters the next starting point, such a sequence of calls would always return
NULL.

798 Systems/C C Library

STRXFRM(3)

NAME

strxfrm - transform a string under locale

SYNOPSIS

#include <string.h>

size_t
strxfrm(char *dst, const char *src, size_t n)

DESCRIPTION

The strxfrm() function transforms a null-terminated string pointed to by src ac-
cording to the current locale collation if any, then copies not more than n-1 charac-
ters of the resulting string into dst, terminating it with a null character and then re-
turns the resulting length. Comparing two strings using strcmp() after strxfrm()
is equal to comparing two original strings with strcoll().

ISSUES

Sometimes the behavior of this function is unpredictable.

SEE ALSO

setlocale(3), strcmp(3), strcoll(3)

STANDARDS

The strxfrm() function conforms to ISO/IEC 9899:1990 (“ISO C90”).

Systems/C C Library 799

SWAB(3)

NAME

swab - swap adjacent bytes

SYNOPSIS

#include <string.h>

void
swab(const void *src, void *dst, size_t len)

DESCRIPTION

The function swab() copies len bytes from the location referenced by src to the
location referenced by dst, swapping adjacent bytes.

The argument len must be even number.

SEE ALSO

bzero(3), memset(3)

800 Systems/C C Library

WCSWIDTH(3)

NAME

wcswidth - number of column positions in wide-character string

SYNOPSIS

int
wcswidth(const wchar_t *pwcs, size_t n);

DESCRIPTION

The wcswidth() function determins the number of column positions required for
the first n characters of pwcs, or until a null wide character (L’\0’) is encountered.

RETURN VALUES

The wcswidth() function returns 0 if pwcs is an empty string (L""), -1 if a non-
printing wide character is encountered, otherwise it returns the number of column
positions occupied.

SEE ALSO

iswprint(3), wcwidth(3)

STANDARDS

The wcswidth() function conforms to ISO/IEC 9899:1999 (“ISO C99”).

Systems/C C Library 801

WMEMCHR(3)

NAME

wmemchr, wmemcmp, wmemcpy, wmemmove, wmemset, wcscat, wcschr, wcscmp,
wcscpy, wcscspn, wcslcat, wcslcpy, wcslen, wcsncat, wcsncmp, wcsncpy, wcsnlen,
wcspbrk, wcsrchr, wcsspn, wcsstr - wide character string manipulation operations

SYNOPSIS

#include <wchar.h>

wchar_t *
wmemchr(const wchar_t *s, wchar_t c, size_t n);

int
wmemcmp(const wchar_t *s1, const wchar_t *s2, size_t n);

wchar_t *
wmemcpy(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);

wchar_t *
wmemmove(wchar_t *s1, const wchar_t *s2, size_t n);

wchar_t *
wmemset(wchar_t *s, wchar_t c, size_t n);

wchar_t *
wcscat(wchar_t * restrict s1, const wchar_t * restrict s2);

wchar_t *
wcschr(const wchar_t *s, wchar_t c);

int
wcscmp(const wchar_t *s1, const wchar_t *s2);

wchar_t *
wcscpy(wchar_t * restrict s1, const wchar_t * restrict s2);

size_t
wcsnlen(const wchar_t *s, size_t maxlen);

size_t
wcscspn(const wchar_t *s1, const wchar_t *s2);

size_t

802 Systems/C C Library

wcslcat(wchar_t *s1, const wchar_t *s2, size_t n);

size_t
wcslcpy(wchar_t *s1, const wchar_t *s2, size_t n);

size_t
wcslen(const wchar_t *s);

wchar_t *
wcsncat(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);

int
wcsncmp(const wchar_t *s1, const wchar_t * s2, size_t n);

wchar_t *
wcsncpy(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);

wchar_t *
wcspbrk(const wchar_t *s1, const wchar_t *s2);

wchar_t *
wcsrchr(const wchar_t *s, wchar_t c);

size_t
wcsspn(const wchar_t *s1, const wchar_t *s2);

wchar_t *
wcsstr(const wchar_t *s1, const wchar_t *s2);

DESCRIPTION

The functions implement string manipulation operations over wide character strings.
For a detailed description, refer to documents for the respective single-byte coun-
terpart, such as memchr(3).

SEE ALSO

memchr(3), memcmp(3), memcpy(3), memmove(3), memset(3), strcat(3), strchr(3),
strcmp(3), strcpy(3), strcspn(3), strlcat(3), strlcpy(3), strlen(3), strncat(3),
strncmp(3), strncpy(3), strnlen(3). strpbrk(3), strrchr(3), strspn(3), strstr(3)

Systems/C C Library 803

STANDARDS

These functions conform to ISO/IEC 9899:1999 (“ISO C99”), with the exception of
wcsnlen(), which conforms to IEEE Std 1003.1-2008 (”POSIX.1”); and wcslcat()
and wcslcpy(), which are extensions.

804 Systems/C C Library

Regular Expression Library

The Systems/C library includes support for POSIX regular expressions in the regular
expression library. Regular expressions are a very powerful programming paradigm
used for text pattern matching.

Systems/C C Library 805

REGEX(3)

NAME

regcomp, regexec, regerror, regfree, reglen, regcpy - regular-expression library

SYNOPSIS

#include <sys/types.h>
#include <regex.h>

int regcomp(regex_t *preg, const char *pattern,
int cflags);

int regexec(const regex_t *preg, const char *string,
size_t nmatch, regmatch_t pmatch[],
int eflags);

size_t regerror(int errcode, const regex_t *preg,
char *errbuf, size_t errbuf_size);

void regfree(regex_t *preg);

size_t __reglen(const regex_t *r);

void __regcpy(regex_t *dst, const regex_t *src);

DESCRIPTION

These routines implement POSIX 1003.2 regular expressions (“RE”s); see
re format(7). regcomp() compiles an RE written as a string into an internal
form, regexec() matches that internal form against a string and reports results,
regerror() transforms error codes from either into human-readable messages, and
regfree() frees any dynamically-allocated storage used by the internal form of an
RE.

Dignus-specific extensions reglen() and regcpy() make it possible to copy a
regex t and its internal components into user-allocated memory. reglen() returns
the length that will be needed to represent its argument as one contiguous block of
memory, while regcpy() will fill in that memory. regfree() should not be called
on a pointer that has been the destination of regcpy(). Instead, the memory
should be freed according to whatever specific technique was used to allocate it.

806 Systems/C C Library

Example of copying:

regex_t src;
regcomp(&src, ...);
regex_t *dst = my_malloc(__reglen(&src));
__regcpy(dst, &src);
/* optionally you can regfree(&src) now, and continue to use dst */
...
my_free(dst);

The header <regex.h> declares two structure types, regex t and rematch t, the
former for compiled internal forms and the latter for match reporting. It also declares
the four functions, a type regoff t, and a number of constants with names starting
with “REG ”.

regcomp() compiles the regular expression contained in the pattern string, subject
to the flags in cflags, and places the results in the regex t structure pointed to by
preg. Cflags is the bitwise OR of zero or more of the following flags:

REG EXTENDED Compile modern (“extended”) REs, rather than the obsolete
(“basic”) REs that are the default.

REG BASIC This is a synonym for 0, provided as a counterpart to
REG EXTENDED to improve readability.

REG NOSPEC Compile with recognition of all special characters turned off.
All characters are thus considered ordinary, so the “RE” is a
literal string. This is an extension, compatible with but not
specified by POSIX 1003.2, and should be used with cau-
tion in software intended to be portable to other systems.
REG EXTENDED and REG NOSPEC may not be used in the same
call to regcomp.

REG ICASE Compile for matching that ignores upper/lower case distinc-
tions. See re format(7).

REG NOSUB Compile for matching that need only report success or failure,
not what was matched.

REG NEWLINE Compile for newline-sensitive matching. By default, newline
is a completely ordinary character with no special meaning in
either REs or strings. With this flag, ‘[^’ bracket expressions
and ‘.’ never match newline, a ‘^’ anchor matches the null
string after any newline in the string in addition to its normal
function, and the ‘$’ anchor matches the null string before
any newline in the string in addition to its normal function.

Systems/C C Library 807

REG PEND The regular expression ends, not at the first NUL, but just
before the character pointed to by the re endp member of
the structure pointed to by preg. The re endp member is
of type const char *. This flag permits inclusion of NULs
in the RE; they are considered ordinary characters. This is
an extension, compatible with but not specified by POSIX
1003.2, and should be used with caution in software intended
to be portable to other systems.

When successful, regcomp() returns 0 and fills in the structure pointed to by preg.
One member of that structure (other than re endp) is publicized: re nsub, of type
size t, contains the number of parenthesize subexpressions within the RE (except
that the value of this member is undefined if the REG NOSUB flag was used). If
regcomp() fails, it returns a non-zero error code; see DIAGNOSTICS below.

regexec() matches the compiled RE pointed to by preg against the string, subject
to the flags in eflags, and reports results using nmatch, pmatch, and the returned
value. The RE must have been compiled by a previous invocation of regcomp().
The compiled form is not altered during execution of regexec(), so a single compiled
RE can be used simultaneously by multiple threads.

By default, the NUL-terminated string pointed to by string is considered to be the
text of an entire line, minus any terminating newline. The eflags argument is the
bitwise OR of zero or more of the following flags:

REG NOTBOL The first character of the string is not the beginning of a line,
so the ‘^’ anchor should not match before it. This does not
affect the behavior of newlines under REG NEWLINE.

REG NOTEOL The NUL terminating the string does not end a line, so the
‘$’ anchor should not match before it. This does not affect
the behavior of newlines under REG NEWLINE.

REG STARTEND The string is considered to start at string +
pmatch[0].rm so and to have a terminating NUL lo-
cated at string + pmatch[0].rm eo (there need not
actually be a NUL at that location), regardless of the value of
nmatch. See below for the definition of pmatch and nmatch.
This is an extension, compatible with but not specified by
POSIX 1003.2, and should be used with caution in software
intended to be portable to other systems. Note that a
non-zero rm so does not imply REG NOTBOL; REG STARTEND
affects only the location of the string, not how it is matched.

See re format(7) for a discussion of what is matched in situations where an RE or a
portion thereof could match any of several substrings of string.

808 Systems/C C Library

Normally, regexec() returns 0 for success and the non-zero code REG NOMATCH for
failure. Other non-zero error codes may be returned in exceptional situations; see
DIAGNOSTICS.

If REG NOSUB was specified in the compilation of the RE, or if nmatch is 0, regexec ig-
nores the pmatch argument (but see below for the case where REG STARTEND is speci-
fied). Otherwise, pmatch points to an array of nmatch structures of type regmatch t.
Such a structure has at least the members rm so and rm eo, both of type regoff t
(a signed arithmetic type at least as large as an off t and a ssize t), containing
respectively the offset of the first character of a substring and the offset of the first
character after the end of the substring. Offsets are measured from the beginning of
the string argument given to regexec(). An empty substring is denoted by equal
offsets, both indicating the character following the empty substring.

The 0th member of the pmatch array is filled in to indicate what substring of string
was matched by the entire RE. Remaining members report what substring was
matched by parenthesized subexpressions within the RE; member i reports subex-
pression i, with subexpressions counted (starting at 1) by the order of their opening
parentheses in the RE, left to right. Unused entries in the array– corresponding
either to subexpressions that did not participate in the match at all, or to subex-
pressions that do not exist in the RE (that is, i > preg->re nsub) – have both
rm so and rm eo set to -1. If a subexpression participated in the match several
times, the reported substring is the last one it matched. (Note, as an example in
particular, that when the RE ‘(b*)+’ matches ‘bbb’, the parenthesized subexpres-
sion matches each of the three ‘b’s and then an infinite number of empty strings
following the last ‘b’, so the reported substring is one of the empties.)

If REG STARTEND is specified, pmatch must point to at least one regmatch t (even if
nmatch is 0 or REG NOSUB was specified), to hold the input offsets for REG STARTEND.
Use for output is still entirely controlled by nmatch; if nmatch is 0 or REG NOSUB was
specified, the value of pmatch[0] will not be changed by a successful regexec().

regerror() maps a non-zero errcode from either regcomp() or regexec() to a
human-readable, printable message. If preg is non-NULL, the error code should have
arisen from use of the regex t pointed to by preg, and if the error code came
from regcomp, it should have been the result from the most recent regcomp using
that regex t. (Regerror may be able to supply a more detailed message using
information from the regex t.) Regerror places the NUL-terminated message into
the buffer pointed to by errbuf, limiting the length (including the NUL) to at most
errbuf size bytes. If the whole message won’t fit, as much of it as will fit before the
terminating NUL is supplied. In any case, the returned value is the size of buffer
needed to hold the whole message (including terminating NUL). If errbuf size is 0,
errbuf is ignored but the return value is still correct.

If the errcode given to regerror() is first ORed with REG ITOA, the “message” that
results is the printable name of the error code, e.g. REG NOMATCH, rather than an
explanation thereof. If errcode is REG ATOI, then preg shall be non-NULL and the
re endp member of the structure it points to must point to the printable name of

Systems/C C Library 809

an error code; in this case, the result in errbuf is the decimal digits of the numeric
value of the error code (0 if the name is not recognized). REG ITOA and REG ATOI
are intended primarily as debugging facilities; they are extensions, compatible with
but not specified by POSIX 1003.2, and should be used with caution in software
intended to be portable to other systems. Be warned also that they are considered
experimental and changes are possible.

regfree() frees any dynamically-allocated storage associated with the compiled RE
pointed to by preg. The remaining regex t is no longer a valid compiled RE and
the effect of supplying it to regexec or regerror is undefined.

None of these functions references global variables except for tables of constants; all
are safe for use from multiple threads if the arguments are safe.

IMPLEMENTATION CHOICES

There are a number of decisions that 1003.2 leaves up to the implementor, either
by explicitly saying s“undefined” or by virtue of them being forbidden by the RE
grammar.

This implementation treats them as follows.

See re format(7) for a discussion of the definition of case-independent matching.

There is no particular limit on the length of REs, except insofar as memory is
limited. Memory usage is approximately linear in RE size, and largely insensitive to
RE complexity, except for bounded repetitions. See ISSUES for one short RE using
them that will run almost any system out of memory.

A backslashed character other than one specifically given a magic meaning by 1003.2
(such magic meanings occur only in obsolete [“basic”] REs) is taken as an ordinary
character.

Any unmatched [is a REG EBRACK error.

Equivalence classes cannot begin or end bracket-expression ranges. The endpoint of
one range cannot begin another.

RE DUP MAX, the limit on repetition counts in bounded repetitions, is 255.

A repetition operator (?, *, +, or bounds) cannot follow another repetition operator.
A repetition operator cannot begin an expression or subexpression or follow ‘^’ or
‘|’.

‘|’ cannot appear first or last in a (sub)expression or after another ‘|’, i.e. an
operand of ‘|’ cannot be an empty subexpression. An empty parenthesized subex-
pression, ‘()’, is legal and matches an empty (sub)string. An empty string is not a
legal RE.

810 Systems/C C Library

A ‘{’ followed by a digit is considered the beginning of bounds for a bounded repe-
tition, which must then follow the syntax for bounds. A ‘{’ not followed by a digit
is considered an ordinary character.

‘^’ and ‘$’ beginning and ending subexpressions in obsolete (“basic”) REs are an-
chors, not ordinary characters.

SEE ALSO

re format(7)

POSIX 1003.2, sections 2.8 (Regular Expression Notation) and B.5 (C Binding for
Regular Expression Matching).

DIAGNOSTICS

Non-zero error codes from regcomp() and regexec() include the following:

REG NOMATCH regexec() failed to match

REG BADPAT invalid regular expression

REG ECOLLATE invalid collating element

REG ECTYPE invalid character class

REG EESCAPE \ applied to unescapable character

REG ESUBREG invalid backreference number

REG EBRACK brackets [] not balanced

REG EPAREN parentheses () not balanced

REG EBRACE braces { } not balanced

REG BADBR invalid repetition count(s) in { }

REG ERANGE invalid character range in []

REG ESPACE ran out of memory

REG BADRPT ?, *, or + operand invalid

REG EMPTY empty (sub)expression

REG ASSERT “can’t happen”–you found a bug

REG INVARG invalid argument, e.g. negative-length string

Systems/C C Library 811

ISSUES

There is one known functionality issue. The implementation of Internationalization
is incomplete: the locale is always assumed to be the default one of 1003.2, and only
the collating elements etc. of that locale are available.

Regcomp implements bounded repetitions by macro expansion, which is costly in
time and space if counts are large or bounded repetitions are nested. An RE like, say,
“((((a{1,100}){1,100}){1,100}){1,100}){1,100}” will (eventually) run almost
any existing machine out of swap space.

Due to a mistake in 1003.2, things like ‘a)b’ are legal REs because ‘)’ is a special
character only in the presence of a previous unmatched ‘(’. This can’t be fixed until
the spec is fixed.

The standard’s definition of back references is vague. For example, does
‘a\(\(b\)*\2\)*d’ match ‘abbbd’? Until the standard is clarified, behavior in
such cases should not be relied on.

812 Systems/C C Library

RE FORMAT(7)

NAME

re format - POSIX 1003.2 regular expressions

DESCRIPTION

Regular expressions (“RE”s), as defined in POSIX 1003.2, come in two forms: mod-
ern REs (roughly those of the POSIX utility egrep; 1003.2 calls these “extended”
REs) and obsolete REs (roughly those of ed; 1003.2 “basic” Res). Obsolete REs
mostly exist for backward compatibility in some old programs; they will be dis-
cussed at the end. 1003.2 leaves some aspects of RE syntax and semantics open;
‘∗’ marks decisions on these aspects that may not be fully portable to other 1003.2
implementations.

A (modern) RE is one∗ or more non-empty∗ branches, separated by ‘|’. It matches
anything that matches one of the branches.

A branch is one∗ or more pieces, concatenated. It matches a match for the first,
followed by a match for the second, etc.

A piece is an atom possibly followed by a single∗ ‘*’, ‘+’, ‘?’, or bound. An atom
followed by ‘*’ matches a sequence of 0 or more matches of the atom. An atom
followed by ‘+’ matches a sequence of 1 or more matches of the atom. An atom
followed by ‘?’ matches a sequence of 0 or 1 matches of the atom.

A bound is ‘{’ followed by an unsigned decimal integer, possibly followed by ‘,’
possibly followed by another unsigned decimal integer, always followed by ‘}’. The
integers must lie between 0 and RE DUP MAX (255∗) inclusive, and if there are two of
them, the first may not exceed the second. An atom followed by a bound containing
one integer i and no comma matches a sequence of exactly i matches of the atom. An
atom followed by a bound containing one integer i and a comma matches a sequence
of i or more matches of the atom. An atom followed by a bound containing two
integers i and j matches a sequence of i through j (inclusive) matches of the atom.

An atom is a regular expression enclosed in ‘()’ (matching a match for the regular
expression), an empty set of ‘()’ (matching the null string)∗, a bracket expression
(see below), ‘.’ (matching any single character), ‘^’ (matching the null string at
the beginning of a line), ‘$’ (matching the null string at the end of a line), a ‘\’
followed by one of the characters ‘^.[$()|*+?{\’ (matching that character taken
as an ordinary character), a ‘\’ followed by any other character∗ (matching that
character taken as an ordinary character, as if the ‘\’ had not been present∗), or a
single character with no other significance (matching that character). A ‘{’ followed
by a character other than a digit is an ordinary character, not the beginning of a
bound∗. It is illegal to end an RE with ‘\’.

Systems/C C Library 813

A bracket expression is a list of characters enclosed in ‘[]’. It normally matches
any single character from the list (but see below). If the list begins with ‘^’, it
matches any single character (but see below) not from the rest of the list. If two
characters in the list are separated by ‘-’, this is shorthand for the full range of
characters between those two (inclusive) in the collating sequence, e.g. ‘[0-9]’ in
ASCII matches any decimal digit. It is illegal∗ for two ranges to share an endpoint,
e.g. ‘a-c-e’. Ranges are very collating-sequence-dependent, and portable programs
should avoid relying on them.

To include a literal ‘]’ in the list, make it the first character (following a possible ‘^’).
To include a literal ‘-’, make it the first or last character, or the second endpoint
of a range. To use a literal ‘-’ as the first endpoint of a range, enclose it in ‘[.’
and ‘.]’ to make it a collating element (see below). With the exception of these
and some combinations using ‘[’ (see next paragraphs), all other special characters,
including ‘\’, lose their special significance within a bracket expression.

Within a bracket expression, a collating element (a character, a multi-character
sequence that collates as if it were a single character, or a collating-sequence name
for either) enclosed in ‘[.’ and ‘.]’ stands for the sequence of characters of that
collating element. The sequence is a single element of the bracket expression’s list.
A bracket expression containing a multi-character collating element can thus match
more than one character, e.g. if the collating sequence includes a ‘ch’ collating
element, then the RE ‘[[.ch.]]*c’ matches the first five characters of ‘chchcc’.

Within a bracket expression, a collating element enclosed in ‘[=’ and ‘=]’ is an
equivalence class, standing for the sequences of characters of all collating elements
equivalent to that one, including itself. (If there are no other equivalent collating
elements, the treatment is as if the enclosing delimiters were ‘[.’ and ‘.]’.) For
example, if ‘x’ and ‘y’ are the members of an equivalence class, then ‘[[=x=]]’,
‘[[=y=]]’, and ‘[xy]’ are all synonymous. An equivalence class may not∗ be an
endpoint of a range.

Within a bracket expression, the name of a character class enclosed in ‘[:’ and ‘:]’
stands for the list of all characters belonging to that class. Standard character class
names are:

alnum digit punct
alpha graph space
blank lower upper
cntrl print digit

These stand for the character classes defined in ctype(3). A locale may provide
others. A character class may not be used as an endpoint of a range.

There are two special cases∗ of bracket expressions: the bracket expressions
‘[[:<:]]’ and ‘[[:>:]]’ match the null string at the beginning and end of a word
respectively. A word is defined as a sequence of word characters which is neither
preceded nor followed by word characters. A word character is an alnum character
(as defined by ctype(3)) or an underscore. This is an extension, compatible with

814 Systems/C C Library

but not specified by POSIX 1003.2, and should be used with caution in software
intended to be portable to other systems.

In the event that an RE could match more than one substring of a given string,
the RE matches the one starting earliest in the string. If the RE could match more
than one substring starting at that point, it matches the longest. Subexpressions
also match the longest possible substrings, subject to the constraint that the whole
match be as long as possible, with subexpressions starting earlier in the RE taking
priority over ones starting later. Note that higher-level subexpressions thus take
priority over their lower-level component subexpressions.

Match lengths are measured in characters, not collating elements. A null string Is
considered longer than no match at all. For example, ‘bb*’ matches the three middle
characters of ‘abbbc’, ‘(wee|week)(knights|nights)’ matches all ten characters of
‘weeknights’, when ‘(.*).*’ is matched against ‘abc’ the parenthesized subexpres-
sion matches all three characters, and when ‘(a*)*’ is matched against ‘bc’ both
the whole RE and the parenthesized subexpression match the null string.

If case-independent matching is specified, the effect is much as if all case distinc-
tions had vanished from the alphabet. When an alphabetic that exists in multiple
cases appears as an ordinary character outside a bracket expression, it is effectively
transformed into a bracket expression containing both cases, e.g. ‘x’ becomes ‘[xX]’.
When it appears inside a bracket expression, all case counterparts of it are added
to the bracket expression, so that (e.g.) ‘[x]’ becomes ‘[xX]’ and ‘[^x]’ becomes
‘[^xX]’.

No particular limit is imposed on the length of REs∗. Programs intended to be
portable should not employ REs longer than 256 bytes, as an implementation can
refuse to accept such REs and remain POSIX-compliant.

Obsolete (“basic”) regular expressions differ in several respects. ‘|’, ‘+’, and ‘?’ are
ordinary characters and there is no equivalent for their functionality. The delimiters
for bounds are ‘\{’ and ‘\}’, with ‘{’ and ‘}’ by themselves ordinary characters. The
parentheses for nested subexpressions are ‘\(’ and ‘\)’, with ‘(’ and ‘)’ by themselves
ordinary characters. ‘^’ is an ordinary character except at the beginning of the RE
or∗ the beginning of a parenthesized subexpression, ‘$’ is an ordinary character
except at the end of the RE or∗ the end of a parenthesized subexpression, and ‘*’ is
an ordinary character if it appears at the beginning of the RE or the beginning of a
parenthesized subexpression (after a possible leading ‘^’). Finally, there is one new
type of atom, a back reference: ‘\’ followed by a non-zero decimal digit d matches
the same sequence of characters matched by the dth parenthesized subexpression
(numbering subexpressions by the positions of their opening parentheses, left to
right), so that (e.g.) ‘\([bc]\)\1’ matches ‘bb’ or ‘cc’ but not ‘bc’.

SEE ALSO

regex(3)

Systems/C C Library 815

POSIX 1003.2, section 2.8 (Regular Expression Notation).

ISSUES

The current 1003.2 spec says that ‘)’ is an ordinary character in the absence of an
unmatched ‘(’; this was an unintentional result of a wording error, and change is
likely. Avoid relying on it.

Back references are a dreadful botch, posing major prob lems for efficient implemen-
tations. They are also somewhat vaguely defined (does ‘a\(\(b\)*\2\)*d’ match
‘abbbd’?). Avoid using them.

1003.2’s specification of case-independent matching is vague. The “one case implies
all cases” definition given above is current consensus among implementors as to the
right interpretation.

816 Systems/C C Library

Net Library

The Net library provides the set of functions related to network operations and
TCP/IP.

Systems/C C Library 817

ADDR2ASCII(3)

NAME

addr2ascii, ascii2addr - Generic address formatting routines

SYNOPSIS

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/inet.h>

char *
addr2ascii(int af, const void *addrp, int len, char *buf)

int
ascii2addr(int af, const char *ascii, void *result)

DESCRIPTION

The routines addr2ascii() and ascii2addr() are used to convert network addresses
between binary form and a printable form appropriate to the address family. Both
functions take an af argument, specifying the address family to be used in the
conversion process. (Currently, only the AF INET and AF LINK address families are
supported.)

The addr2ascii() function is used to convert binary, network-format addresses into
printable form. In addition to af, there are three other arguments. The addrp
argument is a pointer to the network address to be converted. The len argument
is the length of the addresss. The buf argument is an optional pointer to a caller-
allocated buffer to hold the result; if a NULL pointer is passed, addr2ascii() uses a
statically-allocated buffer.

The ascii2addr() function performs the inverse operation to addr2ascii(). In
addition to af, it takes two parameters, ascii and result. The ascii parameter is a
pointer to the string which is to be converted into binary. The result parameter is
a pointer to an appropriate network address structure for the specified family.

The following gives the appropriate structure to use for binary addresses in the
specified family:

AF INET struct in addr (in <netinet/in.h>)

AF LINK struct sockaddr dl (in <net/if dl.h>)

818 Systems/C C Library

RETURN VALUES

The addr2ascii() function returns the address of the buffer it was passed, or a
static buffer if the NULL pointer was passed; on failure it returns a NULL pointer.
The ascii2addr() function returns the length of the binary address in bytes, or -1
on failure.

EXAMPLES

The inet(3) functions inet ntoa() and inet aton() could be implemented thusly:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

char *
inet_ntoa(struct in_addr addr)
{

return addr2ascii(AF_INET, &addr, sizeof addr, 0);
}

int
inet_aton(const char *ascii, struct in_addr *addr)
{

return (ascii2addr(AF_INET, ascii, addr)
== sizeof(*addr));

}

In actuality, this cannot be done because add2ascii(0 and ascii2addr() are imple-
mented in terms of the inet(3) functions, rather than the other way around.

ERRORS

When a failure is returned, errno is set to one of the following values:

[ENAMETOOLONG] The addr2ascii() routine was passed a len parameter which was
inappropriate for the address family given by af.

[EPROTONOSUPPORT] Either routine was passed an af parameter other than AF INET
or AF LINK.

[EINVAL] The string passed to ascii2addr() was improperly formatted for
address family af.

Systems/C C Library 819

SEE ALSO

inet(3), linkaddr(3), inet(4)

820 Systems/C C Library

BYTEORDER(3)

NAME

htonl, htons, ntohl, ntohs - convert values between host and network byte order

SYNOPSIS

#include <arpa/inet.h>

or

#include <netinet/in.h>

uint32_t
htonl(uint32_t hostlong)

uint16_t
htons(uint16_t hostshort)

uint32_t
ntohl(uint32_t netlong)

uint16_t
ntohs(uint16_t netshort)

DESCRIPTION

These routines convert 16 and 32 bit quantities between network byte order and
host byte order. On machines which have a byte order which is the same as the
network order, these routines are defined as null macros.

These routines are most often used in conjunction with Internet addresses and ports
as returned by gethostbyname(3) and getservent(3).

SEE ALSO

gethostbyname(3), getservent(3)

Systems/C C Library 821

ETHERS(3)

NAME

ethers, ethers line, ether aton, ether ntoa, ether ntohost, ether hostton - Ethernet
address conversion and lookup routines.

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>
#include <net/ethernet.h>

int
ether_line(char *l, struct ether_addr *e, char *hostname)

struct ether_addr *
ether_aton(char *a)

char *
ether_ntoa(struct ether_addr *n)

int
ether_ntohost(char *hostname, struct ether_addr *e)

int
ether_hostton(char *hostname, struct ether_addr *e)

DESCRIPTION

These functions operate on ethernet addresses using an ether addr structure, which
is defined in the header file <netinet/if ether.h>:

/*
* The number of bytes in an ethernet (MAC)
* address.
*/
#define ETHER_ADDR_LEN 6

/*
* Structure of a 48-bit Ethernet address.
*/
struct ether_addr {

822 Systems/C C Library

u_char octet[ETHER_ADDR_LEN];
}

The function ether line() scans l, an string in ethers(5) format and sets e to the
ethernet address specified in the string and hostname to the hostname. This function
is used to parse lines from the ethers specification file (typically /etc/ethers on
UNIX hosts) into their component parts.

The ether aton() function converts a string representation of an ethernet address
into an ether addr structure. Likewise, ether ntoa() converts an ethernet address
specified as an ether addr structure into a string.

The ether ntohost() and ether hostton() functions map ethernet addresses to
their corresponding hostnames as specified in the ethers specification file (typically
/etc/ethers on UNIX hosts.) ether ntohost() converts from ethernet address to
hostname, and ether hostton() converts from hostname to ethernet address.

RETURN VALUES

ether line() returns zero on success and non-zero if it was unable to parse any
part of the supplied line l. It returns the extracted ethernet address in the supplied
ether addr structure e and returns the hostname in the supplied string hostname.

On success, ether ntoa() returns a pointer to a string containing the string rep-
resentation of an ether address. If it is unable to convert the supplied ether addr
structure, it returns a NULL pointer. Likewise, ether aton() returns a pointer to
an ether addr structure on success and a NULL pointer on failure.

The ether ntohost() and ether hostton() functions both return zero on success
and non-zero if they were unable to find a match in the ethers database file.

FILES

These functions use the algorithm outlined in the IBM TCP/IP documentation to
locate the ETC.ETHERS file; using the location specified in the TCPIP.DATA file.

NOTES

The user must insure that the hostname strings passed to the ether line(),
ether ntohost() and ether hostton() functions are large enough to contain the
returned hostnames.

Systems/C C Library 823

ISSUES

The ether aton() and ether ntoa() functions return values that are stored in
static memory areas which may be overwritten the next time they are called.

824 Systems/C C Library

GAI STRERROR(3)

NAME

gai strerror – get error message string from EAI xxx error code

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

const char *
gai_strerror(int ecode);

DESCRIPTION

The gai strerror() function returns an error message string corresponding to the
error code returned by getaddrinfo(3) or getnameinfo(3).

The following error codes and their meaning are defined in <netdb.h>:

EAI AGAIN temporary failure in name resolution

EAI BADFLAGS invalid value for ai flags

EAI BADHINTS invalid value for hints

EAI FAIL non-recoverable failure in name resolution

EAI FAMILY ai family not supported

EAI MEMORY memory allocation failure

EAI NONAME hostname or servname not provided, or not known

EAI PROTOCOL resolved protocol is unknown

EAI SERVICE servname not supported for ai socktype

EAI SOCKTYPE ai socktype not supported

EAI SYSTEM system error returned in errno

Systems/C C Library 825

RETURN VALUES

The gai strerror() function returns a pointer to the error message string corre-
sponding to ecode. If ecode is out of range, an implementation-specific error message
string is returned.

SEE ALSO

getaddrinfo(3), getnameinfo(3)

826 Systems/C C Library

GETADDRINFO(3)

NAME

getaddrinfo, freeaddrinfo – socket address structure to host and service name

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int
getaddrinfo(const char *hostname, const char *servname,

const struct addrinfo *hints, struct addrinfo **res);

void
freeaddrinfo(struct addrinfo *ai);

DESCRIPTION

The getaddrinfo() function is used to get a list of IP addresses and port numbers
for host hostname and service servname. It is a replacement for and provides more
flexibility than the gethostbyname(3) and getservbyname(3) functions.

The hostname and servname arguments are either pointers to NUL-terminated strings
or the null pointer. An acceptable value for hostname is either a valid host name
or a numeric host address string consisting of a dotted decimal IPv4 address or an
IPv6 address. The servname is either a decimal port number or a service name. At
least one of hostname and servname must be non-null.

hints is an optional pointer to a struct addrinfo, as defined by <netdb.h>:

struct addrinfo {
int ai_flags; /* input flags */
int ai_family; /* protocol family for socket */
int ai_socktype; /* socket type */
int ai_protocol; /* protocol for socket */
socklen_t ai_addrlen; /* length of socket-address */
struct sockaddr *ai_addr; /* socket-address for socket */
char *ai_canonname; /* canonical name for service location */
struct addrinfo *ai_next; /* pointer to next in list */
};

Systems/C C Library 827

This structure can be used to provide hints concerning the type of socket that the
caller supports or wishes to use. The caller can supply the following structure
elements in hints:

ai family The protocol family that should be used. When ai family is set to
PF UNSPEC, it means the caller will accept any protocol family supported
by the operating system.

ai socktype Denotes the type of socket that is wanted: SOCK STREAM, SOCK DGRAM,
or SOCK RAW. When ai socktype is zero the caller will accept any socket
type.

ai protocol Indicates which transport protocol is desired, IPPROTO UDP or
IPPROTO TCP. If ai protocol is zero the caller will accept any protocol.

ai flags ai flags is formed by OR’ing the following values:

AI CANONNAME If the AI CANONNAME bit is set, a successful call
to getaddrinfo() will return a NUL-terminated
string containing the canonical name of the spec-
ified hostname in the ai canonname element of
the first addrinfo structure returned.

AI NUMERICHOST If the AI NUMERICHOST bit is set, it indi cates that
hostname should be treated as a numeric string
defining an IPv4 or IPv6 address and no name
resolution should be attempted.

AI PASSIVE If the AI PASSIVE bit is set it indicates that the
returned socket address structure is intended for
use in a call to bind(2). In this case, if the host-
name argument is the null pointer, then the IP
address portion of the socket address structure
will be set to INADDR ANY for an IPv4 address or
IN6ADDR ANY INIT for an IPv6 address.
If the AI PASSIVE bit is not set, the returned
socket address structure will be ready for use in a
call to connect(2) for a connection-oriented pro-
tocol or connect(2), sendto(2), or sendmsg(2) if a
connectionless protocol was chosen. The IP ad-
dress portion of the socket address structure will
be set to the loopback address if hostname is the
null pointer and AI PASSIVE is not set.

All other elements of the addrinfo structure passed via hints must be zero or the
null pointer.

If hints is the null pointer, getaddrinfo() behaves as if the caller provided a struct
addrinfo with ai family set to PF UNSPEC and all other elements set to zero or NULL.

828 Systems/C C Library

After a successful call to getaddrinfo(), *res is a pointer to a linked list of one or more
addrinfo structures. The list can be traversed by following the ai next pointer in each
addrinfo structure until a null pointer is encountered. The three members ai family,
ai socktype, and ai protocol in each returned addrinfo structure are suitable for a
call to socket(2). For each addrinfo structure in the list, the ai addr member points
to a filled-in socket address structure of length ai addrlen.

This implementation of getaddrinfo() allows numeric IPv6 address notation with
scope identifier, as documented in chapter 11 of draft-ietf-ipv6-scoping-arch-02.txt.
By appending the percent character and scope identifier to addresses, one can fill the
sin6 scope id field for addresses. This would make management of scoped addresses
easier and allows cut-and-paste input of scoped addresses.

At this moment the code supports only link-local addresses with the fo mat. The
scope identifier is hardcoded to the name of the hardware interface associated with
the link (such as ne0). An example is “fe80::1%ne0”, which means “fe80::1 on
the link associated with the ne0 interface”.

The current implementation assumes a one-to-one relationship between the interface
and link, which is not necessarily true from the specification.

All of the information returned by getaddrinfo() is dynamically allocated: the
addrinfo structures themselves as well as the socket address structures and the
canonical host name strings included in the addrinfo structures.

Memory allocated for the dynamically allocated structures created by a successful
call to getaddrinfo() is released by the freeaddrinfo() function. The ai pointer
should be a addrinfo structure created by a call to getaddrinfo().

RETURN VALUES

getaddrinfo() returns zero on success or one of the error codes listed in
gai strerror(3) if an error occurs.

EXAMPLES

The following code tries to connect to “www.kame.net” service “http” via a stream
socket. It loops through all the addresses available, regardless of address family. If
the destination resolves to an IPv4 address, it will use an AF INET socket. Similarly,
if it resolves to IPv6, an AF INET6 socket is used. Observe that there is no hardcoded
reference to a particular address family. The code works even if getaddrinfo() returns
addresses that are not IPv4/v6.

struct addrinfo hints, *res, *res0;
int error;

Systems/C C Library 829

int s;
const char *cause = NULL;

memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
error = getaddrinfo("www.kame.net", "http", &hints, &res0);
if (error) {
errx(1, "%s", gai_strerror(error));
/*NOTREACHED*/
}
s = -1;
for (res = res0; res; res = res->ai_next) {
s = socket(res->ai_family, res->ai_socktype,

res->ai_protocol);
if (s < 0) {
cause = "socket";
continue;
}

if (connect(s, res->ai_addr, res->ai_addrlen) < 0) {
cause = "connect";
close(s);
s = -1;
continue;
}

break; /* okay we got one */
}
if (s < 0) {
err(1, "%s", cause);
/*NOTREACHED*/
}
freeaddrinfo(res0);

The following example tries to open a wildcard listening socket onto service “http”,
for all the address families available.

struct addrinfo hints, *res, *res0;
int error;
int s[MAXSOCK];
int nsock;
const char *cause = NULL;

memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_UNSPEC;

830 Systems/C C Library

hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE;
error = getaddrinfo(NULL, "http", &hints, &res0);
if (error) {
errx(1, "%s", gai_strerror(error));
/*NOTREACHED*/
}
nsock = 0;
for (res = res0; res && nsock < MAXSOCK; res = res->ai_next) {
s[nsock] = socket(res->ai_family, res->ai_socktype,

res->ai_protocol);
if (s[nsock] < 0) {
cause = "socket";
continue;
}

if (bind(s[nsock], res->ai_addr, res->ai_addrlen) < 0) {
cause = "bind";
close(s[nsock]);
continue;
}
(void) listen(s[nsock], 5);

nsock++;
}
if (nsock == 0) {
err(1, "%s", cause);
/*NOTREACHED*/
}
freeaddrinfo(res0);

SEE ALSO

bind(2), connect(2), send(2), socket(2), gethostbyname(3), getnameinfo(3), get-
servbyname(3), resolver(3)

R. Gilligan, S. Thomson, J. Bound, J. McCann, and W. Stevens, Basic Socket
Interface Extensions for IPv6, RFC 3493, February 2003.

S. Deering, B. Haberman, T. Jinmei, E. Nordmark, and B. Zill, IPv6 Scoped Address
Architecture, internet draft, draft-ietf-ipv6-scoping- arch-02.txt, work in progress
material.

Craig Metz, “Protocol Independence Using the Sockets API”, Proceedings of the
freenix track: 2000 USENIX annual technical conference, June 2000.

Systems/C C Library 831

STANDARDS

The getaddrinfo() function is defined by the IEEE Std 1003.1g-2000 (“POSIX.1”)
draft specification and documented in RFC 3493, “Basic Socket Interface Extensions
for IPv6”.

832 Systems/C C Library

GETHOSTBYNAME(3)

NAME

gethostbyname, gethostbtname2, gethostbyaddr, gethostent, sethostent, endhos-
tent, herror, hstrerror - get network host entry.

SYNOPSIS

#include <netdb.h>

extern int h_errno;

struct hostent *
gethostbyname(const char *name)

struct hostent *
gethostbyname2(const char *name, int af)

struct hostent *
gethostbyaddr(const char *addr, int len, int type)

struct hostent *
gethostent(void)

void
sethostent(int stayopen)

void
endhostent(void)

void
herror(const char *string)

const char *
hstrerror(int err)

DESCRIPTION

The gethostbyname(), gethostbyname2() and gethostbyaddr() functions
each return a pointer to an object with the following structure describing an in-
ternet host referenced by name or by address, respectively. This structure contains
either the information obtained from the name server, or broken-out fields from
a line in the host information file. If the local name server is not running, these
routines do a lookup in the host information file.

Systems/C C Library 833

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses */

/* from name server */
}
#define h_addr h_addr_list[0] /* address,for */

/* backwards */
/* compatibility */

The members of this structure are:

h name Official name of the host.

h aliases A NULL-terminated array of alternate names for the host.

h addrtype The type of address being returned; usually AF INET.

h length The length, in bytes, of the address.

h addr list A NULL-terminated array of network addresses for the host.
Host addresses are returned in network byte order.

h addr The first address in h addr list; this is for backward com-
patibility.

When using the nameserver, gethostbyname() and gethostaddr() will search for
the named host in the current domain and its parents unless the name ends in a
dot. If the name contains no dot, and if the environment variable “HOSTALIASES”
contains the name of an alias file, the alias file will first be searched for an alias
matching the input name.

The gethostbyname2() function is an evolution of gethostbyname() which is
intended to allow lookups in address families other than AF INET, for example
AF INET6. Currently the af argument must be specified as AF INET else the function
will return NULL after having set h errno to NETDB INTERNAL.

The sethostent() function may be used to request the use of a connected TCP
socket for queries. If the stayopen flag is non-zero, this sets the option to send all
queries to the name server using TCP and to retain the connection after each call to
gethostbyname(), gethostbyname2() or gethostbyaddr(). Otherwise, queries
are performed using UDP datagrams.

The endhostent() function closes the TCP connection.

834 Systems/C C Library

The herror() function writes a message to the diagnostic output consisting of the
string parameter string, the constant string ": ", and a message corresponding to
the value of h errno.

The hstrerror() function returns a string which is the message text corresponding
to the value of the err parameter.

FILES

These functions use the algorithm described in the IBM TCP/IP documentation to
locate the TCPIP.DATA, ETC.HOSTS, ETC.HOST.CONF and ETC.RESOLV.CONF files.

DIAGNOSTICS

Error return status from gethostbyname(), gethostbyname2() and gethost-
byaddr() is indicated by return of a NULL pointer. The external integer h errno
may then be checked to see whether this is a temporary failure or an invalid or un-
known host. The routine herror() can be used to print an error message describing
the failure. If its argument string is non-NULL, it is printed, followed by a colon and
a space. The error message is printed with a trailing newline.

The variable h errno can have the following values:

HOST NOT FOUND No such host is known.

TRY AGAIN This is usually a temporary error and means that the local
server did not receive a response from an authoritative server.
A retry at some later time may succeed.

NO RECOVERY Some unexpected server failure was encountered. This is a
non-recoverable error.

NO DATA The requested name is valid but does not have an IP address;
this is not a temporary error. This means that the name is
known to the name of the server but there is no address asso-
ciated with this name. Another type of request to the name
server using this domain name will result in an answer; for
example, a mail-forwarder may be registered for this domain.

SEE ALSO

resolver(3), IBM TCP/IP documentation

Systems/C C Library 835

CAVEAT

The gethostent() function reads the next line of the ETC.HOSTS file, opening the
file if necessary.

The sethostent() function opens and/or rewinds the ETC.HOSTS file. If the stayopen
argument is non-zero, the file will not be closed after each call to gethostbyname(),
gethostbyname2() or gethostbyaddr().

The endhostent() function closes the file.

ISSUES

These functions use static data storage; if the data is needed for future use, it should
be copied before any subsequent calls overwrite it. Only the Internet address format
is currently understood.

836 Systems/C C Library

NSSWITCH LINE(3)

NAME

nsswitch line - process an nsswitch configuration string

SYNOPSIS

#include <nsswitch.h>

int
__nsswitch_line(const char *line)

DESCRIPTION

The nsswitch line(), function processes a string as if it were a line of text in the
Unix nsswitch.conf configuration file. It is useful for specifying the order in which
DNS resolution techniques should be used by functions such as gethostbyname().
The syntax of the string is "database: method1 method2 ...". The only database
that is currently useful is hosts, which can use the following methods:

files Use ETC.HOSTS file for hostname lookup.

dns Use the DNS resolver built into the Dignus runtime.

ibm Use IBM’s EZASMI or BPX interface for hostname lookup.

The default is "hosts: ibm files dns". Which indicates the library should try
the IBM resolver first, then look for host files, then use the Dignus resolver library.
To limit the search to just the IBM resolver, set the hosts line to "hosts: ibm".

DIAGNOSTICS

On success, nsswitch line() returns 1. If the string does not conform to the
requirements, it returns 0 and sets errno to EINVAL.

NOTES

The name ezasmi was previously used to indicate the IBM EZASMI interface should
be employed. With the change of the Dignus runtime to use the BPX socket interface,
the name was changed to ibm. The name ezasmi is still accepted, and is equivalent
to ibm.

Systems/C C Library 837

SEE ALSO

gethostbyname(3), IBM TCP/IP documentation

838 Systems/C C Library

GETIPNODEBYNAME(3)

NAME

getipnodebyname, getipnodebyaddr, freehostent - nodenametoaddress and address-
tonodename translation

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

struct hostent *
getipnodebyname(const char *name, int af, int flags, int *error_num);

struct hostent *
getipnodebyaddr(const void *src, size_t len, int af, int *error_num);

void
freehostent(struct hostent *ptr);

DESCRIPTION

getipnodebyname() and getipnodebyaddr() functions are very similar to geth-
ostbyname(3), gethostbyname2(3) and gethostbyaddr(3). The functions cover all
the functionalities provided by the older ones, and provide better interface to pro-
grammers. The functions require additional arguments, af, and flags, for specifying
address family and operation mode. The additional arguments allow the program-
mer to get the address for a nodename, for specific address family (such as AF INET
or AF INET6). The functions also require an additional pointer argument, error num
to return the appropriate error code, to support thread safe error code returns.

The type and usage of the return value, struct hostent is described in gethostby-
name(3).

For getipnodebyname(), the name argument can be either a node name or a
numeric address string (i.e. a dotted-decimal IPv4 address or an IPv6 hex address.)
The af argument specifies the address family, either AF INET or AF INET6. The flags
argument specifies the types of addresses that are searched for, and the types of
addresses that are returend. Note that a specifal flags value of AI DEFAULT (defined
blow) should handle most applications. That is, porting simple applications to use
IPv6 replaces the call

hptr = gethostbyname(name);

Systems/C C Library 839

with

hptr = getipnodebyname(name, AF INET6, AI DEFAULT, &error_num);

Applications desiring finer control over the types of addresses searched for and re-
turned can specify other combinations of the flags argument.

A flags of 0 implies a strict interpretation of the af argument:

• If flags is 0 and af is AF INET, then the caller wants only IPv4 addresses. A
query is made for A records. If successful, the IPv4 addresses are returned and
the h length member of the hostent structure will be 4, else the function
returns a NULL pointer.

• If flags is 0 and if af is AF INET6, then the caller wants only IPv6 addresses. A
query is made for AAAA records. If successful, the IPv6 addresses are returned
and the h length member of the hostent structure will be 16, else the function
returns a NULL pointer.

Other constants can be logically-ORed into the flags argument to modify behavior
of the function.

• If the AI V4MAPPED flag is specified along with an af of AF INET6, then the
caller will accept IPv4-mapped IPv6 addresses. That is, if no AAAA records
are found then a query is made for A records and any found are returned as
IPv4-mapped IPv6 addresses (h length will be 16). The AI V4MAPPED flag is
ignored unless af equals AF INET6.

• The AI V4MAPPED CFG flag is the same as the AI V4MAPPED flag only if the
underlying system supports IPv4-mapped IPv6 address.

• If the AI ALL flag is used in conjunction with the AI V4MAPPED flag, and
only used with the IPv6 address family. When AI ALL is logically OR’d with
AI V4MAPPED flag then the caller wants all addresses: IPv6 and IPv4-mapped
IPv6. A query is first made for AAAA records and if successful, the IPv6 ad-
dresses are returned. Another query is then made for A records and any found
are returned as IPv4-mapped IPv6 addresses. h length will be 16. Only if
both queries fail does the function return a NULL pointer. This flag is ignored
unless af equals AF INET6. If both AI ALL and AI V4MAPPED are specified,
AI ALL takes precedence.

• The AI ADDRCONFIG flag specifies that a query for AAAA records should occur
only if the node has at least one IPv6 source address configured and a query
for A records should occur only if the node has at least one IPv4 source address
configured.

840 Systems/C C Library

For example, if the node has no IPv6 source addresses configured, and af
equals AF INET6, and the node name being looked up has both AAAA and A
records, then: (a) if only AI ADDRCONFIG is specified, the function returns a
NULL pointer; (b) if AI ADDRCONFIG | AI V4MAPPED is specified, the A records
are returned as IPv4-mapped IPv6 addresses;

The special flags value of AI DEFAULT is defined as

#define AI DEFAULT (AI V4MAPPED CFG | AI ADDRCONFIG)

Note that the getipnodebyname() function must allow the name argument to be
either a node name or a literal address string (i.e. a dotted-decimal IPv4 address
or an IPv6 hex address.) this saves applicats from having to call inet pton(3) to
handle literal address strings. When the name argument is a literal address strings,
the flags argument is always ignored.

There are four scenarios based on the type of literal address string and the value
of the af argument. The two simple cases are when name is a dotted-decimal
IPv4 address and af equals AF INET, or when name is an IPv6 hex address and
af equals AF INET6. The members of the returned hostent structure are: h name
points to a copy of the name argument, h aliases is a NULL pointer, h addrtype
is a copy of the af argument, h length is either 4 (for AF INET) or 16 (for
AF INET6), h addr list[0] is a pointer to the 4-byte or 16-byte binary address,
and h addr list[1] is a NULL pointer.

When name is a dotted-decimal IPv4 address and af equals AF INET6, and
AI V4MAPPED is specified, an IPv4-mapped IPv6 address is returned: h name points
to an IPv6 hex address containing the IPv4-mapped IPv6 address, h aliases is a
NULL pointer, h addrtype is AF INET6, h length is 16, h addr list[0] is a pointer
to the 16-byte binary address, and h addr list[1] is a NULL pointer.

It is an error when name is an IPv6 hex address and af equals AF INET. The func-
tion’s return value is a NULL pointer and the value pointed to by error num equals
HOST NOT FOUND.

getipnodebyaddr() takes almost the same argument as gethostbyaddr(3), but
adds a pointer to return an error number. Additionally it takes care of IPv4-mapped
IPv6 addresses, and IPv4-compatible IPv6 addresses.

getipnodebyname() and getipnodebyaddr() dynamically allocate the structure
to be returned to the caller. freehostent() reclaims the memory region allocated
and returned by getipnodebyname() or getipnodebyaddr().

DIAGNOSTICS

getipnodebyname() and getipnodebyaddr() return NULL on errors. The integer
values pointed by error num may then be checked to see if this is a temporary failure

Systems/C C Library 841

or an invalid or unknown host. The meanings of each error code are described in
gethostbyname(3).

SEE ALSO

gethostbyname(3), gethostbyaddr(3)

R. Gilligan, S. Thomson, J. Bound, and W. Stevens, “Basic Socket Interface Exten-
sions for IPv6”, RFC2553, March 1999.

STANDARDS

getipnodebyname() and getipnodebyaddr() are documented in “Basic Socket
Interface Extensions for IPv6” (RFC2553).

ISSUES

getipnodebyname() and getipnodebyaddr() do not handle scoped IPv6 address
properly. If you use these functions, your program will not be able to handle scoped
IPv6 addresses. For IPv6 address manipulation, getaddrinfo(3) and getnameinfo(3)
are recommended.

The current implementation is not thread-safe.

842 Systems/C C Library

GETNAMEINFO(3)

NAME

getnameinfo – socket address structure to hostname and service name

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int
getnameinfo(const struct sockaddr *sa, socklen_t salen, char *host,

size_t hostlen, char *serv, size_t servlen, int flags);

DESCRIPTION

The getnameinfo() function is used to convert a sockaddr structure to a pair of
host name and service strings. It is a replacement for and provides more flexibility
than the gethostbyaddr(3) and getservbyport(3) functions and is the converse of the
getaddrinfo(3)) function.

The sockaddr structure sa should point to either a sockaddr in or sockaddr in6
structure (for IPv4 or IPv6 respectively) that is salen bytes long.

The host and service names associated with sa are stored in host and serv which
have length parameters hostlen and servlen. The maximum value for hostlen
is NI MAXHOST and the maximum value for servlen is NI MAXSERV, as defined by
<netdb.h>. If a length parameter is zero, no string will be stored. Otherwise,
enough space must be provided to store the host name or service string plus a byte
for the NUL terminator.

The flags argument is formed by OR’ing the following values:

NI NOFQDN A fully qualified domain name is not required for local hosts.
The local part of the fully qualified domain name is returned
instead.

NI NUMERICHOST Return the address in numeric form, as if calling
inet ntop(3)), instead of a host name.

NI NAMEREQD A name is required. If the host name cannot be found in
DNS and this flag is set, a non-zero error code is returned. If
the host name is not found and the flag is not set, the address
is returned in numeric form.

Systems/C C Library 843

NI NUMERICSERV The service name is returned as a digit string representing
the port number.

NI DGRAM Specifies that the service being looked up is a datagram ser-
vice, and causes getservbyport(3)) to be called with a second
argument of “udp” instead of its default of “tcp”. This is re-
quired for the few ports (512-514) that have different services
for UDP and TCP.

This implementation allows numeric IPv6 address notation with scope identifier,
as documented in chapter 11 of draft-ietf-ipv6-scoping-arch-02.txt. IPv6 link-local
address will appear as a string like “fe80::1%ne0”. Refer to getaddrinfo(3) for more
information.

RETURN VALUES

getnameinfo() returns zero on success or one of the error codes listed in
gai strerror(3) if an error occurs.

EXAMPLES

The following code tries to get a numeric host name, and service name, for a given
socket address. Observe that there is no hardcoded reference to a particular address
family.

struct sockaddr *sa; /* input */
char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV];

if (getnameinfo(sa, sa->sa_len, hbuf, sizeof(hbuf), sbuf,
sizeof(sbuf), NI_NUMERICHOST | NI_NUMERICSERV)) {

errx(1, "could not get numeric hostname");
/*NOTREACHED*/
}
printf("host=%s, serv=%s\n", hbuf, sbuf);

The following version checks if the socket address has a reverse address mapping:

struct sockaddr *sa; /* input */
char hbuf[NI_MAXHOST];

if (getnameinfo(sa, sa->sa_len, hbuf, sizeof(hbuf), NULL, 0,
NI_NAMEREQD)) {

errx(1, "could not resolve hostname");

844 Systems/C C Library

/*NOTREACHED*/
}
printf("host=%s\n", hbuf);

SEE ALSO

gai strerror(3), getaddrinfo(3), gethostbyaddr(3), getservbyport(3) inet ntop(3), re-
solver(3)

R. Gilligan, S. Thomson, J. Bound, and W. Stevens, Basic Socket Interface Exten-
sions for IPv6, RFC 2553, March 1999.

S. Deering, B. Haberman, T. Jinmei, E. Nordmark, and B. Zill, IPv6 Scoped Address
Architecture, internet draft, draft-ietf-ipv6-scoping- arch-02.txt, work in progress
material.

Craig Metz, “Protocol Independence Using the Sockets API”, Proceedings of the
freenix track: 2000 USENIX annual technical conference, June 2000.

STANDARDS

The getnameinfo() function is defined by the IEEE Std 1003.1g-2000 (“POSIX.1”)
draft specification and documented in RFC 2553, “Basic Socket Interface Extensions
for IPv6”.

CAVEATS

getnameinfo() can return both numeric and FQDN forms of the address specified
in sa. There is no return value that indicates whether the string returned in host is
a result of binary to numeric-text translation (like inet ntop(3)), or is the result of
a DNS reverse lookup. Because of this, malicious parties could set up a PTR record
as follows:

1.0.0.127.in-addr.arpa. IN PTR 10.1.1.1

and trick the caller of getnameinfo() into believing that sa is 10.1.1.1 when it is
actually 127.0.0.1.

To prevent such attacks, the use of NI NAMEREQD is recommended when the result
of getnameinfo() is used for access control purposes:

struct sockaddr *sa;
socklen_t salen;

Systems/C C Library 845

char addr[NI_MAXHOST];
struct addrinfo hints, *res;
int error;

error = getnameinfo(sa, salen, addr, sizeof(addr),
NULL, 0, NI_NAMEREQD);

if (error == 0) {
memset(&hints, 0, sizeof(hints));
hints.ai_socktype = SOCK_DGRAM; /*dummy*/
hints.ai_flags = AI_NUMERICHOST;
if (getaddrinfo(addr, "0", &hints, &res) == 0) {
/* malicious PTR record */
freeaddrinfo(res);
printf("bogus PTR record\n");
return -1;
}
/* addr is FQDN as a result of PTR lookup */
} else {
/* addr is numeric string */
error = getnameinfo(sa, salen, addr, sizeof(addr),

NULL, 0, NI_NUMERICHOST);
}

846 Systems/C C Library

GETNETENT(3)

NAME

getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get network entry

SYNOPSIS

#include <netdb.h>
struct netent *
getnetent(void)

struct netent *
getnetbyname(const char *name)

struct netent *
getnetbyaddr(unsigned long net, int type)

void
setnetent(int stayopen)

void
endnetent(void)

DESCRIPTION

The getnetent(), getnetbyname(), and getnetbyaddr() functions each return
a pointer to an object with the following structure, containing the broken-out fields
of a line in the network data base.

struct netent {
char *n_name; /* official */

/* name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* net */

/* number type */
unsigned long n_net; /* net number */

};

The members of this structure are:

n name The official name of the network.

Systems/C C Library 847

n aliases A zero terminated list of alternate names for the network.

n addrtype The type of the network number returned; currently only
AF INET.

n net The network number. Network numbers are return in machine

The getnetent() function reads the next line of the file, opening the file if necessary.

The setnetent() function opens and rewinds the file. If the stayopen flag is non-
zero, the net data base will not be closed after each call to getnetbyname() or
getnetbyaddr().

The endnetent() function closes the file.

The getnetbyname() function and getnetbyaddr() sequentially search from the
beginning of the file until a matching net name or net address and type is found, or
until EOF is encountered. The type must be AF INET. Network numbers are supplied
in host order.

FILES

These functions use the algorithm described in the IBM TCP/IP documentation to
locate the TCPIP.DATA, and ETC.NETWORKS files.

DIAGNOSTICS

A NULL pointer (0) is returned on EOF or error.

SEE ALSO

RFC 1101

ISSUES

The data space used by these functions is static; if future use requires the data, it
should be copied before any subsequent calls to these functions overwrite it. Only
Internet network numbers are currently understood. Expecting network numbers to
fit in no more than 32 bits is probably naive.

848 Systems/C C Library

GETPROTOENT(3)

NAME

getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent - get
protocol entry.

SYNOPSIS

#include <netdb.h>
struct protoent *
getprotoent(void)

struct protent *
getprotobyname(const char *name)

struct protoent *
getprotobynumber(int proto)

void
setprotoent(int stayopen)

void
endprotoent(void)

DESCRIPTION

The getprotoent(), getprotobyname(), and getprotobynumber() functions
each return a pointer to an object with the following structure containing the broken-
out fields of a line in the network protocol data base.

struct protoent {
char *p_name; /* official name */

/* of protocol */
char **p_aliases; /* alias list */
int p_proto; /* protocol number */

};

The members of this structure are:

p name The official name of the protocol.

p aliases A zero terminated list of alternate names for the protocol.

Systems/C C Library 849

p proto The protocol number.

The getprotoent() function reads the next line of the file, opening the file if nec-
essary.

The setprotoent() function opens and rewinds the file. If the stayopen flag is non-
zero, the net data base will not be closed after each call to getprotobyname() or
getprotobynumber().

The endprotoen() function closes the file.

The getprotobyname(0 function and getprotobynumber(0 function sequentially
search from the beginning of the file until a matching protocol name or protocol
number is found, or until EOF is encountered.

RETURN VALUES

The NULL pointer (0) is returned on EOF or error.

FILES

These functions use the algorithm described in the IBM TCP/IP documentation to
locate the TCPIP.DATA, and ETC.PROTOCOLS files.

ISSUES

These functions use a static data space; if the data is needed for future use, it should
be copied before any subsequent calls overwrite it. Only the Internet protocols are
currently understood.

850 Systems/C C Library

GETSERVENT(3)

NAME

getservent, getservbyport, getservbyname, setservent, endservent - get service entry.

SYNOPSIS

#include <netdb.h>
struct servent *
getservent()

struct servent *
getservbyname(const char *name, const char *proto)

struct servent *
getservbyport(int port, const char *proto)

void
setservent(int stayopen)

void
endservent(void)

DESCRIPTION

The getservent(), getservbyname(), and getservbyport() functions each re-
turn a pointer to an object with the following structure containing the broken-out
fields of a line in the network services data base.

struct servent {
char *s_name; /* official name */

/* of service */
char **s_aliases; /* alias list */
int s_port; /* port service */

/* resides at */
char *s_proto; /* protocol to use */

};

The members of this structure are:

s name The official name of the service.

Systems/C C Library 851

s aliases A zero terminated list of alternate names for the service.

s port The port number at which the service resides. Port numbers are
returned in network byte order.

s proto The name of the protocol to use when contacting the service.

The getservent() function reads the next line of the file, opening the file if neces-
sary.

The setservent() function opens and rewinds the file. If the stayopen flag is non-
zero, the net data base will not be closed after each call to getservbyname() or
getservbyent().

The endservent() function closes the file.

The getservbyname() and getservbyport() functions sequentially search from
the beginning of the file until a matching protocol name or port number is found,
or until EOF is encountered. If a protocol name is also supplied (non-NULL), searches
must also match the protocol.

FILES

These functions use the algorithm described in the IBM TCP/IP documentation to
locate the TCPIP.DATA, and ETC.SERVICES files. If that file cannot be located, these
functions will look for //HFS:/etc/services.

DIAGNOSTICS

The NULL pointer (0) is returned on EOF or error.

SEE ALSO

getprotoent(3)

ISSUES

These functions use static data storage; if the data is needed for future use, it should
be copied before any subsequent calls overwrite it. Expecting port numbers to fit
in a 32 bit quantity is probably naive.

852 Systems/C C Library

INET(3)

NAME

inet aton, inet addr, inet network, inet ntoa, inet makeaddr, inet lnaof, inet netof -
Internet address manipulation routines.

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int
inet_aton(const char *cp, struct in_addr *pin)

unsigned long
inet_addr(const char *cp)

unsigned long
inet_network(const char *cp)

char *
inet_ntoa(struct in_addr in)

struct in_addr
inet_makeaddr(unsigned long net, unsigned long lna)

unsigned long
inet_lnaof(struct in_addr in)

unsigned long
inet_netof(struct in_addr in)

DESCRIPTION

The routines inet aton(), inet addr() and inet network() interpret character
strings representing numbers expressed in the Internet standard ’.’ notation. The
inet aton() routine interprets the specified character string as an Internet ad-
dress, placing the address into the structure provided. It returns 1 if the string
was successfully interpreted, or 0 if the string is invalid. The inet addr(0 and
inet network(0 functions return numbers suitable for use an Internet addresses and
Internet network numbers, respectively. The routine inet ntoa() takes an Inter-
net address and returns a string representing the address in ’.’ notation. The

Systems/C C Library 853

routine inet makeaddr() takes an Internet network number and a local network
address and constructs an Internet address from it. The routines inet netof() and
inet lnaof() break apart Internet host addresses, returning the network number
and local network address part, respectively.

All Internet addresses are returned in network order (bytes ordered from left to
right.) All network numbers and local address parts are returned as machine format
integer values.

INTERNET ADDRESSES

Values specified using the ’.’ notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address. Note that when an
Internet addresses is viewed as a 32-bit integer quantity appear in host byte order.

When a three part address is specified, the last part is interpreted as a 16-bit quantity
and placed in the right-most two bytes of the network address. This makes the
three part address format convenient for specifying Class B network addresses as
“128.net.host”.

When a two part address is supplied, the last part is interpreted as a 24-bit quantity
and placed in the right most three bytes of the network address. This makes the
two part address format convenient for specifying Class A network addresses as
“net.host”.

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as “parts” in a ’.’ notation may be decimal, octal, or hexadec-
imal, as specified in the C language (I.e., a leading 0x or 0X implies hexadecimal;
otherwise, a leading 0 implies octal; otherwise the number is interpreted as decimal.)

The inet aton() and inet ntoa() functions are semi-deprecated in favor of the
addr2ascii(3) family. However, since those functions are not yet widely implemented,
portable programs cannot rely on their presence and will continue to use the inet(3)
functions for some time.

854 Systems/C C Library

DIAGNOSTICS

The constant INADDR NONE is returned by inet addr() and inet network() for
malformed requests.

SEE ALSO

addr2ascii(3), gethostbyname(3), getnetent(3)

ISSUES

The value INADDR NONE (0xffffffff) is a valid broadcast address, but inet addr()
cannot return that value without indicating failure. The newer inet aton() function
does not share this problem. The problem of host byte ordering versus network byte
ordering is confusing. The string returned by inet ntoa() resides in a static memory
area.

inet addr() should return a struct in addr .

Systems/C C Library 855

NS(3)

NAME

ns addr, ns ntoa - Xerox NS address conversion routines

SYNOPSIS

#include <sys/types.h>
#include <nets/ns.h>

struct ns_addr
ns_addr(char *cp)

char *
ns_ntoa(struct ns_addr ns)

DESCRIPTION

The routine ns addr() interprets character strings representing XNS addresses,
returning binary information suitable for use in system calls. The routine ns ntoa()
takes XNS addresses and returns strings representing the address in a notation in
common use in the Xerox Development Environment:

<network number>.<host number>.<port number>

Trailing zero fields are suppressed, and each number is printed in hexadecimal, in a
format suitable for input to ns addr(). Any fields lcaking super-decimal digits will
have a trailing ’H’ appended.

Unfortunately, no universal standard exists for representing XNS addresses. An
effort has been made to insure that ns addr() be compatible with most formats in
common use. It will first separate an address into 1 to 3 fields using a single delimiter
chosen from period ’.’ , colon ’:’ or pound-sign ’#’. Each field is then examined
for byte separators (colon or period.) If there are byte separators, each subfield
separated is taken to be a small hexadecimal number, and the entirety is taken as a
network-byte-ordered quantity to be zero extended in the high-network-order bytes.
Next, the field is inspected for hyphens, in which case the field is assumed to be a
number in decimal notation with hyphens separating the millennia. Next, the field
is assumed to be a number: It is interpreted as hexadecimal if there is a leading ’0x’
(as in C), a trailing ’H’ (as in Mesa), or there are any super-decimal digits present.
It is interpreted as octal if there is a leading ’0’ and there are no super-octal digits.
Otherwise, it is converted as a decimal number.

856 Systems/C C Library

RETURN VALUES

None. (See ISSUES.)

ISSUES

The string returned by ns ntoa() resides in a static memory area. The function
ns addr() should diagnose improperly formed input, and there should be an un-
ambiguous way to recognize this.

Systems/C C Library 857

RESOLVER(3)

NAME

res query, res search, res mkquery, res send, res init, dn comp, dn expand - resolver
routines

SYNOPSIS

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int
res_query(const char *dname, int class, int type,
u_char *answer, int anslen)

int
res_search(const char *dname, int class, int type,
u_char *answer, int anslen)

int
res_mkquery(int op, const char *dname, int class,
int type, const u_char *data, int datalen,
const u_char *newer_in, u_char *buf,
int buflen)

int
res_send(const u_char *msg, int msglen, u_char *answer,
int anslen)

int
res_init()

dn_comp(const char *exp_dn, u_char *comp_dn, int length,
u_char **dnptrs, u_char **lastdnptr)

int
dn_expand(const u_char *msg, const u_char *eomorig,
const u_char *comp_dn, char *exp_dn,
int length)

858 Systems/C C Library

DESCRIPTION

These routines are used for making, sending and interpreting query and reply mes-
sages with Internet domain name servers.

Global configuration and state information that is used by the resolver routines is
kept in the structure res. Most of the values have reasonable defaults and can be
ignored. Options stored in res.otions are defined in resolv.h and are as follows.
Options are stored as a simple bit mask containing the bitwise ‘or’ of the options
enabled.

RES INIT True if the initial name server address and default domain
name are initialized (i.e., res init() has been called.)

RES DEBUG Print debugging messages.

RES AAONLY Accept authoritative answers only. With this option,
res send() should continue until it finds an authoritative
answer or finds an error. Currently this is not implemented.

RES USEVC Use TCP connections for queries instead of UDP datagrams.

RES STAYOPEN Used with RES USEVC to keep the TCP connection open be-
tween queries. This is useful only in programs that regularly
do many queries. UDP should be the normal mode used.

RES IGNTC Unused currently (ignore truncation errors, I.e., don’t retry
with TCP.)

RES RECURSE Set the recursion-desired bit in queries. This is the default.
(res send() does not do iterative queries and expects the
name server to handle recursion.)

RES DEFNAMES If set, res search() will append the default domain name to
single-component names (those that do not contain a dot.)
This option is enabled by default.

RES DNSRCH If this option is set, res search() will search for host names
in the current domain and in parent domains. This is used
by the standard host lookup routine gethostbyname(3). This
option is enabled by default.

RES NOALIASES This option turns off the user level aliasing feature con-
trolled by the “HOSTALIASES” environment variable. Net-
work demons should set this option.

The res init() routine reads the configuration file to get the default domain name,
search list and the Internet address of the local name server(s). If no server is
configured the host running the resolver is tried. The current domain name is defined

Systems/C C Library 859

by the hostname if not specified in the configuration file; it can be overridden by the
environment variable LOCALDOMAIN. This environment variable may contain several
blank-separated tokens if you with to override the search list on a per-process basis.
This is similar to the search command in the configuration file. Another environment
variable “RES OPTIONS” can be set to override certain internal resolver options which
are otherwise set by changing fields in the res structure or are inherited from
the configuration file. Initialization normally occurs on the first call to one of the
following routines.

The res query() function provides an interface to the server query mechanism.
It constructs a query, sends it to the local server, awaits a response, and makes
preliminary checks on the reply. The query requests information of the specified type
and class for the specified fully-qualified domain name dname. The reply message
is left in the answer buffer with length anslen supplied by the caller.

The res search() routine makes a query and awaits a response like res query(),
but in addition, it implements the default and search rules controlled by the
RES DEFNAMES and RES DNSRCH options. It returns the first successful reply.

The remaining routines are lower-level routines used by res query(). The
res mkquery() function constructs a standard query message and places it in
buf. It returns the size of the query, or -1 if the query is larger than buflen.
The query type op is usually QUERY, but can be any of the query types defined in
<arpa/nameserv.h>. The domain name for the query is given by dname. Newer in
is currently unused but is intended for making update messages.

The res send() routine sends a pre-formatted query and returns an answer. It will
call res init() if RES INIT is not set, send the query to the local name server, and
handle timeouts and retries. The length of the reply message is returned, or -1 if
there were errors.

The dn comp() function compresses the domain name exp dn and stores it in
comp dn. The size of the compressed name is returned or -1 if there were errors.
The size of the array pointed to be comp dn is given by length The compression uses
an array of pointers dnptrs to previously-compressed names in the current message.
The first pointer points to the beginning of the message and the list ends with
NULL. The limit to the array is specified by lastdnptr. A side effect of dn comp()
is to update the list of pointers for labels inserted into the message as the name is
compressed. If dnptr is NULL, the list of labels is not updated.

The dn expand() entry expands the compressed domain name comp dn to a full
domain name. The compressed name is contained in a query or reply message; msg
is a pointer to the beginning of the message. The uncompressed name is placed in
the buffer indicated by exp dn which is of size length. The size of the compressed
name is returned or -1 if there was an error.

860 Systems/C C Library

FILES

These functions use the algorithm described in the IBM TCP/IP documentation to
locate the TCPIP.DATA, and ETC.RESOLV.CONF files.

SEE ALSO

gethostbyname(3)

RFC1032, RFC1033, RFC1034, RFC1035, RFC974

Thread Library

Systems/C C Library 861

PTHREAD(3)

NAME

pthread – POSIX thread functions

SYNOPSIS

#include <pthread.h>

DESCRIPTION

POSIX threads are a set of functions that support applications with requirements
for multiple flows of control, called threads, within a process. Multithreading is used
to improve the performance of a program.

The POSIX thread functions are summarized in this section in the following groups:

o Thread Routines

o Attribute Object Routines

o Mutex Routines

o Condition Variable Routines

o Read/Write Lock Routines

o Per-Thread Context Routines

o Cleanup Routines

Thread Routines

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg)

Creates a new thread of execution.

int pthread_cancel(pthread_t thread)

Cancels execution of a thread.

862 Systems/C C Library

int pthread_detach(pthread_t thread)

Marks a thread for deletion.

int pthread_equal(pthread_t t1, pthread_t t2)

Compares two thread IDs.

void pthread_exit(void *value_ptr)

Terminates the calling thread.

int pthread_join(pthread_t thread, void **value_ptr)

Causes the calling thread to wait for the termination of the specified thread.

int pthread_kill(pthread_t thread, int sig)

Delivers a signal to a specified thread.

int pthread_main_np(void)

Determines if the thread is the initial thread.

int pthread_once(pthread_once_t *once_control, void (*init_routine)(void))

Calls an initialization routine once.

pthread_t pthread_self(void)

Returns the thread ID of the calling thread.

int pthread_setcancelstate(int state, int *oldstate)

Sets the current thread’s cancelability state.

Systems/C C Library 863

int pthread_setcanceltype(int type, int *oldtype)

Sets the current thread’s cancelability type.

int pthread_set_limit_np(int action, int maxtasks, int maxthreads)

Sets the z/OS maximum number of tasks allowed and/or maximum number of
threads for the process.

void pthread_testcancel(void)

Creates a cancellation point in the calling thread.

void pthread_yield(void)

Allows the scheduler to run another thread instead of the current one.

Attribute Object Routines

int pthread_attr_destroy(pthread_attr_t *attr)

Destroy a thread attributes object.

int pthread_attr_getinheritsched(const pthread_attr_t *attr,
int *inheritsched)

Get the inherit scheduling attribute from a thread attributes object.

int pthread_attr_getschedparam(const pthread_attr_t *attr,
struct sched_param *param)

Get the scheduling parameter attribute from a thread attributes object.

int pthread_attr_getschedpolicy(const pthread_attr_t *attr, int *policy)

Get the scheduling policy attribute from a thread attributes object.

864 Systems/C C Library

int pthread_attr_getscope(const pthread_attr_t *attr, int
*contentionscope)

Get the contention scope attribute from a thread attributes object.

int pthread_attr_getstacksize(const pthread_attr_t *attr, size_t
*stacksize)

Get the stack size attribute from a thread attributes object.

int pthread_attr_getstackaddr(const pthread_attr_t *attr, void
**stackaddr)

Get the stack address attribute from a thread attributes object.

int pthread_attr_getdetachstate(const pthread_attr_t *attr, int
*detachstate)

Get the detach state attribute from a thread attributes object.

int pthread_attr_getweight_np(const pthread_attr_t *attr,
int *weight);

Get the thread weight.

int pthread_attr_getsynctype_np(const pthread_attr_t *attr, int
*synctype);

Get the thread sync type.

int pthread_attr_init(pthread_attr_t *attr)

Initialize a thread attributes object with default values.

int pthread_attr_setinheritsched(pthread_attr_t *attr,
int inheritsched)

Set the inherit scheduling attribute in a thread attributes object.

Systems/C C Library 865

int pthread_attr_setschedparam(pthread_attr_t *attr,
const struct sched_param *param)

Set the scheduling parameter attribute in a thread attributes object.

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy)

Set the scheduling policy attribute in a thread attributes object.

int pthread_attr_setscope(pthread_attr_t *attr,
int contentionscope)

Set the contention scope attribute in a thread attributes object.

int pthread_attr_setstacksize(pthread_attr_t *attr,
size_t stacksize)

Set the stack size attribute in a thread attributes object.

int pthread_attr_setstackaddr(pthread_attr_t *attr, void *stackaddr)

Set the stack address attribute in a thread attributes object.

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate)

Set the detach state in a thread attributes object.

int pthread_attr_setweight_np(pthread_attr_t *attr, int weight)

Set the weight in a thread attributes object.

int pthread_attr_setsynctype_np(pthread_attr_t *attr, int type)

Set the synctype in a thread attributes object.

866 Systems/C C Library

Mutex Routines

int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)

Destroy a mutex attributes object.

int pthread_mutexattr_getprioceiling(pthread_mutexattr_t *attr, int
*ceiling)

Obtain priority ceiling attribute of mutex attribute object.

int pthread_mutexattr_getprotocol(pthread_mutexattr_t *attr, int
*protocol)

Obtain protocol attribute of mutex attribute object.

int pthread_mutexattr_gettype(pthread_mutexattr_t *attr, int *type)

Obtain the mutex type attribute in the specified mutex attributes object.

int pthread_mutexattr_init(pthread_mutexattr_t *attr)

Initialize a mutex attributes object with default values.

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int
ceiling)

Set priority ceiling attribute of mutex attribute object.

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr, int
protocol)

Set protocol attribute of mutex attribute object.

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)

Set the mutex type attribute that is used when a mutex is created.

Systems/C C Library 867

int pthread_mutex_destroy(pthread_mutex_t *mutex)

Destroy a mutex.

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)

Initialize a mutex with specified attributes.

int pthread_mutex_lock(pthread_mutex_t *mutex)

Lock a mutex and block until it becomes available.

int pthread_mutex_timedlock(pthread_mutex_t *mutex,
const struct timespec *abstime)

Lock a mutex and block until it becomes available or until the timeout expires.

int pthread_mutex_trylock(pthread_mutex_t *mutex)

Try to lock a mutex, but do not block if the mutex is locked by another thread,
including the current thread.

int pthread_mutex_unlock(pthread_mutex_t *mutex)

Unlock a mutex.

Condition Variable Routines

int pthread_condattr_destroy(pthread_condattr_t *attr)

Destroy a condition variable attributes object.

int pthread_condattr_init(pthread_condattr_t *attr)

Initialize a condition variable attributes object with default values.

868 Systems/C C Library

int pthread_cond_broadcast(pthread_cond_t *cond)

Unblock all threads currently blocked on the specified condition variable.

int pthread_cond_destroy(pthread_cond_t *cond)

Destroy a condition variable.

int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t
*attr)

Initialize a condition variable with specified attributes.

int pthread_cond_signal(pthread_cond_t *cond)

Unblock at least one of the threads blocked on the specified condition variable.

int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
const struct timespec *abstime)

Wait no longer than the specified time for a condition and lock the specified mutex.

int pthread_cond_wait(pthread_cond_t *, pthread_mutex_t *mutex)

Wait for a condition and lock the specified mutex.

Read/Write Lock Routines

int pthread_rwlock_destroy(pthread_rwlock_t *lock)

Destroy a read/write lock object.

int pthread_rwlock_init(pthread_rwlock_t *lock,
const pthread_rwlockattr_t *attr)

Initialize a read/write lock object.

Systems/C C Library 869

int pthread_rwlock_rdlock(pthread_rwlock_t *lock)

Lock a read/write lock for reading, blocking until the lock can be acquired.

int pthread_rwlock_tryrdlock(pthread_rwlock_t *lock)

Attempt to lock a read/write lock for reading, without blocking if the lock is un-
available.

int pthread_rwlock_trywrlock(pthread_rwlock_t *lock)

Attempt to lock a read/write lock for writing, without blocking if the lock is un-
available.

int pthread_rwlock_unlock(pthread_rwlock_t *lock)

Unlock a read/write lock.

int pthread_rwlock_wrlock(pthread_rwlock_t *lock)

Lock a read/write lock for writing, blocking until the lock can be acquired.

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr)

Destroy a read/write lock attribute object.

int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *attr,
int *pshared)

Retrieve the process shared setting for the read/write lock attribute object.

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr)

Initialize a read/write lock attribute object.

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr,
int pshared)

Set the process shared setting for the read/write lock attribute object.

870 Systems/C C Library

Per-Thread Context Routines

int pthread_key_create(pthread_key_t *key, void (*routine)(void *))

Create a thread-specific data key.

int pthread_key_delete(pthread_key_t key)

Delete a thread-specific data key.

void * pthread_getspecific(pthread_key_t key)

Get the thread-specific value for the specified key.

int pthread_setspecific(pthread_key_t key, const void *value_ptr)

Set the thread-specific value for the specified key.

Cleanup Routines

int pthread_atfork(void (*prepare)(void), void (*parent)(void),
void (*child)(void))

Register fork handlers

void pthread_cleanup_pop(int execute)

Remove the routine at the top of the calling thread’s cancellation cleanup stack and
optionally invoke it.

void pthread_cleanup_push(void (*routine)(void *), void *routine_arg)

Push the specified cancellation cleanup handler onto the calling thread’s cancellation
stack.

Systems/C C Library 871

IMPLEMENTATION

The Dignus POSIX thread implementation depends on z/OS UNIX Systems Ser-
vices. Linking a program with the pthread create(3) forces the use of UNIX Systems
Services signal handling. Also, such a program ends with a call to the BPX exit(2)
function and not by returning to the caller.

The implementation defaults to ”heavy” weight threads, where a single z/OS TASK
per thread is used. The weight of a thread can be set before its creation using
pthread attr setweight np(). If the thread is set to ”medium” then a task can
execute the next thread without ending.

IBM recommends that only about 200 tasks be used per process. The
pthread set limit np() function can be used to indicate how many tasks are al-
lowed per process. If too many tasks are initiated, there can problems with low-
memory usage in the LQSA area, which can cause S422 ABENDs or other MVS
internal errors. If the operating system reports the error, the Dignus runtime will
return an error code of EMVSERR, otherwise the task or program may simply be ter-
minated, with appropriate messages on the console log. This situation should be
reported to the system managers and or IBM, as it may indicate a problem with
z/OS internal functions.

The z/OS object file format and Dignus runtime does not support Thread Local
Storage (TLS).

SEE ALSO

pthread atfork(3), pthread cleanup pop(3), pthread cleanup push(3),
pthread condattr destroy(3), pthread condattr init(3), pthread cond broadcast(3),
pthread cond destroy(3), pthread cond init(3), pthread cond signal(3),
pthread cond timedwait(3), pthread cond wait(3), pthread create(3),
pthread detach(3), pthread equal(3), pthread exit(3), pthread getspecific(3),
pthread join(3), pthread key delete(3), pthread kill(3),
pthread mutexattr destroy(3), pthread mutexattr getprioceiling(3),
pthread mutexattr getprotocol(3), pthread mutexattr gettype(3),
pthread mutexattr init(3), pthread mutexattr setprioceiling(3),
pthread mutexattr setprotocol(3), pthread mutexattr settype(3),
pthread mutex destroy(3), pthread mutex init(3), pthread mutex lock(3),
pthread mutex trylock(3), pthread mutex unlock(3), pthread once(3),
pthread rwlockattr destroy(3), pthread rwlockattr getpshared(3),
pthread rwlockattr init(3), pthread rwlock unlock(3), pthread rwlock wrlock(3),
pthread self(3), pthread setcancelstate(3), pthread setcanceltype(3),
pthread setspecific(3), pthread testcancel(3) pthread set limit np(3).

872 Systems/C C Library

STANDARDS

The functions with the pthread prefix and not np suffix or pthread rwlock prefix
conform to ISO/IEC 9945-1:1996 (“POSIX.1”).

The functions with the pthread prefix and np suffix are non-portable extensions
to POSIX threads.

The functions with the pthread rwlock prefix are extensions created by The Open
Group as part of the Version 2 of the Single UNIX Specification (“SUSv2”).

Systems/C C Library 873

PTHREAD ATFORK(3)

NAME

pthread atfork – register fork handlers

SYNOPSIS

#include <pthread.h>

int
pthread_atfork(void (*prepare)(void), void (*parent)(void),

void (*child)(void));

DESCRIPTION

The pthread atfork() function declares handler functions to be called before and
after fork(2), in the context of the thread that called fork(2).

The handler functions registered with pthread atfork() are called at the moments
and contexts described below:

prepare Before fork(2) processing commences in the parent process. If more
than one prepare handler is registered they will be called in the
opposite order they were registered.

parent After fork(2) completes in the parent process. If more than one
parent handler is registered they will be called in the same order
they were registered.

child After fork(2) processing completes in the child process. If more than
one child handler is registered they will be called in the same order
they were registered.

If no handling is desired at one or more of these three points, a NULL pointer may
be passed as the corresponding fork handler function address.

RETURN VALUES

If successful, the pthread atfork() function will return zero. Otherwise an error
number will be returned to indicate the error.

874 Systems/C C Library

ERRORS

The pthread atfork() function will fail if:

[ENOMEM] Insufficient memory space exists to record the fork handler ad-
dress(es).

SEE ALSO

fork(2), pthread(3)

STANDARDS

The pthread atfork() function is expected to conform to IEEE Std 1003.1
(“POSIX.1”).

Systems/C C Library 875

PTHREAD ATTR(3)

NAME

pthread attr init, pthread attr destroy, pthread attr setstack,
pthread attr getstack, pthread attr setstacksize, pthread attr getstacksize,
pthread attr setguardsize, pthread attr getguardsize, pthread attr setstackaddr,
pthread attr getstackaddr, pthread attr setdetachstate,
pthread attr getdetachstate, pthread attr setinheritsched,
pthread attr getinheritsched, pthread attr setschedparam,
pthread attr getschedparam, pthread attr setschedpolicy,
pthread attr getschedpolicy, pthread attr setscope, pthread attr getscope,
pthread attr getsynctype np, pthread attr setsynctype np,
pthread attr getweight np, pthread attr setweight np - thread attribute
operations

SYNOPSIS

#include <pthread.h>

int
pthread_attr_init(pthread_attr_t *attr);

int
pthread_attr_destroy(pthread_attr_t *attr);

int
pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr,

size_t stacksize);

int
pthread_attr_getstack(const pthread_attr_t * restrict attr,

void ** restrict stackaddr, size_t * restrict stacksize);

int
pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);

int
pthread_attr_getstacksize(const pthread_attr_t *attr, size_t *stacksize);

int
pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize);

int
pthread_attr_getguardsize(const pthread_attr_t *attr, size_t *guardsize);

876 Systems/C C Library

int
pthread_attr_setstackaddr(pthread_attr_t *attr, void *stackaddr);

int
pthread_attr_getstackaddr(const pthread_attr_t *attr, void **stackaddr);

int
pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

int
pthread_attr_getdetachstate(const pthread_attr_t *attr,

int *detachstate);

int
pthread_attr_setinheritsched(pthread_attr_t *attr, int inheritsched);

int
pthread_attr_getinheritsched(const pthread_attr_t *attr,

int *inheritsched);

int
pthread_attr_setschedparam(pthread_attr_t *attr,

const struct sched_param *param);

int
pthread_attr_getschedparam(const pthread_attr_t *attr,

struct sched_param *param);

int
pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

int
pthread_attr_getschedpolicy(const pthread_attr_t *attr, int *policy);

int
pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);

int
pthread_attr_getscope(const pthread_attr_t *attr, int *contentionscope);

int
pthread_attr_setweight_np(pthead_attr_t *attr, int weight);

int
pthead_attr_getweight_np(pthread_attr_t *attr, int *weight);

int

Systems/C C Library 877

pthread_attr_setsynctype_np(pthead_attr_t *attr, int synctype);

int
pthead_attr_getsynctype_np(pthread_attr_t *attr, int *synctype);

DESCRIPTION

Thread attributes are used to specify parameters to pthread create(). One at-
tribute object can be used in multiple calls to pthread create(), with or without
modifications between calls.

The pthread attr init() function initializes attr with all the default thread at-
tributes.

The pthread attr destroy() function destroys attr.

The pthread attr set*() functions set the attribute that corresponds to each func-
tion name.

The pthread attr get*() functions copy the value of the attribute that corre-
sponds to each function name to the location pointed to by the second function
parameter.

The pthread attr setweight np() and pthread attr getweight np() control
the weight of the thread about to created. The weight is either MEDIUM WEIGHT
or HEAVY WEIGHT. A MEDIUM WEIGHT indicates that a thread can be executed
on the same task as a previous thread, which can alleviate task creation time. A
HEAVY WEIGHT thread executes on its own task and when the thread finishes, the

task ends. In the Dignus implementation threads are HEAVY WEIGHT by default.

The pthread attr setsynctype np() and pthread attr getsynctype np()
control the synctype of the thread to be created. The synctype is one of:

PTATSYNCHRONOUS A thread can only be created if a task is available (or the max-
imum number of threads, if smaller.)

PTATASYNCHRONOUS Threads can be created up to the maximum number of threads.

PTATASYNCHRONOUS threads will be created up to the maximum number of threads.
If there are no available tasks, the thread will be queued for execution when an-
other thread ends and a task becomes available. Queued threads can be affected
by other pthread functions, but aren’t executing until a task becomes available;
which complicates thread coordination. The default value for the Dignus runtime
is PTATSYNCHRONOUS. The pthread set limit np(3) function can be used to control
the number of tasks and threads for the process.

878 Systems/C C Library

RETURN VALUES

If successful, these functions return 0. Otherwise, an error number is returned to
indicate the error.

ERRORS

The pthread attr init() function will fail if:

[ENOMEM] Out of memory.

The pthread attr destroy() function will fail if:

[EINVAL] Invalid value for attr.

The pthread attr setstacksize() and pthread attr setstack() functions will
fail if:

[EINVAL] stacksize is less than PTHREAD STACK MIN.

The pthread attr setdetachstate() function will fail if:

[EINVAL] Invalid value for detachstate.

The pthread attr setinheritsched() function will fail if:

[EINVAL] Invalid value for attr.

The pthread attr setschedparam() function will fail if:

[EINVAL] Invalid value for attr.

[ENOTSUP] Invalid value for param.

The pthread attr setschedpolicy() function will fail if:

[EINVAL] Invalid value for attr.

[ENOTSUP] Invalid value for policy.

Systems/C C Library 879

The pthread attr setscope() function will fail if:

[EINVAL] Invalid value for attr.

[ENOTSUP] Invalid or unsupported value for contentionscope.

The pthread attr setweight np() function will fail if:

[EINVAL] Invalid value for attr.

The pthread attr setsynctype np() function will fail if:

[EINVAL] Invalid value for attr.

SEE ALSO

pthread create(3), pthread set limit np(3).

IMPLEMENTATION

This implementation does not support the process-shared attribute, nor does it
support scheduling scope or scheduling attributes.

STANDARDS

pthread attr init(), pthread attr destroy(), pthread attr setstacksize(),
pthread attr getstacksize(), pthread attr setstackaddr(),
pthread attr getstackaddr(), pthread attr setdetachstate(), and
pthread attr getdetachstate() functions conform to ISO/IEC 9945-1:1996
(“POSIX.1”)

The pthread attr setinheritsched(), pthread attr getinheritsched(),
pthread attr setschedparam(), pthread attr getschedparam(),
pthread attr setschedpolicy(), pthread attr getschedpolicy(),
pthread attr setscope(), and pthread attr getscope() functions con-
form to Version 2 of the Single UNIX Specification (“SUSv2”)

880 Systems/C C Library

PTHREAD BARRIER(3)

NAME

pthread barrier destroy, pthread barrier init, pthread barrier wait - destroy, initial-
ize or wait on a barrier object

SYNOPSIS

#include <pthread.h>

int
pthread_barrier_destroy(pthread_barrier_t *barrier);

int
pthread_barrier_init(pthread_barrier_t *barrier,

const pthread_barrierattr_t *attr, unsigned count);

int
pthread_barrier_wait(pthread_barrier_t *barrier);

DESCRIPTION

The pthread barrier init() function will initialize barrier with attributes specified
in attr, or if it is NULL, with default attributes. The number of threads that must
call pthread barrier wait() before any of the waiting threads can be released is
specified by count. The pthread barrier destroy() function will destroy barrier
and release any resources that may have been allocated on its behalf.

The pthread barrier wait() function will synchronize calling threads at bar-
rier. The threads will be blocked from making further progress until a sufficient
number of threads calls this function. The number of threads that must call
it before any of them will be released is determined by the count argument to
pthread barrier init(). Once the threads have been released the barrier will be
reset.

RETURN VALUES

If successful, both pthread barrier destroy() and pthread barrier init() will
return zero. Otherwise, an error number will be returned to indicate the error. If the
call to pthread barrier wait() is successful, all but one of the threads will return
zero. That one thread will return PTHREAD BARRIER SERIAL THREAD. Otherwise, an
error number will be returned to indicate the error.

None of these functions will return EINTR.

Systems/C C Library 881

ERRORS

The pthread barrier destroy() function will fail if:

[EBUSY] An attempt was made to destroy barrier while it was in use.

The pthread barrier destroy() and pthread barrier wait() functions may fail
if:

[EINVAL] The value specified by barrier is invalid.

The pthread barrier init() function will fail if:

[EAGAIN] The system lacks resources, other than memory, to initialize barrier.

[EINVAL] The count argument is less than 1.

[ENOMEM] Insufficient memory to initialize barrier.

SEE ALSO

pthread barrierattr(3)

882 Systems/C C Library

PTHREAD BARRIERATTR(3)

NAME

pthread barrierattr destroy, pthread barrierattr getpshared,
pthread barrierattr init, pthread barrierattr setpshared - manipulate a bar-
rier attribute object

SYNOPSIS

#include <pthread.h>

int
pthread_barrierattr_destroy(pthread_barrierattr_t *attr);

int
pthread_barrierattr_getpshared(const pthread_barrierattr_t *attr,

int *pshared);

int
pthread_barrierattr_init(pthread_barrierattr_t *attr);

int
pthread_barrierattr_setpshared(pthread_barrierattr_t *attr, int pshared);

DESCRIPTION

The pthread barrierattr init() function will initialize attr with default attributes.
The pthread barrierattr destroy() function will destroy attr and release any
resources that may have been allocated on its behalf.

The pthread barrierattr getpshared() function will put the value of the process-
shared attribute from attr into the memory area pointed to by pshared. The
pthread barrierattr setpshared() function will set the process-shared attribute
of attr to the value specified in pshared. The argument pshared may have one of the
following values:

[PTHREAD PROCESS PRIVATE] The barrier object it is attached to may only be ac-
cessed by threads in the same process as the one that created the
object.

[PTHREAD PROCESS SHARED] The barrier object it is attached to may be accessed by
threads in processes other than the one that created the object.

Systems/C C Library 883

RETURN VALUES

If successful, all these functions will return zero. Otherwise, an error number will
be returned to indicate the error.

None of these functions will return EINTR.

ERRORS

The pthread barrierattr destroy(), pthread barrierattr getpshared() and
pthread barrierattr setpshared() functions may fail if:

[EINVAL] The value specified by attr is invalid.

The pthread barrierattr init() function will fail if:

[ENOMEM] Insufficient memory to initialize the barrier attribute object attr.

The pthread barrierattr setpshared() function will fail if:

[EINVAL] The value specified in pshared is not one of the allowed values.

SEE ALSO

pthread barrier destroy(3), pthread barrier init(3), pthread barrier wait(3)

IMPLEMENTATION

This implementation does not support process-shared barriers.

884 Systems/C C Library

PTHREAD CANCEL(3)

NAME

pthread cancel – cancel execution of a thread

SYNOPSIS

#include <pthread.h>

int
pthread_cancel(pthread_t thread);

DESCRIPTION

The pthread cancel() function requests that thread be canceled. The target
thread’s cancelability state and type determines when the cancellation takes effect.
When the cancellation is acted on, the cancellation cleanup handlers for thread are
called. When the last cancellation cleanup handler returns, the thread-specific data
destructor functions will be called for thread. When the last destructor function
returns, thread will be terminated.

The cancellation processing in the target thread runs asynchronously with respect
to the calling thread returning from pthread cancel().

A status of PTHREAD CANCELED is made available to any threads joining with the
target. The symbolic constant PTHREAD CANCELED expands to a constant expression
of type (void *), whose value matches no pointer to an object in memory nor the
value NULL.

RETURN VALUES

If successful, the pthread cancel() functions will return zero. Otherwise an error
number will be returned to indicate the error.

ERRORS

The pthread cancel() function will fail if:

[ESRCH] No thread could be found corresponding to that specified by the
given thread ID.

Systems/C C Library 885

SEE ALSO

pthread cleanup pop(3), pthread cleanup push(3), pthread exit(3), pthread join(3),
pthread setcancelstate(3), pthread setcanceltype(3), pthread testcancel(3)

STANDARDS

The pthread cancel() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”).

886 Systems/C C Library

PTHREAD CLEANUP POP(3)

NAME

pthread cleanup pop – call the first cleanup routine

SYNOPSIS

#include <pthread.h>

void
pthread_cleanup_pop(int execute);

DESCRIPTION

The pthread cleanup pop() function pops the top cleanup routine off of the cur-
rent threads cleanup routine stack, and, if execute is non-zero, it will execute the
function. If there is no cleanup routine then pthread cleanup pop() does nothing.

The pthread cleanup pop() function is required to be in the lexical scope as its
corresponding pthread cleanup push().

RETURN VALUES

The pthread cleanup pop() function does not return any value.

ERRORS

None

SEE ALSO

pthread cleanup push(3), pthread exit(3)

STANDARDS

The pthread cleanup pop() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

Systems/C C Library 887

PTHREAD CLEANUP PUSH(3)

NAME

pthread cleanup push – add a cleanup function for thread exit

SYNOPSIS

#include <pthread.h>

void
pthread_cleanup_push(void (*cleanup_routine)(void *), void *arg);

DESCRIPTION

The pthread cleanup push() function adds cleanup routine to the top of the stack
of cleanup handlers that get called when the current thread exits.

When cleanup routine is called, it is passed arg as its only argument.

The pthread cleanup push() function is required to be used in the same lexical
scope as its corresponding pthread cleanup pop().

RETURN VALUES

The pthread cleanup push() function does not return any value.

ERRORS

None

SEE ALSO

pthread cleanup pop(3), pthread exit(3)

STANDARDS

The pthread cleanup push() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

888 Systems/C C Library

PTHREAD CONDATTR(3)

NAME

pthread condattr init, pthread condattr destroy, pthread condattr getclock,
pthread condattr setclock, pthread condattr getpshared,
pthread condattr setpshared – condition attribute operations

SYNOPSIS

#include <pthread.h>

int
pthread_condattr_init(pthread_condattr_t *attr);

int
pthread_condattr_destroy(pthread_condattr_t *attr);

int
pthread_condattr_getclock(pthread_condattr_t * restrict attr,

clock_t * restrict clock_id);

int
pthread_condattr_setclock(pthread_condattr_t *attr, clock_t clock_id);

int
pthread_condattr_getpshared(pthread_condattr_t * restrict attr,

int * restrict pshared);

int
pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared);

DESCRIPTION

Condition attribute objects are used to specify parameters to pthread cond init().

The pthread condattr init() function initializes a condition attribute object with
the default attributes.

The pthread condattr destroy() function destroys a condition attribute object.

The pthread condattr getclock() function will put the value of the clock
attribute from attr into the memory area pointed to by clock id. The
pthread condattr setclock() function will set the clock attribute of attr to the

Systems/C C Library 889

value specified in clock id. The clock attribute affects the interpretation of ab-
stime in pthread cond timedwait(3) and may be set to CLOCK REALTIME (default) or
CLOCK MONOTONIC.

The pthread condattr getpshared() function will put the value of the process-
shared attribute from attr into the memory area pointed to by pshared. The
pthread condattr setpshared() function will set the process-shared attribute of
attr to the value specified in pshared. The argument pshared may have one of the
following values:

PTHREAD PROCESS PRIVATE The condition variable it is attached to may only be ac-
cessed by threads in the same process as the one that created the
object.

PTHREAD PROCESS SHARED The condition variable it is attached to may be accessed
by threads in processes other than the one that created the object.

This implementation does not support PTHREAD PROCESS SHARED.

RETURN VALUES

If successful, these functions return 0. Otherwise, an error number is returned to
indicate the error.

ERRORS

The pthread condattr init() function will fail if:

[ENOMEM] Out of memory.

The pthread condattr destroy() function will fail if:

[EINVAL] Invalid value for attr.

The pthread condattr setclock() function will fail if:

[EINVAL] The value specified in clock id is not one of the allowed values.

The pthread condattr setpshared() function will fail if:

[EINVAL] The value specified in pshared is not one of the allowed values.

890 Systems/C C Library

SEE ALSO

pthread cond init(3), pthread cond timedwait(3)

STANDARDS

The pthread condattr init() and pthread condattr destroy() functions con-
form to ISO/IEC 9945-1:1996 (“POSIX.1”)

Systems/C C Library 891

PTHREAD COND BROADCAST(3)

NAME

pthread cond broadcast – unblock all threads waiting for a condition variable

SYNOPSIS

#include <pthread.h>

int
pthread_cond_broadcast(pthread_cond_t *cond);

DESCRIPTION

The pthread cond broadcast() function unblocks all threads waiting for the con-
dition variable cond.

RETURN VALUES

If successful, the pthread cond broadcast() function will return zero, otherwise
an error number will be returned to indicate the error.

ERRORS

The pthread cond broadcast() function will fail if:

[EINVAL] The value specified by cond is invalid.

SEE ALSO

pthread cond destroy(3), pthread cond init(3), pthread cond signal(3),
pthread cond timedwait(3), pthread cond wait(3)

STANDARDS

The pthread cond broadcast() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

892 Systems/C C Library

PTHREAD COND DESTROY(3)

NAME

pthread cond destroy – destroy a condition variable

SYNOPSIS

#include <pthread.h>

int
pthread_cond_destroy(pthread_cond_t *cond);

DESCRIPTION

The pthread cond destroy() function frees the resources allocated by the condi-
tion variable cond.

RETURN VALUES

If successful, the pthread cond destroy() function will return zero, otherwise an
error number will be returned to indicate the error.

ERRORS

The pthread cond destroy() function will fail if:

[EINVAL] The value specified by cond is invalid.

[EBUSY] The variable cond is locked by another thread.

SEE ALSO

pthread cond broadcast(3), pthread cond init(3), pthread cond signal(3),
pthread cond timedwait(3), pthread cond wait(3)

STANDARDS

The pthread cond destroy() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

Systems/C C Library 893

PTHREAD COND INIT(3)

NAME

pthread cond init – create a condition variable

SYNOPSIS

#include <pthread.h>

int
pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr);

DESCRIPTION

The pthread cond init() function creates a new condition variable, with attributes
specified with attr. If attr is NULL the default attributes are used.

RETURN VALUES

If successful, the pthread cond init() function will return zero and put the new
condition variable id into cond, otherwise an error number will be returned to indi-
cate the error.

ERRORS

The pthread cond init() function will fail if:

[EINVAL] The value specified by attr is invalid.

[ENOMEM] The process cannot allocate enough memory to create another con-
dition variable.

[EAGAIN] The system temporarily lacks the resources to create another con-
dition variable.

SEE ALSO

pthread cond broadcast(3), pthread cond destroy(3), pthread cond signal(3),
pthread cond timedwait(3), pthread cond wait(3)

894 Systems/C C Library

STANDARDS

The pthread cond init() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

Systems/C C Library 895

PTHREAD COND SIGNAL(3)

NAME

pthread cond signal – unblock a thread waiting for a condition variable

SYNOPSIS

#include <pthread.h>

int
pthread_cond_signal(pthread_cond_t *cond);

DESCRIPTION

The pthread cond signal() function unblocks one thread waiting for the condition
variable cond.

RETURN VALUES

If successful, the pthread cond signal() function will return zero, otherwise an
error number will be returned to indicate the error.

ERRORS

The pthread cond signal() function will fail if:

[EINVAL] The value specified by cond is invalid.

SEE ALSO

pthread cond broadcast(3), pthread cond destroy(3), pthread cond init(3),
pthread cond timedwait(3), pthread cond wait(3)

STANDARDS

The pthread cond signal() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

896 Systems/C C Library

PTHREAD COND TIMEDWAIT(3)

NAME

pthread cond timedwait – wait on a condition variable for a specific amount of time

SYNOPSIS

#include <pthread.h>

int
pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,

const struct timespec *abstime);

DESCRIPTION

The pthread cond timedwait() function atomically blocks the current thread
waiting on the condition variable specified by cond, and unblocks the mutex spec-
ified by mutex. The waiting thread unblocks only after another thread calls
pthread cond signal(3), or pthread cond broadcast(3) with the same condition vari-
able, or if the system time reaches the time specified in abstime, and the current
thread reacquires the lock on mutex.

RETURN VALUES

If successful, the pthread cond timedwait() function will return zero. Otherwise
an error number will be returned to indicate the error.

ERRORS

The pthread cond timedwait() function will fail if:

[EINVAL] The value specified by cond, mutex or abstime is invalid.

[ETIMEDOUT] The system time has reached or exceeded the time specified in ab-
stime.

SEE ALSO

pthread cond broadcast(3), pthread cond destroy(3), pthread cond init(3),
pthread cond signal(3), pthread cond wait(3)

Systems/C C Library 897

STANDARDS

The pthread cond timedwait() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

898 Systems/C C Library

PTHREAD COND WAIT(3)

NAME

pthread cond wait – wait on a condition variable

SYNOPSIS

#include <pthread.h>

int
pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

DESCRIPTION

The pthread cond wait() function atomically blocks the current thread waiting on
the condition variable specified by cond, and unblocks the mutex specified by mutex.
The waiting thread unblocks only after another thread calls pthread cond signal(3),
or pthread cond broadcast(3) with the same condition variable, and the current
thread reacquires the lock on mutex.

RETURN VALUES

If successful, the pthread cond wait() function will return zero. Otherwise an
error number will be returned to indicate the error.

ERRORS

The pthread cond wait() function will fail if:

[EINVAL] The value specified by cond or the value specified by mutex is invalid.

SEE ALSO

pthread cond broadcast(3), pthread cond destroy(3), pthread cond init(3),
pthread cond signal(3), pthread cond timedwait(3)

STANDARDS

The pthread cond wait() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

Systems/C C Library 899

PTHREAD CREATE(3)

NAME

pthread create – create a new thread

SYNOPSIS

#include <pthread.h>

int
pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine)(void *), void *arg);

DESCRIPTION

The pthread create() function is used to create a new thread, with attributes
specified by attr, within a process. If attr is NULL, the default attributes are used.
If the attributes specified by attr are modified later, the thread’s attributes are not
affected. Upon successful completion pthread create() will store the ID of the
created thread in the location specified by thread.

The thread is created executing start routine with arg as its sole argument. If the
start routine returns, the effect is as if there was an implicit call to pthread exit()
using the return value of start routine as the exit status. Note that the thread
in which main() was originally invoked differs from this. When it returns from
main(), the effect is as if there was an implicit call to exit() using the return value
of main() as the exit status.

The signal state of the new thread is initialized as:

o The signal mask is inherited from the creating thread.

o The set of signals pending for the new thread is empty.

RETURN VALUES

If successful, the pthread create() function will return zero. Otherwise an error
number will be returned to indicate the error.

900 Systems/C C Library

ERRORS

The pthread create() function will fail if:

[EAGAIN] The system lacked the necessary resources to create another thread,
or the system-imposed limit on the total number of threads in a
process [PTHREAD THREADS MAX] would be exceeded.

[EINVAL] The value specified by attr is invalid.

[EMVSERR] An internal error occurred in the operation system, this should be
reported to IBM.

IMPLEMENTATION

The pthread create() function depends on the use of the Unix Systems Services
(POSIX) subsystem and POSIX signals. If pthread create() is linked with your
program, then POSIX signals are assumed.

Programs that invoke pthread create() become ”threaded”. When such programs
end they invoke the POSIX exit(2) function and don’t simply return to the caller
as other Systems/C programs do.

Unlike stack space for the main() program, the stack space for a thread is not
expandable. Enough space must be allocated for the thread to use or the program
will suffer a Dignus out-of-stack ABEND. The default stack space for both 31-bit
and 64-bit programs is 4096 bytes, which can be quite small for some programs.

SEE ALSO

fork(2), pthread cleanup pop(3), pthread cleanup push(3), pthread exit(3),
pthread join(3)

STANDARDS

The pthread create() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”).

Systems/C C Library 901

PTHREAD DETACH(3)

NAME

pthread detach – detach a thread

SYNOPSIS

#include <pthread.h>

int
pthread_detach(pthread_t thread);

DESCRIPTION

The pthread detach() function is used to indicate to the implementation that
storage for the thread thread can be reclaimed when the thread terminates. If
thread has not terminated, pthread detach() will not cause it to terminate. The
effect of multiple pthread detach() calls on the same target thread is unspecified.

RETURN VALUES

If successful, the pthread detach() function will return zero. Otherwise an error
number will be returned to indicate the error.

ERRORS

The pthread detach() function will fail if:

[EINVAL] The implementation has detected that the value specified by thread
does not refer to a joinable thread.

[ESRCH] No thread could be found corresponding to that specified by the
given thread ID, thread.

SEE ALSO

pthread join(3)

902 Systems/C C Library

STANDARDS

The pthread detach() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”).

Systems/C C Library 903

PTHREAD EQUAL(3)

NAME

pthread equal – compare thread IDs

SYNOPSIS

#include <pthread.h>

int
pthread_equal(pthread_t t1, pthread_t t2);

DESCRIPTION

The pthread equal() function compares the thread IDs t1 and t2.

RETURN VALUES

The pthread equal() function will return non-zero if the thread IDs t1 and t2
correspond to the same thread, otherwise it will return zero.

ERRORS

None.

SEE ALSO

pthread create(3), pthread exit(3)

STANDARDS

The pthread equal() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”).

904 Systems/C C Library

PTHREAD EXIT(3)

NAME

pthread exit – terminate the calling thread

SYNOPSIS

#include <pthread.h>

void
pthread_exit(void *value_ptr);

DESCRIPTION

The pthread exit() function terminates the calling thread and makes the value
value ptr available to any successful join with the terminating thread. Any cancel-
lation cleanup handlers that have been pushed and are not yet popped are popped
in the reverse order that they were pushed and then executed. Thread termination
does not release any application visible process resources, including, but not lim-
ited to, mutexes and file descriptors, nor does it perform any process level cleanup
actions, including, but not limited to, calling atexit() routines that may exist.

An implicit call to pthread exit() is made when a thread other than the thread
in which main() was first invoked returns from the start routine that was used to
create it. The function’s return value serves as the thread’s exit status.

The behavior of pthread exit() is undefined if called from a cancellation handler
or destructor function that was invoked as the result of an implicit or explicit call
to pthread exit().

After a thread has terminated, the result of access to local (auto) vari- ables of the
thread is undefined. Thus, references to local variables of the exiting thread should
not be used for the pthread exit() value ptr parameter value.

The process will exit with an exit status of 0 after the last thread has been termi-
nated. The behavior is as if the implementation called exit() with a zero argument
at thread termination time.

RETURN VALUES

The pthread exit() function cannot return to its caller.

Systems/C C Library 905

ERRORS

None.

SEE ALSO

exit(2), exit(3), pthread create(3), pthread join(3)

STANDARDS

The pthread exit() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”).

906 Systems/C C Library

PTHREAD GETSPECIFIC(3)

NAME

pthread getspecific – get a thread-specific data value

SYNOPSIS

#include <pthread.h>

void *
pthread_getspecific(pthread_key_t key);

DESCRIPTION

The pthread getspecific() function returns the value currently bound to the spec-
ified key on behalf of the calling thread.

The effect of calling pthread getspecific() with a key value not obtained from
pthread key create() or after key has been deleted with pthread key delete()
is undefined.

The pthread getspecific() function may be called from a thread-specific data
destructor function.

RETURN VALUES

The pthread getspecific() function will return the thread-specific data value as-
sociated with the given key. If no thread-specific data value is associated with key,
then the value NULL is returned.

ERRORS

None.

SEE ALSO

pthread key create(3), pthread key delete(3), pthread setspecific(3)

Systems/C C Library 907

STANDARDS

The pthread getspecific() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

908 Systems/C C Library

PTHREAD JOIN(3)

NAME

pthread join – wait for thread termination

SYNOPSIS

#include <pthread.h>

int
pthread_join(pthread_t thread, void **value_ptr);

DESCRIPTION

The pthread join() function suspends execution of the calling thread until the
target thread terminates unless the target thread has already terminated.

On return from a successful pthread join() call with a non-NULL value ptr argu-
ment, the value passed to pthread exit() by the terminating thread is stored in
the location referenced by value ptr. When a pthread join() returns successfully,
the target thread has been terminated. The results of multiple simultaneous calls
to pthread join() specifying the same target thread are undefined. If the thread
calling pthread join() is cancelled, then the target thread is not detached.

A thread that has exited but remains unjoined counts against
[POSIX THREAD THREADS MAX].

RETURN VALUES

If successful, the pthread join() function will return zero. Otherwise an error number
will be returned to indicate the error.

ERRORS

The pthread join() function will fail if:

[EINVAL] The implementation has detected that the value specified by thread
does not refer to a joinable thread.

[ESRCH] No thread could be found corresponding to that specified by the
given thread ID, thread.

[EDEADLK] A deadlock was detected or the value of thread specifies the calling
thread.

Systems/C C Library 909

SEE ALSO

wait(2), pthread create(3)

STANDARDS

The pthread join() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”).

910 Systems/C C Library

PTHREAD KEY CREATE(3)

NAME

pthread key create – thread-specific data key creation

SYNOPSIS

#include <pthread.h>

int
pthread_key_create(pthread_key_t *key, void (*destructor)(void *));

DESCRIPTION

The pthread key create() function creates a thread-specific data key visible to all
threads in the process. Key values provided by pthread key create() are opaque
objects used to locate thread-specific data. Although the same key value may be
used by different threads, the values bound to the key by pthread setspecific()
are maintained on a per-thread basis and persist for the life of the calling thread.

Upon key creation, the value NULL is associated with the new key in all active
threads. Upon thread creation, the value NULL is associated with all defined keys in
the new thread.

An optional destructor function may be associated with each key value. At thread
exit, if a key value has a non-NULL destructor pointer, and the thread has a non-
NULL value associated with the key, the function pointed to is called with the current
associated value as its sole argument. The order of destructor calls is unspecified if
more than one destructor exists for a thread when it exits.

If, after all the destructors have been called for all non-NULL values with associ-
ated destructors, there are still some non-NULL values with associated destructors,
then the process is repeated. If, after at least [PTHREAD DESTRUCTOR ITERATIONS]
iterations of destructor calls for outstanding non-NULL values, there are still some
non-NULL values with associated destructors, the implementation stops calling de-
structors.

RETURN VALUES

If successful, the pthread key create() function will store the newly created key
value at the location specified by key and returns zero.

Otherwise an error number will be returned to indicate the error.

Systems/C C Library 911

ERRORS

The pthread key create() function will fail if:

[EAGAIN] The system lacked the necessary resources to create another thread-
specific data key, or the system-imposed limit on the total number
of keys per process [PTHREAD KEYS MAX] would be exceeded.

[ENOMEM] Insufficient memory exists to create the key.

SEE ALSO

pthread getspecific(3), pthread key delete(3), pthread setspecific(3)

STANDARDS

The pthread key create() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

912 Systems/C C Library

PTHREAD KEY DELETE(3)

NAME

pthread key delete – delete a thread-specific data key

SYNOPSIS

#include <pthread.h>

int
pthread_key_delete(pthread_key_t key);

DESCRIPTION

The pthread key delete() function deletes a thread-specific data key previously
returned by pthread key create(). The thread-specific data values associated
with key need not be NULL at the time that pthread key delete() is called. It
is the responsibility of the application to free any application storage or perform
any cleanup actions for data structures related to the deleted key or associated
thread-specific data in any threads; this cleanup can be done either before or after
pthread key delete() is called. Any attempt to use key following the call to
pthread key delete() results in undefined behavior.

The pthread key delete() function is callable from within destructor functions.
Destructor functions are not invoked by pthread key delete(). Any destructor
function that may have been associated with key will no longer be called upon
thread exit.

RETURN VALUES

If successful, the pthread key delete() function will return zero. Otherwise an
error number will be returned to indicate the error.

ERRORS

The pthread key delete() function will fail if:

[EINVAL] The key value is invalid.

Systems/C C Library 913

SEE ALSO

pthread getspecific(3), pthread key create(3), pthread setspecific(3)

STANDARDS

The pthread key delete() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

914 Systems/C C Library

PTHREAD KILL(3)

NAME

pthread kill – send a signal to a specified thread

SYNOPSIS

#include <pthread.h>
#include <signal.h>

int
pthread_kill(pthread_t thread, int sig);

DESCRIPTION

The pthread kill() function sends a signal, specified by sig, to a thread, specified
by thread. If sig is 0, error checking is performed, but no signal is actually sent.

RETURN VALUES

If successful, pthread kill() returns 0. Otherwise, an error number is returned.

ERRORS

The pthread kill() function will fail if:

[ESRCH] thread is an invalid thread ID.

[EINVAL] sig is an invalid or unsupported signal number.

SEE ALSO

kill(2), pthread self(3), raise(3)

STANDARDS

The pthread kill() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”)

Systems/C C Library 915

PTHREAD MAIN NP(3)

NAME

pthread main np – identify the initial thread

SYNOPSIS

#include <pthread.h>

int
pthread_main_np(void);

DESCRIPTION

The pthread main np function is used identify the initial thread.

RETURN VALUES

The pthread main np function returns 1 if the calling thread is the initial thread
and 0 if the calling thread is not the initial thread.

SEE ALSO

pthread create(3), pthread equal(3), pthread self(3)

916 Systems/C C Library

PTHREAD MUTEXATTR(3)

NAME

pthread mutexattr init, pthread mutexattr destroy,
pthread mutexattr setprioceiling, pthread mutexattr getprioceiling,
pthread mutexattr setprotocol, pthread mutexattr getprotocol,
pthread mutexattr settype, pthread mutexattr gettype – mutex attribute
operations

SYNOPSIS

#include <pthread.h>

int
pthread_mutexattr_init(pthread_mutexattr_t *attr);

int
pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

int
pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,

int prioceiling);

int
pthread_mutexattr_getprioceiling(pthread_mutexattr_t *attr,

int *prioceiling);

int
pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr, int protocol);

int
pthread_mutexattr_getprotocol(pthread_mutexattr_t *attr, int *protocol);

int
pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

int
pthread_mutexattr_gettype(pthread_mutexattr_t *attr, int *type);

DESCRIPTION

Mutex attributes are used to specify parameters to pthread mutex init(). One
attribute object can be used in multiple calls to pthread mutex init(), with or
without modifications between calls.

Systems/C C Library 917

The pthread mutexattr init() function initializes attr with all the default mutex
attributes.

The pthread mutexattr destroy() function destroys attr.

The pthread mutexattr set*() functions set the attribute that corresponds to
each function name.

The pthread mutexattr get*() functions copy the value of the attribute that
corresponds to each function name to the location pointed to by the second function
parameter.

RETURN VALUES

If successful, these functions return 0. Otherwise, an error number is returned to
indicate the error.

ERRORS

The pthread mutexattr init() function will fail if:

[ENOMEM] Out of memory.

The pthread mutexattr destroy() function will fail if:

[EINVAL] Invalid value for attr.

The pthread mutexattr setprioceiling() function will fail if:

[EINVAL] Invalid value for attr, or invalid value for prioceiling.

The pthread mutexattr getprioceiling() function will fail if:

[EINVAL] Invalid value for attr.

The pthread mutexattr setprotocol() function will fail if:

[EINVAL] Invalid value for attr, or invalid value for protocol.

The pthread mutexattr getprotocol() function will fail if:

918 Systems/C C Library

[EINVAL] Invalid value for attr.

The pthread mutexattr settype() function will fail if:

[EINVAL] Invalid value for attr, or invalid value for type.

The pthread mutexattr gettype() function will fail if:

[EINVAL] Invalid value for attr.

IMPLEMENTATION

This implementation does not support scheduling priority settings.

SEE ALSO

pthread mutex init(3)

STANDARDS

The pthread mutexattr init() and pthread mutexattr destroy() functions
conform to ISO/IEC 9945-1:1996 (“POSIX.1”)

The pthread mutexattr setprioceiling(),
pthread mutexattr getprioceiling(), pthread mutexattr setprotocol(),
pthread mutexattr getprotocol(), pthread mutexattr settype(), and
pthread mutexattr gettype() functions conform to Version 2 of the Single
UNIX Specification (“SUSv2”)

Systems/C C Library 919

PTHREAD MUTEX DESTROY(3)

NAME

pthread mutex destroy – free resources allocated for a mutex

SYNOPSIS

#include <pthread.h>

int
pthread_mutex_destroy(pthread_mutex_t *mutex);

DESCRIPTION

The pthread mutex destroy() function frees the resources allocated for mutex.

RETURN VALUES

If successful, pthread mutex destroy() will return zero, otherwise an error num-
ber will be returned to indicate the error.

ERRORS

The pthread mutex destroy() function will fail if:

[EINVAL] The value specified by mutex is invalid.

[EBUSY] mutex is locked by another thread.

SEE ALSO

pthread mutex init(3), pthread mutex lock(3), pthread mutex trylock(3),
pthread mutex unlock(3)

STANDARDS

The pthread mutex destroy() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

920 Systems/C C Library

PTHREAD MUTEX INIT(3)

NAME

pthread mutex init – create a mutex

SYNOPSIS

#include <pthread.h>

int
pthread_mutex_init(pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);

DESCRIPTION

The pthread mutex init() function creates a new mutex, with attributes specified
with attr. If attr is NULL the default attributes are used.

RETURN VALUES

If successful, pthread mutex init() will return zero and put the new mutex id
into mutex, otherwise an error number will be returned to indicate the error.

ERRORS

The pthread mutex init() function will fail if:

[EINVAL] The value specified by attr is invalid.

[ENOMEM] The process cannot allocate enough memory to create another mu-
tex.

SEE ALSO

pthread mutex destroy(3), pthread mutex lock(3), pthread mutex trylock(3),
pthread mutex unlock(3)

Systems/C C Library 921

STANDARDS

The pthread mutex init() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

922 Systems/C C Library

PTHREAD MUTEX LOCK(3)

NAME

pthread mutex lock – lock a mutex

SYNOPSIS

#include <pthread.h>

int
pthread_mutex_lock(pthread_mutex_t *mutex);

DESCRIPTION

The pthread mutex lock() function locks mutex. If the mutex is already locked,
the calling thread will block until the mutex becomes available.

RETURN VALUES

If successful, pthread mutex lock() will return zero, otherwise an error number
will be returned to indicate the error.

ERRORS

The pthread mutex lock() function will fail if:

[EINVAL] The value specified by mutex is invalid.

[EDEADLK] A deadlock would occur if the thread blocked waiting for mutex.

SEE ALSO

pthread mutex destroy(3), pthread mutex init(3), pthread mutex trylock(3),
pthread mutex unlock(3)

STANDARDS

The pthread mutex lock() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

Systems/C C Library 923

PTHREAD MUTEX TRYLOCK(3)

NAME

pthread mutex trylock – attempt to lock a mutex without blocking

SYNOPSIS

#include <pthread.h>

int
pthread_mutex_trylock(pthread_mutex_t *mutex);

DESCRIPTION

The pthread mutex trylock() function locks mutex. If the mutex is already
locked, pthread mutex trylock() will not block waiting for the mutex, but will
return an error condition.

RETURN VALUES

If successful, pthread mutex trylock() will return zero, otherwise an error num-
ber will be returned to indicate the error.

ERRORS

The pthread mutex trylock() function will fail if:

[EINVAL] The value specified by mutex is invalid.

[EBUSY] mutex is already locked.

SEE ALSO

pthread mutex destroy(3), pthread mutex init(3), pthread mutex lock(3),
pthread mutex unlock(3)

STANDARDS

The pthread mutex trylock() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

924 Systems/C C Library

PTHREAD MUTEX UNLOCK(3)

NAME

pthread mutex unlock – unlock a mutex

SYNOPSIS

#include <pthread.h>

int
pthread_mutex_unlock(pthread_mutex_t *mutex);

DESCRIPTION

If the current thread holds the lock on mutex, then the pthread mutex unlock()
function unlocks mutex.

RETURN VALUES

If successful, pthread mutex unlock() will return zero, otherwise an error number
will be returned to indicate the error.

ERRORS

The pthread mutex unlock() function will fail if:

[EINVAL] The value specified by mutex is invalid.

[EPERM] The current thread does not hold a lock on mutex.

SEE ALSO

pthread mutex destroy(3), pthread mutex init(3), pthread mutex lock(3),
pthread mutex trylock(3)

STANDARDS

The pthread mutex unlock() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

Systems/C C Library 925

PTHREAD ONCE(3)

NAME

pthread once – dynamic package initialization

SYNOPSIS

#include <pthread.h>

pthread_once_t once_control = PTHREAD_ONCE_INIT;

int
pthread_once(pthread_once_t *once_control, void (*init_routine)(void));

DESCRIPTION

The first call to pthread once() by any thread in a process, with a given
once control, will call the init routine() with no arguments. Subsequent calls to
pthread once() with the same once control will not call the init routine(). On re-
turn from pthread once(), it is guaranteed that init routine() has completed. The
once control parameter is used to determine whether the associated initialization
routine has been called.

The function pthread once() is not a cancellation point. However, if init routine()
is a cancellation point and is cancelled, the effect on once control is as if
pthread once() was never called.

The constant PTHREAD ONCE INIT is defined by header <pthread.h>.

The behavior of pthread once() is undefined if once control has automatic storage
duration or is not initialized by PTHREAD ONCE INIT.

RETURN VALUES

If successful, the pthread once() function will return zero. Otherwise an error
number will be returned to indicate the error.

ERRORS

None.

926 Systems/C C Library

STANDARDS

The pthread once() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”).

Systems/C C Library 927

PTHREAD RWLOCKATTR DESTROY(3)

NAME

pthread rwlockattr destroy – destroy a read/write lock

SYNOPSIS

#include <pthread.h>

int
pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);

DESCRIPTION

The pthread rwlockattr destroy() function is used to destroy a read/write lock
attribute object previously created with pthread rwlockattr init().

RETURN VALUES

If successful, the pthread rwlockattr destroy() function will return zero. Oth-
erwise an error number will be returned to indicate the error.

ERRORS

The pthread rwlockattr destroy() function may fail if:

[EINVAL] The value specified by attr is invalid.

SEE ALSO

pthread rwlockattr init(3)

STANDARDS

The pthread rwlockattr destroy() function is expected to conform to Version 2
of the Single UNIX Specification (“SUSv2”).

928 Systems/C C Library

PTHREAD RWLOCKATTR GETPSHARED(3)

NAME

pthread rwlockattr getpshared – get the process shared attribute

SYNOPSIS

#include <pthread.h>

int
pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *attr,

int *pshared);

DESCRIPTION

The pthread rwlockattr getpshared() function is used to get the process shared
setting of a read/write lock attribute object. The setting is returned via pshared,
and may be one of two values:

[PTHREAD PROCESS SHARED] Any thread of any process that has access to the mem-
ory where the read/write lock resides can manipulate the lock.

[PTHREAD PROCESS PRIVATE] Only threads created within the same process as the
thread that initialized the read/write lock can manipulate the lock.
This is the default value.

RETURN VALUES

If successful, the pthread rwlockattr getpshared() function will return zero.
Otherwise an error number will be returned to indicate the error.

ERRORS

The pthread rwlockattr getpshared() function may fail if:

[EINVAL] The value specified by attr is invalid.

IMPLEMENTATION

This implementation does not support process shared locks.

Systems/C C Library 929

SEE ALSO

pthread rwlockattr init(3), pthread rwlockattr setpshared(3),
pthread rwlock init(3)

STANDARDS

The pthread rwlockattr getpshared() function is expected to conform to Ver-
sion 2 of the Single UNIX Specification (“SUSv2”).

PTHREAD RWLOCKATTR INIT(3)

NAME

pthread rwlockattr init – initialize a read/write lock

SYNOPSIS

#include <pthread.h>

int
pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

DESCRIPTION

The pthread rwlockattr init() function is used to initialize a read/write lock
attributes object.

RETURN VALUES

If successful, the pthread rwlockattr init() function will return zero. Otherwise
an error number will be returned to indicate the error.

ERRORS

The pthread rwlockattr init() function will fail if:

[ENOMEM] Insufficient memory exists to initialize the attribute object.

930 Systems/C C Library

SEE ALSO

pthread rwlockattr destroy(3), pthread rwlockattr getpshared(3),
pthread rwlockattr setpshared(3), pthread rwlock init(3)

STANDARDS

The pthread rwlockattr init() function is expected to conform to Version 2 of
the Single UNIX Specification (“SUSv2”).

Systems/C C Library 931

PTHREAD RWLOCKATTR SETPSHARED(3)

NAME

pthread rwlockattr setpshared – set the process shared attribute

SYNOPSIS

#include <pthread.h>

int
pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, int pshared);

DESCRIPTION

The pthread rwlockattr setpshared() function sets the process shared attribute
of attr to the value referenced by pshared. The pshared argument may be one of
two values:

[PTHREAD PROCESS SHARED] Any thread of any process that has access to the mem-
ory where the read/write lock resides can manipulate the lock.

[PTHREAD PROCESS PRIVATE] Only threads created within the same process as the
thread that initialized the read/write lock can manipulate the lock.
This is the default value.

RETURN VALUES

If successful, the pthread rwlockattr setpshared() function will return zero.
Otherwise an error number will be returned to indicate the error.

ERRORS

The pthread rwlockattr setpshared() function will fail if:

[EINVAL] The value specified by attr or pshared is invalid.

IMPLEMENTATION

This implementation does not support process-sharded locks, the
PTHREAD PROCESS SHARED attribute is not supported.

932 Systems/C C Library

SEE ALSO

pthread rwlockattr getpshared(3), pthread rwlockattr init(3),
pthread rwlock init(3)

STANDARDS

The pthread rwlockattr setpshared() function is expected to conform to Ver-
sion 2 of the Single UNIX Specification (“SUSv2”).

Systems/C C Library 933

PTHREAD RWLOCK DESTROY(3)

NAME

pthread rwlock destroy – destroy a read/write lock

SYNOPSIS

#include <pthread.h>

int
pthread_rwlock_destroy(pthread_rwlock_t *lock);

DESCRIPTION

The pthread rwlock destroy() function is used to destroy a read/write lock pre-
viously created with pthread rwlock init().

RETURN VALUES

If successful, the pthread rwlock destroy() function will return zero. Otherwise
an error number will be returned to indicate the error.

ERRORS

The pthread rwlock destroy() function will fail if:

[EPERM] The caller does not have the privilege to perform the operation.

The pthread rwlock destroy() function may fail if:

[EBUSY] The system has detected an attempt to destroy the object referenced
by lock while it is locked.

[EINVAL] The value specified by lock is invalid.

SEE ALSO

pthread rwlock init(3)

934 Systems/C C Library

STANDARDS

The pthread rwlock destroy() function is expected to conform to Version 2 of
the Single UNIX Specification (“SUSv2”).

Systems/C C Library 935

PTHREAD RWLOCK INIT(3)

NAME

pthread rwlock init – initialize a read/write lock

SYNOPSIS

#include <pthread.h>

int
pthread_rwlock_init(pthread_rwlock_t *lock,

const pthread_rwlockattr_t *attr);

DESCRIPTION

The pthread rwlock init() function is used to initialize a read/write lock, with
attributes specified by attr. If attr is NULL, the default read/write lock attributes
are used.

The results of calling pthread rwlock init() with an already initialized lock are
undefined.

RETURN VALUES

If successful, the pthread rwlock init() function will return zero. Otherwise an
error number will be returned to indicate the error.

ERRORS

The pthread rwlock init() function will fail if:

[EAGAIN] The system lacked the necessary resources (other than memory) to
initialize the lock.

[ENOMEM] Insufficient memory exists to initialize the lock.

[EPERM] The caller does not have sufficient privilege to perform the opera-
tion.

The pthread rwlock init() function may fail if:

936 Systems/C C Library

[EBUSY] The system has detected an attempt to re-initialize the object
referenced by lock, a previously initialized but not yet destroyed
read/write lock.

[EINVAL] The value specified by attr is invalid.

IMPLEMENTATION

The PTHREAD PROCESS SHARED attribute is not supported.

SEE ALSO

pthread rwlockattr init(3), pthread rwlockattr setpshared(3),
pthread rwlock destroy(3)

STANDARDS

The pthread rwlock init() function is expected to conform to Version 2 of the
Single UNIX Specification (“SUSv2”).

Systems/C C Library 937

PTHREAD RWLOCK RDLOCK(3)

NAME

pthread rwlock rdlock, pthread rwlock tryrdlock – acquire a read/write lock for
reading

SYNOPSIS

#include <pthread.h>

int
pthread_rwlock_rdlock(pthread_rwlock_t *lock);

int
pthread_rwlock_tryrdlock(pthread_rwlock_t *lock);

DESCRIPTION

The pthread rwlock rdlock() function acquires a read lock on lock provided that
lock is not presently held for writing and no writer threads are presently blocked on
the lock. If the read lock cannot be immediately acquired, the calling thread blocks
until it can acquire the lock.

The pthread rwlock tryrdlock() function performs the same action, but does not
block if the lock cannot be immediately obtained (i.e., the lock is held for writing
or there are waiting writers).

A thread may hold multiple concurrent read locks. If so,
pthread rwlock unlock() must be called once for each lock obtained.

The results of acquiring a read lock while the calling thread holds a write lock are
undefined.

RETURN VALUES

If successful, the pthread rwlock rdlock() and pthread rwlock tryrdlock()
functions will return zero. Otherwise an error number will be returned to indicate
the error.

938 Systems/C C Library

ERRORS

The pthread rwlock tryrdlock() function will fail if:

[EBUSY] The lock could not be acquired because a writer holds the lock or
was blocked on it.

The pthread rwlock rdlock() and pthread rwlock tryrdlock() functions may
fail if:

[EAGAIN] The lock could not be acquired because the maximum number of
read locks against lock has been exceeded.

[EDEADLK] The current thread already owns lock for writing.

[EINVAL] The value specified by lock is invalid.

[ENOMEM] Insufficient memory exists to initialize the lock (applies to statically
initialized locks only).

SEE ALSO

pthread rwlock init(3), pthread rwlock trywrlock(3), pthread rwlock unlock(3),
pthread rwlock wrlock(3)

STANDARDS

The pthread rwlock rdlock() and pthread rwlock tryrdlock() functions are
expected to conform to Version 2 of the Single UNIX Specification (“SUSv2”).

Systems/C C Library 939

PTHREAD RWLOCK UNLOCK(3)

NAME

pthread rwlock unlock – release a read/write lock

SYNOPSIS

#include <pthread.h>

int
pthread_rwlock_unlock(pthread_rwlock_t *lock);

DESCRIPTION

The pthread rwlock unlock() function is used to release the read/write lock
previously obtained by pthread rwlock rdlock(), pthread rwlock wrlock(),
pthread rwlock tryrdlock(), or pthread rwlock trywrlock().

RETURN VALUES

If successful, the pthread rwlock unlock() function will return zero. Otherwise
an error number will be returned to indicate the error.

The results are undefined if lock is not held by the calling thread.

ERRORS

The pthread rwlock unlock() function may fail if:

[EINVAL] The value specified by lock is invalid.

[EPERM] The current thread does not own the read/write lock.

SEE ALSO

pthread rwlock rdlock(3), pthread rwlock wrlock(3)

STANDARDS

The pthread rwlock unlock() function is expected to conform to Version 2 of the
Single UNIX Specification (“SUSv2”).

940 Systems/C C Library

PTHREAD RWLOCK WRLOCK(3)

NAME

pthread rwlock wrlock, pthread rwlock trywrlock – acquire a read/write lock for
writing

SYNOPSIS

#include <pthread.h>

int
pthread_rwlock_wrlock(pthread_rwlock_t *lock);

int
pthread_rwlock_trywrlock(pthread_rwlock_t *lock);

DESCRIPTION

The pthread rwlock wrlock() function blocks until a write lock can be acquired
against lock. The pthread rwlock trywrlock() function performs the same ac-
tion, but does not block if the lock cannot be immediately obtained.

The results are undefined if the calling thread already holds the lock at the time the
call is made.

RETURN VALUES

If successful, the pthread rwlock wrlock() and pthread rwlock trywrlock()
functions will return zero. Otherwise an error number will be returned to indicate
the error.

ERRORS

The pthread rwlock trywrlock() function will fail if:

[EBUSY] The calling thread is not able to acquire the lock without blocking.

The pthread rwlock wrlock() and pthread rwlock trywrlock() functions
may fail if:

Systems/C C Library 941

[EDEADLK] The calling thread already owns the read/write lock (for reading or
writing).

[EINVAL] The value specified by lock is invalid.

[ENOMEM] Insufficient memory exists to initialize the lock (applies to statically
initialized locks only).

SEE ALSO

pthread rwlock init(3), pthread rwlock rdlock(3), pthread rwlock tryrdlock(3),
pthread rwlock unlock(3)

STANDARDS

The pthread rwlock wrlock() and pthread rwlock trywrlock() functions are
expected to conform to Version 2 of the Single UNIX Specification (“SUSv2”).

942 Systems/C C Library

PTHREAD SELF(3)

NAME

pthread self – get the calling thread’s ID

SYNOPSIS

#include <pthread.h>

pthread_t
pthread_self(void);

DESCRIPTION

The pthread self() function returns the thread ID of the calling thread.

RETURN VALUES

The pthread self() function returns the thread ID of the calling thread.

ERRORS

None.

SEE ALSO

pthread create(3), pthread equal(3)

STANDARDS

The pthread self() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”).

Systems/C C Library 943

PTHREAD SET LIMIT NP(3)

NAME

pthread set limit np – control number of tasks and/or threads allowed in the process

SYNOPSIS

#include <pthread.h>

int
pthread_set_limit_np(int which, int maxtasks, int maskthreads);

DESCRIPTION

The pthread set limit np() function controls the maximum number of tasks and
the maximum number of threads allowed for the current process. These values are
unique to the process, however the initial settings are inherited from the default
settings defined when z/OS is initialized.

The pthread set limit np() function can set either the number of z/OS tasks,
or the number of threads, or both. The which value determines which setting is
desired:

STL MAX TASKS The maximum number of tasks is set to the value of maxtasks.

STL MAX THREADS The maximum number of threads is set to the value of max-
threads.

STL SET BOTH The maximum number of tasks is set to the value of maxtasks and
the maximum number of threads is set to the value of maxthreads.

The z/OS operating system requires memory in the private area below the 16M
for each task and thread. The number of threads and tasks depends on how much
memory is available in that area. When that area is exhausted, the task or the
program may be summarily terminated by the operating system, along with appro-
priate messages on the system console. IBM recommends that a reasonable limit
for threads and threads is 200 to 400.

The weight attribute of a thread controls the mapping of threads to tasks. Also the
synctype attribute controls if a thread can be created without an available task.

RETURN VALUES

If successful, pthread set limit np() returns 0, otherwise -1 is returned.

944 Systems/C C Library

NAME

pthread setspecific – set a thread-specific data value

SYNOPSIS

#include <pthread.h>

int
pthread_setspecific(pthread_key_t key, const void *value);

DESCRIPTION

The pthread setspecific() function associates a thread-specific value with a key
obtained via a previous call to pthread key create(). Different threads can bind
different values to the same key. These values are typically pointers to blocks of
dynamically allocated memory that have been reserved for use by the calling thread.

The effect of calling pthread setspecific() with a key value not obtained from
pthread key create() or after key has been deleted with pthread key delete()
is undefined.

The pthread setspecific() function may be called from a thread-specific data de-
structor function, however this may result in lost storage or infinite loops.

RETURN VALUES

If successful, the pthread setspecific() function will return zero. Otherwise an
error number will be returned to indicate the error.

ERRORS

The pthread setspecific() function will fail if:

[ENOMEM] Insufficient memory exists to associate the value with the key.

[EINVAL] The key value is invalid.

SEE ALSO

pthread getspecific(3), pthread key create(3), pthread key delete(3)

Systems/C C Library 945

STANDARDS

The pthread setspecific() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

946 Systems/C C Library

PTHREAD SIGMASK(3)

NAME

pthread sigmask – examine and/or change a thread’s signal mask

SYNOPSIS

#include <pthread.h>
#include <signal.h>

int
pthread_sigmask(int how, const sigset_t *set, sigset_t *oset);

DESCRIPTION

The pthread sigmask() function examines and/or changes the calling thread’s
signal mask.

If set is not NULL, it specifies a set of signals to be modified, and how specifies what
to set the signal mask to:

[SIG BLOCK] Union of the current mask and set.

[SIG UNBLOCK] Intersection of the current mask and the complement of set.

[SIG SETMASK] set.

If oset is not NULL, the previous signal mask is stored in the location pointed to by
oset.

SIGKILL and SIGSTOP cannot be blocked, and will be silently ignored if included in
the signal mask.

RETURN VALUES

If successful, pthread sigmask() returns 0. Otherwise, an error is returned.

ERRORS

The pthread sigmask() function will fail if:

[EINVAL] how is not one of the defined values.

Systems/C C Library 947

SEE ALSO

sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2), sigsetops(3)

STANDARDS

The pthread sigmask() function conforms to ISO/IEC 9945-1:1996 (“POSIX.1”)

948 Systems/C C Library

PTHREAD SPIN INIT(3)

NAME

pthread spin init, pthread spin destroy – initialize or destroy a spin lock

SYNOPSIS

#include <pthread.h>

int
pthread_spin_init(pthread_spinlock_t *lock, int pshared);

int
pthread_spin_destroy(pthread_spinlock_t *lock);

DESCRIPTION

The pthread spin init() function will initialize lock to an unlocked state
and allocate any resources necessary to begin using it. If pshared is set to
PTHREAD PROCESS SHARED, any thread, whether belonging to the process in which
the spinlock was created or not, that has access to the memory area where lock
resides, can use lock. If it is set to PTHREAD PROCESS PRIVATE, it can only be used
by threads within the same process.

The pthread spin destroy() function will destroy lock and release any resources
that may have been allocated on its behalf.

RETURN VALUES

If successful, both pthread spin init() and pthread spin destroy() will return
zero. Otherwise, an error number will be returned to indicate the error.

Neither of these functions will return EINTR.

ERRORS

The pthread spin init() and pthread spin destroy() functions will fail if:

[EBUSY] An attempt to initialize or destroy lock while it is in use.

[EINVAL] The value specified by lock is invalid.

Systems/C C Library 949

The pthread spin init() function will fail if:

[EAGAIN] Insufficient resources, other than memory, to initialize lock.

[ENOMEM] Insufficient memory to initialize lock.

SEE ALSO

pthread spin lock(3), pthread spin unlock(3)

IMPLEMENTATION

This implementation does not support process-shared locks, if any value other than
PTHREAD PROCESSES PRIVATE is specified, pthread spin init() returns EINVAL.

950 Systems/C C Library

PTHREAD SPIN LOCK(3)

NAME

pthread spin lock, pthread spin trylock, pthread spin unlock – lock or unlock a spin
lock

SYNOPSIS

#include <pthread.h>

int
pthread_spin_lock(pthread_spinlock_t *lock);

int
pthread_spin_trylock(pthread_spinlock_t *lock);

int
pthread_spin_unlock(pthread_spinlock_t *lock);

DESCRIPTION

The pthread spin lock() function will acquire lock if it is not currently owned by
another thread. If the lock cannot be acquired immediately, it will spin attempting
to acquire the lock (it will not sleep) until it becomes available.

The pthread spin trylock() function is the same as pthread spin lock() except
that if it cannot acquire lock immediately it will return with an error.

The pthread spin unlock() function will release lock, which must have been pre-
viously locked by a call to pthread spin lock() or pthread spin trylock().

RETURN VALUES

If successful, all these functions will return zero. Otherwise, an error number will
be returned to indicate the error.

None of these functions will return EINTR.

ERRORS

The pthread spin lock(), pthread spin trylock() and
pthread spin unlock() functions will fail if:

Systems/C C Library 951

[EINVAL] The value specified by lock is invalid or is not initialized.

The pthread spin lock() function may fail if:

[EDEADLK] The calling thread already owns the lock.

The pthread spin trylock() function will fail if:

[EBUSY] Another thread currently holds lock.

The pthread spin unlock() function may fail if:

[EPERM] The calling thread does not own lock.

SEE ALSO

pthread spin destroy(3), pthread spin init(3)

STANDARDS

The implementation of pthread spin lock(), pthread spin trylock() and
pthread spin unlock() is expected to conform to IEEE Std 1003.2 (“POSIX.2”).

952 Systems/C C Library

PTHREAD TESTCANCEL(3)

NAME

pthread setcancelstate, pthread setcanceltype, pthread testcancel – set cancelability
state

SYNOPSIS

#include <pthread.h>

int
pthread_setcancelstate(int state, int *oldstate);

int
pthread_setcanceltype(int type, int *oldtype);

void
pthread_testcancel(void);

DESCRIPTION

The pthread setcancelstate() function atomically both sets the calling thread’s
cancelability state to the indicated state and, if oldstate is not NULL, returns the
previous cancelability state at the location referenced by oldstate. Legal values for
state are PTHREAD CANCEL ENABLE and PTHREAD CANCEL DISABLE.

The pthread setcanceltype() function atomically both sets the calling thread’s
cancelability type to the indicated type and, if oldtype is not NULL, returns the
previous cancelability type at the location referenced by oldtype. Legal values for
type are PTHREAD CANCEL DEFERRED and PTHREAD CANCEL ASYNCHRONOUS.

The cancelability state and type of any newly created threads, including the
thread in which main() was first invoked, are PTHREAD CANCEL ENABLE and
PTHREAD CANCEL DEFERRED respectively.

The pthread testcancel() function creates a cancellation point in the calling
thread. The pthread testcancel() function has no effect if cancelability is dis-
abled.

Cancelability States

The cancelability state of a thread determines the action taken upon receipt of a
cancellation request. The thread may control cancellation in a number of ways.

Systems/C C Library 953

Each thread maintains its own “cancelability state” which may be encoded in two
flags:

Cancelability Enable When cancelability is PTHREAD CANCEL DISABLE, cancellation
requests against the target thread are held pending.

Cancelability Type When cancelability is enabled and the cancelability type is
PTHREAD CANCEL ASYNCHRONOUS, new or pending cancellation requests
may be acted upon at any time. When cancelability is enabled and the
cancelability type is PTHREAD CANCEL DEFERRED, cancellation requests
are held pending until a cancellation point (see below) is reached. If
cancelability is disabled, the setting of the cancelability type has no
immediate effect as all cancellation requests are held pending; how-
ever, once cancelability is enabled again the new type will be in effect.

Cancellation Points

Cancellation points will occur when a thread is executing at least the fol-
lowing functions: close(), creat(), fcntl(), fsync(), msync(), open(),
pause(), pthread cond timedwait(), pthread cond wait(), pthread join(),
pthread testcancel(), read(), sigwaitinfo(), sigsuspend(), sigwait(),
sleep(), system(), tcdrain(), wait(), waitpid(), write().

RETURN VALUES

If successful, the pthread setcancelstate() and pthread setcanceltype() func-
tions will return zero. Otherwise, an error number shall be returned to indicate the
error.

The pthread setcancelstate() and pthread setcanceltype() functions are used
to control the points at which a thread may be asynchronously canceled. For can-
cellation control to be usable in modular fashion, some rules must be followed.

For purposes of this discussion, consider an object to be a generalization of a pro-
cedure. It is a set of procedures and global variables written as a unit and called by
clients not known by the object. Objects may depend on other objects.

First, cancelability should only be disabled on entry to an object, never explicitly
enabled. On exit from an object, the cancelability state should always be restored
to its value on entry to the object.

This follows from a modularity argument: if the client of an object (or the client of
an object that uses that object) has disabled cancelability, it is because the client
does not want to have to worry about how to clean up if the thread is canceled
while executing some sequence of actions. If an object is called in such a state and

954 Systems/C C Library

it enables cancelability and a cancellation request is pending for that thread, then
the thread will be canceled, contrary to the wish of the client that disabled.

Second, the cancelability type may be explicitly set to either deferred or asyn-
chronous upon entry to an object. But as with the cancelability state, on exit from
an object that cancelability type should always be restored to its value on entry to
the object.

Finally, only functions that are cancel-safe may be called from a thread that is
asynchronously cancelable.

ERRORS

The function pthread setcancelstate() may fail with:

[EINVAL] The specified state is not PTHREAD CANCEL ENABLE or
PTHREAD CANCEL DISABLE.

The function pthread setcanceltype() may fail with:

[EINVAL] The specified state is not PTHREAD CANCEL DEFERRED or
PTHREAD CANCEL ASYNCHRONOUS.

SEE ALSO

pthread cancel(3)

STANDARDS

The pthread testcancel() function conforms to ISO/IEC 9945-1:1996
(“POSIX.1”).

Systems/C C Library 955

PTHREAD YIELD(3)

NAME

pthread yield – yield control of the current thread

SYNOPSIS

#include <pthread.h>

void
pthread_yield(void);

DESCRIPTION

The pthread yield() forces the running thread to relinquish the processor until it
again becomes the head of its thread list.

SEE ALSO

sched yield(2)

STANDARDS

The pthread yield() is a non-portable (but quite common) extension to IEEE Std
1003.1-2001 (“POSIX.1”).

956 Systems/C C Library

THRD CREATE(3)

NAME

call once, cnd broadcast, cnd destroy, cnd init, cnd signal, cnd timedwait,
cnd wait, mtx destroy, mtx init, mtx lock, mtx timedlock, mtx trylock, mtx unlock,
thrd create, thrd current, thrd detach, thrd equal, thrd exit, thrd join, thrd sleep,
thrd yield, tss create, tss delete, tss get, tss set - C11 threads interface

SYNOPSIS

#include <threads.h>

void
call_once(once_flag *flag, void (*func)(void));

int
cnd_broadcast(cnd_t *cond);

void
cnd_destroy(cnd_t *cond);

int
cnd_init(cnd_t *cond);

int
cnd_signal(cnd_t *cond);

int
cnd_timedwait(cnd_t * restrict cond, mtx_t * restrict mtx,

const struct timespec * restrict ts);

int
cnd_wait(cnd_t *cond, mtx_t *mtx);

void
mtx_destroy(mtx_t *mtx);

int
mtx_init(mtx_t *mtx, int type);

int
mtx_lock(mtx_t *mtx);

int
mtx_timedlock(mtx_t * restrict mtx, const struct timespec * restrict ts);

Systems/C C Library 957

int
mtx_trylock(mtx_t *mtx);

int
mtx_unlock(mtx_t *mtx);

int
thrd_create(thrd_t *thr, int (*func)(void *), void *arg);

thrd_t
thrd_current(void);

int
thrd_detach(thrd_t thr);

int
thrd_equal(thrd_t thr0, thrd_t thr1);

_Noreturn void
thrd_exit(int res);

int
thrd_join(thrd_t thr, int *res);

int
thrd_sleep(const struct timespec *duration, struct timespec *remaining);

void
thrd_yield(void);

int
tss_create(tss_t *key, void (*dtor)(void *));

void
tss_delete(tss_t key);

void *
tss_get(tss_t key);

int
tss_set(tss_t key, void *val);

958 Systems/C C Library

DESCRIPTION

As of ISO/IEC 9899:2011 (“ISO C11”), the C standard includes an API for writing
multithreaded applications. Since POSIX.1 already includes a threading API that
is used by virtually any multithreaded application, the interface provided by the C
standard can be considered superfluous.

In this implementation, the threading interface is therefore implemented as a light-
weight layer on top of existing interfaces. The functions to which these routines are
mapped, are listed in the following table. Please refer to the documentation of the
POSIX equivalent functions for more information.

Function POSIX equivalent

call once() pthread once(3)

cnd broadcast() pthread cond broadcast(3)

cnd destroy() pthread cond destroy(3)

cnd init() pthread cond init(3)

cnd signal() pthread cond signal(3)

cnd timedwait() pthread cond timedwait(3)

cnd wait() pthread cond wait(3)

mtx destroy() pthread mutex destroy(3)

mtx init() pthread mutex init(3)

mtx lock() pthread mutex lock(3)

mtx timedlock() pthread mutex timedlock(3)

mtx trylock() pthread mutex trylock(3)

mtx unlock() pthread mutex unlock(3)

thrd create() pthread create(3)

thrd current() pthread self(3)

thrd detach() pthread detach(3)

thrd equal() pthread equal(3)

thrd exit() pthread exit(3)

thrd join() pthread join(3)

thrd sleep() nanosleep(2)

Systems/C C Library 959

thrd yield() pthread yield(3)

tss create() pthread key create(3)

tss delete() pthread key delete(3)

tss get() pthread getspecific(3)

tss set() pthread setspecific(3)

DIFFERENCES WITH POSIX EQUIVALENTS

The thrd exit() function returns an integer value to the thread calling thrd join(),
whereas the pthread exit() function uses a pointer.

The mutex created by mtx init() can be of type mtx plain or mtx timed to dis-
tinguish between a mutex that supports mtx timedlock(). This type can be or’d
with mtx recursive to create a mutex that allows recursive acquisition. These
properties are normally set using pthread mutex init()’s attr parameter.

RETURN VALUES

If successful, the cnd broadcast(), cnd init(), cnd signal(), cnd timedwait(),
cnd wait(), mtx init(), mtx lock(), mtx timedlock(), mtx trylock(),
mtx unlock(), thrd create(), thrd detach(), thrd equal(), thrd join(),
thrd sleep(), tss create() and tss set() functions return thrd success. Oth-
erwise an error code will be returned to indicate the error.

The thrd current() function returns the thread ID of the calling thread.

The tss get() function returns the thread-specific data value associated with the
given key. If no thread-specific data value is associated with key, then the value
NULL is returned.

ERRORS

The cnd init() and thrd create() functions will fail if:

thrd nonmem The system has insufficient memory.

The cnd timedwait() and mtx timedlock() functions will fail if:

thrd timedout The system time has reached or exceeded the time specified in ts
before the operation could be completed.

960 Systems/C C Library

The mtx trylock() function will fail if:

thrd busy The mutex is already locked.

In all other cases, these functions may fail by returning general error code
thrd error.

SEE ALSO

nanosleep(2), pthread(3)

STANDARDS

These functions are expected to conform to ISO/IEC 9899:2011 (“ISO C11”).

Systems/C C Library 961

CEEPIPI interface

962 Systems/C C Library

CEEPIPI(3)

NAME

ceepipi - LE Pre-initialization interface services

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_init_main(__CEEPIT *ceexptbl_addr, void *service_rtns,
int *token);

int __CEEPIPI_init_main_dp(__CEEPIT *ceexptbl_addr, void *service_rtns,
int *token);

int __CEEPIPI_init_sub(__CEEPIT *ceexpttbl_addr, void *service_rtns,
char *runtime_opts, int *token);

int __CEEPIPI_init_sub_dp(__CEEPIT *ceexpttbl_addr, void *service_rtns,
char *runtime_opts, int *token);

int __CEEPIPI_call_main(int ceexptbl_index, int token,
char *runtime_opts, void *parm_list,
int *enclave_return_code,
int *enclave_reason_code,
__CEECTOK *appl_feedback_code);

int __CEEPIPI_call_sub(int ceexptbl_index, int token,
void *parm_list,
int *sub_ret_code,
int *sub_reason_code,
__CEECTOK *sub_feedback_code);

int __CEEPIPI_call_sub_addr(void *routine_addr, int token,
void *parm_list,
int *sub_ret_code,
int *sub_reason_code,
__CEECTOK *sub_feedback_code);

int __CEEPIPI_end_seq(int token);
int __CEEPIPI_start_seq(int token);
int __CEEPIPI_term(int token, int *env_return_code);
int __CEEPIPI_add_entry(int token, char *routine_name,

void **routine_entry,
int *ceexptbl_index);

int __CEEPIPI_delete_entry(int token, int ceexptbl_index);
int __CEEPIPI_identify_entry(int token, int ceexptbl_index,

int *prog_language);
int __CEEPIPI_identify_environment(int token, int *pipi_environment);
int __CEEPIPI_identify_attributes(int token, int ceexptbl_index,

int *program_attributes);

Systems/C C Library 963

int __CEEPIPI_set_user_word(int token, int value);
int __CEEPIPI_get_user_word(int token, int *value);
__CEEPIT *__CEEPIPI_alloc_CEEPIT(int flag, int n, ...);

DESCRIPTION

The Systems/C runtime provides an interface to IBM’s LE Pre-initialization facility
(CEEPIPI). Using this, Systems/C code can invoke LE functions, pass parameters
to them and retrieve return values.

For details on the LE Pre-initialization interface, consult the IBM documentation
“z/OS Language Environment Programming Guide” (SA22-7561).

964 Systems/C C Library

LIST OF FUNCTIONS

Name Appears on Page Description
CEEPIPI init main CEEPIPI init main(3) initialize for main

routines
CEEPIPI init main dp CEEPIPI init main dp(3) initialize for main

routines (multiple
environment)

CEEPIPI init sub CEEPIPI init sub(3) initialize for subrou-
tine

CEEPIPI init sub dp CEEPIPI init sub dp(3) initialize for subrou-
tine (multiple envi-
ronment)

CEEPIPI call main CEEPIPI call main(3) invocation for main
routine

CEEPIPI call sub CEEPIPI call sub(3) invocation for subrou-
tines

CEEPIPI call sub addr CEEPIPI call sub addr(3) invocation for subrou-
tines by address

CEEPIPI end seq CEEPIPI end seq(3) end a sequence of calls
CEEPIPI start seq CEEPIPI start seq(3) start a sequence of

calls
CEEPIPI term CEEPIPI term(3) terminate environ-

ment
CEEPIPI add entry CEEPIPI add entry(3) add entry to the

Preinit table
CEEPIPI delete entry CEEPIPI delete entry(3) delete entry from

Preinit table
CEEPIPI identify entry CEEPIPI identify entry(3) identify an entry in

the Preinit table
CEEPIPI identify environment CEEPIPI identify environment(3) identify the environ-

ment in the Preinit
table

CEEPIPI identify attributes CEEPIPI identify attributes(3) identify the program
attributes in the
Preinit table

CEEPIPI set user word CEEPIPI set user word(3) set value to be used
to initialize CAA user
word

CEEPIPI get user word CEEPIPI get user word(3) get value to be used
to initialize CAA user
word

CEEPIPI alloc CEEPIT CEEPIPI alloc CEEPIT(3) create an populate a
Preinit table

Systems/C C Library 965

EXAMPLE

The following C code uses the CEEPIPI functions to invoke an LE C function named
”HLLPIPI”:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <machine/ceepipi.h>

main()
{

int rc;
int token;
__CEEPIT *cexptbl;
int subretc, subrsnc;
__CEECTOK subfbc;
int env_rc;

int parms[1];

printf("Dignus C caller of LE HLLPIPI function\n");

/*
* Allocate and populate an LE Preinitialization table
* This table has one entry, HLLPIPI
*/
cexptbl = __CEEPIPI_alloc_CEEPIT(0, 1, "HLLPIPI");
if(cexptbl == NULL) {

printf("Out of memory allocating pre-init table");
exit(12);

}

/*
* Initialize an LE preinitialization subroutine environment
*/
rc = __CEEPIPI_init_sub(cexptbl, NULL, NULL, &token);
if(rc != 0) {

printf("CEEPIPI init_sub failed - rc is %d\n", rc);
exit(12);

}

/*
* Call the subroutine HLLPIPI(int parm);
* The value being passed is "20"

966 Systems/C C Library

*/
parms[0] = 20;
rc = __CEEPIPI_call_sub(0 /* function #0 */,

token, parms, &subretc, &subrsnc, &subfbc);

printf("call_sub() returns %d\n", rc);
printf(" subretc=%d, subrsnc=%d\n", subretc, subrsnc);

if(rc != 0) {
printf("CEEPIPI_call_sub failed - rc is %d\n", rc);
exit(12);

}

/*
* Terminate the environment
*/
rc = __CEEPIPI_term(token, &env_rc);
if(rc != 0) {

printf("CEEPIPI_term failed - rc is %d\n", rc);
exit(12);

}

/* free the pre-init table’s memory */
free(cexptbl);

}

The function HLLPIPI is written in C and compiled and linked in LE mode to
produce a loadable LE module:

/*
* HLLPIPI is called by the C program
* using the LE preinitialization program
* subroutine call interface.
**/

#include <stdio.h>
#include <string.h>
#pragma linkage(HLLPIPI, fetchable)

int
HLLPIPI(int parm)
{
int retval = 100;
printf(" Enter HLLPIPI\n");
printf(" This is an LE C program invoked from Dignus C!\n");
printf(" The parameter passed was: %d\n", parm);

Systems/C C Library 967

printf(" Exit HLLPIPI - returning %d\n", retval+parm);
retval = retval + parm;
return retval;

}

968 Systems/C C Library

CEEPIPI init main(3)

NAME

CEEPIPI init main - initialize for main routines

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_init_main(__CEEPIT *ceexptbl_addr, void *service_rtns,
int *token);

DESCRIPTION

The CEEPIPI init main() function creates and ininitializes a LE runtime en-
vironment that allows for multiple executions of the main routine.

ceexptbl addr pointers to a PreInit table used during initialization of the environ-
ment.

token points to a integer to return a value used to identify the newly created envi-
ronment.

service rtns contains a pointer to a service routines vector or NULL.

RETURN VALUES

On success, CEEPIPI init main() returns 0. Otherwise, it returns the return
code specified in the IBM Language Environment Preinitialization Interface docu-
mentation.

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

Systems/C C Library 969

CEEPIPI init main dp(3)

NAME

CEEPIPI init main dp - initialize for main routines (multiple environments)

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_init_main_dp(__CEEPIT *ceexptbl_addr, void *service_rtns,
int *token);

DESCRIPTION

The CEEPIPI init main dp() function creates and ininitializes a Language En-
vironment (LE) runtime environment that allows for multiple executions of the main
routine. CEEPIPI init main dp() ensures that the environment tolerates the
existence of multiple IBM Language Environment processes or enclaves, thus multi-
ple main environments can be establised using CEEPIPI init main dp() where
CEEPIPI init main() can only establish one environment.

ceexptbl addr pointers to a PreInit table used during initialization of the environ-
ment.

token points to a integer to return a value used to identify the newly created envi-
ronment.

service rtns contains a pointer to a service routines vector or NULL.

RETURN VALUES

On success, CEEPIPI init main dp() returns 0. Otherwise, it returns the re-
turn code specified in the IBM Language Environment Preinitialization Interface
documentation.

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

970 Systems/C C Library

CEEPIPI init sub(3)

NAME

CEEPIPI init sub - initialize for subroutines

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_init_sub(__CEEPIT *ceexpttbl_addr, void *service_rtns,
char *runtime_opts, int *token);

DESCRIPTION

The CEEPIPI init sub() function creates and ininitializes a Language Environ-
ment (LE) runtime environment that allows for multiple executions of subroutines.

ceexptbl addr pointers to a PreInit table used during initialization of the environ-
ment.

runtime opts is a character string containing the LE runtime options. See the IBM
“z/OS Language Environment Programming Reference” documentation for a list of
available runtime options.

token points to a integer to return a value used to identify the newly created envi-
ronment.

service rtns contains a pointer to a service routines vector or NULL.

RETURN VALUES

On success, CEEPIPI init sub() returns 0. Otherwise, it returns the return
code specified in the IBM Language Environment Preinitialization Interface docu-
mentation.

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

Systems/C C Library 971

CEEPIPI init sub dp(3)

NAME

CEEPIPI init sub dp - initialize for subroutine (multiple environment)

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_init_sub_dp(__CEEPIT *ceexpttbl_addr, void *service_rtns,
char *runtime_opts, int *token);

DESCRIPTION

The CEEPIPI init sub dp() function creates and ininitializes a LE run-
time environment that allows for multiple executions of subroutines. Unlike
CEEPIPI init sub(), CEEPIPI init sub dp() can establish multiple envi-

ronments.

ceexptbl addr pointers to a PreInit table used during initialization of the environ-
ment.

runtime opts is a character string containing the LE runtime options. See the IBM
“z/OS Language Environment Programming Reference” documentation for a list of
available runtime options.

token points to a integer to return a value used to identify the newly created envi-
ronment.

service rtns contains a pointer to a service routines vector or NULL.

RETURN VALUES

On success, CEEPIPI init sub dp() returns 0. Otherwise, it returns the re-
turn code specified in the IBM Language Environment Preinitialization Interface
documentation.

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

972 Systems/C C Library

CEEPIPI call main(3)

NAME

CEEPIPI call main - invocation for main routine

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_call_main(int ceexptbl_index, int token,
char *runtime_opts, void *parm_list,
int *enclave_return_code,
int *enclave_reason_code,
__CEECTOK *appl_feedback_code);

DESCRIPTION

The CEEPIPI call main() function invokes the specified main routine indicated
by lvarceexptbl index in the environment specified by token. After the routine re-
turns, the environment becomes dormant.

ceexptbl index indicates which entry in the environment’s PreInit table is to be in-
voked.

token is the environment’s identifier.

runtime opts is a character string containing the LE runtime options. See the IBM
“z/OS Language Environment Programming Reference” documentation for a list of
available runtime options.

parm list is either NULL or an array of parameter values passed to the main routine.

enclave return code points to an integer where the return code from the enclave is
saved after the main routine completes.

enclave reason code points to an integer where the reason code from the enclave is
saved after the main routine completes.

appl feedback code points to 96-bit condition token indicating why the application
terminated.

Systems/C C Library 973

RETURN VALUES

On success, CEEPIPI call main() returns 0. Otherwise, it returns the return
code specified in the IBM Language Environment Preinitialization Interface docu-
mentation.

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

974 Systems/C C Library

CEEPIPI call sub(3)

NAME

CEEPIPI call sub - invocation for subroutines

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_call_sub(int ceexptbl_index, int token,
void *parm_list,
int *sub_ret_code,
int *sub_reason_code,
__CEECTOK *sub_feedback_code);

DESCRIPTION

The CEEPIPI call sub() function invokes the specified sub routine indicated
by lvarceexptbl index in the environment specified by token.

ceexptbl index indicates which entry in the environment’s PreInit table is to be in-
voked.

token is the environment’s identifier.

parm list is either NULL or an array of parameter values passed to the sub routine.

sub ret code points to an integer where the return code from the enclave is saved
after the sub routine completes.

sub reason code points to an integer where the reason code from the enclave is saved
after the sub routine completes.

sub feedback code points to 96-bit condition token.

RETURN VALUES

On success, CEEPIPI call sub() returns 0. Otherwise, it returns the return
code specified in the IBM Language Environment Preinitialization Interface docu-
mentation.

Systems/C C Library 975

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

976 Systems/C C Library

CEEPIPI call sub addr(3)

NAME

CEEPIPI call sub addr - invocation for subroutines by address

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_call_sub_addr(void *routine_addr, int token,
void *parm_list,
int *sub_ret_code,
int *sub_reason_code,
__CEECTOK *sub_feedback_code);

DESCRIPTION

The CEEPIPI call sub addr() function invokes the specified sub routine indi-
cated by lvarroutine addr in the environment specified by token.

routine addr is a pointer to a structure containing two pointers. The first pointer
points to the function’s entry point. Initially, the second pointer should be NULL.
If the environment is XPLINK, the IBM Preinitilization services will provide a new
pointer in the second pointer for directly invoking the function on a subsequent call.
If the environment is XPLINK and the second pointer is not NULL, then the second
pointer is used to directly invoke the function and avoid some overhead.

token is the environment’s identifier.

parm list is either NULL or an array of parameter values passed to the sub routine.

sub ret code points to an integer where the return code from the enclave is saved
after the sub routine completes.

sub reason code points to an integer where the reason code from the enclave is saved
after the sub routine completes.

sub feedback code points to 96-bit condition token.

RETURN VALUES

On success, CEEPIPI call sub addr() returns 0. Otherwise, it returns the
return code specified in the IBM Language Environment Preinitialization Interface
documentation.

Systems/C C Library 977

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

978 Systems/C C Library

CEEPIPI end seq(3)

NAME

CEEPIPI end seq - end a sequence of calls

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_end_seq(int token);

DESCRIPTION

The CEEPIPI end seq() indicates the end of a sequence of uniterrupted sub-
routine calls for the given environment.

token is the environment’s identifier.

RETURN VALUES

On success, CEEPIPI end seq() returns 0. Otherwise, it returns the return
code specified in the IBM Language Environment Preinitialization Interface docu-
mentation.

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

Systems/C C Library 979

CEEPIPI start seq(3)

NAME

CEEPIPI start seq - start a sequence of calls

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_start_seq(int token);

DESCRIPTION

The CEEPIPI start seq() function indicates that the program is to begin a
sequence of uninterrupted calls into subroutines for the given environment. This
minimizes overhead between calls.

token is the environment’s identifier.

RETURN VALUES

On success, CEEPIPI start seq() returns 0. Otherwise, it returns the return
code specified in the IBM Language Environment Preinitialization Interface docu-
mentation.

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

980 Systems/C C Library

CEEPIPI term(3)

NAME

CEEPIPI term - terminate environment

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_term(int token, int *env_return_code);

DESCRIPTION

The CEEPIPI term() function terminates the environment indicated by token.

token is the environment’s identifier.

RETURN VALUES

On success, CEEPIPI term() returns 0. Otherwise, it returns the return code
specified in the IBM Language Environment Preinitialization Interface documenta-
tion.

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

Systems/C C Library 981

CEEPIPI add entry(3)

NAME

CEEPIPI add entry - add an entry to the PreInit table

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_add_entry(int token, char *routine_name,
void **routine_entry,
int *ceexptbl_index);

DESCRIPTION

The CEEPIPI add entry() adds an entry to the environment indicated by to-
ken. If routine entry is NULL, then the routine name given in routine name is used.
The index used is returned in ceexptbl index.

CEEPIPI add entry() does not extend the PreInitialization table.

token is the environment’s identifier.

routine name is a left-justified, blank-padded 8-character sequence of characters
containing the name of the routine. When not used this field should be all blanks.

routine entry is NULL to indicate that routine name should be used; otherwise it is
the address to be added to the table. The high-order bit of this address is used
to indicate the AMODE. If the routine is succesfully added, this will be set to the
address of the added routine.

On a successful routine, *ceexptl index will contain the index into the PreInitializa-
tion table of the added routine.

RETURN VALUES

On success, CEEPIPI add entry() returns 0. Otherwise, it returns the return
code specified in the IBM Language Environment Preinitialization Interface docu-
mentation.

982 Systems/C C Library

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

Systems/C C Library 983

CEEPIPI delete entry(3)

NAME

CEEPIPI delete entry - delete an entry from the PreInit table

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_delete_entry(int token, int ceexptbl_index);

DESCRIPTION

The CEEPIPI delete entry() removes the routine specified by ceexptbl index
from the environment indicated by token.

RETURN VALUES

On success, CEEPIPI delete entry() returns 0. Otherwise, it returns the re-
turn code specified in the IBM Language Environment Preinitialization Interface
documentation.

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

984 Systems/C C Library

CEEPIPI identify entry(3)

NAME

CEEPIPI identify entry - Identify an entry in the PreInit table

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_identify_entry(int token, int ceexptbl_index,
int *prog_language);

DESCRIPTION

The CEEPIPI identify entry() indicates the the programming language of the
function identified by ceexptbl index for the environment indicated by token.

*prog language will contain the possible language codes, defined as:

CEEPIPI C C/C++

CEEPIPI COBOL COBOL

CEEPIPI PLI PL/I

CEEPIPI EPLI Enterprise PL/I for z/OS

CEEPIPI ASM Language Environment-enabled assembler

CEEPIPI PLX PL/X

RETURN VALUES

On success, CEEPIPI identify entry() returns 0. Otherwise, it returns the
return code specified in the IBM Language Environment Preinitialization Interface
documentation.

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

Systems/C C Library 985

CEEPIPI identify environment(3)

NAME

CEEPIPI identify environment - identify the environment in the PreInit table

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_identify_environment(int token, int *pipi_environment);

DESCRIPTION

The CEEPIPI identify environment() indicates the type of environment that
was preinitialized.

*prog language will contain the possible language codes, defined as:

CEEPIPI ceepipi main PreInit main environment is initialized.

CEEPIPI enclave initialized PreInit enclave is initialized.

CEEPIPI dp environment PreInit sub db environment is intialized.

CEEPIPI seq of calls active PreInit seq call function is active.

CEEPIPI exits established PreInit sub dp exits is set.

CEEPIPI sir unregistered PreInit sir is registered.

CEEPIPI sub environment PreInit sub environment is initialized.

CEEPIPI XPLINK environment PreInit XPLINK environment is initialized.

CEEPIPI init main dp environment PreInit main dp environment is initialized.

RETURN VALUES

On success, CEEPIPI identify environment() returns 0. Otherwise, it re-
turns the return code specified in the IBM Language Environment Preinitialization
Interface documentation.

986 Systems/C C Library

ERRORS

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

Systems/C C Library 987

CEEPIPI identify attributes(3)

NAME

CEEPIPI identify attributes - identify the program attributes in the PreInit table

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_identify_attributes(int token, int ceexptbl_index,
int *program_attributes);

DESCRIPTION

On success, CEEPIPI identify attributes() function identified the program
attributes of the routine specified by ceexptbl index.

*prog language will contain the possible language codes, defined as:

CEEPIPI loaded by pipi The Preinitialization entry was loaded by IBM Language
Environment.

CEEPIPI XPLINK program The loaded Preinitialization entry is an XPLINK pro-
gram.

CEEPIPI address not resolved The Preinitialization entry could not be loaded.

RETURN VALUES

On success, CEEPIPI identify attributes() returns 0. Otherwise, it returns
the return code specified in the IBM Language Environment Preinitialization Inter-
face documentation.

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

988 Systems/C C Library

CEEPIPI set user word(3)

NAME

CEEPIPI set user word - set value to be used to initialize CAA user word

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_set_user_word(int token, int value);

DESCRIPTION

The CEEPIPI set user word() saves the given value to be used when the initial
CAA thread is created when a main routine or subroutine is invoked.

RETURN VALUES

On success, CEEPIPI set user word() returns 0. Otherwise, it returns the
return code specified in the IBM Language Environment Preinitialization Interface
documentation.

ERRORS

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

Systems/C C Library 989

CEEPIPI get user word(3)

NAME

CEEPIPI get user word - get value to be used to initialize CAA user word

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

int __CEEPIPI_get_user_word(int token, int *value);

DESCRIPTION

The CEEPIPI get user word() retrieves the current user-word value for the
environment indicated by token.

On return, *value will contain the current value used to initialize the CAA user word.

RETURN VALUES

On success, CEEPIPI get user word() returns 0. Otherwise, it returns the
return code specified in the IBM Language Environment Preinitialization Interface
documentation.

SEE ALSO

For detailed information about the IBM Preinitialization interface, consult the IBM
document “z/OS Language Environment Programming Guide”.

990 Systems/C C Library

CEEPIPI alloc CEEPIT(3)

NAME

CEEPIPI alloc CEEPIT - allocate and initialize a PreInit table

SYNOPSIS

#include <stdlib.h>
#include <machine/ceepipi.h>

__CEEPIT *__CEEPIPI_alloc_CEEPIT(int flag, int n, ...);

DESCRIPTION

CEEPIPI alloc CEEPIT() dynamically allocates a PreInitialization table suf-
ficiently large to contain n entries. Following n should be n parameters that are
either NULL or a pointer to a character string for the function name.

For example,

__CEEPIT *ceexptbl;

ceexptbl = __CEEPIPI_alloc_CEEPIT(0, 2, "FUNC", NULL);

allocates a table sufficiently large for 2 entries, the first entry will be initialized with
the function name ”FUNC”.

If there is insufficient available memory, CEEPIPI alloc CEEPIT() returns
NULL.

A non-NULL address returned by CEEPIPI alloc CEEPIT() should be returned
using the free(3) function.

RETURN VALUES

On success, CEEPIPI alloc CEEPIT() returns a pointer to the allocated mem-
ory, or NULL if space was not available.

Systems/C C Library 991

SEE ALSO

For detailed information about the IBM Preinitialization interface, and the format
of the PreInitialization table, consult the IBM document “z/OS Language Environ-
ment Programming Guide”.

992 Systems/C C Library

Keyed Access (VSAM) I/O

Systems/C C Library 993

VSAMIO(3)

NAME

vsamio - keyed access (VSAM) input/output library functions

SYNOPSIS

#include <fcntl.h>
#include <unistd.h>
#include <machine/vsamio.h>

KFILE * kopen (const char *ddn, const char *parms, int mode);
int kclose (KFILE *k);
int kretrv (void *rec, void *key, int flags, KFILE *k);
int ksearch (const void *key, size_t keylen, int flags, KFILE *k);
int kinsert (const void *rec, size_t length, void *key, KFILE *k);
int kdelete (const void *key, KFILE *k);
int kreplace (const void *rec, size_t length, KFILE *k);
int kgetpos (KFILE *f, kpos_t *pos);
int ksetpos (KFILE *f, const kpos_t *pos);
int kdata (KFILE *k, __KFILE_data *d);
int kerrinfo (KFILE *k, char *RPLRTNCD, char *RPLCMPON, char *RPLERRCD);

ssize_t kread (KFILE *k, void *buf, size_t nbytes):
ssize_t kwrite (KFILE *k, void *buf, size_t nbytes):
off_t kseek (KFILE *k, off_t offset, int whence):

DESCRIPTION

The Systems/C runtime supports accessing VSAM files via the VSAMIO functions.

Unlike other mainframe C implementations; this access is not bound with the Stan-
dard C input/output functions. The Systems/C runtime supports a more native
VSAM facility which more closely matches the z/OS VSAM function.

Opening a VSAM file is accomplished with the kopen(3) function, that returns a
pointer to a KFILE “handle”. A KFILE pointer can then be passed to the other
VSAMIO functions, described here, to read records, search the file, add records,
close the file, etc...

Note that VSAMIO is only supported on z/OS, and only for AMODE 31 programs.

For many of the functions described here, the Systems/C runtime library will map
the VSAM logical errors to errno values as well as the specific errno values provided
in the function descriptions:

994 Systems/C C Library

[ENOSPC] #4 - end of data set

[EEXIST] #8 - duplicate key

[EILSEQ] #12 - an attempt was made to perform sequential or skip-sequential
processing against a record whose key/record number does not fol-
low the proper ascending/descending sequential order.

[ENOENT] #16 - record not found.

[ENOLCK] #20 - control Interval exclusive use conflict

[ENOLCK] #21, #22 - for RRS, another LUWID holds the lock

[ENXIO] #24 - record lives on volume that connot be mounted

[ENOSPC] #28 - can’t extend dataset because there’s no space.

[ENOENT] #32- XRBA specified does not address any record

[EINVAL] #36 - key ranges were specified for the data set when it was defined,
but no range was specified that includes the record to be inserted.

[ENOMEM] #40 - no memory.

[ENOMEM] #44 - work area not large enough for the record.

[EINVAL] #48, #52- invalid options, data set attributes or processing condi-
tions.

[EIO] #56 - ACB or LUWID changed underneath the RPL (an RPL
reused violation).

[ENOMEM] #64 - no space to add another string.

[EINVAL] #68 - invalid type of processing (i.e. read from OUTPUT)

[EINVAL] #72 - keyed request for ESDS, or GETIX/PUTIX to ESDS or
flexed-length RRDS. For RLS - GETIX/PUTIX issued.

[EINVAL] #76 - issued an addressed or CI PUT to add a KSDS or variable-
length RRDS, or, issued a constrol interval PUT to a fixed-length
RRDS.

[EINVAL] #80 - invalid ERASE request.

[EINVAL] #84 - invalid OPTCD=LOC for PUT.

[ESPIPE] #88 - sequential GET request without proper positioning, or, illegal
switch between forward/backward processsing

[EINVAL] #92 - issued PUT for update, or ERASE without previous GET for
update, or PUTIX without previous GETIX

[EINVAL] #96 - change the primary key will making an update.

Systems/C C Library 995

[EINVAL] #100 - changed the length of the record while making update.

[EINVAL] #104 - invalid RPL.

[EINVAL] #108 - invalid RECLEN.

[EINVAL] #112 - KEYLEN too large or is zero.

[EINVAL] #116 - initial loading of empty data set not allow UPDATE
(OPTCD=UPD) mode.

[EINVAL] #120 - request is operating under wrong TCB.

[ECANCELED] #124 - request was cancelled by user JRNAD exit.

[ELOOP] #128 - a loop was discovered in index.

[EINVAL] #132 - attempt, in locate mode, to retrieve a spanned record.

[EINVAL] #136 - attemped an addressed GET of a spanned record in a KSDS.

[ENOENT] #144 - invalid pointer (no associated base record) in an alternate
index.

[ENOSPC] #148 - maximum number of pointers is alternate index exceeded.

[ENOMEM] #152 - not enough buffers.

[EIO] #156 - invalid control-interval discovred during Keyed processing.

[EBUSY] #160 - buffer multiply marked written.

[EFAULT] #168 - for RLS, the pointer in the RPL is zero.

[EIO] #180 - for RLS, an invalid request for a non-recoverable data set.

[EIO] #184 - for RLS, an ABEND occured during processing.

[ECANCELED] #185 - for RLS, user task cancelled while request was being pro-
cessed.

[ENOSPC] #186 - End-of-Volume init failed when attempted to extend.

[EIO] #187 - for RLS, error occured with partial EOV processing.

[EIO] #188 - for RLS, the sphere is in lost locks state.

[EINVAL] #192 - invalid relative record number.

[EINVAL] #196 - addressed request for fixed- or variable-length RRDS.

[EINVAL] #200 - attempted addressed or control-interval access through a
path.

[EINVAL] #204 - PUT insert requests (or for RLS, IDALKADD requests) are
not allowed in backward mode.

996 Systems/C C Library

[EBUSY] #208 - ENDREQ macro isseud against an RPL that has an out-
standing WAIT against its associated ECB.

[ENOSPC] #212 - During split processing, an existing condition prevents the
split - Index or data control interval size may need to be increased.

[EIO] #218 - unrecognized return code.

[EINVAL] #224 - MRKBFR OUT was issued for a buffer with invalid contents.

[EPERM] #228 - cross-memory issues.

[ENOSPC] #229 - record length changed during decompression.

[EIO] #230 - processing environment changed by the user of UPAP exit.

[EPERM] #232 - UPAD error; ECB was not posted by user in cross-memory.

[EINVAL] #236 - validity check of errof re SHAROPTIONS 3 or 4.

[EIO] #237, #238, #239, #241, #242, #243 - reserved.

[EAGAIN] #240 - for shared resources, one of the following is being performed:
(1) an attempt is being made to obtain a buffer in exclusived con-
tro, (2) a buffer is being invalidated, or (3) the buffer use chain is
chaking. For more detailed feedback, reissue the request.

[EFAULT] #244 - register 14 stack size is not large enough.

[EIO] #246 - severe error returned by decompression management.

[EIO] #250 - no valid dictionary token exists for the data set. VSAM is
unable to decompress the data record.

[EINVAL] #252 - record mode processing not allowed for LDS.

[EINVAL] #253 - VERIFY is not valid for LDS.

[EBUSY] #254 - I/O activity on the data set not quiesced before WRTBTF
TYPE=DS issued.

LINEAR DATA SETS

Unlike other keyed-access files, a Linear Data Set represents a stream of bytes,
processed in 4K blocks with no other structure. There is no record format, and no
key (beyond a simple offset value) for accessing particular sections of data. Linear
Data Sets are often used in data base environments and to implement z/OS USS
file systems.

The kopen(3) function can be used to open a Linear Data Set. In that case, the Data
In Virtual (DIV) macros are used to perform I/O to the file, not the normal VSAM

Systems/C C Library 997

related system macros. (For more information about DIV see the IBM manual
”z/OS Application Development Guide.”)

DIV access to the Linear Data set provides a mechanism to map sections of the file
into memory via ”windows”. Each window represents bytes from the file beginning
at a certain offset for a particular number of bytes. The bufsize and bufmax parms
of the kopen(3) function specify the size and number of DIV windows the system
will manage to access the Linear Data Set.

The kread(3), kwrite(3) and kseek(3) functions are used with Linear Data Sets, in
lieu of the other keyed access functions. These provide mechanisms for reading and
writing a stream of bytes or positioning to a given offset. Besides kopen(3) and
kclose(3), these are the only functions that can be used for I/O with Linear Data
Sets.

When kopen(3) opens a Linear Data set, the system allocates the first window (if no
space can be allocated, then the kopen(3) will fail.) After that, windows of the given
size are allocated until the total count reaches the specified limit, or allocations fail
due to unavailable memory. When no more DIV windows can be used, the system
reuses existing windows in a least-recently-used fashion.

The kwrite(3) function does not directly cause output to the Linear Data Set, the
actual writing to the file system occurs when the DIV window is released, either on
reuse or when the kclose(3) function closes the Linear Data Set.

998 Systems/C C Library

LIST OF FUNCTIONS

Name Appears on Page Description
kclose kclose(3) close a keyed-access, or Linear

Data Set file
kdata kdata(3) provide information about an

open keyed-access file
kdelete kdelete(3) delete the previously retrieved

record
kgetpos kgetpos(3) return the position of the cur-

rent record
kerrinfo kerrinfo(3) provide information about

last logical error
kinsert kinsert(3) insert a record into a keyed-

access file
kopen kopen(3) open a keyed-access or Linear

Data Set file
kreplace kreplace(3) replace the previously re-

trieved record
kretrv kretrv(3) retrieve the next record
ksearch ksearch(3) search for a record with a

specified key
ksetpos ksetpos(3) set the position to a previous

saved value

Name Appears on Page Description
kread kread(3) read data from a Linear Data

Set (LDS)
kseek kseek(3) position to a particular byte

offset in a Linear Data Set
(LDS)

kwrite kwrite(3) write data to a Linear Data
Set (LDS)

Systems/C C Library 999

KCLOSE(3)

NAME

kclose - close a keyed-access or Linear Data Set file.

SYNOPSIS

#include <fcntl.h>
#include <machine/vsamio.h>

int kclose (KFILE *k);

DESCRIPTION

The kclose() function closes a previously opened keyed-access or Linear Data Set
file.

RETURN VALUES

If there is an error or an invalid KFILE was specified, kopen() returns -1; otherwise
a 0 value is returned, indicating success.

ERRORS

When a failure is returned, errno is set to one of the following values:

[EIO] The VSAM CLOSE macro indicated a non-zero return code.

[EFAULT] The specified KFILE k was an invalid pointer.

[EBADF] The specified KFILE k was not open.

SEE ALSO

kopen(3)

1000 Systems/C C Library

KDATA(3)

NAME

kdata - return information about an open keyed-access file

SYNOPSIS

#include <fcntl.h>
#include <machine/vsamio.h>

int kdata (KFILE *k, __KFILE_data *d)

DESCRIPTION

The kdata() function populates the KFILE data structure addressed by d from
the KFILE pointer k.

The KFILE data structure (shown below) is defined in <machine/vsamio.h>.

typedef struct __KFILEdata {
unsigned int access:2;

#define _KFILE_ACCESS_UNKNOWN (0)
#define _KFILE_ACCESS_SEQUENTIAL (1)
#define _KFILE_ACCESS_DIRECT (2)
#define _KFILE_ACCESS_SKIP_SEQUENTIAL (3)

unsigned int vsam_org:5;
#define _KFILE_VSAM_ORG_UNKNOWN (0)
#define _KFILE_VSAM_ORG_KSDS (1)
#define _KFILE_VSAM_ORG_RRDS (2)
#define _KFILE_VSAM_ORG_ESDS (3)
#define _KFILE_VSAM_ORG_LDS (4)

unsigned int mode:4;
#define _KFILE_VSAM_MODE_UNKNOWN (0)
#define _KFILE_VSAM_MODE_INPUT (1)
#define _KFILE_VSAM_MODE_OUTPUT (2)
#define _KFILE_VSAM_MODE_UPDATE (3)

unsigned char *ddname;
unsigned int vsam_keylen;
unsigned int vsam_keyoff;
unsigned int reclen;
unsigned int last_read_reclen;

} __KFILE_data;

Systems/C C Library 1001

The fields of the KFILE data structure are:

access How the VSAM file may be accessed. The access field will be
set to one of KFILE ACCESS UNKNOWN, KFILE ACCESS SEQUENTIAL,
KFILE ACCESS DIRECT, or KFILE ACCESS SKIP SEQUENTIAL,

vsam org VSAM file organization. The vsam org field will be set to
one of KFILE VSAM ORG UNKNOWN, KFILE VSAM ORG KSDS,
KFILE VSAM ORG RRDS, KFILE VSAM ORG ESDS, or
KFILE VSAM ORG LDS.

mode I/O mode. The mode field will be set to one of VSAM MODE UNKNOWN,
VSAM MODE INPUT, VSAM MODE OUTPUT or VSAM MODE UPDATE,

ddname Pointer to the DDNAME used to open the file. This space will be
overwritten on subsequent invocations of kdata().

vsam keylen Key length specified at open or 0.

vsam keyoff Offset of key specified at open or 0.

reclen Record length specified at open.

last read reclen Length of the last record read.

RETURN VALUES

On success, kdata() returns 1. If there was an error, kdata() returns 0 and sets
the errno value.

ERRORS

When a failure is returned, errno is set to one of the following values.

[EFAULT] The specified KFILE k or KFILE data d was an invalid pointer.

SEE ALSO

kopen(3)

1002 Systems/C C Library

KDELETE(3)

NAME

kdelete - delete the last record retrieved

SYNOPSIS

#include <fcntl.h>
#include <machine/vsamio.h>

int kdelete (const void *key, KFILE *k);

DESCRIPTION

The kdelete() function removes the previously retrieved record from the keyed-
access file k.

The previously retrieved record must be accessed with the kretrv(3) function.

The key parameter is currently ignored.

RETURN VALUES

On success, kdelete() returns 0. If there was an error, kdelete() returns -1 and
sets the errno value.

ERRORS

When a failure is returned, errno is set to one of the following values, as well as the
generic mapping of VSAM logical errors to errno values.

[EFAULT] The specified KFILE k was an invalid pointer.

[EBADF] The specified KFILE k was not open.

[EIO] There was no previously retrieved record.

[EIO] The return value from the ERASE macro was greater than 8.

[ENOSYS] The RPL for the VSAM file could not be accessed or modified.

Systems/C C Library 1003

SEE ALSO

kretrv(3), kreplace(3)

1004 Systems/C C Library

KERRINFO(3)

NAME

kerrinfo - provide information about last logical error

SYNOPSIS

#include <fcntl.h>
#include <machine/vsamio.h>

int kerrinfo (KFILE *k, char *RPLRTNCD, char *RPLCMPON, char *RPLERRCD);

DESCRIPTION

When a VSAM logical error occurs, the VSAM library executes a VSAM SHOWCB
FIELDS=FDBK macro to discern the reasons for the logical error and set the errno
value appropriately.

The kerrinfo() function returns the values set by that SHOWCB invocation.

If the keyed-access file function returns an error indication, the kerrinfo() function
can be used to learn more details about the error condition.

These values are set to zero before every VSAM operation, so if the values are
zero, there is no more information available, or the error condition was unrelated to
VSAM functions.

RETURN VALUES

On success, kerrinfo() returns 1. If there was an error, kerrinfo() returns 0 and
sets the errno value.

ERRORS

When a failure is returned, errno is set to one of the following values.

[EFAULT] The specified KFILE k was an invalid pointer.

[EBADF] The specified KFILE k was not open.

[EIO] The internal VSAM error information could not be located.

Systems/C C Library 1005

KGETPOS(3)

NAME

kgetpos - return the position of the current record

SYNOPSIS

#include <fcntl.h>
#include <machine/vsamio.h>

int kgetpos (KFILE *k, kpos_t *pos);

DESCRIPTION

The kgetpos() function determines the current record location and places that into
the kpos t pointer pos.

The value in pos can subsequently be used by the ksetpos(3) function to “seek” to
this location.

The kpos t is purposefully defined in an opaque manner to allow flexibility for
changes to the positioning mechanisms in the future. There should be no assumption
about the type or values of kpos t values.

RETURN VALUES

On success, kgetpos() returns 0. If there was an error, kgetpos() returns -1 and
sets the errno value.

ERRORS

When a failure is returned, errno is set to one of the following values, as well as the
generic mapping of VSAM logical errors to errno values.

[EIO] The VSAM SHOWCB macro failed.

[EFAULT] The specified KFILE k or kpos t pos was an invalid pointer.

[EBADF] The specified KFILE k was not open.

[ENOSYS] The RPL for the VSAM file could not be accessed or modified.

1006 Systems/C C Library

SEE ALSO

ksetpos(3)

Systems/C C Library 1007

KINSERT(3)

NAME

kinsert - Insert a record into a key-access file.

SYNOPSIS

#include <fcntl.h>
#include <machine/vsamio.h>

int kinsert (void *rec, size_t length, void *key, KFILE *k);

DESCRIPTION

The kinsert() function inserts a record into the keyed-access file k.

The rec parameter is a pointer to the record to insert, of length bytes. Note that if
the file is an ESDS or RRDS file, then length must include the 4-byte key prefix.

The key parameter is the key to use for insertion. If key is NULL, then the insertion
key is taken from the given record using the values specified when the file was
kopen’d. For ESDS files, key points to the area to provide the new VSAM-assigned
key.

RETURN VALUES

On success, kinsert() returns 0. If there was an error, kinsert() returns -1 and
sets the errno value.

ERRORS

When a failure is returned, errno is set to one of the following values, as well as the
generic mapping of VSAM logical errors to errno values.

[EEXIST] The key is a duplicate and duplicate keys are not allowed.

[EIO] The VSAM PUT or SHOWCB macros failed.

[EFAULT] The specified KFILE k was an invalid pointer.

[EBADF] The specified KFILE k was not open.

1008 Systems/C C Library

[EBADF] The given keylen was not zero and the VSAM organization was not
KSDS.

[ENOSYS] The RPL for the VSAM file could not be accessed or modified.

Systems/C C Library 1009

KOPEN(3)

NAME

kopen - open a keyed-access or Linear Data Set file.

SYNOPSIS

#include <fcntl.h>
#include <machine/vsamio.h>

KFILE * kopen (const char *ddn, const char *parms, int mode);

DESCRIPTION

The kopen() function opens a keyed-access or Linear Data Set file for input, output
or update.

The file to open is specified via the DD name ddn. The name should be a simple
DD name, with no Systems/C prefix. It must be a name which is associated with
the VSAM file. The parms parameter is a pointer to a string that defines the type
of file to open, and several options that may apply. The mode parameter describes
the direction of the operation; either O RDONLY for read access, O WRONLY for write
access or O RDWR for update access.

kopen() is roughly analagous to open(2).

The KFILE pointer returned is a handle which can be passed to other keyed-access
I/O functions.

The parms parameter is a pointer to a constant character string that contains a
comma separate list of parameters. Each parameter is of the form NAME=VALUE
pairs. The following names and values are current supported:

recfm specifies the record format, values are v, f and u. VSAM RRDS
and LDS are RECFM=F, all other VSAM files are RECFM=V.

reclen specifies the record format, values are an integer value indicat-
ing the record length, or the special symbol x for RECFM=V
files. VSAM LDS is always reclen=4096.

blksize specifies the block size, values are an integer value indicating
the requested size.

1010 Systems/C C Library

bufsize specifies the size, in bytes, of the windows for a Linear Data
Set (LDS). The integer value specified will be rounded up to a
multiple of 4K. The default value is 262144 (256K).

bufmax specifies the maximum number of DIV windows for a Linear
Data Set (LDS) - default is 4.

keyoff specifies the offset of the key embedded in the VSAM record.
The value can be zero for non-key files. For ESDS and RRDS
files, the value must be zero. If the value is not specified for
KSDS files, the value found in the system catalogue will be
used.

keyoff specifies the offset of the key embedded in the VSAM record.
The value can be zero for non-key files. For ESDS and RRDS
files, the value must be zero. If the value is not specified for
KSDS files, the value found in the system catalogue will be
used.

keylen specifies the length of the key embedded in the VSAM record.
If the value is not specified for KSDS files, the value found in
the system catalogue will be used.

org specifies the VSAM organization. The value is a two character
field, where “ks” indicates KSDS, “es” indicates ESDS, “rr”
indicates RRDS and “ls” indicates LDS.

org specifies the VSAM organization. The value is a two character
field, where “ks” indicates KSDS, “es” indicates ESDS, “rr”
indicates RRDS and “ls” indicates LDS.

access specifies the kind of VSAM access is to be used. The value is a
three character field, where “seq” indicates sequential access,
“skp” indicates skip access, and “dir” indicates direct access.

unsafeshare indicates that the system should allow sharing kopen() of an
LDS file without SHAREOPTIONS(1,3) specified in the file allo-
cation.

Other values specified in the parms parameter are silently ignored.

RETURN VALUES

If the kopen() was successful, a pointer to the allocated KFILE handle is returned;
otherwise the NULL pointer is returned and errno is set.

Systems/C C Library 1011

ERRORS

Access to the file is denied if:

[EACCESS] The DIV ACCESS macro indicated access was denied when opening
an LDS file.

[EBUSY] The DIV ACCESS macro indicated the file is being opened by mul-
tiple tasks without SHAREOPTIONS(1,3) being specified in the allo-
cation. Use ”unsafeshare” to ignore this error.

[ENOMEM] Insufficient memory was available.

[ENOSYS] A DFSMS macro or facility indicated failure.

[EIO] A DFSMS or DIV macro or facility indicated failure after VSAM
file was successfully opened.

[EFAULT] The given ddn or parms value was NULL.

[EFTYPE] A kopen() of an LDS file with the O RDONLY mode was specified, but
the source file is empty. An empty LDS file must be opened with
O RDWR or O WRONLY.

[EINVAL] An invalid ddn, parms or mode paramter was passed. Or, the spec-
ified "org=", "keylen=" or "keyoff=" value in the parms did not
match the information returned by the system Catalog Search In-
terface. Or, the mode value was invalid for the specified "access="
value.

[EFTYPE] An invalid "org=" value was specified in parms.

[ENOENT] The specified ddn isn’t allocated, or the allocation points to an in-
correct DSN that was not found in the system catalog. ENOENT can
also be set if the OPEN system service succeeded with a return code
of 4, in which case the file is closed with the CLOSE system service
and NULL is returned.

[ENOATTR] The Catalog Search Interface could not locate the information for
the file.

SEE ALSO

kopen(3)

1012 Systems/C C Library

KREAD(3)

NAME

kread - read input from a Linear Data Set

SYNOPSIS

size_t
kread(KFILE *k, void *buf, size_t nbytes)

DESCRIPTION

kread() attempts to read nbytes of data from the Linear Data Set referenced by
the KFILE pointer k into the buffer pointed to by buf.

The kread() starts at a position given by the pointer associated with k (see
kseek(2)). Upon return from kread(), the pointer is incremented by the number of
bytes actually read.

Upon successful completion, kread() returns the number of bytes actually read and
placed in the buffer.

IMPLEMENTATION NOTES

kread() only does ”binary” reading, no attempt is made to restructure the data
into records.

kread() uses the DIV macro to process ”windows” into the Linear Data Set. The
bufsize and bufmax parms on the associated kopen(3) can adjust the size and number
of those windows which can affect performance. When the number of windows is
exhausted, the least recently used window will be re-used.

RETURN VALUES

If successful, the number of bytes actually read is returned. Upon exhausing the
input data (end-of-file), zero is returned. Otherwise, a -1 is returned and the global
variable errno is set to indicate the error.

Systems/C C Library 1013

ERRORS

kread() will succeed unless:

[EBADF] k is not a valid KFILE pointer open for reading.

[EINVAL] The KFILE pointed to by k is not a Linear Data Set.

[EFAULT] buf points outside the allocated address space.

[EIO] An low-level error occurred while processing DIV windows.

[ENOMEM] Inadequate memory was available to set up various internal data
structures.

SEE ALSO

kopen(3), kseek(3)

1014 Systems/C C Library

KREPLACE(3)

NAME

kreplace - replace the last record retrieved

SYNOPSIS

#include <fcntl.h>
#include <machine/vsamio.h>

int kreplace (void *rec, size_t length, KFILE *k);

DESCRIPTION

The kreplace() function replaces, in place, the previous record retrieved via
kretrv(3) with the record specified by rec of length bytes.

If the file is ESDS or RSDS then length includes the 4-byte prefix.

RETURN VALUES

On success, kreplace() returns 0. If there was an error, kreplace() returns -1 and
sets the errno value.

ERRORS

When a failure is returned, errno is set to one of the following values, as well as the
generic mapping of VSAM logical errors to errno values.

[EFAULT] The specified KFILE k was an invalid pointer.

[EBADF] The specified KFILE k was not open.

[EIO] There was no previously retrieved record.

[EIO] The return value from the PUT macro was greater than 8.

[ENOSYS] The RPL for the VSAM file could not be accessed or modified.

SEE ALSO

kretrv(3), kdelete(3)

Systems/C C Library 1015

KRETRV(3)

NAME

kretrv - Retrieve the next record from the keyed-acccess file.

SYNOPSIS

#include <fcntl.h>
#include <machine/vsamio.h>

int kretrv (void *rec, void *key, int flags, KFILE *k);

DESCRIPTION

The kretrv() function returns the next record from the specified KFILE k. The
record is stored in the area addressed by the rec parameter.

If the key pointer is non-NULL, then kretrv() will save the record’s key in the
memory addressed by key.

Note that no length parameters are specified, the program must ensure that the
memory addressed by rec and key is sufficient to contain the largest record and key
from the file.

The flags value can be one of K backwards indicating the previous record in the
file should be returned, or K noupdate indicating that the program does not intend
to alter the records in the file. These values can be logically OR’d together. If
K backwards isn’t specified, then the current record is returned and for sequential
access, the position advances to the next record.

RETURN VALUES

The kretrv() function returns the length of the retrieved record. This length in-
cludes a 4-byte key prefix for ESDS and RRDS files. If the end-of-file (or begining
if K backwards is specified) is reached, kretrv() returns 0. kretrv() returns -1 on
error.

ERRORS

When a failure is returned, errno is set to one of the following values:

1016 Systems/C C Library

[EIO] The VSAM GET or SHOWCB macros failed.

[EFAULT] The specified KFILE k was an invalid pointer.

[EBADF] The specified KFILE k was not open.

[ENOSYS] The RPL for the VSAM file could not be accessed or modified.

SEE ALSO

kopen(3), ksearch(3), kdelete(3)

Systems/C C Library 1017

KSEARCH(3)

NAME

ksearch - search a keyed-access file based on key.

SYNOPSIS

#include <fcntl.h>
#include <machine/vsamio.h>

int ksearch (const void *key, size_t keylen, int flags, KFILE *k);

DESCRIPTION

The ksearch() function searches for records in the specified KFILE k, returning 1 if
the record was found, 0 or -1 otherwise. If the record is found, the file position is
set to that record, so it can be retrieved with the kretrv function.

The key parameter is a pointer to the bytes to be used for the search key, up to
keylen bytes in length.

The flags value indicates how the search should proceed. The specified value in flags
can be K exact, K backwards, K noupdate and can be logically OR’d together:

K exact Indicates that the given record must match exactly, up to keylen
bytes for a generic search. If K exact is not specified, the first
record found with a key that is greater than or equal (less than
or equal for a backwards searches). K exact must be specified
for ESDS files.

K backwards The search is performed in descending key order.

K noupdate The program does not intend to replace or delete records, thus
a subsequent kretr() is needed.

RETURN VALUES

The ksearch() function returns 1 if a matching record is located, 0 if no record is
located, and -1 if there is an error.

1018 Systems/C C Library

ERRORS

When a failure is returned, errno is set to one of the following values:

[EIO] The VSAM POINT, SHOWCB macros failed, or the returned value from
VSAM could not be interpreted.

[EINVAL] A keylen was specified by the key pointer is NULL.

[EFAULT] The specified KFILE k was an invalid pointer.

[EBADF] The specified KFILE k was not open.

[EBADF] The given keylen was not zero and the VSAM organization was not
KSDS.

[ENOSYS] The RPL for the VSAM file could not be accessed or modified.

SEE ALSO

kopen(3), kretrv(3)

Systems/C C Library 1019

KSEEK(2)

NAME

kseek - reposition read/write file offset of Linear Data Set

SYNOPSIS

#include <unistd.h>
#include <machine/vsamio.h>

off_t
kseek(KFILE *k, off_t offset, int whence)

DESCRIPTION

The kseek() function repositions the offset of the Linear Data Set specified in the
KFILE pointer k to the argument offset according to the directive whence. The
argument k must be an open KFILE. kseek() repositions the file position pointer
associated with the KFILE pointer k as follows:

• If whence is SEEK SET, the offset is set to offset bytes.

• If whence is SEEK CUR, the offset is set to its current location plus offset bytes.

• If whence is SEEK END, the offset is set to the size of the file plus offset bytes.

If the KFILE was opened for output (O WRONLY) then the kseek() function allows
the file offset to be set beyond the end of the existing end-of-file of the file. If data
is later written at this point, subsequent reads of the data in the gap return bytes
of zeros (until data is actually written into the gap).

RETURN VALUES

Upon successful completion, kseek() returns the resulting offset location as mea-
sured in bytes from the beginning of the file. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

1020 Systems/C C Library

ERRORS

kseek() will fail and the file position pointer will remain unchanged if:

[EBADF] k is not an open file KFILE pointer, or k does not specify an LDS
file.

[EINVAL] Whence is not a proper value.

SEE ALSO

dup(2), open(2)

Systems/C C Library 1021

KSETPOS(3)

NAME

ksetpos - set the position of the keyed-access file

SYNOPSIS

#include <fcntl.h>
#include <machine/vsamio.h>

int ksetpos (KFILE *k, const kpos_t *pos);

DESCRIPTION

The ksetpos() function repositions the keyed-access file k to the position addressed
by the point pos.

The value specified via pos was previously obtained in a kgetpos(3) function call.

The kpos t is purposefully defined in an opaque manner to allow flexibility for
changes to the positioning mechanisms in the future. There should be no assumption
about the type or values of kpos t values.

RETURN VALUES

On success, ksetpos() returns 0. If there was an error, ksetpos() returns -1 and
sets the errno value.

ERRORS

When a failure is returned, errno is set to one of the following values, as well as the
generic mapping of VSAM logical errors to errno values.

[EIO] The VSAM POINT macro failed.

[EFAULT] The specified KFILE k or kpos t pos was an invalid pointer.

[EBADF] The specified KFILE k was not open.

[ENOSYS] The RPL for the VSAM file could not be accessed or modified.

1022 Systems/C C Library

SEE ALSO

kgetpos(3)

Systems/C C Library 1023

KWRITE(3)

NAME

kwrite - write output to a Linear Data Set

SYNOPSIS

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#include <machine/vsamio.h>

size_t
kwrite(FILE *k, const void *buf, size_t nbytes)

DESCRIPTION

kwrite() attempts to write nbytes of data to the Linear Data Set referenced by the
KFILE pointer k from the buffer pointed to by buf.

kwrite() starts at a position given by the pointer associated with k, see kseek(3).
Upon return from kwrite(), the pointer is incremented by the number of bytes
which were written. kwrite() writes the data in ”binary” mode, no attempt is
made to place record boundaries onto the data.

kwrite() may write fewer bytes than requested; the return value must be noted,
and the remainder of the operation should be retried when possible.

IMPLEMENTATION NOTES

kwrite() is implemented using the DIV (Data In Virtual) macros. Bytes are copied
to the managed DIV windows which map into offsets of the Linear Data Set. The
bytes are not actually written onto the Linear Data Set until the DIV window
is UNMAP’d. A DIV window will be UNMAP’d when the file is closed with the
kclose(3) function, or when the number of available DIV windows has been exhausted
and the window needs to be re-used.

A Linear Data Set is processed in terms of 4K data blocks, so a kwrite() the output
file will have a size that is a multiple of 4K after the file has been closed via kclose(3),
even those less than that number of bytes may have been processed via kwrite().

1024 Systems/C C Library

RETURN VALUES

Upon successful completion the number of bytes which were written is returned.
Otherwise a -1 is returned and the global variable errno is set to indicate the error.

ERRORS

kwrite() will fail and the file pointer will remain unchanged if:

[EBADF] The pointer associated with k was not open for OUTPUT or did
not represent a Linear Data Set.

[EINVAL] The pointer associated with k did not represent a Linear Data Set.

[EIO] An error occurred while saving or mapping a DIV window to the
file system.

SEE ALSO

kopen(3), kseek(2)

Systems/C C Library 1025

1026 Systems/C C Library

ASCII/EBCDIC Translation
Table

The Systems/C compiler and utilities use the following tables to translate characters
between ASCII and EBCDIC. These tables represent the mapping of the IBM Code
Page 1047 to ISO LATIN-1.

ASCII to EBCDIC

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 37 2D 2E 2F 16 05 15 0B 0C 0D 0E 0F

1 10 11 12 13 3C 3D 32 26 18 19 3F 27 1C 1D 1E 1F

2 40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61

3 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F

4 7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6

5 D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 AD E0 BD 5F 6D

6 79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96

7 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 C0 4F D0 A1 07

8 20 21 22 23 24 25 06 17 28 29 2A 2B 2C 09 0A 1B

9 30 31 1A 33 34 35 36 08 38 39 3A 3B 04 14 3E FF

A 41 AA 4A B1 9F B2 6A B5 BB B4 9A 8A B0 CA AF BC

B 90 8F EA FA BE A0 B6 B3 9D DA 9B 8B B7 B8 B9 AB

C 64 65 62 66 63 67 9E 68 74 71 72 73 78 75 76 77

D AC 69 ED EE EB EF EC BF 80 FD FE FB FC BA AE 59

E 44 45 42 46 43 47 9C 48 54 51 52 53 58 55 56 57

F 8C 49 CD CE CB CF CC E1 70 DD DE DB DC 8D 8E DF

Systems/C C Library 1027

EBCDIC to ASCII

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 9C 09 86 7F 97 8D 8E 0B 0C 0D 0E 0F

1 10 11 12 13 9D 0A 08 87 18 19 92 8F 1C 1D 1E 1F

2 80 81 82 83 84 85 17 1B 88 89 8A 8B 8C 05 06 07

3 90 91 16 93 94 95 96 04 98 99 9A 9B 14 15 9E 1A

4 20 A0 E2 E4 E0 E1 E3 E5 E7 F1 A2 2E 3C 28 2B 7C

5 26 E9 EA EB E8 ED EE EF EC DF 21 24 2A 29 3B 5E

6 2D 2F C2 C4 C0 C1 C3 C5 C7 D1 A6 2C 25 5F 3E 3F

7 F8 C9 CA CB C8 CD CE CF CC 60 3A 23 40 27 3D 22

8 D8 61 62 63 64 65 66 67 68 69 AB BB F0 FD FE B1

9 B0 6A 6B 6C 6D 6E 6F 70 71 72 AA BA E6 B8 C6 A4

A B5 7E 73 74 75 76 77 78 79 7A A1 BF D0 5B DE AE

B AC A3 A5 B7 A9 A7 B6 BC BD BE DD A8 AF 5D B4 D7

C 7B 41 42 43 44 45 46 47 48 49 AD F4 F6 F2 F3 F5

D 7D 4A 4B 4C 4D 4E 4F 50 51 52 B9 FB FC F9 FA FF

E 5C F7 53 54 55 56 57 58 59 5A B2 D4 D6 D2 D3 D5

F 30 31 32 33 34 35 36 37 38 39 B3 DB DC D9 DA 9F

1028 Systems/C C Library

SIGABND example to catch
ABEND 978 (out-of-stack)

The following example demonstrates how to set up a signal handler on an alternate
stack to catch an ABEND and report the ABEND and REASON codes, then re-issue
the ABEND to have it go thru normal percolation.

In this example, the SIGABND handler is provided an alternate execution stack, so
that ABEND 978 (out-of-stack) can be handled. If an alternate stack is not provided,
then an ABEND 978 will automatically be percolated.

Also note that the SA RESETHAND flag is used when establishing the signal handler
(via sigaction(2)) in order to avoid looping into the signal handler when the ABEND
is re-issued by the return of the signal handler.

/*
* Demonstrates "catching" an ABEND, displaying
* some information about it, then returning to
* re-issue the ABEND and have it percolate.
*
**/
#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

int __bpxsig = 1; /* force the use of BPX signals which */
/* enables TRAP(ON) */

/*
* The abend_handler() will be invoked for the SIGABND
* signal. Because SA_RESETHAND is set, it will only
* be invoked once. On return from the handler, the library
* will restore the processor state at the point of the
* ABEND, and the ABEND will be re-issued and will percolate
* thru normal ABEND processing.
*
* If SA_RESETHAND is not set (or the signal handler does

Systems/C C Library 1029

* not set the SIGABND handler to SIG_DFL) then a return
* from the signal handler will restore the processor state
* to the instruction that issued the ABEND and re-issue the
* ABEND, causing the signal handler to be re-invoked in a loop.
*
**/
void
abend_handler(int signum, siginfo_t *info, void *ctx)
{
int a = __abendcode();
int r = __rsncode();

printf("in abend_handler:\n");
printf(" __abendcode() is 0x%08x\n", a);

/* user completion is the last 12 bits */
printf(" user completion code is %d\n", a & 0xfff);
printf(" __rsncode() is %d\n", __rsncode());
fflush(stdout);

/* A SIGABEND can’t return to the point of the interrupt */
/* (if the signal handler remains installed, then we */
/* return to the point of interrupt, which causes the */
/* ABEND to be re-issued which brings us right back here.*/
/* This is handled by the SA_RESETHAND flag on the */
/* sigaction setting. If SA_RESETHAND is on, then the */
/* signal handler is set back to SIG_DFL before invoking */
/* this routine. Thus, if we return, we redo the ABEND */
/* but with the signal being SIG_DFL, normal ABEND */
/* processing happens. */

/* So - an ABEND catcher can do a few things: */
/* Return to loop forever */
/* longjump() or setcontext() to a previous */
/* program state */
/* exit() the program. */

/* In this example, we are returning to allow */
/* normal ABEND processing to take over. */
return;

}

int counter;

/* Cause an out-of-stack situation by recursively
* consuming memory until we run out. When this
* occurs, the C library will issue ABEND 978.
*/

1030 Systems/C C Library

int recurse()
{
int big_array[4096*16];
counter++;
return big_array[counter] + recurse();

}

main()
{

stack_t sigstk;
struct sigaction act;

printf("CATCH ABEND 978 (out-of-stack)\n");

/* Allocate memory for the alternate stack and */
/* set it up. */
if ((sigstk.ss_sp = malloc(SIGSTKSZ+4096)) == NULL) {
fprintf(stderr,"No mem");

/* error return */
exit(12);

}

/* Define the alternate signal execution stack */
sigstk.ss_size = SIGSTKSZ+4096;
sigstk.ss_flags = 0;
if (sigaltstack(&sigstk,0) < 0) {

perror("sigaltstack");
}

/* Define an ABEND signal handler to use the */
/* alternate stack, and to reset the handler */
/* back to SIG_DFL at the time signal handler*/
/* function is invoked. */
act.sa_sigaction = abend_handler;
act.sa_flags = (SA_SIGINFO|SA_ONSTACK|SA_RESETHAND);
sigemptyset(&act.sa_mask);
sigaction(SIGABND, &act, NULL);

/* Invoke the function to eventually consume */
/* all space for the stack and thus cause a */
/* user ABEND 978. */
return recurse();

}

Systems/C C Library 1031

1032 Systems/C C Library

DCALL example

The following example demonstrates how to use the Direct CALL facility to pack-
age together a set of functions and make these available to any 31-bit mainframe
environment.

The functions here define an initialization function, named INIT(), two support
functions, SUP1() and SUP2() and a termination function named END(). The user
of this package would first call the INIT() function, then could make use of the
support functions, and terminate everything with the END() function.

Each of these functions accepts as the first parameter the address of a 4-byte area.
This area holds the environment “handle” returned by the dcall env() function.
It is set by the INIT() function and retrieved by the

@@FNDENV

assembly code as needed by the other functions.

/*
* Direct CALL packaging example
*
* This example demonstrates how to use Direct CALL
* in the situation where you want to package functions
* together to be linked (or dynamically loaded) from
* any mainframe environment.
*
* The package provides
* 1) An initialization function, name "INIT".
* This must be the first function invoked
* to initialize the package.
*
* 2) Two support functions "SUP1" and "SUP2".
* Which re-use the extent environment and
* perform any interesting functions.
* These also use the FINDENV DCALL facility

Systems/C C Library 1033

* to locate the extent environment.
*
* 3) A destruction function, named "END", that
* ends the environment.
*
*
* Each of these is called with a first parameter
* that is a by-reference parm which will contain
* the DCALL environment handle. When the "INIT"
* function is invoked, the Systems/C direct-call
* environment pointer is saved in the first parm.
* The other functions retrieve the pointer from
* there using the direct-call FINDENV facility.
*
* In C, these functions would be prototyped as:
* INIT(void **env);
* SUP1(void **env, int p1);
* SUP2(void **env, int p1);
* END(void **env);
*
* Also note that the functions are upper-case, to
* make linking in other environments easier.
*
* When calling these in an IBM C/C++ environment, it
* is important to declare the functions with #pragma
* OS linkage, as in:
* #pragma linkage(INIT, OS)
* #pragma linkage(SUP1, OS)
* #pragma linkage(SUP2, OS)
* #pragma linkage(END, OS)
*
* When pre-linking this package, it is a good idea
* to use the PLINK features which obscure the C runtime
* by renaming everything. We want to rename everything
* except the INIT, SUP1, SUP2 and END functions; so
* these PLINK options would be appropriate:

* plink -renameall -prefix=@SX -except=INIT,END,SUP1,SUP2 ...

* This obfuscates all of the external names consistently
* and avoids potential clashes with other runtime environments.
*
**/

#include <machine/dcall.h>

/*

1034 Systems/C C Library

* allocate function
*
* Sets the void * pointer passed as
* a parameter to the direct-call environment
* handle. Subsequent calls to the functions
* below must pass that same pointer as the
* first parameter.
**/

#pragma prolkey(INIT,"DCALL=ALLOCATE")
void
INIT(void **env)

*env = __dcall_env();

/*
* supplied function
* Retrieves the environment pointer from the 1st parm,
* and executes the function.
*/
#pragma prolkey(SUP1, "DCALL=SUPPLIED,FINDENV=@@FNDENV")
void
SUP1(void **env, int parm1)

/*
* supplied function
* Retrieves the environment pointer from the 1st parm,
* and executes the function.
*/
#pragma prolkey(SUP2, "DCALL=SUPPLIED,FINDENV=@@FNDENV")
void
SUP2(void **env, int parm1)

/*

Systems/C C Library 1035

* end function
* Retrieves the environment pointer from the 1st parm,
* and destroys the environment.
*/
#pragma prolkey(END, "DCALL=DESTROY,FINDENV=@@FNDENV")
void
END(void **env)

/*
* @@FNDENV assembly function
*
* Invoked by the DCALL=SUPPLIED,FINDENV=@@FNDENV
* functions above. Loads the first parm and
* copies that as the environment pointer into R0.
*
* It’s assumed that R1 points to a parm
* block of the form:
* +--------------+
* R1 -> | ptr to env. | --> +-------------+
* +--------------+ | env handle |
* ... +-------------+
* +--------------+
*
* which would be the typical pass-by-refernce
* form from a COBOL module, or a #pragma linkage OS
* IBM C/C++ function call.
*
* NB: @@FNDENV will be an externally visible CSECT, and thus
* should only be defined in one source file.
*
**/
__asm
@@FNDENV CSECT
@@FNDENV AMODE ANY
@@FNDENV RMODE ANY

USING @@FNDENV,15
L 2,0(0,1)
L 0,0(0,2) Get ENV ptr into R0
L 15,=V(CRT9A)
BR 15
LTORG

1036 Systems/C C Library

	How to use this book
	Using the Systems/C C library
	Linking with the Systems/C C run-time library on OS/390 and z/OS
	A note on re-entrant (RENT) programs
	Using PLINK
	Linking under the OpenEdition shell
	Other useful utilities
	Linking programs on OS/390 and z/OS
	Executing programs

	Systems/C C Library Features
	Special ``built-in'' implementations for common C library functions.
	Using the Systems/C Direct-CALL interface

	Systems/C z/Architecture Library
	z/Architecture library features
	z/Architecture data and code locations
	Determining addressing mode
	Linking with the Systems/C z/Architecture Library
	z/Architecture and OpenEdition services
	Direct-CALL extensions
	Mixing z/Architecture and non-z/Architecture functions

	Programming for TSO and BATCH
	Running programs under TSO
	argv processing under TSO
	Running programs under BATCH JCL
	argv processing under BATCH

	Programming for OpenEdition
	Linking programs under the OpenEdition Shell
	Copying programs from a PDS to the OpenEdition Shell
	Running programs under the OpenEdition Shell

	Programming for CMS
	Linking programs for CMS
	Using PLINK to create CMS programs
	Using LKED to link CMS programs
	Executing programs on CMS

	Programming for MVS 3.8
	Linking programs for MVS 3.8
	Using PLINK to create MVS 3.8 programs

	MVS 3.8 runtime restrictions

	Controlling the runtime environment
	Runtime Options specified in the program arguments
	Runtime Options in TSO and Batch
	Runtime Options in OpenEdition
	Disabling/Enabling runtime options in TSO and Batch

	stdin, stdout and stderr
	Changing standard filenames at execution time
	Changing standard filenames and attributes at compile time

	Choosing the TCP/IP interface
	Changing argv delimiters for BATCH and TSO
	Disabling runtime options for BATCH and TSO
	Controlling stack space allocation
	Specifying the runtime storage SUBPOOL
	Specifying the runtime KEY
	Controlling access to Unix System Services
	Signal Handling
	Considerations for SIGABND processing

	OpenEdition
	Linking under OpenEdition
	Running under OpenEdition

	Data locations
	Stand alone function
	Compiler invoked routines
	Initializing re-entrant data

	User ABEND codes issued by the runtime
	Systems/C C Library functions
	System Functions
	ACCESS(2)
	AIO_CANCEL(2)
	AIO_ERROR(2)
	AIO_READ(2)
	AIO_RETURN(2)
	AIO_SUSPEND(2)
	AIO_WRITE(2)
	CHDIR(2)
	CHMOD(2)
	CHOWN(2)
	CHROOT(2)
	CLOCK_GETTIME(2)
	CLOSE(2)
	__DCALL_ENV(2)
	__DCALL_SETRETREGVAL(2)
	DDNFIND(2)
	__DYNALL(2)
	DUP(2)
	EXECVE(2)
	_EXIT(2)
	FCNTL(2)
	FLDATA(2)
	FORK(2)
	FSYNC(2)
	__GET_CPUID(2)
	GETITIMER(2)
	GETDTABLESIZE(2)
	GETGID(2)
	GETGROUPS(2)
	GETLOGIN(2)
	GETPID(2)
	GETPGRP(2)
	GETPRIORITY(2)
	GETPRV(2)
	GETRUSAGE(2)
	GETSID(2)
	GETTIMEOFDAY(2)
	GETUID(2)
	GRANTPT(2)
	IBMFD(2)
	__ISPOSIXON(2)
	__JOBNAME(2)
	KILL(2)
	LINK(2)
	LIO_LISTIO(2)
	LSEEK(2)
	MKDIR(2)
	MKFIFO(2)
	MKNOD(2)
	MMAP(2)
	MPROTECT(2)
	MSYNC(2)
	MSGCTL(2)
	MSGGET(2)
	MSGRCV(2)
	MSGSND(2)
	MUNMAP(2)
	NANOSLEEP(2)
	OPEN(2)
	OSDDINFO(2)
	__PASSWD(2)
	PATHCONF(2)
	PIPE(2)
	__PROCNAME(2)
	__QUERYDUB(2)
	READ(2)
	READLINK(2)
	RENAME(2)
	RMDIR(2)
	SCHED_YIELD(2)
	SEMCTL(2)
	SEMGET(2)
	SEMOP(2)
	SETGROUPS(2)
	_SETMODE(2)
	SETPGID(2)
	SETREGID(2)
	SETREUID(2)
	SETSID(2)
	SETUID(2)
	SHMAT(2)
	SHMCTL(2)
	SHMGET(2)
	SIGACTION(2)
	SIGPENDING(2)
	SIGPROCMASK(2)
	SIGQUEUE(2)
	SIGSUSPEND(2)
	SIGWAIT(2)
	__SMF_RECORD(2)
	STAT(2)
	__STEPNAME(2)
	SYMLINK(2)
	__SVC99(2)
	SYNC(2)
	TRUNCATE(2)
	UMASK(2)
	UNLINK(2)
	UNLOCKPT(2)
	__USERID(2)
	UTIMES(2)
	VFORK(2)
	WAIT(2)
	WRITE(2)

	TCP/IP related functions
	ACCEPT(2)
	BIND(2)
	CONNECT(2)
	GETCLIENTID(2)
	GETHOSTID(2)
	GETHOSTNAME(2)
	GETPEERNAME(2)
	GETSOCKNAME(2)
	GETSOCKOPT(2)
	GIVESOCKET(2)
	IOCTL(2)
	LISTEN(2)
	POLL(2)
	RECV(2)
	SELECT(2)
	SELECTEX(2)
	SEND(2)
	__SETSOCKPARM(2)
	SOCKET(2)
	SHUTDOWN(2)
	TAKESOCKET(3)

	Gen Library
	__ATOE(3)
	__TO_XX(3)
	ALARM(3)
	ASSERT(3)
	BITSTRING(3)
	CLOCK(3)
	CTERMID(3)
	DIRECTORY(3)
	DLOPEN(3)
	ERR(3)
	EXEC(3)
	FMTCHECK(3)
	FMTMSG(3)
	FNMATCH(3)
	FTOK(3)
	GETCWD(3)
	GETCONTEXT(3)
	GETGRENT(3)
	GETPROGNAME(3)
	GETPWENT(3)
	GLOB(3)
	HCREATE(3)
	ISATTY(3)
	LSEARCH(3)
	MAKECONTEXT(3)
	NICE(3)
	POPEN(3)
	POSIX_SPAWN(3)
	POSIX_SPAWNATTR_GETFLAGS(3)
	POSIX_SPAWNATTR_GETPGROUP(3)
	POSIX_SPAWNATTR_GETSIGDEFAULT(3)
	POSIX_SPAWNATTR_GETSIGMASK(3)
	POSIX_SPAWNATTR_INIT(3)
	POSIX_SPAWN_FILE_ACTIONS_ADDOPEN(3)
	POSIX_SPAWN_FILE_ACTIONS_INIT(3)
	PSELECT(3)
	PSIGNAL(3)
	PTSNAME(3)
	PAUSE(3)
	QUEUE(3)
	RAISE(3)
	SEM_DESTROY(3)
	SEM_GETVALUE(3)
	SEM_INIT(3)
	SEM_OPEN(3)
	SEM_POST(3)
	SEM_WAIT(3)
	SIGNAL(3)
	SIGSETOPS(3)
	SETJMP(3)
	SLEEP(3)
	SYSCONF(3)
	TCGETPGRP(3)
	TCSENDBREAK(3)
	TCSETATTR(3)
	TCSETPGRP(3)
	THRD_CREATE(3)
	TIME(3)
	TIMES(3)
	TIMEZONE(3)
	TPUT(3)
	TRACEBACK(3)
	TSEARCH(3)
	TTYNAME(3)
	UCONTEXT(3)
	UNAME(3)
	USLEEP(3)
	UTIME(3)
	WORDEXP(3)
	WTO(3)

	Locale Library
	BTOWC(3)
	CTYPE(3)
	ISALNUM(3)
	ISALPHA(3)
	ISASCII(3)
	ISBLANK(3)
	ISCNTRL(3)
	ISDIGIT(3)
	ISGRAPH(3)
	ISLOWER(3)
	ISPRINT(3)
	ISPUNCT(3)
	ISSPACE(3)
	ISUPPER(3)
	ISWALNUM(3)
	ISXDIGIT(3)
	MBLEN(3)
	MBRLEN(3)
	MBRTOWC(3)
	MBSINIT(3)
	MBSRTOWCS(3)
	MULTIBYTE(3)
	RUNE(3)
	SETLOCALE(3)
	TOASCII(3)
	TOLOWER(3)
	TOUPPER(3)
	TOWLOWER(3)
	TOWUPPER(3)
	WCSTOL(3)
	WCTRANS(3)
	WCTYPE(3)
	WCWIDTH(3)

	Math library
	MATH(3)
	__FP_CAST(3)
	__ISBFP(3)
	ACOS(3)
	ACOSH(3)
	SCALBN(3)
	ASIN(3)
	ASINH(3)
	ATAN(3)
	ATAN2(3)
	ATANH(3)
	CEIL(3)
	COPYSIGN(3)
	COS(3)
	COSH(3)
	ERF(3)
	EXP(3)
	FABS(3)
	FDIM(3)
	FEENABLEEXCEPT(3)
	FEGETROUND(3)
	FE_DEC_GETROUND(3)
	FLOOR(3)
	FMA(3)
	FMAX(3)
	FMOD(3)
	FPCLASSIFY(3)
	FREXP(3)
	HYPOT(3)
	ILOGB(3)
	ISGREATER(3)
	LDEXP(3)
	LGAMMA(3)
	LOG(3)
	LRINT(3)
	LROUND(3)
	MODF(3)
	NAN(3)
	NEXTAFTER(3)
	REMAINDER(3)
	RINT(3)
	ROUND(3)
	SIGNBIT(3)
	SIN(3)
	SINH(3)
	SQRT(3)
	TAN(3)
	TANH(3)
	TRUNC(3)

	Standard I/O Library
	STDIO(3)
	FCLOSE(3)
	FERROR(3)
	FFLUSH(3)
	FGETLN(3)
	FGETWLN(3)
	GETLINE(3)
	FGETS(3)
	FGETWS(3)
	FOPEN(3)
	FPUTS(3)
	FPUTWS(3)
	FREAD(3)
	FSEEK(3)
	FUNOPEN(3)
	FWIDE(3)
	GETC(3)
	GETWC(3)
	MKTEMP(3)
	PRINTF(3)
	PUTC(3)
	PUTWC(3)
	REMOVE(3)
	SCANF(3)
	SETBUF(3)
	TMPFILE(3)
	UNGETC(3)
	UNGETWC(3)
	WPRINTF(3)
	WSCANF(3)

	The Standard Library
	__FREE24(3)
	__FREE31(3)
	__MALLOC24(3)
	__MALLOC31(3)
	ABORT(3)
	ABS(3)
	ARC4RANDOM(3)
	ATEXIT(3)
	ATOF(3)
	ATOI(3)
	ATOL(3)
	BSEARCH(3)
	CALLOC(3)
	DIV(3)
	ENVIRON(7)
	EXIT(3)
	FREE(3)
	GETENV(3)
	GETOPT(3)
	GETSUBOPT(3)
	IMAXABS(3)
	IMAXDIV(3)
	LABS(3)
	LDIV(3)
	LLABS(3)
	LLDIV(3)
	MALLOC(3)
	MEMORY(3)
	STRFMON(3)
	QSORT(3)
	RADIXSORT(3)
	RAND(3)
	RANDOM(3)
	REALLOC(3)
	REALPATH(3)
	STRTOD(3)
	STRTOL(3)
	STRTOUL(3)
	SYSCONF(3)
	SYSTEM(3)

	Standard Time library
	CTIME(3)
	STRFTIME(3)
	STRPTIME(3)
	TIME2POSIX(3)
	TZSET(3)
	TZFILE(5)

	String Library
	BCMP(3)
	BCOPY(3)
	BSTRING(3)
	BZERO(3)
	FFS(3)
	INDEX(3)
	MEMCCPY(3)
	MEMCHR(3)
	MEMCMP(3)
	MEMCPY(3)
	MEMMEM(3)
	MEMMOVE(3)
	MEMSET(3)
	RINDEX(3)
	STRCASECMP(3)
	STRCAT(3)
	STRCHR(3)
	STRCMP(3)
	STRCOLL(3)
	STRCPY(3)
	STRCSPN(3)
	STRDUP(3)
	STRERROR(3)
	STRING(3)
	STRLCPY(3)
	STRLEN(3)
	STRPBRK(3)
	STRRCHR(3)
	STRSEP(3)
	STRSPN(3)
	STRSTR(3)
	STRTOK(3)
	STRXFRM(3)
	SWAB(3)
	WCSWIDTH(3)
	WMEMCHR(3)

	Regular Expression Library
	REGEX(3)
	RE_FORMAT(7)

	Net Library
	ADDR2ASCII(3)
	BYTEORDER(3)
	ETHERS(3)
	GAI_STRERROR(3)
	GETADDRINFO(3)
	GETHOSTBYNAME(3)
	__NSSWITCH_LINE(3)
	GETIPNODEBYNAME(3)
	GETNAMEINFO(3)
	GETNETENT(3)
	GETPROTOENT(3)
	GETSERVENT(3)
	INET(3)
	NS(3)
	RESOLVER(3)

	Thread Library
	PTHREAD(3)
	PTHREAD_ATFORK(3)
	PTHREAD_ATTR(3)
	PTHREAD_BARRIER(3)
	PTHREAD_BARRIERATTR(3)
	PTHREAD_CANCEL(3)
	PTHREAD_CLEANUP_POP(3)
	PTHREAD_CLEANUP_PUSH(3)
	PTHREAD_CONDATTR(3)
	PTHREAD_COND_BROADCAST(3)
	PTHREAD_COND_DESTROY(3)
	PTHREAD_COND_INIT(3)
	PTHREAD_COND_SIGNAL(3)
	PTHREAD_COND_TIMEDWAIT(3)
	PTHREAD_COND_WAIT(3)
	PTHREAD_CREATE(3)
	PTHREAD_DETACH(3)
	PTHREAD_EQUAL(3)
	PTHREAD_EXIT(3)
	PTHREAD_GETSPECIFIC(3)
	PTHREAD_JOIN(3)
	PTHREAD_KEY_CREATE(3)
	PTHREAD_KEY_DELETE(3)
	PTHREAD_KILL(3)
	PTHREAD_MAIN_NP(3)
	PTHREAD_MUTEXATTR(3)
	PTHREAD_MUTEX_DESTROY(3)
	PTHREAD_MUTEX_INIT(3)
	PTHREAD_MUTEX_LOCK(3)
	PTHREAD_MUTEX_TRYLOCK(3)
	PTHREAD_MUTEX_UNLOCK(3)
	PTHREAD_ONCE(3)
	PTHREAD_RWLOCKATTR_DESTROY(3)
	PTHREAD_RWLOCKATTR_GETPSHARED(3)
	PTHREAD_RWLOCKATTR_SETPSHARED(3)
	PTHREAD_RWLOCK_DESTROY(3)
	PTHREAD_RWLOCK_INIT(3)
	PTHREAD_RWLOCK_RDLOCK(3)
	PTHREAD_RWLOCK_UNLOCK(3)
	PTHREAD_RWLOCK_WRLOCK(3)
	PTHREAD_SELF(3)
	PTHREAD_SET_LIMIT_NP(3)
	PTHREAD_SIGMASK(3)
	PTHREAD_SPIN_INIT(3)
	PTHREAD_SPIN_LOCK(3)
	PTHREAD_TESTCANCEL(3)
	PTHREAD_YIELD(3)
	THRD_CREATE(3)

	CEEPIPI interface
	CEEPIPI(3)
	__CEEPIPI_init_main(3)
	__CEEPIPI_init_main_dp(3)
	__CEEPIPI_init_sub(3)
	__CEEPIPI_init_sub_dp(3)
	__CEEPIPI_call_main(3)
	__CEEPIPI_call_sub(3)
	__CEEPIPI_call_sub_addr(3)
	__CEEPIPI_end_seq(3)
	__CEEPIPI_start_seq(3)
	__CEEPIPI_term(3)
	__CEEPIPI_add_entry(3)
	__CEEPIPI_delete_entry(3)
	__CEEPIPI_identify_entry(3)
	__CEEPIPI_identify_environment(3)
	__CEEPIPI_identify_attributes(3)
	__CEEPIPI_set_user_word(3)
	__CEEPIPI_get_user_word(3)
	__CEEPIPI_alloc_CEEPIT(3)

	Keyed Access (VSAM) I/O
	VSAMIO(3)
	KCLOSE(3)
	KDATA(3)
	KDELETE(3)
	KERRINFO(3)
	KGETPOS(3)
	KINSERT(3)
	KOPEN(3)
	KREAD(3)
	KREPLACE(3)
	KRETRV(3)
	KSEARCH(3)
	KSEEK(2)
	KSETPOS(3)
	KWRITE(3)

	ASCII/EBCDIC Translation Table
	SIGABND example to catch ABEND 978 (out-of-stack)
	DCALL example

