
Systems/ASM
Version 1.95

Copyright c© 2016, Dignus, LLC





Systems/ASM
Version 1.95

i



Copyright c© 2016 Dignus LLC, 8378 Six Forks Road Suite 203 Raleigh NC, 27615.
World rights reserved. No part of this publication may be stored in a retrieval
system, transmitted, or reproduced in any way, including but not limited to pho-
tocopy, photograph, magnetic or other record, without the prior agreement and
written permission of the publisher.

Portions Copyright c© 1995-2002 Mark Adler

Portions Copyright c© 1998 Gilles Vollant

Portions Copyright c© 1995-2005 International Business Machines Corporation and
others. All Rights reserverd.

Copyright (c) 1995-2005 International Business Machines Corporation and oth-
ers All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, provided that
the above copyright notice(s) and this permission notice appear in all copies of
the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.

IBM, S/390, zSeries, z/OS, OS/390, MVS, z/VSE, VSE, z/VM, VM, CMS, HLASM,
and High Level Assembler are registered trademarks of International Business Ma-
chines Corporation.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States and other countries.

ii



Contents

How to use this book 1

Systems/ASM Overview 3

DASM Advanced Features and Extensions 5
HLASM V1R6 compatibility . . . . . . . . . . . . . . . . . . . . . . . . . 5
XSD support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
GOFF support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Linux ELF Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
ADATA information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
z/Architecture Instructions and Data . . . . . . . . . . . . . . . . . . . . . 6
Cross-Platform support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Dependency List generation . . . . . . . . . . . . . . . . . . . . . . . . . . 6
HTML listing format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Systems/C and Systems/C++ Integration . . . . . . . . . . . . . . . . . . 7

Assembling Programs 9
Accessing files on z/OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Input Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ASCII/EBCDIC translation . . . . . . . . . . . . . . . . . . . . . . . 10
Output Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Running DASM: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

z/OS: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Windows: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
UNIX: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Macro Library Searching: . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
ZIP file support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Description of Options 15
General Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

The –fdate=[[[[[cc]yy]mm]dd]HH]MM[.ss]] option (specify assembly
time and date) . . . . . . . . . . . . . . . . . . . . . . . . . . 16

The –flisting=file option (specify the name of the listing file) . . . . 16
The –flisting style=val option (specify listing format) . . . . . . . . . 17
The –fhtml suffix=val option (specify HTML listing suffix) . . . . . 17
The –help option (display help) . . . . . . . . . . . . . . . . . . . . . 17

Systems/ASM iii



The –helplib option (display help for DASM library specifications) . 17
The –o file option (specify the name of the generated output file) . . 17
The –quiet option (execute DASM in “quiet” mode) . . . . . . . . . 18
The –@ file option (specify extra file for parameters) . . . . . . . . . 18
The –fmrc and –fnomrc options (enable/disable mainframe-style return-

codes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
The –fmaxrc=n option (don’t create an object file if the RC is greater

than n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
The –v option (print version information) . . . . . . . . . . . . . . . 19

Input Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
The –flonglines option (allow input lines longer than 80 characters) . 20
The –fnolonglines option (Diagnose input lines longer than 80 char-

acters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
The –tc column option (define tab expansion amounts) . . . . . . . . 20
The –tr XX=YY[,XX=YY...] option (alter the ASCII/EBCDIC trans-

lation table) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Assembly Control Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

The –sectalgn=VALUE option (define section alignment) . . . . . . 24
The –size=VALUE option (define memory for in-core work files) . . 24
The –sysparm=VALUE option (define a SYSPARM value) . . . . . . 24
The –a and –xa options (enable/disable non-strict alignment checks) 24
The –r and –xr options (enable/disable re-entrancy checks) . . . . . 25
The –pestop and –xpestop options (enable/disable halt on *PRO-

CESS and command-line errors) . . . . . . . . . . . . . . . . 25
The –profile=filename and –xprofile options (include filename as if it

appeared in a COPY statement) . . . . . . . . . . . . . . . . 25
The –ra2 and –xra2 options (enable/disable 2-byte relocatable ad-

dress constant checks) . . . . . . . . . . . . . . . . . . . . . . 25
The –tc and –xtc options (enable/disable range checks for immediate

operands) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
The –f ALIGN and –f NOALIGN options (set the FLAG value for

strict alignment checks) . . . . . . . . . . . . . . . . . . . . . 26
The –f CONT and –f NOCONT options (set the FLAG value for

continuation checks) . . . . . . . . . . . . . . . . . . . . . . . 26
The –f IMPLEN and –f NOIMPLEN options (issue warming message

DASM169I when an implied length is used in an SS-type in-
struction) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

The –f PAGE0 and –f NOPAGE0 options (set the FLAG value for
enabling/disabling message DASM309W) . . . . . . . . . . . 27

The –f USING0 and –f NOUSING0 options (set the FLAG value for
enabling/disabling message DASM306W) . . . . . . . . . . . 27

The –f PUSH and –f NOPUSH options (set the FLAG value for en-
abling/disabling non-empty PUSH stack checks) . . . . . . . 27

The –f RECORD and –f NORECORD options (set the FLAG value
for enabling/disabling message DASM435I) . . . . . . . . . . 28

iv



The –f SUBSTR and –f NOSUBSTR options (set the FLAG value for
enabling/disabling message DASM094I) . . . . . . . . . . . . 28

The –f integer option (set the FLAG value for controlling diagnostics) 28
The –ccase and –xccase options (enable/disable case compatibility

with ASMH) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
The –mcase and –xmcase options (enable/disable macro case com-

patibility with ASMH) . . . . . . . . . . . . . . . . . . . . . . 29
The –csysl and –xcsysl options (enable/disable SYSLIST compatibil-

ity with ASMH) . . . . . . . . . . . . . . . . . . . . . . . . . 29
The –clit and –xclit options (enable/disable literal type compatibility

with ASMH) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
The –csyspath and –xcsyspath options (enable/disable &SYSxxx paths

compatible with HLASM on USS) . . . . . . . . . . . . . . . 30
The –xsd and –xxsd options (enable/disable XSD-format objects) . . 30
The –goff and –xgoff options (enable/disable GOFF-format objects) 30
The –goffadata and –xgoffadata options (enable embedded ADATA

information in GOFF objects) . . . . . . . . . . . . . . . . . 31
The –batch and –xbatch options (enable/disable batch source pro-

cessing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
The –thread and –xthread options (enable/disable CSECT threading) 31
The –fenhancedequ option (enable enhanced EQU evaluation) . . . . 31
The –idr option (define the IDR string generated on END cards) . . 31
The –fdupalias option (allow duplicate ALIAS values) . . . . . . . . 32
The –fvselibr option (recognize /+ as EOF) . . . . . . . . . . . . . . 32
The –fsuprwarn=list and –fnosuprwarn=list options (suppress or don’t

suppress particular warning messages) . . . . . . . . . . . . . 33
The –fasciiout and –fno asciiout options (enable/disable ASCII char-

acter constants) . . . . . . . . . . . . . . . . . . . . . . . . . . 33
The –flinux option (generate Linux/390 ELF output) . . . . . . . . . 33
The –flinux64 option (generate z/Linux ELF output) . . . . . . . . . 33
The –g and –xg options (enable/disable Linux ELF STABS debugging

output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
The –fdwarf=file option (enable output of DWARF side file) . . . . . 34
The –fmapat and –fnomapat options (enable/disable mapping ‘@’ to

‘ ’ in external symbol names) . . . . . . . . . . . . . . . . . . 34
Library options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

The –macext option (specify the extension to use for MACRO/COPY
file names) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

The –L option (specify the location to search for MACRO/COPY
members) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

The –libexec option (provide a program to execute when the assem-
bler cannot find a macro/copy member) . . . . . . . . . . . . 36

The –libncase option (use case-insensitive filename search) . . . . . . 36
Listing and Print options . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

The –pc=control/–xpc=control option (override print control state-
ments) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



The –l/–xl option (enable/disable generation of the assembler listing) 38
The –esd/–xesd option (enable/disable symbol information in the list-

ing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
The –fold/–xfold option (enable/disable folding of lower-case letters

to upper-case in the listing) . . . . . . . . . . . . . . . . . . . 39
The –rld/–xrld option (enable/disable relocation information in the

listing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
The –dx/–xdx option (enable/disable the DSECT cross-reference in

the listing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
The –mx/–xmx option (enable/disable the MACRO cross-reference

in the listing) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
The –rx/–xrx option (enable/disable REGISTER cross-reference in-

formation in the listing) . . . . . . . . . . . . . . . . . . . . . 39
The –umap/–xumap option (enable/disable USING MAP informa-

tion in the listing) . . . . . . . . . . . . . . . . . . . . . . . . 40
The –uwarn n and –xuwarn options (control emission of USING-

related warnings) . . . . . . . . . . . . . . . . . . . . . . . . . 40
The –nx/–xnx option (enable/disable UNREFS cross-reference infor-

mation in the listing) . . . . . . . . . . . . . . . . . . . . . . 40
The –cxs option (enable the short symbol cross-reference) . . . . . . 40
The –cxf option (enable the full symbol cross-reference) . . . . . . . 40
The –xcx option (disables the symbol cross reference) . . . . . . . . 41
The –os/–xos option (enable/disable the options summary in the listing) 41
The –lc count option (define the number of lines per page) . . . . . . 41
The –lcond/–xlcond option (include/omit conditional statements in

the listing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
The –epops/–xepops option (include/omit expanded macro operands

in the listing) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
The –term/–xterm option (enable/disable error messages) . . . . . . 41
The –flisting=file option (specify the name of the listing file) . . . . 42

Miscellaneous options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
The –fmesg=style option (specify the style of messages) . . . . . . . 43
The –M[=filename] option (generate file dependency list) . . . . . . 44
The –A[=filename] and –xA options (enable/disable generation of a

separate ADATA information file) . . . . . . . . . . . . . . . 44
The –fadver=version option (specify which format version for ADATA

information) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
The –fadftp option (output block mode FTP markers in the ADATA

file) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
The –fadrdw option (output RDW headers in the ADATA file) . . . 45
The –E=filename option (specify an alternative file to log error mes-

sages) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
The –fevents=filename option (Emit an IBM-compatible events listing) 46
The –options=options string option (Specify options in HLASM-style

syntax) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Linking Assembled objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vi



ADATA Information 49
Differences between DASM and HLASM ADATA information . . . . . . . 49
Unexpected or undocumented HLASM behavior supported by DASM . . 51

The Dignus CICS Command Processor, DCCPA 53
Running DCCPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
DCCPA Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

The –A option (process assembly source) . . . . . . . . . . . . . . . 54
The –C option (process C source) . . . . . . . . . . . . . . . . . . . . 54
The –o file option (specify the name of the output file) . . . . . . . . 55
The –fdli and –fnodli options (enable/disable EXEC DLI) . . . . . . . 55
The –fgds and –fnogds options (enable/disable GDS commands) . . 55
The –fsp and –fnosp options (enable/disable System Programmer

commands) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
The –fcols=n option (specify column width) . . . . . . . . . . . . . . 55
The –fseq option (generate sequence numbers) . . . . . . . . . . . . . 55
The –fmrc and –fnomrc options (enable/disable mainframe-style re-

turn codes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
The –fflag=code option (output only error messages of a certain priority) 56
The –fepilog and –fnoepilog options (enable/disable use of DFHEIRET

macro) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
The –fprolog and –fnoprolog options (enable/disable use of DFHEISTG,

DFHEIEND and DFHEIENT macros) . . . . . . . . . . . . . . . . 56
The –ferrlist and –fnoerrlist options (enable/disable listing of errors

on stderr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Writing Linux/390 and z/Linux programs 59
Linux features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

ELF object format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
ASCII character constants . . . . . . . . . . . . . . . . . . . . . . . . 59
Section management . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Debugging under Linux . . . . . . . . . . . . . . . . . . . . . . . . . 60

Differences with traditional programs . . . . . . . . . . . . . . . . . . . . . 61
AMODE 24 and RMODE . . . . . . . . . . . . . . . . . . . . . . . . 61
Q-type constants and DXDs . . . . . . . . . . . . . . . . . . . . . . . 61
Function linkage and parameters . . . . . . . . . . . . . . . . . . . . 62
Lower-case identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Entry point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
System facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Example 31-bit Linux/390 programs . . . . . . . . . . . . . . . . . . . . . 63

HLASM asma90 compatibility 67
Invocation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Library search rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Listing file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
ASCII/EBCDIC translation . . . . . . . . . . . . . . . . . . . . . . . . . . 69
z/TPF use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vii



Assembler messages 71
Message Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

DASM001E Operation code not allowed to be generated . . . . . . . 72
DASM002S Generated statement too long; statement truncated - xxxxx 72
DASM003E Undeclared variable symbol; default=0, null, or type=U 72
DASM004E Duplicate SET symbol declaration; first is retained - xxxxx 72
DASM005S No storage for macro call; continue with open code . . . 72
DASM007S Previously defined sequence symbol - xxxxx . . . . . . . 72
DASM008S Previous defined symbolic parameter - xxxxx . . . . . . . 73
DASM009S System variable symbol illegally re-defined . . . . . . . . 73
DASM010E Invalid use of symbol qualifier - xxxxx . . . . . . . . . . 73
DASM011E Inconsistent global declarations; first is retained - xxxxx 73
DASM012E Undefined sequence symbol; macro aborted - xxxxx . . . 73
DASM013S ACTR counter exceeded - xxxxx . . . . . . . . . . . . . . 73
DASM014E Irreducible qualified expression . . . . . . . . . . . . . . 73
DASM015W Literal bounds exceeded . . . . . . . . . . . . . . . . . . 73
DASM016W Literal used as the target of instruction . . . . . . . . . 73
DASM017W Undefined keyword parameter; default to positional, in-

cluding keyword - xxxxx . . . . . . . . . . . . . . . . . . . . . 73
DASM018S Duplicate keyword in macro call; last value is used - xxxxx 73
DASM020E Illegal GBL or LCL statement - xxxxx . . . . . . . . . . 73
DASM021E Illegal SETB/AIF statement - xxxxx . . . . . . . . . . . 73
DASM023E Symbolic parameter too long - xxxxx . . . . . . . . . . . 74
DASM024E Invalid variable symbol - xxxxx . . . . . . . . . . . . . . 74
DASM025S Invalid macro prototype operand - xxxxx . . . . . . . . . 74
DASM026S Macro call operand too long; operand truncated . . . . . 74
DASM027S Excessive number of operands . . . . . . . . . . . . . . . 74
DASM028E Invalid displacement . . . . . . . . . . . . . . . . . . . . 74
DASM029E Incorrect register or mask specification - xxxxx . . . . . 74
DASM030E Invalid literal usage - xxxxx . . . . . . . . . . . . . . . . 74
DASM031E Invalid immediate field . . . . . . . . . . . . . . . . . . . 74
DASM032E Relocatable value found where absolute value requested 74
DASM033I Storage alignment unfavorable . . . . . . . . . . . . . . . 74
DASM034E Operand operand beyond active USING range by xxxxx

bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
DASM035S Invalid delimiter - xxxxx . . . . . . . . . . . . . . . . . . 74
DASM036W Reentrant check failed . . . . . . . . . . . . . . . . . . . 74
DASM037E Illegal self-defining value - xxxxxx . . . . . . . . . . . . . 75
DASM038S Operand value falls outside of current section/LOCTR . 75
DASM039S Location counter error . . . . . . . . . . . . . . . . . . . 75
DASM040S Missing operand . . . . . . . . . . . . . . . . . . . . . . . 75
DASM041E Term expected; text is unclassifiable - xxxxx . . . . . . . 75
DASM042E Length attribute of symbol is unavailable; default=1- xxxxx 75
DASM043E Previously defined symbol - xxxxx . . . . . . . . . . . . . 75

viii



DASM044E Undefined symbol - xxxxx . . . . . . . . . . . . . . . . . 75
DASM045E Register not previously used - xxxxx . . . . . . . . . . . 75
DASM046E Bit 7 of CCW flag byte must be zero . . . . . . . . . . . 75
DASM047E Severity code too large . . . . . . . . . . . . . . . . . . . 75
DASM048E ENTRY error - xxxxx . . . . . . . . . . . . . . . . . . . . 75
DASM050E - Illegal name field; name discarded - xxxxx . . . . . . . 75
DASM051E - Illegal statement outside a macro definition . . . . . . 75
DASM054E Illegal continuation record . . . . . . . . . . . . . . . . . 76
DASM055S Recursive COPY . . . . . . . . . . . . . . . . . . . . . . 76
DASM057E Undefined operation code - xxxxx . . . . . . . . . . . . . 76
DASM058E Invalid relative address - xxxxx . . . . . . . . . . . . . . 76
DASM060S COPY code not found - xxxxx . . . . . . . . . . . . . . . 76
DASM061E Symbol not name of DSECT, DXD - xxxxx . . . . . . . 76
DASM062E Illegal operand format - xxxxx . . . . . . . . . . . . . . . 76
DASM063E No ending apostrophe - xxxxx . . . . . . . . . . . . . . . 76
DASM064S Floating point characteristic out of range . . . . . . . . . 76
DASM065E Unknown type - xxxxx . . . . . . . . . . . . . . . . . . . 76
DASM066W 2-byte relocatable address constant . . . . . . . . . . . 76
DASM067S Illegal duplication factor - xxxxx . . . . . . . . . . . . . . 76
DASM068S Length error - xxxxx . . . . . . . . . . . . . . . . . . . . 76
DASM069S Length of second operand must be less than length of first 77
DASM070E Scale modifier error - xxxxx . . . . . . . . . . . . . . . . 77
DASM071E Exponent modifier error - xxxxx . . . . . . . . . . . . . . 77
DASM072E Data item too large . . . . . . . . . . . . . . . . . . . . 77
DASM073E Precision lost . . . . . . . . . . . . . . . . . . . . . . . . 77
DASM074E Illegal syntax in expression - xxxxx . . . . . . . . . . . . 77
DASM075E Arithmetic overflow . . . . . . . . . . . . . . . . . . . . 77
DASM076E Statement complexity exceeded . . . . . . . . . . . . . . 77
DASM077E Circular definition . . . . . . . . . . . . . . . . . . . . . 77
DASM079E Illegal PUSH-POP . . . . . . . . . . . . . . . . . . . . . 77
DASM080E Statement is unresolvable . . . . . . . . . . . . . . . . . 77
DASM081E Created SET symbol exceeds 63 characters - xxxxx . . . 77
DASM082E Created SET symbol is null - xxxxx . . . . . . . . . . . . 78
DASM083E Created SET symbol is not a valid symbol - xxxxx . . . 78
DASM084S Generated name field exceeds 63 characters; discarded -

xxxxx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
DASM085I Generated operand field is null . . . . . . . . . . . . . . . 78
DASM086S Missing MEND generated - xxxxx . . . . . . . . . . . . . 78
DASM087S Generated operation code is null . . . . . . . . . . . . . 78
DASM088E Unbalanced parentheses in macro call operand - xxxxx . 78
DASM089E Arithmetic expression contains illegal delimiter or ends

prematurely . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
DASM090E Excess right parenthesis in macro call operand. . . . . . 78
DASM091E Character string exceeds maximum length; truncated to

maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

ix



DASM092E Substring expression 1 points past string end; default=null 78
DASM093E Substring expression 1 less than 1; default = null . . . . 78
DASM094I Substring goes past string end; default=remainder . . . . 78
DASM095W Substring expression 2 less than zero; default=null . . . 78
DASM096E Unsubscripted SYSLIST; default=SYSLIST(1) . . . . . 78
DASM097E Invalid attribute reference to SETA or SETB symbol;

default=U or 0 - xxxxx . . . . . . . . . . . . . . . . . . . . . . 79
DASM098E Attribute reference to invalid symbol; default=U or 0 -

xxxxx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
DASM099W Wrong type of constant for S’ or I’ attribute reference;

default=0 - xxxxx . . . . . . . . . . . . . . . . . . . . . . . . . 79
DASM100E Subscript less than 1; default to subscript=1 - xxxxx . . 79
DASM102E Arithmetic term is not self-defining term; default=0 - xxxxx 79
DASM103E Multiplication overflow; default product=1 . . . . . . . 79
DASM105U Arithmetic expression too complex . . . . . . . . . . . . 79
DASM106E Wrong target symbol type; value left unchanged - xxxxx 79
DASM107E Inconsistent dimension on symbol; subscript ignored or

1 used - xxxxx . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
DASM109E Multiple operands for undimensioned SET symbol; gets

last operand - xxxxx . . . . . . . . . . . . . . . . . . . . . . . 79
DASM110S Library macro first statement not ‘MACRO’ or comment 79
DASM111S Invalid AIF or SETB operand field - xxxxx . . . . . . . . 80
DASM112S Invalid sequence symbol - xxxxx . . . . . . . . . . . . . . 80
DASM113S Continue column blank . . . . . . . . . . . . . . . . . . . 80
DASM114S Invalid COPY operand - xxxxx . . . . . . . . . . . . . . 80
DASM115S COPY operand too long . . . . . . . . . . . . . . . . . . 80
DASM116E Illegal SET symbol . . . . . . . . . . . . . . . . . . . . . 80
DASM117E Illegal subscript - xxxxx . . . . . . . . . . . . . . . . . . 80
DASM118S Source macro ended by ‘MEND’ in COPY mode . . . . 80
DASM119S Too few MEND statements in COPY code . . . . . . . . 80
DASM120S EOD where continuation record expected . . . . . . . . 80
DASM122S Illegal operation code format - xxxxx . . . . . . . . . . . 80
DASM123S Variable symbol too long - xxxxx . . . . . . . . . . . . . 80
DASM124S Illegal use of parameter . . . . . . . . . . . . . . . . . . . 80
DASM125S Illegal macro name - macro uncallable . . . . . . . . . . 81
DASM126S Library macro name incorrect . . . . . . . . . . . . . . . 81
DASM127S Illegal use of ampersand . . . . . . . . . . . . . . . . . . 81
DASM128S Excess right parenthesis . . . . . . . . . . . . . . . . . . 81
DASM129S Insufficient right parentheses - xxxxx . . . . . . . . . . . 81
DASM130S Illegal attribute reference - xxxxx . . . . . . . . . . . . . 81
DASM132S Invalid logical expression . . . . . . . . . . . . . . . . . . 81
DASM137S Invalid character expression - xxxxx . . . . . . . . . . . . 81
DASM138W Non-empty PUSH xxxxx stack . . . . . . . . . . . . . . 81
DASM139S EOD during REPRO processing . . . . . . . . . . . . . . 81
DASM140W END record missing . . . . . . . . . . . . . . . . . . . . 81

x



DASM141E Bad character in operation code - xxxxxxx . . . . . . . 81
DASM142E Operation code not complete on first record . . . . . . . 81
DASM143E Bad character in name field - xxxxxxx . . . . . . . . . . 81
DASM144E Begin-to-continue columns not blank . . . . . . . . . . . 81
DASM145E Operator, right parenthesis, or end-of-expression expected 82
DASM147E Symbol too long, or first character not a letter - xxxxx . 82
DASM148E Self-defining term lacks ending quote or has bad charac-

ter - xxxxx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
DASM149E Literal length exceeds 256 characters, including = sign -

xxxxx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
DASM151E Literal expression modifiers must be absolute and prede-

fined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
DASM152S External symbol too long or unacceptable character - xxxxx 82
DASM153S START statement illegal - CSECT already begun . . . . 82
DASM154E Operand must be absolute, predefined symbols; set to zero 82
DASM155S Previous use of symbol is not this section type - xxxxx . 82
DASM156S Only ordinary symbols, separated by commas, allowed -

xxxxx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
DASM157S Operand must be a simply-relocatable expression . . . . 82
DASM159S Operand must be absolute, proper multiples of 2 or 4 . . 82
DASM160W Invalid BYTE function operand - xxxxx . . . . . . . . . 82
DASM161W Only one TITLE statement may have a name field . . . 82
DASM162S PUNCH operand exceeds 80 columns; ignored . . . . . . 83
DASM163W Operand not properly enclosed in quotes . . . . . . . . 83
DASM164W Operand is null string - record not punched . . . . . . . 83
DASM165W Unexpected name field - xxxxx . . . . . . . . . . . . . . 83
DASM167E Required name missing . . . . . . . . . . . . . . . . . . . 83
DASM169I Implicit length of symbol symbol used for operand - n . . 83
DASM170S Error logging capacity exceeded . . . . . . . . . . . . . . 83
DASM171S Standard value too long - xxxxx . . . . . . . . . . . . . . 83
DASM172E Negative duplication factor; default=1 - xxxxx . . . . . . 83
DASM173S Delimiter error, expected blank - xxxxx . . . . . . . . . . 83
DASM174S Delimiter error, expected blank or comma - xxxxx . . . . 83
DASM175S Delimiter error, expected comma - xxxxx . . . . . . . . . 83
DASM178S Delimiter error, expected comma or right parenthesis -

xxxxx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
DASM179S Delimiter error, expected right parenthesis - xxxxx . . . . 84
DASM180S Operand must be absolute . . . . . . . . . . . . . . . . . 84
DASM181S CCW operand value is outside allowable range . . . . . 84
DASM182E Operand 2 must be absolute, 0-65535; ignored . . . . . . 84
DASM183E Operand 3 must be absolute, 0-255; ignored . . . . . . . 84
DASM186E AMODE/RMODE already set for this ESD item . . . . 84
DASM187E The name field is invalid - xxxxx . . . . . . . . . . . . . 84
DASM188E Incompatible AMODE and RMODE attributes . . . . . 84
DASM192W Lost precision - underflow to zero . . . . . . . . . . . . 84

xi



DASM193W Lost precision - underflow to denormal . . . . . . . . . 84
DASM198E Exponent modifier is not permitted for special value . . 84
DASM199E Rounding indicated invalid . . . . . . . . . . . . . . . . 84
DASM212W Branch address alignment unfavorable . . . . . . . . . . 85
DASM213W Storage alignment unfavorable . . . . . . . . . . . . . . 85
DASM214E Invalid operand value . . . . . . . . . . . . . . . . . . . 85
DASM216W Quad-word alignment in NOGOFF object text . . . . . 85
DASM253C Too many errors . . . . . . . . . . . . . . . . . . . . . . 85
DASM254I *** MNOTE *** . . . . . . . . . . . . . . . . . . . . . . 85
DASM303W Multiple address resolutions may result from this US-

ING and the USING on statement number . . . . . . . . . . 85
DASM305E Operand 1 does not refer to location within reference

control section . . . . . . . . . . . . . . . . . . . . . . . . . . 85
DASM307E No active USING for operand n . . . . . . . . . . . . . . 85
DASM309W Operand resolved to a displacement with no base register 85
DASM310W Name already used in prior ALIAS or XATTR - xxxxx . 86
DASM311E Illegal ALIAS string - xxxxx . . . . . . . . . . . . . . . . 86
DASM312E ALIAS name is not declared as an external symbol - xxxxx 86
DASM315E XATTR instruction invalid when NOGOFF specified . . 86
DASM320W Immediate field operand may have incorrect sign or mag-

nitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
DASM400N Error in invocation parameter - xxxxx . . . . . . . . . . 86
DASM420N Error in a *PROCESS statement parameter - xxxxx . . 86
DASM422N Option xxxxxxxx is not valid in a *PROCESS statement 86
DASM430W - Continuation statement does not start in continue col-

umn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
DASM431W - Continuation statement may be in error - continuation

indicator column is blank . . . . . . . . . . . . . . . . . . . . 86
DASM432W - Continuation statement may be in error - comma omit-

ted from continued statement . . . . . . . . . . . . . . . . . . 87
DASM433W - Statement not continued - continuation statement may

be in error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
DASM435I - Record n in xxxxxxx . . . . . . . . . . . . . . . . . . . . 87
DASM500W Requested alignment exceeds section alignment . . . . . 87
DASM900W Input line too long, truncated . . . . . . . . . . . . . . 87
DASM901E Scale modifier is not permitted for special value . . . . . 87
DASM902E Invalid floating point special value - xxxxx . . . . . . . . 87
DASM903W ALIAS name is not declared prior to setting flag . . . . 87
DASM909W G-type constant not supported . . . . . . . . . . . . . . 87
DASM911E Concatenation character not followed by apostrophe . . 88
DASM913W RMODE and AMODE have no effect in Linux mode . 88
DASM914S Illegal address reference length . . . . . . . . . . . . . . 88

License Information File 89

ASCII/EBCDIC Translation Table 91

xii



How to use this book

This book describes the Dignus Systems/ASM assembler, DASM. DASM is used
to assemble mainframe assembly source code, producing mainframe object files.
This book does not describe S/390 or zSeries assembler language programming in
detail. For more information regarding S/390 or zSeries programming, please see the
IBM book High Level Assembler (HLASM) for MVS & VM & VSE V1R6 Language
Reference or other IBM materials.

For further information, contact Dignus, LLC at (919) 676-0847, or visit
http://www.dignus.com.

Systems/ASM 1



The Systems/ASM Assembler

DASM

2 Systems/ASM



Systems/ASM Overview

The Dignus Systems/ASM assembler, DASM, is an assembler compatible with
IBM’s HLASM assembler for the mainframe family of machines.

Some of its features include:

• HLASM V1R6 compatible assembler.

• ‘asma90’ compatibility for operating similarly to IBM asma90.

• Available as a cross-platform assembler on several cross-platform hosts.

• Generates dependency information, detailing which files were involved in an
assembly.

• Supports IBM defined instructions up through the z10 architecture.

• Support for IBM ‘events’ files for integration with other IBM development
products.

• Support for building Linux/390, z/Linux and z/TPF programs.

• Enhanced HTML listing.

• Compatible with the Systems/C and Systems/C++ compilers.

Systems/ASM 3



4 Systems/ASM



DASM Advanced Features and
Extensions

The Dignus Assembler, DASM, provides many advanced features. These features
combine to produce a programming environment which is perfectly suited for many
programming tasks.

HLASM V1R6 compatibility

DASM is compatible with HLASM V1R6, including unsigned constants, newer in-
struction formats and instructions, Decimal data, the QY and SY constant formats,
mnemonic suffixes and other new HLASM V1R6 features.

XSD support

When the –xsd option is enabled, the assembler will generate XSD cards in the
object deck instead of ESD cards. XSD cards allow for names longer than the typical
8 characters.

For those environments where the binder is not supported, the Systems/C pre-linker
PLINK can be used to process the objects and appropriately shorten the names.
For more information about PLINK, see the Systems/C Utilities manual.

GOFF support

When the –goff option is enabled, the assembler will generate GOFF-style object
decks. Similar to XSD-style, GOFF-style object decks allow for names longer than
8 characters and have other features.

Both PLINK and IBM’s binder supports GOFF-style object decks. For those
environments where the binder is not supported (e.g. VSE), the Systems/C pre-
linker PLINK can then be used to process these GOFF objects and appropriately

Systems/ASM 5



shorten the names and produce old-style ESD object decks. For more information
about PLINK, see the Systems/C Utilities manual.

Linux ELF Output

When the –flinux or the –flinux64 option is used, DASM generates ELF (.o file)
output that is compatible with the Linux linker (ld) and run-time. The input
source is then HLASM compatible syntax. See the chapter “Writing Linux/390 and
z/Linux programs” for details.

ADATA information

DASM will also optionally produce Associated Data, or ADATA information.
ADATA information describes the source being assembled, as well as any user-
provided information that appears in ADATA statements. ADATA information can
either be written to a separate file, or embedded in a GOFF-format file.

DASM can generate either HLASM V1R5 format or HLASM V1R4 format ADATA
information.

z/Architecture Instructions and Data

DASM supports the newer z/Architecture instructions and data formats, including
the z/Architecture instruction and data formats, 20-bit offsets, newer relocation
types and decimal instructions and data types.

Cross-Platform support

As well as z/OS, DASM is available on several cross-platform hosts; allowing for
the assembly of HLASM compatible source on a UNIX or Windows workstation.

Dependency List generation

The assembler, using the –M option, can generate a list of the macros and copy mem-
bers used by an assembler source. This feature can be employed to automatically
generate build dependencies for constructing complex programs.

6 Systems/ASM



HTML listing format

The assembler, using the –flisting style=html option, produces the listing using the
HTML markup language. This listing can be viewed with a web browser. Listings
in this format have links between the cross-reference and messages back to the lines
in the listing as well as other features that make reading it easier than traditional
listings.

Systems/C and Systems/C++ Integration

DASM has several opcode extensions which make it a perfect companion for the
Dignus compiler products.

Systems/ASM 7



8 Systems/ASM



Assembling Programs

This section describes the Dignus Systems/ASM assembler, DASM, explaining how
to assemble the assembly language source, how to link modules to build an exe-
cutable and how to run the resulting program. It is not intended to be a complete
description of HLASM or mainframe assembly language programming; for that,
please consult other texts such as IBM’s High Level Assembler (HLASM) for MVS
& VM & VSE V1R6 Language Reference.

This chapter explains how to run the DASM assembler and what options are avail-
able on DASM.

Accessing files on z/OS

The IBM-supplied system macros and copy members are available on the z/OS
platform, and can readily be used by DASM. DASM can directly reference PDS
members while running in an OpenEdition (USS) environment.

However, IBM does not supply these for the cross-platform hosts.

If your cross-platform host supports NFS or SMB network file access, these files can
be made available to the cross-platform host. For more information about how to
configure and run the NFS server on z/OS, see the IBM document NFS Customiza-
tion and Operation. For information about running an SMB server on your z/OS
host, see the IBM document Distributed File Service SMB Administration.

Input Files

DASM can process either ASCII or EBCDIC input files. The assembler supports
automatic searches for MACRO and COPY files with various options to describe
the search location for these.

EBCDIC input files are read 80 bytes at a time, with no new-line markers. ASCII
input files are read a line at a time. On z/OS, the assumption is that the input is
an FB-80 EBCDIC file.

Systems/ASM 9



The sequence number information in columns 73-80 is ignored.

If the input file name specified on the command line is a hyphen (“-”), no file will be
opened and standard input will be used instead. In this fashion you can use DCC
or DCXX with the “-o-” option piped to DASM to avoid generating a temporary
file between these two steps.

ASCII/EBCDIC translation

On ASCII-based hosts DASM can process either ASCII or EBCDIC input files.
DASM will read the first 80 bytes of an input file, looking for an ASCII new-line
or other ASCII control character. If none is found, the file is assumed to be an
EBCDIC input file and no translation is performed. All of the statements in the file
must be either EBCDIC or ASCII.

If DASM determines the file is ASCII, it reads each source line up to the ASCII
new-line character, padding the line to 80 characters with blanks. The input line is
then translated internally to EBCDIC for continued processing.

By default, DASM uses a variant of the IBM1047 code page. The traditional
definition of this code page maps EBCDIC X’15’ to ASCII X’0A’ and EBCDIC
X’25’ to ASCII X’85’. The official IBM1047 definition has this reversed. Some
tools available from different vendors use the traditional IBM1047 mapping, and
some use the official mapping. However, DASM adopts the traditional mapping

The ASCII/EBCDIC translation tables can be adjusted from the DASM defaults
using the –tr option.

Output Files

The assembler generates a listing output file unless options are set to disable it.
The location of the listing file is platform specific, and can be redirected via various
options.

On z/OS, the assembler will generate an object file by default. On cross-platform
hosts, the assembler will generate an object file only if the appropriate option is
present on the command line.

The assembler can also generate other files as described in the various option de-
scriptions.

The assembler will also write messages to the stderr file stream.

10 Systems/ASM



Running DASM:

The DASM command is used to assemble source programs and generate object
code.

z/OS:

In the z/OS environment, the assembler is executed by invoking the DASM member of
the Systems/ASM installation PDS. The options are specified in the PARM statement.
Each DASM option is separated by a comma, and preceded with a dash.

On z/OS, the assembler begins with certain option defaults which can be modified
via the PARM statement. An option which begins with the commercial at-sign (@),
specifies a DD from which to read other options.

By default, the input source is assumed to be the SYSIN DD, the assembled ob-
ject is written to the SYSLIN DD and the listing is generated on the SYSPRINT
DD. There is a default -L option supplied which specifies a template of the form
//DDN:SYSLIB(&M). This template causes DASM to search the SYSLIB DD for
MACRO and COPY members.

Furthermore, the assembler may require a definition of the SYSUT1 DD for temporary
storage.

For example, the following JCL will assemble the source on the SYSIN DD, generating
the object MYOBJ in the MY.OBJS PDS, printing the listing on the SYSPRINT DD:

//DASM JOB
//DASM EXEC PGM=DASM
//STEPLIB DD DSN=DIGNUS.LOAD,DISP=SHR
//SYSLIN DD DSN=MY.OBJS(MYOBJ),DISP=OLD
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,
// SPACE=(4096,(120,120),,,ROUND),
// UNIT=VIO,DCB=BUFNO=1
//SYSPRINT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDOUT DD SYSOUT=*
//SYSIN DD *

<assembler source>

Windows:

When using the Windows operating systems, the assembler is named dasm and
may be found in the installation directory. The command line is

Systems/ASM 11



dasm [options] input-file.asm

Options, if any, are preceded with a dash, -.

Unless otherwise specified, the assembler does not generate an object file. Use the
–o option to specify the name of the generated object file.

The Windows version of DASM supports the –@filename option. –@filename causes
the compiler to read the file filename and insert its contents into the command line.
This provides a mechanism for supporting arbitrarily long command line parameter
lists.

In a Windows environment, DASM examines the DASMINI environment variable.
The environment variable may contain a list of semi-colon delimited files that will
be treated exactly as if they had be specified with the –@filename option.

Note that on Windows, the ampersand (&) character has special meaning. Double
quotes will need to be employed to prevent the Windows COMMAND.COM processor
from interpreting ampersand characters.

UNIX:

In the UNIX environment, the assembler is named dasm, and can be found in the
installation directory. The command line is

dasm [options] input-file.asm

Options, if any, are preceded with a dash, -.

Unless otherwise specified, the assembler does not generate an object file. Use the
–o option to specify the name of the generated object file.

In a Windows environment, DASM examines the DASMINI environment variable.
The environment variable may contain a list of semi-colon delimited files that will
be treated exactly as if they had be specified with the –@filename option.

The UNIX version of DASM supports the –@filename option. –@filename causes
the compiler to read the file filename and insert its contents into the command line.
This provides a mechanism for supporting arbitrarily long command line parameter
lists.

Note that on Unix, the ampersand (&) character has special meaning. Quotation
marks will need to be employed to prevent the command interpreter from intecepting
and interpreting ampersand characters.

12 Systems/ASM



Macro Library Searching:

The assembler searches for MACRO and COPY members based on the –L and
–macext options. These options provide two mechanisms for searching for MACRO
and COPY files.

The –L option can be used to either specify a simple location to search for mem-
bers, or to specify a macro search template which will be expanded with the macro
name and other substitution values. If the –L specification does not contain any
substitution characters, then it is assumed to be a simple location.

If the –L option specifies a simple location then the –macext option can be used
used to provide a default macro name extension.

If a –L specification does not contain any substitution characters, it is a simple
location. In this situation, the assembler creates a file name by first lower-casing
the MACRO/COPY name and appending the extension specified in the –macext
option. It then uses the value from the –L option to form a complete file name and
attempts to open that file to satisfy the MACRO/COPY request. If that file doesn’t
exist, the assembler then uses the upper-case version of the MACRO/COPY name,
with the –macext specified extension, combined with the location specified in the
–L option. Note that if no –macext option is specified, the assembler uses a default
extension of “mac”.

If the –L specification does contain subsitution characters, then the specification is
considered to be a search template.

When a search template is specified, the –macext value is not appended to generate
the file name.

When the –L specification is a search template, the assembler performs the re-
placements for the substitution characters as described below and tries to open the
resulting file.

Each –L specification can contain multiple locations or templates, separated by the
separation character; or the –L option can appear multiple times on the command
line. The separation character is a semicolon (;). On some UNIX platforms, the
colon (:) can also be used as the separation character, for backward compatibility
with previous releases.

Searches for MACRO/COPY files proceed through the specifications of locations
and templates in the –L options in the specified order.

When using –L to specify a search template, the following substitution characters
may be used:

&d Source drive on Windows, empty on other hosts.

&D Source file directory. On Windows, this includes the drive letter.

Systems/ASM 13



&e Source file extension.

&f Source file, without any directory/path components and without
any extension.

&p Path to source file. On Windows, this does not include the drive
letter.

&M Upper case version of the name provided in the MACRO/COPY
statement.

&m Lower case version of the name provided in the MACRO/COPY
statement.

&x Directory where the DASM executable was found.

&& The & character.

For example, if DASM was running on a UNIX platform, and the macros were pre-
sented in the ./mymacros and /usr/local/sysmacros directories. And, the macros
in these directories had no file name extension. Furthermore, we would like DASM
to examine the ./mymacros directory first, before looking in /usr/local/sysmacros,
the following command line could be used:

dasm ’-L./mymacros/&M’ ’-L/usr/local/sysmacros/&M’ ...

(Note the use of the single quote character to prevent the UNIX shell from inter-
preting the &-character.)

If we assume that NAME is the name of the MACRO or COPY file of interest, then
these options indicate that DASM will first take the NAME convert it to upper-case
(because of the &M substituation) and look for the file ./mymacros/NAME followed
by /usr/local/sysmacros/NAME.

ZIP file support

On cross-platform hosts, DASM supports searching ZIP archives for MACRO or
COPY members. A search path specification which contains parenthesis will be
examined to determine if it is a ZIP archive. If so, members of the archive will be
automatically extracted from the archive and included in the assembly.

For example, on a UNIX host, the search specification:

’-L./maclib.zip(&M)’

will search for macro and copy members from the ZIP library named maclib.zip.

14 Systems/ASM



Description of Options

The options available to DASM are summarized in the following sections.

General Options

These options are general in nature. They are summarized in the table below.

–fdate=
[[[[[cc]yy]mm]dd]HH]MM[.ss]]

specify assembly time and date

–flisting=file specify the name of the listing file

–flisting style=val specify listing format

–fhtml suffix=val specify HTML listing suffix

–?
–h
–help

display help on DASM options

–hl
–helplib

display help for DASM library specifications

–o file place any generated object in the file named file

–q
–quiet

execute DASM in “quiet” mode

–@filename specify extra file for parameters

–fmrc
–fnomrc

enable/disable mainframe-style return-codes

–fmaxrc=n don’t create an object file if the RC is greater than n

–v print version information and exit

Systems/ASM 15



The –fdate=[[[[[cc]yy]mm]dd]HH]MM[.ss]] option (specify assem-
bly time and date)

The –fdate option sets the “assembly time and date” for the current assembly. The
assembler uses this value as the time and date in the assembly listings, as the value
of the SYSCLOCK macro variable, as the time value for any AREAD statements and for
the timestamp on an assembler-generated END card in the object deck.

All other time values, e.g. the elapsed time for the assembly, assembler start/stop
time in ADATA information, are unaffected by this option.

This option can be useful in reassembling a source with a given timestamp, so any
differences from a previous assemble can be detected.

The value specified is taken as overriding to the current local time, only the MM
portion has to be specified, the remaining values are optional. If a value isn’t
specified, the current local time value is used.

The values are:

cc Century (either 19 or 20) prepended to the abbreviated year.

yy Year in abbreviated form (e.g. 89 for 1989, 06 for 2006).

mm Numeric month, a number from 1 to 12.

dd Day, a number from 1 to 31.

HH Hour, a number from 0 to 23.

MM Minutes, a number from 0 to 59.

ss Seconds, a number from 0 to 61 (59 plus a maximum of two leap seconds).

All values are optional, except MM.

The –flisting=file option (specify the name of the listing file)

The –flisting=file option instructs the assembler to use the given file name for the
generated listing file. When –flisting=file isn’t specified, the assembler uses the
default name for producing the listing. On cross-platform hosts, the default listing
file name is based on the input file name, with a suffix of .lst. On z/OS, the listing
file name is the SYSPRINT DD.

16 Systems/ASM



The –flisting style=val option (specify listing format)

The –flisting style=val option controls the format of the listing. val may be none,
txt, html, or both. The default is as if –flisting style=txt were specified, the listing
contains mono-spaced plain text with carriage control codes. If –flisting style=html
is specified, then an HTML listing file is created. If –flisting style=both is specified
then both the HTML and text listings are produced simultaneously.

The HTML listing allows you to view the listing in your web browser. In ad-
dition to some aesthetic improvements, the HTML listing adds hyperlinks in the
cross-reference sections so you can easily find the line that provides a definition or
reference.

When generating an HTML listing, the same filename is used as for a text listing,
except that the suffix is replaced with .html. Use –fhtml suffix=val to specify an
alternative filename suffix. If DASM is running on MVS or CMS, then the HTML
listing is unconditionally written to the SYSHTML DD.

The HTML listing has virtual page breaks every 30 lines in the Statement Listing
section. These page breaks provide the current TITLE and Active Usings refer-
ences. If –lc is specified, then that value will be used instead.

The –fhtml suffix=val option (specify HTML listing suffix)

To provide an alternative to .html for the suffix of the HTML listing filename, use
the –fhtml suffix=val option. For example, –fhtml suffix=.htm would use the shorter
.htm suffix for compatibility with legacy utilities that cannot use suffixes longer than
3 characters.

The –help option (display help)

The –help, –h and –? options will cause DASM to produce a summary of the
available options.

The –helplib option (display help for DASM library specifications)

The –helplib and –hl options will cause DASM to produce a summary of the various
library search options.

The –o file option (specify the name of the generated output file)

The –ofile option specifies the name of the assembler output file. On cross-platform
hosts, if –ofile isn’t specified, no output is written. On z/OS, the output is written
to the SYSLIN DD by default.

Systems/ASM 17



Substitution characters can be specified in the file name. The substitution characters
in a –o option expand as follows:

&d Source drive on Windows, empty on other hosts.

&D Source file directory. On Windows, this does include the drive
letter.

&e Source file extension.

&f Source file, without any directory/path components and without
any extension.

&p Path to source file. On Windows, this does not include the drive
letter.

&x Directory where the DASM executable was found.

&& The & character.

The –quiet option (execute DASM in “quiet” mode)

The –quiet option suppresses generation of the DASM banner and summary mes-
sages.

The –@ file option (specify extra file for parameters)

The –@file option specifies the name of another input file which contains more
DASM options. file contains one option per line.

Substitution characters can be specified in the file name. The substitution characters
in a –@ option expand as follows:

&d Source drive on Windows, empty on other hosts.

&D Source file directory. On Windows, this does include the drive
letter.

&e Source file extension.

&f Source file, without any directory/path components and without
any extension.

&p Path to source file. On Windows, this does not include the drive
letter.

&x Directory where the DASM executable was found.

&& The & character.

The contents of the file are interpreted as if they appeared on the DASM command
line in the location of the –@ option.

18 Systems/ASM



The –fmrc and –fnomrc options (enable/disable mainframe-style
return-codes)

The –fmrc option causes DASM to use mainframe-style return codes, and is the
default when DASM is running on a mainframe host. Mainframe style return codes
are 0 for success, 4 for warnings, 8 for errors, and 12 for catastrophic errors. The
–fnomrc option causes DASM to use Unix-style return codes, and is the default on
non-mainframe hosts. Unix style return codes are 0 for success, or 1 for any warning
or errors at all.

The –fmaxrc=n option (don’t create an object file if the RC is
greater than n)

The –fmaxrc=n option causes DASM to create an object file only if the return code
is less than or equal to n. By default DASM will create an object file even if there
are errors.

The –v option (print version information)

The –v option causes DASM to print the version information on the STDERR
stream and exit with a return code of 0.

Systems/ASM 19



Input Options

The following options affect processing of the input assembler source.

–flonglines Allow input lines longer than 80 characters

–fnolonglines Diagnose input lines longer than 80 characters

–tc column define the tab expansion column

–tr XX=YY[,XX=YY...] alter the ASCII/EBCDIC translation table

The –flonglines option (allow input lines longer than 80 characters)

Normally, when the assembler encounters a source input line longer than 80 char-
acters it generates diagnostic warning DASM900W, and truncates the input line to
80 columns.

If the –flonglines options is enabled, the assembler will continue to truncate the
input line to 80 columns, but the warning will be suppressed.

Thus, when –flonglines is specified, the assembly source can contain text past column
80 that will be silently ignored.

The –fnolonglines option (Diagnose input lines longer than 80 char-
acters)

The –fnolonglines option causes the assembler to produce diagnostic DASM900W
indicating an input source line was longer than 80 characters. The input source line
will be truncated to 80 characters and assembly will continue.

This is the default.

The –flonglines option can be used to suppress message DASM900W.

The –tc column option (define tab expansion amounts)

The –tc column option specifies the column number multiple to use for expanding
tab characters in the input assembler source. The default value for column is 0.

By default, the tab character is not expanded; because the tab character can appear
in comments and define constant values, and cannot be expanded to spaces in those
situations.

Previous versions of DASM would default this to 8, to get the previous that behavior
specify an –tc 8 option.

20 Systems/ASM



The –tr XX=YY[,XX=YY...] option (alter the ASCII/EBCDIC trans-
lation table)

When ASCII input is discovered, DASM translates the ASCII input to EBCDIC
for internal processing. The translation table DASM employs is described in an
appendix in this document.

In some situations, it might be useful to alter the translation table from the DASM
default.

The –tr option specifies an ASCII hexadecimal value, XX, that is translated to an
EBCDIC hexadecimal value, YY. Multiple XX=YY values can be specified at a
time, separated by commas. Also the –tr option can be specified as many times as
needed.

If the YY EBCDIC value is not specified, it indicates that the translation should
return to the DASM default.

For example, the command line option:

-tr 25=0A,4A=5B

specifies that the ASCII character hex value 25 (decimal value 37) should be trans-
lated to the EBCDIC hex value 0A (decimal value 10), and the ASCII hex value
4A (decimal value 74) would be translated to the EBCDIC hex value 5B (decimal
value 91.)

To adjust the DASM code page table from the IBM1047 variant to IBM037, these
options would be used:

-tr 5E=B0,AC=5F,5B=BA,5D=BB,DD=AD,A8=BD

To adjust DASM to use the official IBM1047 mapping instead of the traditional
one, these options would be used:

-tr 0A=25,85=15

Any –tr values specified will appear in the Option Summary section of the listing.

Systems/ASM 21



Assembly Control Options

The following options relate to controlling various aspects of the assembly process.

–sectalgn=VALUE define section alignment

–size=VALUE define the amount of memory used for temporary work
files

–sysparm=VALUE define the &SYSPARM variable to have the value VALUE

–a / –xa enable/disable non-strict alignment checks

–r / –xr enable/disable re-entrancy checks

–pestop / –xpestop enable/disable halt on *PROCESS and command-line
errors

–profile=filename / –xprofile include filename as if it appeared in a COPY statement

–ra2 / –xra2 enable/disable 2-byte relocatable address constant
checks

–tc / –xtc enable/disable checks for immediate and register
operands

–tc val val specifies register and/or immediate operand type
checks

–f integer set the FLAG value for controlling diagnostics

–f ALIGN / –f NOALIGN set the FLAG value for strict alignment checks

–f CONT / –f NOCONT set the FLAG value for continuation checks

–f EXLITW /
–f NOEXLITW

issue warning message #016 when a literal is the the
target of an EX instruction

–f IMPLEN / –f NOIMPLEN issue warming message DASM169I when an implied
length is used in an SS-type instruction

–f PAGE0 / –f NOPAGE0 set the FLAG value for enabling/disabling message
DASM309W

–f USING0 / –f NOUSING0 set the FLAG value for enabling/disabling message
DASM306W

–f PUSH / –f NOPUSH set the FLAG value for enabling/disabling non-empty
PUSH stack checks

–f RECORD /
–f NORECORD

set the FLAG value for enabling/disabling message
DASM435I

22 Systems/ASM



–f SUBSTR / –f NOSUBSTR set the FLAG value for enabling/disabling message
DASM094I

–ccase / –xccase enable/disable case compatibility with ASMH

–mcase / –xmcase enable/disable macro case compatibility with ASMH

–csysl / –xcsysl enable/disable SYSLIST compatibility with ASMH

–clit / –xclit enable/disable literal type compatibility with ASMH

–csyspath / –xcsyspath enable/disable &SYSxxx paths compatible with
HLASM on USS

–xsd / –xxsd enable/disable XSD-style objects

–goff / –xgoff enable/disable GOFF-style objects

–goffadata / –xgoffadata enable embedded ADATA information in GOFF ob-
jects

–thread / –xthread enable/disable CSECT threading

–fenhancedequ enable enhanced EQU evaluation

–batch / –xbatch batch source processing

–idr VALUE define the IDR information on END cards

–fdupalias allow duplicate ALIAS values

–fvselibr recognize /+ as EOF

–fsuprwarn=list /
–fnosuprwarn=list

suppress or don’t suppress particular warning mes-
sages

–fasciiout / –fno asciiout enable/disable ASCII character constants

–flinux generate Linux/390 ELF output

–flinux64 generate z/Linux ELF output

–g / –xg enable/disable Linux ELF STABS debugging output

–fdwarf=file enable output of DWARF side file

–fmapat
–fnomapat

enable/disable mapping ‘@’ to ‘ ’ in external symbol
names

Systems/ASM 23



The –sectalgn=VALUE option (define section alignment)

The –sectalgn=VALUE option specifies the minimum alignment for sections and
literals.

VALUE is an power-of-2 integer in the range from 8 to 4096.

If a VALUE other than 8 is specified, the –goff option must also be specified. GOFF
objects have provisions for specifying other section alignment to the linker.

The –size=VALUE option (define memory for in-core work files)

The –size=VALUE option defines the amount of memory the assembler can allocate
for in-memory work files. VALUE can be either 0 or MAX.

The default VALUE is MAX which indicates the assembler should use all available
memory for temporary work files. This provides the best assembly-time perfor-
mance.

A value of 0 indicates that the assembler should use no memory for temporary work
files. Instead, the work file will be on disk. Depending on file system performance,
this can slow down the assembly process.

The value of 0 can be specified if the assembler runs out of memory during large
assembly runs.

The –sysparm=VALUE option (define a SYSPARM value)

The –sysparm=VALUE option defines the value of the &SYSPARM variable.

The –a and –xa options (enable/disable non-strict alignment checks)

DASM will perform various alignment checks on referenced data and literals. If
alignment checks are enabled, a mis-aligned access will produce an assembler warn-
ing. The default is to perform alignment checks.

These alignment checks apply only to non-strict alignment requirements, and gen-
erate message DASMA033. Strict alignment checks, such as branch alignments and
operands that require alignment for operation are controlled by the –f ALIGN and
–f NOALIGN option.

Note that if –xa is enabled, the assembler will only align DC, DS, DXD and CXD
values on correct boundaries if their duplication factor is 0. If –a is enabled, DC,
DS, DXD and CXD values will be aligned on correct boundaries.

24 Systems/ASM



The –r and –xr options (enable/disable re-entrancy checks)

DASM will perform various checks on the generated code to assure it can participate
in a RENT module. If re-entrancy checks are enabled, a reference which alters a
CSECT will produce an assembler warning. Re-entrancy checks are enabled by
default.

Note that some non-re-enterable code may not be identified with a message as the
assembler cannot exhaustively check program logic code.

The –pestop and –xpestop options (enable/disable halt on *PRO-
CESS and command-line errors)

If the –pestop option is enabled, the assembler will terminate when an error is
detected in the command-line options, or in *PROCESS statements.

The default is –pestop.

The –profile=filename and –xprofile options (include filename as if
it appeared in a COPY statement)

The –profile=filename option causes DASM to insert the file named filename as if
it appeared on a COPY statement at the start of the program.

The text from filename will appear at the start of the program, after any *PROCESS
statements.

The –xprofile option disables this feature, and is the default.

The –profile and –xprofile options may be abbreviated as –prof and –xprof.

The PROFILE option can also be used in *PROCESS statements.

The –ra2 and –xra2 options (enable/disable 2-byte relocatable ad-
dress constant checks)

DASM will generate message number DASM066W if a Y-type or 2-byte A-type
relocatable address constant is discovered. To disable this message, use –xra2.

The default value is –ra2.

Systems/ASM 25



The –tc and –xtc options (enable/disable range checks for immediate
operands)

DASM will generate warning message DASM320W for signed immediate operands
which are outside the appropriate range. –tc is analagous to the HLASM
TYPECHECK(MAGNITUDE,REGISTER) option.

The default value is –tc.

The –tc option will optionally accept a comma, or colon separated value specifying
magnitude and/or register. magnitude may be abbreviated as mag and register
may be abreviated as reg.

For example:

-tc reg:mag

specifies both the REGISTER and MAGNITUDE sub-options of TYPECHECK.

If the –tc option is specified alone, it is equivalent to specifying both REGISTER and
MAGNITUDE.

The –f ALIGN and –f NOALIGN options (set the FLAG value for
strict alignment checks)

The –f ALIGN option controls the generation of diagnostic messages that check
instruction alignment, branch alignment and strict operand alignment.

If –f NOALIGN is specified, the assembler will not generate diagnostic messages
DASM033I, DASM212W or DASM213W.

If –f ALIGN is specified, the assembler will generate diagnostic messages DASM212W
and DASM213W. If the –a option is also enabled, the assembler will generate mes-
sage DASM033I.

Diagnostic message DASM212W refers to branch alignment requirements, message
DASM213W applies when the instruction operand requires alignment for proper
operation.

The –f CONT and –f NOCONT options (set the FLAG value for
continuation checks)

The –f CONT option (enabled by default), causes the assembler to check for mal-
formed continuation lines and issue DASM430W, DASM431W, DASM432W and
DASM433W.

Enabling –f NOCONT disables these messages.

26 Systems/ASM



The –f IMPLEN and –f NOIMPLEN options (issue warming mes-
sage DASM169I when an implied length is used in an SS-type in-
struction)

The –f IMPLEN option enables the generation of information message DASM169I,
–f NOIMPLEN disables it.

When –f IMPLEN is enabled, DASM generates message DASM169I when the
operand with an implied length in an SS-type instruction is discovered.

When –f NOIMPLEN is enabled, message DASM169I will not be generated,

By default, –f NOIMPLEN is enabled.

The –f PAGE0 and –f NOPAGE0 options (set the FLAG value for
enabling/disabling message DASM309W)

The –f PAGE0 option controls checking for missing base registers in memory ad-
dresses.

If –f PAGE0 is specified the assembler flags any machine instruction operand that is
a memory address reference but doesn’t specify a base register with the diagnostic
message DASM309W.

Note that this is only for instructions that actually reference the memory, instruc-
tions that only compute the address (e.g. LOAD ADDRESS) have no check.

Furthermore, if a base register is not specified, but an index register is specified, the
warning isn’t generated.

The –f NOPAGE0 option will disable the warning.

The –f USING0 and –f NOUSING0 options (set the FLAG value for
enabling/disabling message DASM306W)

If –f USING0 is specified (the default), then DASM will generate the diagnostic
DASM306W for any USING that conflicts with the default USING 0,0, subject to the
bits specified in the –uwarn n option.

The –f PUSH and –f NOPUSH options (set the FLAG value for
enabling/disabling non-empty PUSH stack checks)

The –f PUSH option controls the generation of diagnostic messages that check for
non-empty PUSH stacks at the end of the assembly.

Systems/ASM 27



If –f PUSH is enabled, a DASM138W message can be generate if the PRINT, USING
or ACONTROL push stacks are non-empty at the end of the assembly source.

Use –f NOPUSH to disable this message.

By default, –f PUSH is enabled.

The –f RECORD and –f NORECORD options (set the FLAG value
for enabling/disabling message DASM435I)

The –f RECORD option enables the generation of information message DASM435I,
–f NORECORD disables it.

When –f RECORD is enabled, DASM generates message DASM435I after the last
error messages for any statement. This message contains the line number, and file
name information for the statement in error.

Also, when –f RECORD is enabled, the “Diagnostic Cross Reference and Assembler
Summary” section of the assembler listing will include the file name and line number
for each statement in error.

When –f NORECORD is enabled, message DASM435I will not be generated, and
the “Diagnostic Cross Reference and Assembler Summary” section will only contain
the statement number of any diagnosed lines.

By default, –f RECORD is enabled.

The –f SUBSTR and –f NOSUBSTR options (set the FLAG value
for enabling/disabling message DASM094I)

The –f SUBSTR option enables the generate of information message DASM094I,
–f NOSUBSTR disables it.

When –f SUBSTR is enabled, DASM checks every string subscript option to ensure
the second subscript specifies a length that is not longer then the given string value.
If the length is longer, the informational message DASM094I will be generated.

When –f NOSUBSTR is enabled, message DASM094I will not be generated.

The default is –f NOSUBSTR.

The –f integer option (set the FLAG value for controlling diagnos-
tics)

The –f integer option specifies that messages with integer or higher severity code
will be generated. Messages with a severity code lower than integer are suppressed.
The default value of code is 0.

28 Systems/ASM



The –ccase and –xccase options (enable/disable case compatibility
with ASMH)

The –ccase and –xccase options enable and disable the ASMH case compatibility
feature.

The –ccase option causes the assembler to maintain compatibility with the IBM
ASMH assembler. Assembler pseudo-ops, instructions and other language elements
are restricted to upper case if they were so restricted with IBM’s earlier ASMH
assembler.

The default is –xccase.

The –mcase and –xmcase options (enable/disable macro case com-
patibility with ASMH)

The –mcase and –xmcase options enable and disable the ASMH macro case com-
patibility feature.

The –mcase option causes the assembler to maintain uppercase compatibility with
the IBM ASMH assembler for unquoted macro operands. If –mcase is enabled, the
assembler will convert lower case alphabetic characters (characters a through z in
unquoted macro operands to uppercase.

The default is –xmcase.

The –csysl and –xcsysl options (enable/disable SYSLIST compati-
bility with ASMH)

The –csysl option causes the assembler to treat sublists in SETC symbols in a manner
compatible with the earlier IBM ASMH assembler. When –csysl is enabled, SETC
symbols that are assigned parenthesized sublists are treated as character strings,
not sublists, when passed as an operand of a macro instruction.

The default is –xcsysl.

The –clit and –xclit options (enable/disable literal type compatibil-
ity with ASMH)

The –clit and –xclit options enable and disable the ASMH literal type compatibility
feature.

The –clit option causes the assembler to maintain compatibility with the IBM ASMH
assembler. ASMH always considers the type attribute of a literal to be U when

Systems/ASM 29



it appears in an expression such as T’=X’11’. When compatibility mode is not
enabled, the actual type of the literal is used if the literal is currently pending from
any preceding code without an intervening LTORG.

The default is –xclit.

The –csyspath and –xcsyspath options (enable/disable &SYSxxx
paths compatible with HLASM on USS)

DASM provides several pre-defined set-symbols to describe the files used for SYSIN,
SYSLIB, SYSLIN, SYSPRINT, SYSPUNCH, SYSADATA, and SYSTERM. For example, &SYSIN DSN,
&SYSIN MEMBER, and &SYSIN VOLUME provide the location of the primary assembly
source.

By default, DASM puts the drive letter (Windows only) into the &SYSxxx VOLUME
set-symbol. The complete absolute directory path is uppercased and then placed in
&SYSxxx DSN. The uppercased filename (with no extension) is placed in &SYSxxx MEMBER.

However, HLASM on USS places the full un-modified path and filename in &SYSxxx DSN
and leaves the other set-symbols empty. If –csyspath is specified, then DASM will
do the same.

The –xsd and –xxsd options (enable/disable XSD-format objects)

DASM can generate ESD-style, GOFF-style or XSD-style object deck formats. If
using label names longer than 8 characters for either section names or names which
are the target of ENTRY statements, the GOFF or XSD-style format should be
used. This format allows for names of any length in the generated object deck, and
is compatible with the Systems/C pre-linker PLINK and IBM binder.

The default is to use XSD-style object decks.

More information regarding XSD-style object decks can be found in the IBM manual
entitled DFSMS/MVS Program Management.

The –goff and –xgoff options (enable/disable GOFF-format objects)

DASM can generate ESD-style, GOFF-style or XSD-style object deck formats. If
using label names longer than 8 characters for either section names or names which
are the target of ENTRY statements, the GOFF or XSD-style format should be
used. This format allows for names of any length in the generated object deck, and
is compatible with the Systems/C pre-linker PLINK and IBM binder.

Note that the DASM default is to produce XSD-style object decks.

30 Systems/ASM



More information regarding GOFF-style object decks can be found in the IBM
manual entitled DFSMS/MVS Program Management.

The –goffadata and –xgoffadata options (enable embedded ADATA
information in GOFF objects)

As well as producing GOFF-style object decks, DASM can include ADATA debug-
ging information. The GOFF definition allows for this information to be embedded
within the generated object deck, or separately. The –goffadata option causes the
assembler to embed this information within the object deck.

Note that the –A=file option causes the assembler to produce this information as a
separate file.

The –batch and –xbatch options (enable/disable batch source pro-
cessing)

The –batch option indicates that the input file may contain multiple assembler
sources. The separate assembler sources are distinguished with the END statement.
The –xbatch option indicates there is only one assembler source in the input file.

The default mode is –batch.

The –thread and –xthread options (enable/disable CSECT thread-
ing)

When –thread is specified, DASM assigns the starting offset for a new CSECT to
the ending address of the previous CSECT. When –xthread is specified, DASM
assigns all CSECTs to begin at 0. The default is –thread.

The –fenhancedequ option (enable enhanced EQU evaluation)

When –fenhancedequ is specified, DASM allows EQUs to remain unresolved for
longer, allowing more complex dependencies between EQUs. By default DASM
is very strict and only accepts EQUs which can be resolved in the first pass for
compatibility with HLASM.

The –idr option (define the IDR string generated on END cards)

The –idr option defines the identification information (IDR) generated on END
cards produced by the assembler. Some software examines IDR information to

Systems/ASM 31



determine the component that produced the object. This option can be useful when
the generated object should appear to have been produced by a different product.

By default, the IDR appears as

DASMvv rrll

where vv is the DASM major version number, rr is the release number and ll is the
modification level.

The –fdupalias option (allow duplicate ALIAS values)

The –fdupalias option extends the assembler to support more than one symbol aliases
to the same value.

For example, the following two ALIAS statements would normally be flagged as an
error:

NAME1 ALIAS C’value’
NAME2 ALIAS C’value’

because the two symbols NAME1 and NAME2 are aliases to the same character constant,
C’value’. With the –fdupalias option, the assembler will not issue a warning or
message of any kind and will honor the ALIAS statements.

The –fdupalias option is typically used when assembling source produced by the
Systems/C and Systems/C++ compilers.

The –fvselibr option (recognize /+ as EOF)

On VSE, when placing members into VSE LIBRARY library, the special characters
/+ can mark the end-of-file when the member is retrieved.

That is, if a record begins with the two character /+ the characters and record that
follow are ignored.

This is sometimes used to place comments into the member, without being consid-
ered part of the member data.

To facility the use of such files on cross-platform hosts, the –fvselibr option causes
DASM to consider a source line that begins with /+ as an end-of-file marker. When
the marker is encountered at the beginning of an input line, DASM will discard
the line and any further data contained in the file.

32 Systems/ASM



The –fsuprwarn=list and –fnosuprwarn=list options (suppress or
don’t suppress particular warning messages)

The –fsuprwarn and –fnosuprwarn options accept a colon-separated list of integers
specifying particular warning message numbers to suppress (or not suppress.)

At least one integer value must be specified in the colon-separated list.

A message is generated if the given message number does not exist, or the message
severity is not 4 or less.

The –fasciiout and –fno asciiout options (enable/disable ASCII char-
acter constants)

When –fasciiout is specified, character constants such as

STR DC C’HELLO’

generate bytes encoded in the ASCII character set. If –fno asciiout is specified then
EBCDIC character constants are generated. –fno asciiout is the default, unless the
–flinux option is specified.

The –flinux option (generate Linux/390 ELF output)

The –flinux option instructs DASM to generate a Linux/390 compatible ELF (.o)
file from the HLASM compatible source rather than a traditional object deck. See
the “Linux ELF Output” section for more information. –flinux implies –fasciiout.

The –flinux64 option (generate z/Linux ELF output)

The –flinux64 option instructs DASM to generate a z/Linux compatible ELF (.o)
file from the HLASM compatible source rather than a traditional object deck. 64-
bit z/Linux objects are incompatible with 32-bit Linux/390 objects, so care must
be taken in chosing the correct one of –flinux or –flinux64. See the “Linux ELF
Output” section for more information. –flinux64 implies –fasciiout.

The –g and –xg options (enable/disable Linux ELF STABS debug-
ging output)

The –g option causes any generated Linux ELF object files to contain “STABS”
debugging output. When this debugging output is present, gdb supports assembly

Systems/ASM 33



source level debugging on the generated objects. The debugger is given access to the
line numbers of the original input file and also is presented with struct definitions
for the DSECTs. The –xg option disables debugging output and is the default.

The –fdwarf=file option (enable output of DWARF side file)

If you have instructed DCC or DCXX to generate DWARF debugging information,
then –fdwarf=file specifies the output filename for the DWARF information. The
compiler emits a *PROCESS DWARF(’filename’) line, which provides the default
filename for DWARF information. You only need to specify –fdwarf=filename if
you wish to override the value the compiler selected.

The –fmapat and –fnomapat options (enable/disable mapping ‘@’
to ‘ ’ in external symbol names)

If –fmapat is specified then any at signs (‘@’) in external symbol names (after ALIAS
mapping) will be replaced with underscores (‘ ’). This option is especially useful for
Linux (ELF) mode, where at signs are not valid in symbol names.

Library options

–macext extension specify the extension to use for MACRO/COPY file
names

–L location specify the location to search for MACRO/COPY
members

–V env name an environment variable that specifies search lo-
cations for macro/copy members

–libexec cmd provide a program to execute when the assembler can-
not find a macro/copy member

–libncase use case-insensitive filename search

The –macext option (specify the extension to use for MACRO/COPY
file names)

The –macext option specifies the extension to use when searching for MACRO/COPY
file names with a –L specification that does not contain a substitution character.
The default extension used is “mac”. To indicate that no extension should be used,
use a single period as the value in the –macext option.

34 Systems/ASM



For example, if the command line include -L/usr/maclib and the –macext option
was set to MAC, and the assembler was searching for the macro MYMAC, the assembler
would look for

/usr/maclib/mymac.MAC

followed by

/usr/maclib/MYMAC.MAC

The –L option (specify the location to search for MACRO/COPY
members)

The –L option specifies a location to search for MACRO and COPY members. More
than one –L option may be specified. If the value specified in a –L option does not
use the &M, &m or &D substitution sequence, then the member name, followed by the
macro extension will be appended to the value specified in the –L option to locate
the MACRO or COPY member. The default macro extension may be modified with
the –macext option.

The substitution characters in a –L option expand as follows:

&d Source drive on Windows, empty on other hosts.
&D Source file directory. On Windows, this does include the drive

letter.
&e Source file extension.
&f Source file, without any directory/path components and without

any extension.
&p Path to source file. On Windows, this does not include the drive

letter.
&M Upper case version of the name provided in the MACRO/COPY

statement.
&m Lower case version of the name provided in the MACRO/COPY

statement.
&x Directory where the DASM executable was found.
&& The & character.

When no substitution character is specified, the assembler first tries the lower-case
version of the MACRO/COPY name (followed by the macro extension), then the
upper-case version of the name.

For example, if the -L /usr/maclib option was specified, and the assembler dis-
covered an invocation of the MYMAC macro, and the default macro extension had
not been overridden, the assembler would look for

Systems/ASM 35



/usr/maclib/mymac.mac

and then

/usr/maclib/MYMAC.mac

If the -L..\mymacros\&M option had been specified, the assembler would look for
the file

..\mymacros\MYMAC

The specified –L options are searched in the order they appear in the DASM
options.

Note that on cross-platform hosts, if the –L option specifies a pattern which contains
parenthesis, DASM will attempt to treat the specification as a ZIP archive member.

The –libexec option (provide a program to execute when the assem-
bler cannot find a macro/copy member)

The –libexec option specifies a command to execute when the assembler has ex-
hausted all of the specified library search paths and cannot find a copy or macro
file. It is expected that the command will retrieve the specified file and place it
somewhere in the library search path. Then, the assembler will try to find the file
again, using the same library search path.

The –libexec option can be particularly helpful in situations where sources are not
immediately available, but need to be retrieved from a source management system,
or the mainframe host. For example, when an assembly begins, it may require
the COPY file MYCOPY which is not present on a cross-platform host. The –libexec
option may specify a program which fetches the MYCOPY file from the mainframe
host, and places it in a known location. Then, DASM will retry the search, finding
the MYCOPY member.

The –libncase option (use case-insensitive filename search)

The –libncase option directs DASM to use a case-insensitive search for filenames.
It is only meaningful for files stored in Unix-style case-sensitive filesystems.

The way –libncase is implemented, the directory lookup proceeds in the usual (case-
sensitive, depending on the OS) fashion. The first time a directory is seen, the list
of files in it is read, then that list is used to enable case-insensitive searches. The
list is cached, so the overhead is minimal for subsequent searches in that directory.

36 Systems/ASM



Listing and Print options

–pc=control
–xpc=control

override/don’t override certain print control state-
ments in the source

–l / –xl enable/disable generation of assembler listing

–esd / –xesd enable/disable printing of symbol information in the
listing

–fold / –xfold enable/disable folding of lower-case letters to upper-
case in the listing

–rld / –xrld enable/disable printing of relocation information in
the listing

–dx / –xdx enable/disable the DSECT cross-reference information
in the listing

–mx / –xmx enable/disable the MACRO cross-reference informa-
tion in the listing

–rx / –xrx enable/disable REGISTER cross-reference informa-
tion in the listing

–nx / –xnx enable/disable UNREFS cross-reference information
in the listing

–umap / –xumap enable/disable USING MAP information in the listing

–uwarn n / –xuwarn control emission of USING-related warnings

–cxs enable the short cross-reference in the listing

–cxf enable the full cross-reference in the listing

–xcx disable the cross-reference in the listing

–os / –xos enable/disable printing the option summary in the list-
ing

–lc count specify the number of lines per page in the listing

–lcond / –xlcond enable/disable inclusion of conditional statements in
the listing

–epops / –xepops enable/disable expansion of macro operands in the list-
ing

–term / –xterm enable/disable error messages

–flisting=filename specify an alternate name for the listing file

Systems/ASM 37



The –pc=control/–xpc=control option (override print control state-
ments)

The –pc=control option is used to enable print control options. The –xpc=control
option is used to enable/disable print control options.

The value of control is one of:

ON Causes the assembler to produce a source listing.

GEN Causes the assembler to include sources generated as the
result of expansion of a macro.

NODATA Causes the assembler to print only the first 8 bytes of con-
stants in the object code. This option is deprecated in
favor of the DATA option, but remains for backward com-
patibility.

DATA Causes the assembler to print all of bytes of constants in
the object code.

MSOURCE Causes the assembler to include source statements gener-
ated during macro processing, as well as the assembled
statements.

UHEAD Causes the assembler to include the active USINGs in the
heading of each page in the listing.

Multiple –pc control and –xpc control options may be specified. Subsequent –pc control
and –xpc control have a cumulative affect on the print control.

The print control values specified on the command line override any print control
statements found in the source. Thus, if the source contained:

PRINT OFF

and the -pc ON option was specified, the PRINT OFF statement would be ignored,
and the listing would contain subsequent instructions.

The –l/–xl option (enable/disable generation of the assembler list-
ing)

The –l/–xl option controls generation of the listing. If –xl is specified, no listing file
will be generated. The default is –l.

38 Systems/ASM



The –esd/–xesd option (enable/disable symbol information in the
listing)

The –esd/–xesd options enable and disable inclusion of the Symbol Dictionary por-
tion of the listing. The default value is –esd.

The –fold/–xfold option (enable/disable folding of lower-case letters
to upper-case in the listing)

The –fold/–xfold option enables and disables the conversion of lower-case letters in
the listing to upper-case.

If –fold is enabled, all the lowercase alphabetic letters will be converted to uppercase
in every listing line.

–xfold is the default.

The –rld/–xrld option (enable/disable relocation information in the
listing)

The –rld/–xrld options enable and disable inclusion of the Relocation Dictionary
portion of the listing. The default is –rld.

The –dx/–xdx option (enable/disable the DSECT cross-reference in
the listing)

The –dx/–xdx options enable and disable the generation of the DSECT cross-reference
in the listing. The default is –dx.

The –mx/–xmx option (enable/disable the MACRO cross-reference
in the listing)

The –mx/–xmx options enable and disable the generation of the MACRO cross-
reference in the listing. The default is –mx.

The –rx/–xrx option (enable/disable REGISTER cross-reference in-
formation in the listing)

The –rx/–xrx options enable and disable the generation of REGISTER cross-reference
information in the listing. The default is –xrx.

Systems/ASM 39



The –umap/–xumap option (enable/disable USING MAP informa-
tion in the listing)

The –umap/–xumap options enable and disable the generation of USING MAP
information in the listing. The default is –umap.

Previous versions of the assembler accepted –ux/–xux as synonyms of this option,
but that usage is deprecated.

The –uwarn n and –xuwarn options (control emission of USING-
related warnings)

The –uwarn n option controls the emission of diagnostics relating to common USING
errors. n is a bitmask indicating which classes of warnings to report:

1 Any USING which cannot be used because it is completely replaced by another
will trigger a DASM300W, DASM301W, or DASM306W warning.

2 A DASM302W is produced for any USING that is based on R0.

4 Ambiguous/overlapping USINGs generate DASM303W or DASM306W.

The default is –uwarn 15, which enables all of the warnings. –xuwarn has the same
effect as –uwarn 0, disabling the warnings.

Note that if –f NOUSING0 is specified then DASM306W will not be generated.

The –nx/–xnx option (enable/disable UNREFS cross-reference in-
formation in the listing)

The –nx/–xnx options enable and disable the generation of UNREFS cross-reference
information in the listing, which lists all of the symbols defined in CSECTs which
are not referenced. The default is –xnx.

The –cxs option (enable the short symbol cross-reference)

The –cxs option enables the generation of the short symbol cross reference. The
short symbol cross reference only includes symbols that were actually referenced.

The –cxf option (enable the full symbol cross-reference)

The –cxf option enables the generation of the full symbol cross reference. The full
symbol cross reference includes all symbols defined in the source.

40 Systems/ASM



The –xcx option (disables the symbol cross reference)

The –xcx option disables the generation of either the full or short cross reference.
The default value is –xcx.

The –os/–xos option (enable/disable the options summary in the
listing)

The –os/–xos options enable and disable the inclusion of the options summary at
the beginning of the listing. The default is –os.

The –lc count option (define the number of lines per page)

The –lc count option defines the number of lines printed on a page before moving
to the next page. The default value is 55 lines per page.

The –lcond/–xlcond option (include/omit conditional statements in
the listing)

The –lcond/–xlcond options cause the assembler to include or omit conditional state-
ments in the listing. When –xlcond is specified, the assembler will not include state-
ments which are suppressed by a conditional evaluation. The default is –xlcond.

The –epops/–xepops option (include/omit expanded macro operands
in the listing)

The –epops/–xepops option causes the assembler to include or omit expanded macro
operands in the listing. The default is –xepops.

The –term/–xterm option (enable/disable error messages)

The –term option causes the assembler to write error messages to the STDERR file
stream on cross-platform hosts or the SYSTERM DD on z/OS and CMS hosts.

Note that the DASM-produced banner and summary messages are written to the
STDERR stream and STDERR DD as well. The –quiet option can suppress those
messages.

–term is equivalent to the HLASM TERM option.

Systems/ASM 41



The –flisting=file option (specify the name of the listing file)

The –flisting=file option instructs the assembler to use the given file name for the
generated listing file. When –flisting=file isn’t specified, the assembler uses the
default name for producing the listing. On cross-platform hosts, the default listing
file name is based on the input file name, with a suffix of .lst. On z/OS, the default
listing file name is the SYSPRINT DD.

42 Systems/ASM



Miscellaneous options

–fmesg=style specify the style of error messages

–M[=filename] generate a file dependency list

–A[=filename] / –xA enable/disable generation of a separate ADATA infor-
mation file

–fadver=version specify which format version for ADATA information

–fadftp output block mode FTP markers in the ADATA file

–fadrdw output RDW headers in the ADATA file

–E=filename specify an alternative file to log error messages

–fevents=filename emit an IBM-compatible events listing

–options=options string specify options in HLASM-style syntax

The –fmesg=style option (specify the style of messages)

The –fmesg=style option instructs the assembler to use a different style of formatting
error messages written to stderr. This does not alter the style of messages that
appear in the listing.

The supported styles are:

dasm Default style on z/OS and UNIX hosts. Messages are
formatted with the text “dasm:” appearing initially on
the line. This style can make looking for errors in large
build logs easier.

dasmx Extended dasm format. Extended dasm format will cause
an extra message (number DASM435I) to be generated
when a message is generated in a macro. This extra
message indicates the source line where the macro was
invoked.

gcc Use the gcc-style of messages, which can be helpful when
using DASM with tools on UNIX platforms, such as
emacs.

gccx Extended gcc format. Extended gcc format will cause
an extra message (number DASM435I) to be generated
when a message is generated in a macro. This extra
message indicates the source line where the macro was
invoked.

Systems/ASM 43



microsoft Default style on Windows hosts. Messages are formatted
so they can be recognized by Microsoft’s Visual Studio
environment.

The –M[=filename] option (generate file dependency list)

The –M[=filename] option causes the assembler to output dependency rules suitable
for the make program. These rules describe the dependencies of the assembled file,
indicating that to recreate the target object file, the given sources and any macros
used by this assembly are required. By default, the dependency information is
written to the stdout stream. The optional =filename can be used to specify a
particular file to write the dependency information.

The depencies will be listed in the form

target: source

where target is the name of the object file being generated, and source is the source
file being assembled. If there are any dependent macros being used, other lines will
be generated that list the dependent macros as sources.

If no object file is being created, a name ending in .o will be automatically generated
for the dependency.

The –A[=filename] and –xA options (enable/disable generation of
a separate ADATA information file)

When –A=filename is specified, the assembler will write any ADATA information
to the specified file. The assembler generates ADATA information compatible with
IBM’s HLASM assembler. This information includes data describing the source that
was assembled and is used by several runtime debuggers. The assembler also places
any information from ADATA pseudo-operations in the specified file.

If the optional =filename isn’t specified, the assembler places the information in the
file that’s named the same as the source file, with any extension replaced with the
extension “.dat”.

Note that when generating GOFF-style object files, it is possible to embed this
ADATA information directly in the generated object via the –goffadata option.

The –fadver=version option (specify which format version for ADATA
information)

The format of ADATA information differs between HLASM V1R4 and HLASM
V1R5. The –fadver=version option selects which version DASM will generate.

44 Systems/ASM



version can either be 4 or 5.

By default, DASM generates ADATA information compatible with HLASM V1R5.

Note that on z/OS, the ADATA resides in a variably blocked (RECFM=VB) file with
a block size of 32760 (BLKSIZE=32760) and record length of 32756 (LRECL=32756).
Also, on z/OS, the filename specified is in Dignus file name format. For example,
-A=//DDN:ADATA would specify that the ADATA information is to be written to the
DD named “ADATA”.

The –fadftp option (output block mode FTP markers in the ADATA
file)

The –fadftp option tells DASM to add block mode FTP markers to the generated
ADATA file. These markers are interpretted by the FTP server to enable the main-
frame to construct proper-length VB records. Use this option if you are running
DASM on a non-mainframe host (such as a PC) but you are going to use the
ADATA as a VB dataset on the mainframe. Note that the ADATA files generated
when –fadftp is enabled are not suitable for use on the PC or for use in FB datasets.

When you transfer the generated ADATA file to the mainframe, you must issue a
quote mode b command in your FTP client. This will instruct the FTP server on
the mainframe to expect block mode data. Otherwise the markers will appear as if
they were a part of the ADATA, essentially corrupting the file.

The –fadrdw option (output RDW headers in the ADATA file)

The –fadrdw option tells DASM to add an RDW header to each record of the
ADATA file. The RDW header is the format used to identify blocks in VB encoded
files. The header consists of a two-byte value indicating the length of the record
(including the header bytes) followed by two zero bytes. Note that the ADATA files
generated when –fadrdw is enabled are not suitable for use on the PC or for use in
FB datasets.

The –E=filename option (specify an alternative file to log error mes-
sages)

The –E=filename option causes the assembler to write any error messages to the
specified filename. Every message that is typically logged to the stderr file descrip-
tor will instead be directed to the named file.

Systems/ASM 45



The –fevents=filename option (Emit an IBM-compatible events list-
ing)

The –fevents=filename option causes DASM to generate an event listing in the
named file. Several IBM products use event listings of this format to communicate
error message information between compilers and user interfaces. Using this option,
you may generate an events file for use with any products that share this format.

The events file contains 3 types of single-line records:

ERROR 0 A 0 0 B 0 0 0 DASD E F G H

A The number of the file where the error occurred.

B The record number at which the error occurred.

D The error code.

E A severity, one of I for informational messages, W for warnings, E for errors,
S for severe errors, or U for unrecoverable errors.

F The mainframe return code for the error.

G The length of the error message.

H The error message.

FILEID 0 A 0 C D

A The number of the file.

C The length of the file name.

D The file name.

The –options=options string option (Specify options in HLASM-
style syntax)

For easier migration from HLASM, the –options= option can specify a string that
is processed as an HLASM options parameter.

The values specified as options string are the options available for passing to HLASM
via the PARM specification in JCL.

Current supported HLASM options include:

46 Systems/ASM



ADATA, XOJECT, GOFF, LIST, OBJECT, LINECOUNT, LANGUAGE, SIZE, SYSPARM,
TRANSLATE, ALIGN, ASA, BATCH, CODEPAGE, COMPAT, ESD, FLAG, FOLD,
LIBMAC, MXREF, OPTABLE, NOPCONTROL, PCONTROL, PROFILE, RA2, RENT,
RLD, RXREF, SECTALGN, THREAD, USING, XREF, SUPRWRN

The following limitions and differences apply between DASM and HLASM:

• LANGUAGE is limited to LANGAUGE(UE) or LANGUAGE(ES).

• DASM doesn’t limit the amount of memory allocated at assembly time, so
the only meaningful values of the SIZE option are SIZE(0) and SIZE(MAX).
Any other integer is silently accept and SIZE(MAX) will be applied.

• TRANSLATE is limited to TRANSLATE(AS) or NOTRANSLATE.

• ASA, CODEPAGE, DBCS, DECK, DXREF, FOLD, LIBMAC, NOPCONTROL, and TEST are
accepted but do nothing.

• ESYM examines environment variables.

Unlike HLASM, the ESYM builtin SETC function queries the runtime environ-
ment. On non-z/OS hosts, that is the only environment available. On z/OS, if
no value is found in runtime environment then the lookup proceeds by looking
for the JCL system value for the given name.

Thus, when running under batch (where no environment is provided) DASM
will act as HLASM does, and query JCL symbols.

However, when running under USS, environment variables inherited from the
caller will be available and examined before searching the JCL symbol space.

HLASM does not support symbol look up in the environment, it only examples
JCL system symbols.

DASM also has extended options used to offer controls that are only available in
DASM. These include:

MAPAT/NOMAPAT Enable or disable the –fmapat option.

DUPALIAS/NODUPALIAS Enable or disable the –fdupalias options.

IDR(value) Set the END card IDR value. For more information see
the –fidr option.

DWARF(filename) Set the output DWARF debugging information file. For
more information, see the –fdwarf option.

Systems/ASM 47



Linking Assembled objects

Once the assembly source has been assembled, it can be linked using the typical link
procedures. If DASM was executed on a cross-platform host, the resulting object
decks should be transferred to mainframe host environment via FTP or some other
binary-mode transfer mechanism.

48 Systems/ASM



ADATA Information

DASM will optionally generate Associated Data, or ADATA information, either
as a separate file, or embedded within a GOFF format object file. The –A and
–goffadata options control the generation of ADATA information.

ADATA information contains descriptions of the source that was assembled, and
can be used by debuggers or cross-referencing tools. Also, the ADATA pseudo-op
can be used to augment the generated ADATA information. The IBM system macro
ASMADATA provides a definition of the various ADATA record formats.

For more information about ADATA and the ADATA record formats, see the IBM
publication High Level Assembler for MVS & VM & VSE Programmer’s Guide,
Release 5.

Differences between DASM and HLASM ADATA infor-
mation

DASM provides ADATA information compatible with HLASM V1R5, with the
following differences:

Source Analysis Records

• Directive and Macro calls which support alternative continuations do not
have substitution performed on the output record data. As implemented in
HLASM V1R4, the substitution was unreliable, for instance, comments can
overlay operands. Rather than emulating the unreliable output, DASM pro-
vides the raw source lines.

• DASM correctly reports continuation lines as the same type as the first line
of the statement.

• DASM does not substitute ‘X’ for the original continuation character in many
of the situations that HLASM does.

Systems/ASM 49



• DASM correctly reports Macro Call continuation lines as continuation lines
in instances where HLASM does not.

• File Number and Parent File Number are correctly reported when macros
are nested.

• DASM always reports the record number for continuation lines as the first
record in the statement. HLASM sometimes reports the first record and other
times reports the last record.

• For Macro Calls, HLASM only sets the Location Counter if the macro call
is not made from the original source file. DASM always sets the Location
Counter.

Symbol Records

• The type “*-in-Literal Name” is reported as a Literal Name.

• DASM does not assign an ESD ID to an absolute EQU type symbol.

Symbol XREF Records

• For all symbols, DASM writes XREF records directly after the corresponding
Symbol Records. This varies from HLASM which writes XREF records for
referenced symbols following the corresponding Symbol Record, and records
for un-referenced symbols after all Symbol Records have been written.

• DASM consistently reports all symbols which are used to generate a modified
location as Modified, while HLASM does not.

50 Systems/ASM



Unexpected or undocumented HLASM behavior supported
by DASM

There are several situations where HLASM either does not conform to the HLASM
documentation, or behaves in an unexpected fashion. DASM mimics these sit-
uations to allow for full interoperability between HLASM and DASM generated
information.

Systems/ASM 51



52 Systems/ASM



The Dignus CICS Command
Processor, DCCPA

Distributed with the assembler is the Dignus CICS Command Processor, DCCPA.
For assembler source which uses EXEC CICS commands, DCCPA is used to translate
the EXEC CICS commands into normal assembly code prior to invoking DASM. This
is especially useful in cross environments where IBM’s translators cannot be used.
For further information about CICS, see the IBM publication CICS Transaction
Server for z/OS: CICS Application Programming Reference document number SC34-
5994-02.

Running DCCPA

On Windows and Unix, DCCPA is executed with a command line of the form

dccpa [options] [input file]

If no input file is specified, input is read from stdin.

When run on z/OS, options may be specified in the PARM statement. If no input
file is specified, the SYSIN DD is used. Output defaults to SYSPUNCH, which would
typically be used as input for DASM in the next step. Informational and error
messages are output to STDOUT and STDERR DDs. The following JCL could be used
on z/OS:

//DCCPA JOB
//DCCPA EXEC PGM=DCCPA,PARM=’options’
//STEPLIB DD DSN=DIGNUS.LOAD,DISP=SHR
//STDERR DD SYSOUT=*
//STDOUT DD SYSOUT=*
//SYSPUNCH DD SYSOUT=*
//SYSIN DD *

<assembler source>

Systems/ASM 53



DCCPA Options

Options for DCCPA are summarized in the table below.

–A process assembly source

–C process C source

–o file place translated output in the file named file

–fdli / –fnodli enable/disable support for EXEC DLI

–fgds / –fnogds enable/disable support for GDS commands

–fsp / –fnosp enable/disable support for System Programmer com-
mands

–fcols=n the output in C mode will be n columns

–fseq the output in C mode will include sequence numbers

–fmrc / –fnomrc enable/disable use of mainframe-style return code

–fflag=code output only error messages of a certain priority

–fepilog / –fnoepilog enable/disable use of DFHEIRET macro

–fprolog / –fnoprolog enable/disable use of DFHEISTG, DFHEIEND, and
DFHEIENT macros

–ferrlist / –fnoerrlist enable/disable listing errors on stderr

–fexci / –fnoexci enable/disable EXCI mode

–fleasm / –fnoleasm enable/disable LE ASM compatibility

–fvse / –fnovse enable/disable VSE compatibility

–fedf / –fnoedf enable/disable EDF mode

The –A option (process assembly source)

The –A option tells DCCPA to process assembly source code. –A is the default
for DCCPA.

The –C option (process C source)

The –C option tells DCCPA to process C source code instead of assembly code.

54 Systems/ASM



The –o file option (specify the name of the output file)

The –o file option specifies that the translated output should go to a file other than
the default. On Windows and Unix systems, the default is ccp.out, while in z/OS
it is the SYSPUNCH DD.

The –fdli and –fnodli options (enable/disable EXEC DLI)

The –fdli option enables support for EXEC DLI statements as well as EXEC CICS
statements.

The –fgds and –fnogds options (enable/disable GDS commands)

The –fgds option enables support for GDS commands (commands of the form EXEC
CICS GDS ...). The default is –fnogds.

The –fsp and –fnosp options (enable/disable System Programmer
commands)

The –fsp option enables support for System Programmer commands. The default
is –fnosp.

The –fcols=n option (specify column width)

When processing C source code the –fcols=n option instructs DCCPA to use only
n columns in its output. Assembly code is always limited to 72 columns with
continuations.

The –fseq option (generate sequence numbers)

When processing C source code the –fseq option causes DCCPA to generate se-
quence numbers in the output. This implicitly sets -fcols=72. The sequence num-
bers appear in columns 73-80.

The –fmrc and –fnomrc options (enable/disable mainframe-style re-
turn codes)

The –fmrc option specifies that the translator should use mainframe-style return
codes to indicate the exact error level reached. The –fnomrc option specifies that

Systems/ASM 55



the translator should use Unix-style return codes that are either 0 (success) or -1
(errors). On z/OS –fmrc is the default, while on cross-platform hosts –fnomrc is the
default.

The –fflag=code option (output only error messages of a certain
priority)

The –fflag=code option specifies that only error messages at least as severe than
code should be displayed. Valid values for code are I for informational messages, W
for warnings, E for errors, and S for severe errors. The default is –fflag=I.

The –fepilog and –fnoepilog options (enable/disable use of DFHEIRET
macro)

The –fnoepilog option specifies that the DFHEIRET macro should not be invoked in
the translated assembly source, This option is needed to make the CICS RETURN
command effective. The default is –fepilog.

The –fprolog and –fnoprolog options (enable/disable use of DFHEISTG,
DFHEIEND and DFHEIENT macros)

The –fnoprolog option specifies that the DFHEISTG, DFHEIEND and DFHEIENT macros
should not be invoked in the translated assembly source. These macros define local
storage that is allocated a program start up. The default is –fprolog.

The –ferrlist and –fnoerrlist options (enable/disable listing of errors
on stderr)

The –ferrlist option enables the listing of errors on stderr. The –fnoerrlist option
specifies that errors should just be listed as comments in the translated output file
and is the default.

The –fexci and –fnoexci options (enable/disable EXCI mode)

The –fexci option instructs DCCPA to run in EXternal Call Interface mode, for
processing files which contain only a special form of the EXEC CICS LINK command.
When run in EXCI mode, no other commands will be translated. Outside of EXCI
mode, this special form of the EXEC CICS LINK command is unavailable.

56 Systems/ASM



The –fleasm and –fnoleasm options (enable/disable LE ASM compatibil-
ity)

The –fleasm option changes some macro parameters to create a Language Envi-
ronment conforming assembler program, rather than one to be loaded in the CICS
environment. It should only be used in assembler mode (–A). The default behavior
is –fnoleasm, to generate a program to be executed from the CICS environment.

The –fvse and –fnovse options (enable/disable VSE compatibility

By default, DCCPA generates output compatible with the z/OS or MVS versions
of the IBM CICS preprocessor. However, the CICS preprocessor for VSE sup-
ports a few new commands (SPOOLCLOSE REPORT, SPOOLOPEN ESCAPE, SPOOLOPEN
MAPNAME, SPOOLOPEN REPORT, SPOOLOPEN RESUME, SPOOLWRITE MAPNAME, and SPOOLWRITE
REPO), and has alternative translations for a few others (INQUIRE PROGRAM and
INQUIRE TASK). When –fvse is supplied on the commandline, DCCPA will gener-
ate translations compatible with the VSE preprocessor.

The –fedf and –fnoedf options (enable/disable EDF mode)

The default is –fedf. If –fnoedf is specified then the X’40’ bit in the common flags
area of each DFHECALL invocation is set.

Systems/ASM 57



58 Systems/ASM



Writing Linux/390 and z/Linux
programs

DASM can take existing assembly language text and assemble it for running on
the Linux/390 or z/Linux operating systems.

The goal for this feature is to be able to move existing programs to Linux/390 or
z/Linux as transparently as possible. With some caveats this can be easily accom-
plished in many situations.

Linux features

ELF object format

The object file format on Linux/390 and z/Linux is not the traditional OBJ-style
file format used in many mainframe operating systems.

Linux uses the Executable and Linking Format or ELF file format. For informa-
tion regarding the ELF file format, consult the System V Application Binary
Interface. There are also several web resources which provide information on
the ELF format.

DASM with the –flinux or –flinux64 option will produce ELF format objects suitable
for use in the Linux/390 and z/Linux environments.

ASCII character constants

Character constants in Linux are ASCII, not EBCDIC. When the –flinux option
is enabled, DASM will generate ASCII character constants. Note that ASCII
character constants can be independently enabled with the –fasciiout option as well.

Systems/ASM 59



Section management

Sections in ELF format objects are divided into classes, which are dissimilar from
the traditional CSECT approach. However, DASM will transparently handle that
in many situations, avoiding changes to existing source.

Typically, an ELF program consists of a .text class and a .data class. .text con-
tains the executable instructions that comprise the program, while .data contains
initialized program data.

By default, CSECTs are placed in the .text section consecutively as they appeared
in the source file. This is the executable code section for the resulting program.

CSECTs are aligned on the CSECT boundary within each assembled source file.
However, each .text section for each object is combined into a single .text section
in the resulting program by the linker, ld. Thus, alignment between object files
is the responsibility of the ld linker. Consult the ld documentation for options
controlling object alignment.

If the CSECT does not contain executable code, but instead is meant to be program
data, it can be directed to the .data section. To cause a CSECT and its assem-
bled bytes to appear in the .data section, use the DASM-specific B DATA CATTR
instruction within the section. This indicates that the CSECT should be placed into
the .data section when the resulting ELF object is generated.

The B DATA CATTR instruction indicates that the enclosing CSECT belongs in the
.data section.

For example:

DATA CSECT
B_DATA CATTR
VAR DC F’1’

...

defines a CSECT named ‘DATA’, and places the value F’1’ in that CSECT at the
label VAR. These bytes will not appear in the .text ELF section, but rather in the
.data section because of the B DATA CATTR statement.

Multiple B DATA CATTR specified CSECTs will be concatenated into the single .data
section in the resulting ELF object.

Debugging under Linux

If the –g option is specified on the DASM command line, DASM will generate
debugging information typical of Linux implementations.

60 Systems/ASM



This information includes line number information which reflects the line number
of the original source or macro file that generated the code, as well as information
that describes any DSECTs defined in the source.

DSECTs will appear to the Linux debugger as C structures, with appropriate types.

Typically, the GNU gdb debugger is installed on Linux platforms. gdb debugging of
DASM-generated objects works quite well. Using gdb the programmer can single-
step through the source, set break points, view/alter data, view DSECTs, etc. For
more information on how to use gdb, consult the Linux documentation.

Differences with traditional programs

AMODE 24 and RMODE

Linux/390 and z/Linux do not support AMODE 24 and/or RMODE 24 programs.
Thus, any AMODE-dependent code needs to be altered to consider this. For this
reason, any address constants that are not 4 or 8 bytes will be flagged as an error.

Similarly, DASM will issue a warning should it encounter any AMODE/RMODE
statements.

Q-type constants and DXDs

When –flinux is specified, Q-type constants are treated as references to the ELF
.bss section. Also, DXD statements cause definitions in the .bss section. The CXD
relocation is not supported.

The .bss section contains uninitialized data, which is allocated and filled with zeros
when the Linux program begins execution. Thus, it is very similar to the Pseudo-
Register Vector (PRV) which Q-type constant reference and DXDs define.

Typically, a traditional program uses the CXD relocation to determine the size of the
linker-defined PRV. It then allocates enough source for that size and retains a pointer
to the allocated storage in a known location.

Then, when accessing elements of the PRV, the traditional program would retrieve
the pointer to the PRV and add the offset specified in the Q-type constant, resulting
in the address of the desired datum.

When programming for Linux/390 - all that needs to change is the allocation portion,
as the .bss section is automatically allocated. So, when moving this type code to a
Linux environment, simply remove the allocation routine, and set the value of the
“PRV” to zero. When the zero-value is later added to the Q-type constant value, it
results in the proper address in the .bss section for the datum.

Systems/ASM 61



Function linkage and parameters

Linux function linkage is quite different from the traditional linkages employed by
most assembly programs. Your Linux distribution should contain more details re-
garding function linkage and parameter passing.

Lower-case identifiers

Typically, Linux functions and data, particularly those made available in the dis-
tributed C function libraries, use lower-case names.

The traditional assembler approach is to gratuitously upper-case names written in
the output object deck. DASM continues to follow that approach for compatibility
with older, existing code.

To properly access functions and data from the Linux C libraries, the ALIAS in-
struction should be used. In the following example, we are accessing the printf()
function externally from this source:

printf ALIAS C’printf’
...

LA 2,message
L 3,=V(printf)
BASR 14,3 Call printf(message)

Entry point

Linux programs always begin at the function named “main”. Linux programs do
not support multiple entry points.

Using DASM it is straight-forward to define a CSECT named “main” and invoke
a desired alternate entry point, e.g.:

main CSECT
main ALIAS C’main’
*
* function prologue
*

STM 6,15,24(15)
BASR 13,0
USING *,13
LR 1,15
S 15,FRAMESIZE

62 Systems/ASM



ST 1,0(15)
LR 11,15

*
* Branch to the entry point named "MYEP"
*

L 3,=V(MYEP)
BASR 14,3

*
* main() epilogue.. R2 contains return code.
*

L 4,176(15)
LM 6,15,144(15)
BR 4
END

System facilities

Linux does not provide the operating system defined macros typically used on z/OS
or other traditional mainframe environments. Instead, the operating system inter-
face functions are defined in the C programming library.

Thus, I/O, memory allocation, and other system functions should be accessed
through the typical C library functions.

Portions of existing programs which use z/OS or other facilities will need to be
rewritten to operate on Linux.

Example 31-bit Linux/390 programs

The following program is a simple “Hello-world” program in 31-bit AMODE. It
writes “Hello world.” to the STDOUT stream by invoking the C library’s printf()
function. (Note that for 64-bit programs, the prologue, epilogue, call sequence, in-
structions, etc... would be different.)

main CSECT
main ALIAS C’main’
printf ALIAS C’printf’
*
* Typical Linux prolog
* R15 is the save area (stack pointer).
* The definition of FRAMESIZE should be enough
* to contain any local variables needed in this
* stack instance.

Systems/ASM 63



*
STM 6,15,24(15)
BASR 13,0
USING *,13
LR 1,15
S 15,FRAMESIZE
ST 1,0(15)
LR 11,15

*
* Call printf()
*

LA 2,HELLO
L 3,=V(printf)
BASR 14,3

*
* Set our return code to 0
*

LA 2,0 Return code
*
* Return to the caller
*

L 4,176(15)
LM 6,15,144(15)
BR 4

FRAMESIZE DC F’120’
*
* Define a C-style null-terminated
* string "Hello world.\n". The
* \n character is X’0A’.
*
HELLO DC C’Hello world.’,X’0A’,X’0’

END

In the following example, the program reads the incoming argc and argv arrays
and writes the values out, along with a counter to the stdout stream.

The counter is a datum contained in the .data section because it is declared in a
CSECT that has the B DATA CATTR instruction.

main CSECT
main ALIAS C’main’
printf ALIAS C’printf’

STM 6,15,24(15)
BASR 13,0
USING *,13
LR 1,15
S 15,FRAMESIZE

64 Systems/ASM



ST 1,0(15)
LR 11,15

*
* argc is in R2 (the first incoming parameter)
* argc is in R3 (the second incoming parameter)
* save these in 8 and 9 respectively
*

LR 8,2
LR 9,3

*
* initialize ‘counter’ to 1
*

L 4,=V(counter)
LA 5,1
ST 5,0(0,4)

*
* Loop while ‘counter’ is < argc (R3)
*
startloop DS 0H

L 5,0(0,4)
CR 5,8
BNL endloop

*
* invoke printf("%d: %s\n",counter, argv[counter])
*

LA 2,format
LR 3,5 current value of counter
LR 6,5
SLL 6,2 counter * 4
L 4,0(6,9) argv[counter]
L 7,=V(printf)
BASR 14,7

*
* Increament counter and branch back
*

L 4,=V(counter)
L 5,0(0,4)
AHI 5,1
ST 5,0(0,4)
B startloop

endloop DS 0H

*

Systems/ASM 65



* Set our return code to 0
*

LA 2,0 Return code
*
* Return to the caller
*

L 4,176(15)
LM 6,15,144(15)
BR 4

FRAMESIZE DC F’120’
format DC C’%d: %s’,X’0A’,X’00’

*
* Define the CSECT for .data
* (note that it can be an unnamed CSECT)

CSECT
B_DATA CATTR indicate this is a .data section

ENTRY counter make ’counter’ externally visible
counter DC F’0’

END

66 Systems/ASM



HLASM asma90 compatibility

DASM can operate in a fashion that is compatible with the IBM “High Level
Assembler for Linux on zSeries”.

IBM provides the HLASM assembler in this environment, with the program named
asma90. If the DASM executable is invoked via that name, it operates in “asma90
mode”.

To invoke DASM with the asma90 name, simply copy the DASM executable to
one named asma90. In determining if “asma90 mode” should apply, DASM ignores
any suffix, so a name of asma90.linuxz would trigger “asma90 mode” as well as
just asma90.

In “asma90 mode”, DASM accepts most parameters that the HLASM asma90
program accepts, and processes them in a similar fashion.

“asma90 mode” is not limited to the z/Linux host platform. The assembler can
operate in this fashion on any host plaform except native z/OS or CMS.

Invocation parameters

The “asma90 mode” invocation options are:

-a adata file name

-l listing file name

-o output object file name

-t error output (term) file name

-L library search specification template

–options=‘options string’ HLASM options

The asma90 program also provides a -E option which is not supported by DASM.

If -l is not specified, the LIST option is disabled. If -o is not specified, the
OBJECT option is disabled.

Systems/ASM 67



If -t is not specified, error messages are written to the STDOUT descriptor.

Since HLASM cannot generate XSD-style object files the default is for ESD-style
object files, unless the GOFF option is specified in the —options string.

Library search rules

The asma90 -L option names a pathname library search template. In this template,
the ‘*’ character is replaced with the name of the macro or copy member being
included. Multiple templates can be specified in one -L option, separated with a
colon.

When searching for macro or copy files, the HLASM asma90 assembler expands the
template, replacing ‘*’ with the name of the macro or copy member; first trying the
name in upper case and then in lower case.

In DASM, the asma90 -L specifications are translated into DASM specifications by
generating two DASM library search templates for each asma90 template. In the first
of these, any ‘*’ is replaced with &M for the upper-case search, in the second it is
replaced with &m for the lower-case search.

For example, the asma90 option -L mydir1/*.mac:mydir2/*.EXT is translated into
the DASM templates mydir1/&M.mac, mydir1/&m.mac, mydir2/&M.EXT and mydir2/&m.EXT.

This translation effectively mimics the HLASM asma90 behavior.

The DASM listing will reflect this translation, and not the original -L options.

Multiple -L options are also allowed.

Listing file

In the asma90 program, the listing file is generated as if HLASM was executing
under z/OS. The asma90 listing file is a fixed width EBCDIC file with no new-line
delimiters.

Therefor, users of asma90 are required to translate this file to view it in an ASCII
setting.

DASM does not mimic this behavior when executed as asma90. Instead the listing
file will be in the native format (ASCII in most environments) with the proper
new-line delimiters.

No user translation of the listing file is required.

68 Systems/ASM



ASCII/EBCDIC translation

By default DASM uses a variant of IBM1047 code page for its translation between
ASCII and EBCDIC. This has several advantages, being the same mapping that
IBM uses for it’s iconv tables, and other utilities on Unix Systems Services.

The HLASM asma90 program uses the IBM037 code page.

The primary difference is these two code pages is the mapping of the square bracket
characters.

When operating in “asma90 mode”, DASM’s internal tables are altered to match
IBM037 so that any translation of PUNCH or REPRO data will match the output from
asma90.

z/TPF use

z/TPF’s build process uses a facility named ‘maketpf’. To use the Dignus assembler
in this context, it should be named ‘asma90’ to match what ‘maketpf’ expects.

Because of the ‘asma90’ compatibilty, very little in ‘maketpf’ needs to be changed.

However, the ‘maketpf’ build rules invoke the IBM-supplied ‘calst’ program. ‘calst’
converts the IBM EBCDIC assembler listing to ASCII for presentation to the user.
Because the Dignus assembler in ‘asma90’ mode already produces an ASCII listing,
this step is not required.

The maketpf.rules set programs file contains the definition of the CALST variable.
Simply change that from the existing calst -f IBM037 -t IBM819 to the value
touch, to invoke the touch command in place of calst.

Systems/ASM 69



70 Systems/ASM



Assembler messages

DASM produces messages in the listing file similar to IBM’s HLASM product.
DASM also writes messages to the STDERR file stream on the console.

Although the text of DASM messages may be slightly different, almost all message
numbers and descriptions correspond to the HLASM message numbers, so the IBM
document “High Level Assembler for z/OS & z/VM & z/VSE Programmer’s Guide”
may also be a useful reference for information about a particular message.

The following diagnostic messages are unique to DASM and do not correspond to
an equivalent HLASM message: DASM900W DASM901E DASM902E DASM903W
DASM909W DASM911E DASM913W DASM914S.

Message Format

DASM produces diagnostic messages in the following format:
DASMnnns

where nnn is a three-digit message number and s is the severity indicator. Message
numbers correspond with HLASM message numbers whenever possible.

The severity indicators correspond to the following codes:

I - Informational
This character indicates a severity code of 0. The message is
informational only and the assembly will continue.

N - Notice
This character indicates a severity code of 2. The assembler
is noting certain conditions which may be meaningful to your
program.

W - Warning
This character indicates a severity code of 4, a warning. The
assembler has discovered a situation which could potentially
cause problems when your program is executing.

Systems/ASM 71



E - Error
This character indicates a severity code of 8, an error. The
assembler has detected an error situation, but will continue to
try and process the source as best as is reasonably possible.

S - Severe
This character indicates a severity code of 12, a severe error.
In this situation, the assembler will produce a zero for any er-
roneous instructions.

C - Critical
This character indicates a severity code of 16, a critical error.
The program will not assemble.

U - Unrecoverable
This character indicates a severity code of 20 or greater, an
unrecoverable error. The assembler has detected a situation
from which it cannot recover and assembly will be halted.

Messages

The following list describes the messages produced by DASM.

DASM001E Operation code not allowed to be generated
The source attempted to produce a restricted opcode from a macro variable
substitution.

DASM002S Generated statement too long; statement truncated - xxxxx
The statement produced by a macro definition expansion exceeded the assembler
limits.

DASM003E Undeclared variable symbol; default=0, null, or type=U
A variable symbol was used as an operand without being declared. The symbol
is given an appropriate default value.

DASM004E Duplicate SET symbol declaration; first is retained - xxxxx
A SET symbol was declared more than once. The first declaration is used. Note
that a SET symbol is declared when it is the name of a SET statement, an
operand of an LCL or GBL statement, or in a macro prototype statement.

DASM005S No storage for macro call; continue with open code
The assembler exhausted the available storage when processing an inner macro
call. The assembler will attempt to continue the assembly process with the next
open code statement.

DASM007S Previously defined sequence symbol - xxxxx
The given sequence symbol has been previously defined in the name field of a
prior statement.

72 Systems/ASM



DASM008S Previous defined symbolic parameter - xxxxx
The given symbol was previously used as a symbolic parameter.

DASM009S System variable symbol illegally re-defined
The name field of macro prototype statement uses a system variable name.

DASM010E Invalid use of symbol qualifier - xxxxx
The given qualifier was incorrectly applied, or applied to an undefined symbol.

DASM011E Inconsistent global declarations; first is retained - xxxxx
The given global SET symbol has been defined more than once, and the multiple
definitions are inconsistent and type or dimension.

DASM012E Undefined sequence symbol; macro aborted - xxxxx
The given sequence symbol is used as an operand but has not been defined.

DASM013S ACTR counter exceeded - xxxxx
The loop counter used by the assembler has been set to 0. This counter is
decremented each time an AIF or AGO branch is correctly processed. This
message potentially indicates an AIF/AGO loop or other macro issue.

DASM014E Irreducible qualified expression
The statement cannot be assembled because at least two qualified symbols are
used in a complex relocatable expression, or at least two symbols with different
qualifiers are paired in an absolute expression.

DASM015W Literal bounds exceeded
The address expression resolves to an address outside of the bounds of a literal,
or the length of the receiving field of the literal is longer than the literal.

DASM016W Literal used as the target of instruction
The target of the instruction is a literal which indicates a potential error.

DASM017W Undefined keyword parameter; default to positional, including keyword
- xxxxx

The given keyword parameter is not in the corresponding macro prototype state-
ment. This can also occur if a positional parameter contains an equals sign (=).

DASM018S Duplicate keyword in macro call; last value is used - xxxxx
The given keyword appears more than once.

DASM020E Illegal GBL or LCL statement - xxxxx
No operand was specified for the GBL or LCL statement.

DASM021E Illegal SETB/AIF statement - xxxxx
The operand of a SETB statement is not 0, 1, or the operand of an AIF is not a
boolean expression, or there is an issue with the parenthesis in the SETB or AIF
statement.

Systems/ASM 73



DASM023E Symbolic parameter too long - xxxxx
The given symbolic parameter is longer than 63 characters, including the amper-
sand.

DASM024E Invalid variable symbol - xxxxx
The given symbol is not a valid symbolic parameter or SET symbol.

DASM025S Invalid macro prototype operand - xxxxx
The given symbol is not a valid operand in a macro prototype statement.

DASM026S Macro call operand too long; operand truncated
The macro operand is too long, macro operands are limited to 255 characters.

DASM027S Excessive number of operands
Too many operands were specified on the statement.

DASM028E Invalid displacement
The displacement specified in an address, or in an S-type address constant is not
in the range 0 to 4095 inclusive.

DASM029E Incorrect register or mask specification - xxxxx
The given value is invalid either as a register or as the mask in an instruction.

DASM030E Invalid literal usage - xxxxx
The specified literal is incorrectly used in an instruction or another literal.

DASM031E Invalid immediate field
The specified field is not within the proper limits for the immediate field of the
instruction.

DASM032E Relocatable value found where absolute value requested
A relocatable expression was used where an absolute value is required, or an
expression based on a DSECT is used when the expression requires a storage
address.

DASM033I Storage alignment unfavorable
One or more addresses referenced by the instruction may not be optimally aligned
for the best performance on certain hardware.

DASM034E Operand operand beyond active USING range by xxxxx bytes
A active USING was discovered for operand but the operand’s address falls out-
side of the active USING’s address range.

DASM035S Invalid delimiter - xxxxx
A required delimiter is either missing or incorrect.

DASM036W Reentrant check failed
The assembler has detected an instruction which may store directly into a CSECT
or common area.

74 Systems/ASM



DASM037E Illegal self-defining value - xxxxxx
A self-defining term in an expression, either decimal, binary, hexadecimal or
character, contains an illegal character or invalid format.

DASM038S Operand value falls outside of current section/LOCTR
An ORG statement specifies a location that is not within the current section or
LOCTR in which the ORG statement is used.

DASM039S Location counter error
The assembly sources specifies a section that is larger than the allowable size
for ESD/XSD style objects, X’FFFFFF’ bytes. The maximum size for GOFF
objects is X’7FFFFFFF’.

DASM040S Missing operand
A required operand is not present in the statement.

DASM041E Term expected; text is unclassifiable - xxxxx
A term in an expression was expected, but was not found.

DASM042E Length attribute of symbol is unavailable; default=1- xxxxx
The length of an undefined symbol was requested, or the assembler could not
determine the length during look-ahead processing. The assembler will use the
value of 1.

DASM043E Previously defined symbol - xxxxx
The given symbol was previously defined in an EXTRN or WXTRN statement or in
the label field of a previous statement.

DASM044E Undefined symbol - xxxxx
The given symbol was not defined in an EXTRN/WXTRN statement or in the label
field of a statement.

DASM045E Register not previously used - xxxxx
The given register was specified in a DROP statement but was not previously used
in a USING statement.

DASM046E Bit 7 of CCW flag byte must be zero
Bit 7 of the flag byte of a CCW, CCW0 or CCW1 statement is not zero.

DASM047E Severity code too large
The severity code specified in an MNOTE statement must be between 0 and 255 or
the * character.

DASM048E ENTRY error - xxxxx
The specified symbol is used as an operand to the ENTRY statement, but was
either undefined, or used in an incompatible fashion.

DASM050E - Illegal name field; name discarded - xxxxx
The given name is either an invalid name for a macro prototype statement or a
COPY statement.

Systems/ASM 75



DASM051E - Illegal statement outside a macro definition
An MEND, MEXIT, ASPACE, AEJECT or AREAD statement has been encountered when
not processing a macro definition.

DASM054E Illegal continuation record
The maximum number of continuation cards (10) has been encountered, or the
end of the input file was encountered when a continuation card was expected.

DASM055S Recursive COPY
A nested COPY statement caused the assembler to attempt to copy a source al-
ready being copied.

DASM057E Undefined operation code - xxxxx
The given operation code is not an instruction and could not be processed as a
macro invocation.

DASM058E Invalid relative address - xxxxx
The target of a relative instruction must be on an even boundary, so that the
value can be represented in terms of half-words. Alternatively, the target was
not within the control section.

DASM060S COPY code not found - xxxxx
The specified COPY member could not be located.

DASM061E Symbol not name of DSECT, DXD - xxxxx
The given symbol was used in a Q-type constant and is not defined, or is not
associated with a DSECT or DXD.

DASM062E Illegal operand format - xxxxx
The given operand is not in the correct format for the statement, or exceeds the
statement’s limits.

DASM063E No ending apostrophe - xxxxx
The assembler expected a closing quote character, but found the indicated text
instead.

DASM064S Floating point characteristic out of range
A floating point constant has a value which cannot be converted to IBM HFP
format.

DASM065E Unknown type - xxxxx
An unknown type specification was used in a literal expression.

DASM066W 2-byte relocatable address constant
A Y-type, or 2-byte A-type, constant which contains a relocatable expression was
discovered.

DASM067S Illegal duplication factor - xxxxx
A duplication factor was illegally applied to a constant, or the duplication factor
is 0 or it is greater than X’FFFFFE’.

76 Systems/ASM



DASM068S Length error - xxxxx
The length modifier of a constant is incorrect, illegal, too long or otherwise out
of range.

DASM069S Length of second operand must be less than length of first
For MP and DP instructions, the length of the source (second) operand must
be less than the length of the target (first) operand. This message will not be
generated if the length of either operand is explicitly coded as zero.

DASM070E Scale modifier error - xxxxx
The scale modifier may not be allowed for this constant, or it is out of range
for the constant or the constant is a relocatable constant, or there is some other
error in the scale modifier expression.

DASM071E Exponent modifier error - xxxxx
Either an exponent is not allowed for this type of constant, or the exponent
modifier is out of range or too large, or the constant is a relocatable constant.

DASM072E Data item too large
Either a Y-type or other constant specifies a value which is larger than the
constant can contain.

DASM073E Precision lost
A scale or length modifier on a floating point constant causes a loss of precision.

DASM074E Illegal syntax in expression - xxxxx
The expression has two terms without an intervening operation, or two oper-
ations without intervening terms, or the expression contains invalid or missing
characters or delimiters, or the expression illegally uses relocatable terms.

DASM075E Arithmetic overflow
An expression value computed as the final result, or as an intermediate step, is
too large.

DASM076E Statement complexity exceeded
An expression contains too many terms and/or operators, or the expression con-
tains too many relocatable terms.

DASM077E Circular definition
A symbol’s value depends, either directly or indirectly, on itself.

DASM079E Illegal PUSH-POP
Either more POP statements than corresponding PUSH statements were discov-
ered, or the PUSH nesting limit (4) was reached.

DASM080E Statement is unresolvable
The statement cannot be resolved because it contains a complex relocatable ex-
pression, or it depends on an unresolved symbol, or the location counter has been
circularly defined.

Systems/ASM 77



DASM081E Created SET symbol exceeds 63 characters - xxxxx
SET symbols are limited to 63 characters, including the leading ampersand.

DASM082E Created SET symbol is null - xxxxx
A variable substitution resulted in a SET symbol that was the empty string.

DASM083E Created SET symbol is not a valid symbol - xxxxx
A variable substitution resulted in a SET symbol that was not syntactically valid.

DASM084S Generated name field exceeds 63 characters; discarded - xxxxx
The name field on an instruction is limited to 63 characters.

DASM085I Generated operand field is null
A generated instruction produced an empty operand field.

DASM086S Missing MEND generated - xxxxx
The given macro definition file ends before the MEND statement was found.

DASM087S Generated operation code is null
The operation code field on a generated statement is empty.

DASM088E Unbalanced parentheses in macro call operand - xxxxx
An operand of a macro call statement had either too many, or too few parentheses.

DASM089E Arithmetic expression contains illegal delimiter or ends prematurely
The expression contains an illegal character, or arithmetic subscripts are used
without the proper closing parentheses.

DASM090E Excess right parenthesis in macro call operand.
Too many closing parentheses were specified in an operand to a macro call state-
ment.

DASM091E Character string exceeds maximum length; truncated to maximum
Character strings in SETC values or character operands are limited to 1024
characters.

DASM092E Substring expression 1 points past string end; default=null
The first expression in a substring operation indicates a position past the end of
the string, an empty string will be used.

DASM093E Substring expression 1 less than 1; default = null
The first expression in a substring operation is 0 or negative, an empty string
will be used.

DASM094I Substring goes past string end; default=remainder
The second expression in a substring operation specifies a length that goes beyond
the end of the string. The valid characters from the string will be used.

DASM095W Substring expression 2 less than zero; default=null
The second expression in a substring operation specifies a negative length, an
empty string will be used.

78 Systems/ASM



DASM096E Unsubscripted SYSLIST; default=SYSLIST(1)
The SYSLIST variable was used without being subscripted, the subscript will
default to 1.

DASM097E Invalid attribute reference to SETA or SETB symbol; default=U or 0 -
xxxxx

A SETA or SETB symbol was referred to with the L’, S’, T’ or D’ attribute.

DASM098E Attribute reference to invalid symbol; default=U or 0 - xxxxx
An L’, N’, S’, D’ or T’ attribute refers to an invalid symbol.

DASM099W Wrong type of constant for S’ or I’ attribute reference; default=0 -
xxxxx

An I’ or S’ attribute reference uses a symbol which is not decimal, fixed-point
or floating-point.

DASM100E Subscript less than 1; default to subscript=1 - xxxxx
A subscript in a symbol is less than 1, a subscript value of 1 will be used.

DASM102E Arithmetic term is not self-defining term; default=0 - xxxxx
An invalid self-defining term was used in an expression or a SETC term.

DASM103E Multiplication overflow; default product=1
An expression involving a multiplication produced a value which is too large, the
value of 1 will be used.

DASM105U Arithmetic expression too complex
An internal work buffer has overflowed because of an expression in a macro
definition statement was too large, containing too many terms and/or operations.

DASM106E Wrong target symbol type; value left unchanged - xxxxx
An attempt was made to assign to a previously defined SET symbol with the
wrong type, the statement is ignored.

DASM107E Inconsistent dimension on symbol; subscript ignored or 1 used - xxxxx
A subscript was used on a SET symbol which was not declared as dimensioned, or
a dimensioned SET symbol does not have a subscript, or a previously defined SET
symbol’s dimension doesn’t match the symbol definition, or multiple dimensions
were used on a symbol which was not a macro operand.

DASM109E Multiple operands for undimensioned SET symbol; gets last operand -
xxxxx

An assignment was made to an undimensioned SET symbol using multiple operands,
the last operand is used.

DASM110S Library macro first statement not ‘MACRO’ or comment
The first non-comment statement in a macro definition member must be the
MACRO prototype statement.

Systems/ASM 79



DASM111S Invalid AIF or SETB operand field - xxxxx
The operand field of an AIF or SETB statement is either missing or does not
begin with a left parenthesis.

DASM112S Invalid sequence symbol - xxxxx
A sequence symbol is either syntactically invalid, or appears in a name field as
the result of macro substitution, or the operand of an AGO or AIF statement is
blank.

DASM113S Continue column blank
The continue column in a card following a continued card was not set.

DASM114S Invalid COPY operand - xxxxx
The copy member name specified in a COPY statement is invalid. The first char-
acter of a COPY member name must be alphabetic, with the name being up to 8
characters long.

DASM115S COPY operand too long
The operand of a COPY statement must be no longer than 8 characters.

DASM116E Illegal SET symbol
A SET symbol, used in the name field of a SET instruction or in the operand field
of the GBL or LCL instruction, must begin with an ampersand followed by at most
62 characters.

DASM117E Illegal subscript - xxxxx
The subscript was either an invalid expression, or has too many parentheses.

DASM118S Source macro ended by ‘MEND’ in COPY mode
A COPY file encountered in a macro definition ended in an MEND statement, ending
the macro.

DASM119S Too few MEND statements in COPY code
A COPY file contains a macro definition, but the end of the COPY file was en-
countered before the appropriate MEND statement. An MEND statement will be
inserted.

DASM120S EOD where continuation record expected
The end of the input file was encountered when a continuation card was expected.

DASM122S Illegal operation code format - xxxxx
The operation field of an instruction is either missing or is not followed by a
blank.

DASM123S Variable symbol too long - xxxxx
Variable symbols are limited to 62 characters after the initial ampersand.

DASM124S Illegal use of parameter
A variable symbol has been used as a SET symbol and as a macro parameter.

80 Systems/ASM



DASM125S Illegal macro name - macro uncallable
The macro name specified in the statement is not valid symbol.

DASM126S Library macro name incorrect
The macro name in a macro prototype statement must be the same as the macro
file name used to define the macro when it is invoked.

DASM127S Illegal use of ampersand
An ampersand was produced from a macro substitution, or a macro parameter
or character constant contained an odd number of ampersands.

DASM128S Excess right parenthesis
Too many closing parentheses were discovered in a statement.

DASM129S Insufficient right parentheses - xxxxx
Too many open parentheses are present in the source.

DASM130S Illegal attribute reference - xxxxx
The symbol following an attribute reference is not a valid symbol, or the quote
is missing from a T’ attribute reference, or the N’ attribute is only allowed on
macro operands

DASM132S Invalid logical expression
An invalid logical expression was used in an SETB or AIF statement.

DASM137S Invalid character expression - xxxxx
An invalid character expression was used in a SETC statement, or in a character
expression.

DASM138W Non-empty PUSH xxxxx stack
The PUSH stack described in xxxxx was not empty at the end of assembly. This
indicates there were more PUSH instructions than POP instructions. The option
–f NOPUSH can be used to suppress this warning.

DASM139S EOD during REPRO processing
The end of the input file was discovered immediately following a REPRO statement.

DASM140W END record missing
The end of the input file was discovered without the expected END statement.

DASM141E Bad character in operation code - xxxxxxx
The operation code for a statement must be alphanumeric, the characters A thru
Z, 0 to 9, $, #, @ or are allowed. Spaces are not allowed.

DASM142E Operation code not complete on first record
The entire operation code for a statement must be present on the first record of
the statement and cannot be continued on a continuation record.

DASM143E Bad character in name field - xxxxxxx
The name field for a statement must be alphanumeric, the characters A thru Z,
0 to 9, $, #, @ or are allowed. Spaces are not allowed.

Systems/ASM 81



DASM144E Begin-to-continue columns not blank
One or more columns before the continuation column on a continuation record
are not blank.

DASM145E Operator, right parenthesis, or end-of-expression expected
The assembler expected a continuation of the expression via another operator,
or the end of a parenthesized expression .

DASM147E Symbol too long, or first character not a letter - xxxxx
The symbol is longer than the assembler limit of 63 character, or does not begin
with a letter or the underscore character.

DASM148E Self-defining term lacks ending quote or has bad character - xxxxx
A binary (B’) or hexadecimal (X’) self-defining term contains invalid characters
or is missing the closing quote.

DASM149E Literal length exceeds 256 characters, including = sign - xxxxx
The literal is longer than 256 characters.

DASM151E Literal expression modifiers must be absolute and predefined
The length modifier or duplication factor is not an absolute expression, a self-
defining expression or uses an undefined symbol.

DASM152S External symbol too long or unacceptable character - xxxxx
The external symbol exceeded the assembler length or contains an invalid char-
acter.

DASM153S START statement illegal - CSECT already begun
A START statement was found after the beginning of a control section.

DASM154E Operand must be absolute, predefined symbols; set to zero
The expression used in an operand for this statement either uses undefined sym-
bols, or is not an absolute value. Zero will be substituted.

DASM155S Previous use of symbol is not this section type - xxxxx
This symbol was used previously and then encountered on a section defining
statement.

DASM156S Only ordinary symbols, separated by commas, allowed - xxxxx
Only a properly defined symbol is allowed as the operand in this statement.

DASM157S Operand must be a simply-relocatable expression
The operand is not properly defined or is not a simple relocatable expression.

DASM159S Operand must be absolute, proper multiples of 2 or 4
The operands in a CNOP statement were not multiples of 2 or 4 or were not
absolute, defined expressions.

DASM160W Invalid BYTE function operand - xxxxx
The value of the operand of a BYTE built-in function must be in the range 0-255.

82 Systems/ASM



DASM161W Only one TITLE statement may have a name field
The assembler discovered a second TITLE statement with a name field; only the
first TITLE statement may have a name field.

DASM162S PUNCH operand exceeds 80 columns; ignored
A PUNCH statement attempted to write more than 80 characters on a single record.
The PUNCH statement is ignored.

DASM163W Operand not properly enclosed in quotes
The assembler expected the operand of a PUNCH, TITLE, or MNOTE statement to
be enclosed in quotes.

DASM164W Operand is null string - record not punched
The operand of a PUNCH statement is the empty string, the PUNCH statement
is ignored.

DASM165W Unexpected name field - xxxxx
The assembler expected the name field on this statement to be blank or a sequence
symbol.

DASM167E Required name missing
The statement requires a value in the name field but is blank or contains a
sequence symbol.

DASM169I Implicit length of symbol symbol used for operand - n
An explicit length was not specified in an SS-format instruction. The assembler
used the implicit length implied by the operand. This message is only produced
if the IMPLEN flag is specified.

DASM170S Error logging capacity exceeded
The internal buffer area used between assembler phases to log messages was
exceeded.

DASM171S Standard value too long - xxxxx
The default value for a macro operand was longer than the limit of 255 characters.

DASM172E Negative duplication factor; default=1 - xxxxx
The duplication factor on the statement is negative, the assembler has substituted
a duplication factor of 1.

DASM173S Delimiter error, expected blank - xxxxx
The assembler expected a blank character but encountered some other text.

DASM174S Delimiter error, expected blank or comma - xxxxx
The assembler expected a blank or comma character but encountered some other
text.

DASM175S Delimiter error, expected comma - xxxxx
The assembler expected a comma character but encountered some other text.

Systems/ASM 83



DASM178S Delimiter error, expected comma or right parenthesis - xxxxx
The assembler expected a comma or right parenthesis character but encountered
some other text.

DASM179S Delimiter error, expected right parenthesis - xxxxx
The assembler expected a right parenthesis character but encountered some other
text.

DASM180S Operand must be absolute
The first, third or fourth operand of a CCW instruction must be an absolute value.

DASM181S CCW operand value is outside allowable range
The first operand of a CCW instruction must be between 0 and 255. The second
operand must be between 0 and 16,777,215 for the CCW and CCW0 instructions, or
between 0 and 2,147,483,647 for the CCW1 instruction. The third operand must be
between 0 and 255 and be a multiple of 8. The fourth operand must be between
0 and 65,535.

DASM182E Operand 2 must be absolute, 0-65535; ignored
The second operand on this statement must be a defined, absolute value in the
range 0 to 65,535.

DASM183E Operand 3 must be absolute, 0-255; ignored
The third operand on this statement must be a defined, absolute value in the
range 0 to 255.

DASM186E AMODE/RMODE already set for this ESD item
A redundant AMODE/RMODE instruction was discovered for the ESD in the name
field of the instruction.

DASM187E The name field is invalid - xxxxx
The name field for the instruction is not a valid control section, an ENTRY name
or a valid external name.

DASM188E Incompatible AMODE and RMODE attributes
A symbol cannot be both AMODE 24 and RMODE ANY.

DASM192W Lost precision - underflow to zero
The value is too small to be represented, a value of 0.0 will be used.

DASM193W Lost precision - underflow to denormal
The value is too small to be represented in normalized form, but can be repre-
sented in denormalized form.

DASM198E Exponent modifier is not permitted for special value
A floating-point special value may not have an exponent modifier.

DASM199E Rounding indicated invalid
An invalid value was used as the rounding indicator for a floating-point constant.

84 Systems/ASM



DASM212W Branch address alignment unfavorable
The target of a branch instruction was not properly aligned.

DASM213W Storage alignment unfavorable
An address operand of the instruction is not aligned as the instruction requires.

DASM214E Invalid operand value
The value of an operand was not correct for the operation or assembler function.
Or, the operand was too long to be processed.

DASM216W Quad-word alignment in NOGOFF object text
The SECTALGN value specifies that sections are to be aligned on a quadword
(16 byte) boundary in an old-style object.
Newer IBM linkers will support this alignment, but older ones may not, check
with the linker documentation to ensure that this usage is supported.

DASM253C Too many errors
The number of errors for a statement has been exceeded.

DASM254I *** MNOTE ***
An MNOTE statement generated message.

DASM303W Multiple address resolutions may result from this USING and the US-
ING on statement number

The base address specified by the USING statement overlaps with the base address
from previous USING at the specified statement number.
Because of this overlap, the assembler may choose one or the other specified base
register, which may not be the programmer’s intent.
This is frequently caused by the inadvertent lack of a DROP statement.
This message can be suppressed via the USING(WARN(n)) option, specifying a
value of less than ‘4’ for ‘n’.

DASM305E Operand 1 does not refer to location within reference control section
An incorrect value was specified as the first operand for a dependent USING
statement. The USING statement is ignored.

DASM307E No active USING for operand n
The given operand, n, was used but the assembler was not able to determine an
active USING specification to provide a base register.

DASM309W Operand resolved to a displacement with no base register
An operand of a machine instruction refers to a memory location, but register 0
was specified as the base register. Thus, a value of zero will be used and only the
displacement portion of the address is meaningful.
This will access low-address memory, and may be what the programmer intended
but is probably a program error.
The –NOPAGE0 flag can be used to disable this warning.

Systems/ASM 85



DASM310W Name already used in prior ALIAS or XATTR - xxxxx
The specified name was previously used in an ALIAS or XATTR statement.

DASM311E Illegal ALIAS string - xxxxx
An ALIAS string must be a non-null constant of the form C’ccccc’ or X’hhhhhh’
and must contain characters in the range X’42’ to X’FE’.

DASM312E ALIAS name is not declared as an external symbol - xxxxx
The specified name does not appear in an EXTRN or CSECT statement, or is not
implicitly declared as an external symbol via a V-type constant.

DASM315E XATTR instruction invalid when NOGOFF specified
The XATTR instruction is not valid if the output object format is not GOFF. The
XATTR statement is ignored.

DASM320W Immediate field operand may have incorrect sign or magnitude
The specified immediate operand is outside of the range specified for the instruc-
tion. The assembler continues processing using only the number of bits specified
in the instruction format.
To disable this warning, use the –xtc option, or the NOTYPECHECK specification in
an ACONTROL statement.

DASM400N Error in invocation parameter - xxxxx
The command-line parameter specified in xxxxx was either unrecognized or in-
correctly specified. The text xxxxx will contain more information.

DASM420N Error in a *PROCESS statement parameter - xxxxx
The assembler was unable to process an option or a sub-option of a *PROCESS
parameter, due to either the sub-option being invalid, or a mis-specification.

DASM422N Option xxxxxxxx is not valid in a *PROCESS statement
The specified option was not recognized, or can not be used in a *PROCESS
statement.

DASM430W - Continuation statement does not start in continue column.
The operand field on a continued statement ends with a comma, indicating that
the statement is continued on the following statement. However, a blank was
found in the continuation column on the following statement.
The continuation is ignored.

DASM431W - Continuation statement may be in error - continuation indicator
column is blank

A list of oeprands ends in a command, but the continuation indicator column
(by default, column 72) is blank.
The continuation is ignored.

86 Systems/ASM



DASM432W - Continuation statement may be in error - comma omitted from con-
tinued statement

A continued statement starts in the continue column (by default, column 16),
but the previous statement did not have a trailing comma in its operands.
Continuations after this statement are ignored.

DASM433W - Statement not continued - continuation statement may be in error
A continued statement is full, but the continuation does not start in the continue
column (by default, column 16.)
Continuations after this statement are ignored.

DASM435I - Record n in xxxxxxx
When the –fmesg=dasmx or –fmesg=gccx option is specified, the first form of
this this message is produced, and contains the original text of the lines which
produce any subseuqent diagnositc message(s).
When the –f RECORD option is enabled, the second form of this message is
generated following any diagnostics, and contains the original line number and
file name of the statement that caused the preceding diagnostic messages.
Because –fmesg=dasmx or –fmesg=gccx and –f RECORD may both be simula-
neously enabled, it’s possible for both forms of this message to be produced by
any diagnostics; one preceeding the diagnostic messages, and one following.

DASM500W Requested alignment exceeds section alignment
The section alignment, specified via the –sectalgn option, is smaller than the
alignment needed in the instruction, typically for a literal value. The needed
alignment may not be honored.

DASM900W Input line too long, truncated
An input line was longer than the assembler limit of 80 characters, it has been
truncated to 80 characters. This message can be disabled with the –flonglines
option.

DASM901E Scale modifier is not permitted for special value
A “special value”, for floating point or decimal constants, was used in the source
with a scaling value, which is not allowed. Remove the scale specification.

DASM902E Invalid floating point special value - xxxxx
The floating point special value did not have a closing parenthesis, or was not
one of the floating-point special values.

DASM903W ALIAS name is not declared prior to setting flag
An ALIAS MAPPED or ALIAS FUNCTION statement was encountered prior to defin-
ing the ALIAS name.

DASM909W G-type constant not supported
DASM does not support G-type constants. This message may be removed in a
future release.

Systems/ASM 87



DASM911E Concatenation character not followed by apostrophe
A ‘.’ concatenation was specified, but the item being concatenated is not a string
function or a string constant.

DASM913W RMODE and AMODE have no effect in Linux mode
When outputting Linux ELF objects, RMODE and AMODE opcodes have no effect.
The mode is determined entirely by the –flinux or –flinux64 options. Note that
Linux/390 cannot be mixed with z/Linux code without extreme care.

DASM914S Illegal address reference length
An attempt was made to reference data such as using a A-type constant that
had an unusual size not supported by ELF. For example, a DC AL3(xxx) opcode
would cause this error. ELF only allows 1, 2, 4, or 8-byte relocations.

88 Systems/ASM



License Information File

DASM consults the license information file each time it is executed. The file in-
cludes the licensee name, expiration date, license key, and other pertinent informa-
tion.

This file must be accessible or the assembler will not execute.

On UNIX and Windows host platforms, the file is named dignus.inf and is found
in the same directory as the dasm executable. The dignus.inf file is a text file
which can be edited by any text editor. However, changing the expiration date,
licensee, options or host platform definitions will invalidate your license.

On z/OS, the license information file is named DIGNUS and is found in the same
load module PDS as the DASM executable. DIGNUS is in load module format,
and is generated from assembly language source. To make changes in the license
information, the assembly language source must be changed, assembled and link-
edited to produce the DIGNUS load module. However, changing the expiration date,
licensee, options or host platform definitions will invalidate your license.

Your dignus.inf, or dignus.asm assembly language source to create DIGNUS, is
provided separately from the installation materials. Editing this file is part of the
installation process, and is described further there.

If you have licensed other products from Dignus, LLC, the license information
can simply be concatenated with the other information into one dignus.inf or
dignus.asm file.

Systems/ASM 89



90 Systems/ASM



ASCII/EBCDIC Translation
Table

DASM uses the following tables to translate characters between ASCII and EBCDIC.
These tables represent the traditional mapping of the IBM Code Page 1047 (IBM1047)
to ISO LATIN-1.

However, this is not the official IBM1047 mapping. The official mapping maps
EBCDIC X’15’ to LINEFEED X’85’ and maps EBCDIC X’25’ to NEWLINE X’0A’.
This is reversed from their traditional mappings. DASM uses the traditional map.

The —tr option can be used adjust this mapping.

ASCII to EBCDIC

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 37 2D 2E 2F 16 05 15 0B 0C 0D 0E 0F

1 10 11 12 13 3C 3D 32 26 18 19 3F 27 1C 1D 1E 1F

2 40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61

3 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F

4 7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6

5 D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 AD E0 BD 5F 6D

6 79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96

7 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 C0 4F D0 A1 07

8 20 21 22 23 24 25 06 17 28 29 2A 2B 2C 09 0A 1B

9 30 31 1A 33 34 35 36 08 38 39 3A 3B 04 14 3E FF

A 41 AA 4A B1 9F B2 6A B5 BB B4 9A 8A B0 CA AF BC

B 90 8F EA FA BE A0 B6 B3 9D DA 9B 8B B7 B8 B9 AB

C 64 65 62 66 63 67 9E 68 74 71 72 73 78 75 76 77

D AC 69 ED EE EB EF EC BF 80 FD FE FB FC BA AE 59

E 44 45 42 46 43 47 9C 48 54 51 52 53 58 55 56 57

F 8C 49 CD CE CB CF CC E1 70 DD DE DB DC 8D 8E DF

Systems/ASM 91



EBCDIC to ASCII

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 9C 09 86 7F 97 8D 8E 0B 0C 0D 0E 0F

1 10 11 12 13 9D 0A 08 87 18 19 92 8F 1C 1D 1E 1F

2 80 81 82 83 84 85 17 1B 88 89 8A 8B 8C 05 06 07

3 90 91 16 93 94 95 96 04 98 99 9A 9B 14 15 9E 1A

4 20 A0 E2 E4 E0 E1 E3 E5 E7 F1 A2 2E 3C 28 2B 7C

5 26 E9 EA EB E8 ED EE EF EC DF 21 24 2A 29 3B 5E

6 2D 2F C2 C4 C0 C1 C3 C5 C7 D1 A6 2C 25 5F 3E 3F

7 F8 C9 CA CB C8 CD CE CF CC 60 3A 23 40 27 3D 22

8 D8 61 62 63 64 65 66 67 68 69 AB BB F0 FD FE B1

9 B0 6A 6B 6C 6D 6E 6F 70 71 72 AA BA E6 B8 C6 A4

A B5 7E 73 74 75 76 77 78 79 7A A1 BF D0 5B DE AE

B AC A3 A5 B7 A9 A7 B6 BC BD BE DD A8 AF 5D B4 D7

C 7B 41 42 43 44 45 46 47 48 49 AD F4 F6 F2 F3 F5

D 7D 4A 4B 4C 4D 4E 4F 50 51 52 B9 FB FC F9 FA FF

E 5C F7 53 54 55 56 57 58 59 5A B2 D4 D6 D2 D3 D5

F 30 31 32 33 34 35 36 37 38 39 B3 DB DC D9 DA 9F

92 Systems/ASM


	How to use this book
	Systems/ASM Overview
	DASM Advanced Features and Extensions
	HLASM V1R6 compatibility
	XSD support
	GOFF support
	Linux ELF Output
	ADATA information
	z/Architecture Instructions and Data
	Cross-Platform support
	Dependency List generation
	HTML listing format
	Systems/C and Systems/C++ Integration

	Assembling Programs
	Accessing files on z/OS
	Input Files
	ASCII/EBCDIC translation

	Output Files
	Running DASM:
	z/OS:
	Windows:
	UNIX:

	Macro Library Searching:
	ZIP file support


	Description of Options
	General Options
	The -fdate=[[[[[cc]yy]mm]dd]HH]MM[.ss]] option (specify assembly time and date)
	The -flisting=file option (specify the name of the listing file)
	The -flisting_style=val option (specify listing format)
	The -fhtml_suffix=val option (specify HTML listing suffix)
	The -help option (display help)
	The -helplib option (display help for DASM library specifications)
	The -o file option (specify the name of the generated output file)
	The -quiet option (execute DASM in ``quiet'' mode)
	The -@ file option (specify extra file for parameters)
	The -fmrc and -fnomrc options (enable/disable mainframe-style return-codes)
	The -fmaxrc=n option (don't create an object file if the RC is greater than n)
	The -v option (print version information)

	Input Options
	The -flonglines option (allow input lines longer than 80 characters)
	The -fnolonglines option (Diagnose input lines longer than 80 characters)
	The -tc column option (define tab expansion amounts)
	The -tr XX=YY[,XX=YY...] option (alter the ASCII/EBCDIC translation table)

	Assembly Control Options
	The -sectalgn=VALUE option (define section alignment)
	The -size=VALUE option (define memory for in-core work files)
	The -sysparm=VALUE option (define a SYSPARM value)
	The -a and -xa options (enable/disable non-strict alignment checks)
	The -r and -xr options (enable/disable re-entrancy checks)
	The -pestop and -xpestop options (enable/disable halt on *PROCESS and command-line errors)
	The -profile=filename and -xprofile options (include filename as if it appeared in a COPY statement)
	The -ra2 and -xra2 options (enable/disable 2-byte relocatable address constant checks)
	The -tc and -xtc options (enable/disable range checks for immediate operands)
	The -f ALIGN and -f NOALIGN options (set the FLAG value for strict alignment checks)
	The -f CONT and -f NOCONT options (set the FLAG value for continuation checks)
	The -f IMPLEN and -f NOIMPLEN options (issue warming message DASM169I when an implied length is used in an SS-type instruction) 
	 The -f PAGE0 and -f NOPAGE0 options (set the FLAG value for enabling/disabling message DASM309W)
	The -f USING0 and -f NOUSING0 options (set the FLAG value for enabling/disabling message DASM306W)
	The -f PUSH and -f NOPUSH options (set the FLAG value for enabling/disabling non-empty PUSH stack checks)
	The -f RECORD and -f NORECORD options (set the FLAG value for enabling/disabling message DASM435I)
	The -f SUBSTR and -f NOSUBSTR options (set the FLAG value for enabling/disabling message DASM094I)
	The -f integer option (set the FLAG value for controlling diagnostics)
	The -ccase and -xccase options (enable/disable case compatibility with ASMH)
	The -mcase and -xmcase options (enable/disable macro case compatibility with ASMH)
	The -csysl and -xcsysl options (enable/disable SYSLIST compatibility with ASMH)
	The -clit and -xclit options (enable/disable literal type compatibility with ASMH)
	The -csyspath and -xcsyspath options (enable/disable &SYSxxx paths compatible with HLASM on USS)
	The -xsd and -xxsd options (enable/disable XSD-format objects)
	The -goff and -xgoff options (enable/disable GOFF-format objects)
	The -goffadata and -xgoffadata options (enable embedded ADATA information in GOFF objects)
	The -batch and -xbatch options (enable/disable batch source processing)
	The -thread and -xthread options (enable/disable CSECT threading)
	The -fenhancedequ option (enable enhanced EQU evaluation)
	The -idr option (define the IDR string generated on END cards)
	The -fdupalias option (allow duplicate ALIAS values)
	The -fvselibr option (recognize /+ as EOF)
	The -fsuprwarn=list and -fnosuprwarn=list options (suppress or don't suppress particular warning messages)
	The -fasciiout and -fno_asciiout options (enable/disable ASCII character constants)
	The -flinux option (generate Linux/390 ELF output)
	The -flinux64 option (generate z/Linux ELF output)
	The -g and -xg options (enable/disable Linux ELF STABS debugging output)
	The -fdwarf=file option (enable output of DWARF side file)
	The -fmapat and -fnomapat options (enable/disable mapping `@' to `_' in external symbol names)

	Library options
	The -macext option (specify the extension to use for MACRO/COPY file names)
	The -L option (specify the location to search for MACRO/COPY members)
	The -libexec option (provide a program to execute when the assembler cannot find a macro/copy member)
	The -libncase option (use case-insensitive filename search)

	Listing and Print options
	The -pc=control/-xpc=control option (override print control statements)
	The -l/-xl option (enable/disable generation of the assembler listing)
	The -esd/-xesd option (enable/disable symbol information in the listing)
	The -fold/-xfold option (enable/disable folding of lower-case letters to upper-case in the listing)
	The -rld/-xrld option (enable/disable relocation information in the listing)
	The -dx/-xdx option (enable/disable the DSECT cross-reference in the listing)
	The -mx/-xmx option (enable/disable the MACRO cross-reference in the listing)
	The -rx/-xrx option (enable/disable REGISTER cross-reference information in the listing)
	The -umap/-xumap option (enable/disable USING MAP information in the listing)
	The -uwarn n and -xuwarn options (control emission of USING-related warnings)
	The -nx/-xnx option (enable/disable UNREFS cross-reference information in the listing)
	The -cxs option (enable the short symbol cross-reference)
	The -cxf option (enable the full symbol cross-reference)
	The -xcx option (disables the symbol cross reference)
	The -os/-xos option (enable/disable the options summary in the listing)
	The -lc count option (define the number of lines per page)
	The -lcond/-xlcond option (include/omit conditional statements in the listing)
	The -epops/-xepops option (include/omit expanded macro operands in the listing)
	The -term/-xterm option (enable/disable error messages)
	The -flisting=file option (specify the name of the listing file)

	Miscellaneous options
	The -fmesg=style option (specify the style of messages)
	The -M[=filename] option (generate file dependency list)
	The -A[=filename] and -xA options (enable/disable generation of a separate ADATA information file)
	The -fadver=version option (specify which format version for ADATA information)
	The -fadftp option (output block mode FTP markers in the ADATA file)
	The -fadrdw option (output RDW headers in the ADATA file)
	The -E=filename option (specify an alternative file to log error messages)
	The -fevents=filename option (Emit an IBM-compatible events listing)
	The -options=options string option (Specify options in HLASM-style syntax) 

	Linking Assembled objects

	ADATA Information
	Differences between DASM and HLASM ADATA information
	Unexpected or undocumented HLASM behavior supported by DASM

	The Dignus CICS Command Processor, DCCPA
	Running DCCPA
	DCCPA Options
	The -A option (process assembly source)
	The -C option (process C source)
	The -o file option (specify the name of the output file)
	The -fdli and -fnodli options (enable/disable EXEC DLI)
	The -fgds and -fnogds options (enable/disable GDS commands)
	The -fsp and -fnosp options (enable/disable System Programmer commands)
	The -fcols=n option (specify column width)
	The -fseq option (generate sequence numbers)
	The -fmrc and -fnomrc options (enable/disable mainframe-style return codes)
	The -fflag=code option (output only error messages of a certain priority)
	The -fepilog and -fnoepilog options (enable/disable use of DFHEIRET macro)
	The -fprolog and -fnoprolog options (enable/disable use of DFHEISTG, DFHEIEND and DFHEIENT macros)
	The -ferrlist and -fnoerrlist options (enable/disable listing of errors on stderr)


	Writing Linux/390 and z/Linux programs
	Linux features
	ELF object format
	ASCII character constants
	Section management
	Debugging under Linux

	Differences with traditional programs
	AMODE 24 and RMODE
	Q-type constants and DXDs
	Function linkage and parameters
	Lower-case identifiers
	Entry point
	System facilities

	Example 31-bit Linux/390 programs

	HLASM asma90 compatibility
	Invocation parameters
	Library search rules
	Listing file
	ASCII/EBCDIC translation
	z/TPF use

	Assembler messages
	Message Format
	Messages
	DASM001E Operation code not allowed to be generated
	DASM002S Generated statement too long; statement truncated - xxxxx
	DASM003E Undeclared variable symbol; default=0, null, or type=U
	DASM004E Duplicate SET symbol declaration; first is retained - xxxxx
	DASM005S No storage for macro call; continue with open code
	DASM007S Previously defined sequence symbol - xxxxx
	DASM008S Previous defined symbolic parameter - xxxxx
	DASM009S System variable symbol illegally re-defined
	DASM010E Invalid use of symbol qualifier - xxxxx
	DASM011E Inconsistent global declarations; first is retained - xxxxx
	DASM012E Undefined sequence symbol; macro aborted - xxxxx
	DASM013S ACTR counter exceeded - xxxxx
	DASM014E Irreducible qualified expression
	DASM015W Literal bounds exceeded
	DASM016W Literal used as the target of instruction
	DASM017W Undefined keyword parameter; default to positional, including keyword - xxxxx
	DASM018S Duplicate keyword in macro call; last value is used - xxxxx
	DASM020E Illegal GBL or LCL statement - xxxxx
	DASM021E Illegal SETB/AIF statement - xxxxx
	DASM023E Symbolic parameter too long - xxxxx
	DASM024E Invalid variable symbol - xxxxx
	DASM025S Invalid macro prototype operand - xxxxx
	DASM026S Macro call operand too long; operand truncated
	DASM027S Excessive number of operands
	DASM028E Invalid displacement
	DASM029E Incorrect register or mask specification - xxxxx
	DASM030E Invalid literal usage - xxxxx
	DASM031E Invalid immediate field
	DASM032E Relocatable value found where absolute value requested
	DASM033I Storage alignment unfavorable
	DASM034E Operand operand beyond active USING range by xxxxx bytes
	DASM035S Invalid delimiter - xxxxx
	DASM036W Reentrant check failed
	DASM037E Illegal self-defining value - xxxxxx
	DASM038S Operand value falls outside of current section/LOCTR
	DASM039S Location counter error
	DASM040S Missing operand
	DASM041E Term expected; text is unclassifiable - xxxxx
	DASM042E Length attribute of symbol is unavailable; default=1- xxxxx
	DASM043E Previously defined symbol - xxxxx
	DASM044E Undefined symbol - xxxxx
	DASM045E Register not previously used - xxxxx
	DASM046E Bit 7 of CCW flag byte must be zero
	DASM047E Severity code too large
	DASM048E ENTRY error - xxxxx
	DASM050E - Illegal name field; name discarded - xxxxx
	DASM051E - Illegal statement outside a macro definition
	DASM054E Illegal continuation record
	DASM055S Recursive COPY
	DASM057E Undefined operation code - xxxxx
	DASM058E Invalid relative address - xxxxx
	DASM060S COPY code not found - xxxxx
	DASM061E Symbol not name of DSECT, DXD - xxxxx
	DASM062E Illegal operand format - xxxxx
	DASM063E No ending apostrophe - xxxxx
	DASM064S Floating point characteristic out of range
	DASM065E Unknown type - xxxxx
	DASM066W 2-byte relocatable address constant
	DASM067S Illegal duplication factor - xxxxx
	DASM068S Length error - xxxxx
	DASM069S Length of second operand must be less than length of first
	DASM070E Scale modifier error - xxxxx
	DASM071E Exponent modifier error - xxxxx
	DASM072E Data item too large
	DASM073E Precision lost
	DASM074E Illegal syntax in expression - xxxxx
	DASM075E Arithmetic overflow
	DASM076E Statement complexity exceeded
	DASM077E Circular definition
	DASM079E Illegal PUSH-POP
	DASM080E Statement is unresolvable
	DASM081E Created SET symbol exceeds 63 characters - xxxxx
	DASM082E Created SET symbol is null - xxxxx
	DASM083E Created SET symbol is not a valid symbol - xxxxx
	DASM084S Generated name field exceeds 63 characters; discarded - xxxxx
	DASM085I Generated operand field is null
	DASM086S Missing MEND generated - xxxxx
	DASM087S Generated operation code is null
	DASM088E Unbalanced parentheses in macro call operand - xxxxx
	DASM089E Arithmetic expression contains illegal delimiter or ends prematurely
	DASM090E Excess right parenthesis in macro call operand.
	DASM091E Character string exceeds maximum length; truncated to maximum
	DASM092E Substring expression 1 points past string end; default=null
	DASM093E Substring expression 1 less than 1; default = null
	DASM094I Substring goes past string end; default=remainder
	DASM095W Substring expression 2 less than zero; default=null
	DASM096E Unsubscripted SYSLIST; default=SYSLIST(1)
	DASM097E Invalid attribute reference to SETA or SETB symbol; default=U or 0 - xxxxx
	DASM098E Attribute reference to invalid symbol; default=U or 0 - xxxxx
	DASM099W Wrong type of constant for S' or I' attribute reference; default=0 - xxxxx
	DASM100E Subscript less than 1; default to subscript=1 - xxxxx
	DASM102E Arithmetic term is not self-defining term; default=0 - xxxxx
	DASM103E Multiplication overflow; default product=1
	DASM105U Arithmetic expression too complex
	DASM106E Wrong target symbol type; value left unchanged - xxxxx
	DASM107E Inconsistent dimension on symbol; subscript ignored or 1 used - xxxxx
	DASM109E Multiple operands for undimensioned SET symbol; gets last operand - xxxxx
	DASM110S Library macro first statement not `MACRO' or comment
	DASM111S Invalid AIF or SETB operand field - xxxxx
	DASM112S Invalid sequence symbol - xxxxx
	DASM113S Continue column blank
	DASM114S Invalid COPY operand - xxxxx
	DASM115S COPY operand too long
	DASM116E Illegal SET symbol
	DASM117E Illegal subscript - xxxxx
	DASM118S Source macro ended by `MEND' in COPY mode
	DASM119S Too few MEND statements in COPY code
	DASM120S EOD where continuation record expected
	DASM122S Illegal operation code format - xxxxx
	DASM123S Variable symbol too long - xxxxx
	DASM124S Illegal use of parameter
	DASM125S Illegal macro name - macro uncallable
	DASM126S Library macro name incorrect
	DASM127S Illegal use of ampersand
	DASM128S Excess right parenthesis
	DASM129S Insufficient right parentheses - xxxxx
	DASM130S Illegal attribute reference - xxxxx
	DASM132S Invalid logical expression
	DASM137S Invalid character expression - xxxxx
	DASM138W Non-empty PUSH xxxxx stack
	DASM139S EOD during REPRO processing
	DASM140W END record missing
	DASM141E Bad character in operation code - xxxxxxx
	DASM142E Operation code not complete on first record
	DASM143E Bad character in name field - xxxxxxx
	DASM144E Begin-to-continue columns not blank
	DASM145E Operator, right parenthesis, or end-of-expression expected
	DASM147E Symbol too long, or first character not a letter - xxxxx
	DASM148E Self-defining term lacks ending quote or has bad character - xxxxx
	DASM149E Literal length exceeds 256 characters, including = sign - xxxxx
	DASM151E Literal expression modifiers must be absolute and predefined
	DASM152S External symbol too long or unacceptable character - xxxxx
	DASM153S START statement illegal - CSECT already begun
	DASM154E Operand must be absolute, predefined symbols; set to zero
	DASM155S Previous use of symbol is not this section type - xxxxx
	DASM156S Only ordinary symbols, separated by commas, allowed - xxxxx
	DASM157S Operand must be a simply-relocatable expression
	DASM159S Operand must be absolute, proper multiples of 2 or 4
	DASM160W Invalid BYTE function operand - xxxxx
	DASM161W Only one TITLE statement may have a name field
	DASM162S PUNCH operand exceeds 80 columns; ignored
	DASM163W Operand not properly enclosed in quotes
	DASM164W Operand is null string - record not punched
	DASM165W Unexpected name field - xxxxx
	DASM167E Required name missing
	DASM169I Implicit length of symbol symbol used for operand - n
	DASM170S Error logging capacity exceeded
	DASM171S Standard value too long - xxxxx
	DASM172E Negative duplication factor; default=1 - xxxxx
	DASM173S Delimiter error, expected blank - xxxxx
	DASM174S Delimiter error, expected blank or comma - xxxxx
	DASM175S Delimiter error, expected comma - xxxxx
	DASM178S Delimiter error, expected comma or right parenthesis - xxxxx
	DASM179S Delimiter error, expected right parenthesis - xxxxx
	DASM180S Operand must be absolute
	DASM181S CCW operand value is outside allowable range
	DASM182E Operand 2 must be absolute, 0-65535; ignored
	DASM183E Operand 3 must be absolute, 0-255; ignored
	DASM186E AMODE/RMODE already set for this ESD item
	DASM187E The name field is invalid - xxxxx
	DASM188E Incompatible AMODE and RMODE attributes
	DASM192W Lost precision - underflow to zero
	DASM193W Lost precision - underflow to denormal
	DASM198E Exponent modifier is not permitted for special value
	DASM199E Rounding indicated invalid
	DASM212W Branch address alignment unfavorable
	DASM213W Storage alignment unfavorable
	DASM214E Invalid operand value
	DASM216W Quad-word alignment in NOGOFF object text
	DASM253C Too many errors
	DASM254I *** MNOTE ***
	DASM303W Multiple address resolutions may result from this USING and the USING on statement number 
	DASM305E Operand 1 does not refer to location within reference control section
	DASM307E No active USING for operand n
	DASM309W Operand resolved to a displacement with no base register
	DASM310W Name already used in prior ALIAS or XATTR - xxxxx
	DASM311E Illegal ALIAS string - xxxxx
	DASM312E ALIAS name is not declared as an external symbol - xxxxx
	DASM315E XATTR instruction invalid when NOGOFF specified
	DASM320W Immediate field operand may have incorrect sign or magnitude
	DASM400N Error in invocation parameter - xxxxx
	DASM420N Error in a *PROCESS statement parameter - xxxxx
	DASM422N Option xxxxxxxx is not valid in a *PROCESS statement
	DASM430W - Continuation statement does not start in continue column.
	DASM431W - Continuation statement may be in error - continuation indicator column is blank
	DASM432W - Continuation statement may be in error - comma omitted from continued statement
	DASM433W - Statement not continued - continuation statement may be in error
	DASM435I - Record n in xxxxxxx
	DASM500W Requested alignment exceeds section alignment
	DASM900W Input line too long, truncated
	DASM901E Scale modifier is not permitted for special value
	DASM902E Invalid floating point special value - xxxxx
	DASM903W ALIAS name is not declared prior to setting flag
	DASM909W G-type constant not supported
	DASM911E Concatenation character not followed by apostrophe
	DASM913W RMODE and AMODE have no effect in Linux mode
	DASM914S Illegal address reference length


	License Information File
	ASCII/EBCDIC Translation Table

